JP2018150239A - β2GPI GENE SILENCING RNAi PHARMACEUTICAL COMPOSITION - Google Patents
β2GPI GENE SILENCING RNAi PHARMACEUTICAL COMPOSITION Download PDFInfo
- Publication number
- JP2018150239A JP2018150239A JP2015141352A JP2015141352A JP2018150239A JP 2018150239 A JP2018150239 A JP 2018150239A JP 2015141352 A JP2015141352 A JP 2015141352A JP 2015141352 A JP2015141352 A JP 2015141352A JP 2018150239 A JP2018150239 A JP 2018150239A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- lipid
- nucleic acid
- carbon atoms
- double
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/16—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
- A61K47/18—Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/22—Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Dispersion Chemistry (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
本発明は、β2GPI遺伝子発現を抑制する組成物、および該組成物からなる医薬等に関する。 The present invention relates to a composition that suppresses β2GPI gene expression, a pharmaceutical comprising the composition, and the like.
β2-Glycoprotein 1(β2GPI,別名:apolipoprotein H(apoH))は326残基のアミノ酸から構成される可溶性の糖タンパク質であり、主に肝臓で産生される (“インターナショナルジャーナルオブクリニカルアンドラボラトリーリサーチ(International Journal of Clinical and Laboratory Research) ”, 1992年, 第21巻, p256-263参照)。β2GPIは多彩な生理作用を有すると考えられており、血小板凝集反応、凝固・線溶反応、酸化LDLのマクロファージへの取り込みに関与していることが報告されている(非特許文献1)。 β2-Glycoprotein 1 (β2GPI, also known as apolipoprotein H (apoH)) is a soluble glycoprotein composed of 326 amino acids and is mainly produced in the liver (“International Journal of Clinical and Laboratory Research (International Journal of Clinical and Laboratory Research) ”, 1992, Vol. 21, p256-263). β2GPI is considered to have various physiological actions, and has been reported to be involved in platelet aggregation, coagulation / fibrinolysis, and uptake of oxidized LDL into macrophages (Non-patent Document 1).
疾患との関連について、β2GPIは抗リン脂質抗体症候群(APS)や全身性エリテマトーデス(SLE)といった自己免疫疾患において出現する抗リン脂質抗体の主要な対応抗原であることが知られている(非特許文献2)。抗β2GPI抗体は疾患の病態形成にも深く関与しており、β2GPIと抗β2GPI抗体によって形成される複合体は血管内皮細胞、単球、血小板、栄養芽細胞(trophoblast)といった様々な細胞の膜上受容体に活性化シグナルを発生させ、その結果、血栓症や妊娠異常といったAPSに特徴的な病態を引き起こし得ることが動物モデルを用いた研究ならびに臨床研究より明らかとなっている(非特許文献3)。β2GPIおよび抗β2GPI抗体からなる免疫複合体の形成を特異的に阻害することにより、上記の疾患を予防あるいは治療できると期待できるが、β2GPIは血中に50-500μg/mLという比較的高濃度で存在しており、これら全てのβ2GPIを例えば一般的な抗体医薬によって阻害し続けることは容易ではない(非特許文献4)。 Regarding its relationship to diseases, β2GPI is known to be the main anti-phospholipid antibody antigen that appears in autoimmune diseases such as antiphospholipid antibody syndrome (APS) and systemic lupus erythematosus (SLE) (non-patented) Reference 2). Anti-β2GPI antibodies are also deeply involved in the pathogenesis of diseases, and complexes formed by β2GPI and anti-β2GPI antibodies are found on the membranes of various cells such as vascular endothelial cells, monocytes, platelets, and trophoblasts. It has become clear from studies using animal models and clinical studies that an activation signal can be generated at the receptor, resulting in pathological conditions characteristic of APS such as thrombosis and pregnancy abnormalities (Non-patent Document 3). ). By specifically inhibiting the formation of immune complexes consisting of β2GPI and anti-β2GPI antibodies, it can be expected that the above-mentioned diseases can be prevented or treated, but β2GPI has a relatively high concentration of 50-500 μg / mL in the blood. It is not easy to continue to inhibit all of these β2GPIs with, for example, common antibody drugs (Non-patent Document 4).
一方、標的遺伝子の発現を抑制する方法として、例えばRNA干渉(RNA interference、以下、「RNAi」とよぶ)を利用した方法等が知られており、具体的には、線虫において標的とする遺伝子と同一の配列を有する二本鎖RNAを導入することにより、該標的遺伝子の発現が特異的に抑制される現象が報告されている(“ネイチャー(Nature)”, 1998年, 第391巻, 第6669号, p.806-811参照)。また、ショウジョウバエにおいて長い二本鎖RNAの代わりに、21〜23塩基の長さの二本鎖RNAを導入することによっても、標的遺伝子の発現が抑制されることが見出され、これはshort interfering RNA(siRNA)と名づけられている(国際公開第01/75164号参照)。 On the other hand, as a method for suppressing the expression of a target gene, for example, a method using RNA interference (hereinafter referred to as “RNAi”) is known. Specifically, a gene targeted in a nematode is known. It has been reported that the expression of the target gene is specifically suppressed by introducing a double-stranded RNA having the same sequence as “Nature”, 1998, Vol.391, Vol. 6669, p.806-811). In addition, it was found that the expression of the target gene was suppressed by introducing a double-stranded RNA having a length of 21-23 bases instead of a long double-stranded RNA in Drosophila. It is named RNA (siRNA) (see WO 01/75164).
RNAiについては、in vivo試験においても多く検証されており、50塩基対以下のsiRNAを用いた胎児の動物での効果(米国特許出願公開第2002/132788号明細書参照)および成体マウスでの効果(国際公開第03/10180号参照)が報告されている。また、siRNAをマウス胎児に静脈内投与した場合に、腎臓、脾臓、肺、膵臓および肝臓の各臓器で特定の遺伝子の発現抑制効果が確認されている(“ネイチャー ジェネティクス(Nature Genetics)”, 2002年, 第32巻, 第1号, p.107-108参照)。さらに、脳細胞においてもsiRNAを直接投与することで特定の遺伝子が発現抑制されることが報告されている(“ネイチャー バイオテクノロジー(Nature Biotechnology)”, 2002年, 第20巻, 第10号, p.1006-1010参照)。 RNAi has been extensively verified in in vivo tests, and effects in fetal animals using siRNAs of 50 base pairs or less (see US Patent Application Publication No. 2002/132788) and effects in adult mice (See International Publication No. 03/10180). In addition, when siRNA is administered intravenously to mouse fetuses, it has been confirmed to suppress the expression of specific genes in the kidney, spleen, lung, pancreas and liver organs (“Nature Genetics”, 2002, Vol. 32, No. 1, p.107-108). Furthermore, it has been reported that the expression of specific genes is also suppressed in brain cells by direct administration of siRNA (“Nature Biotechnology”, 2002, Vol. 20, No. 10, p. .1006-1010).
特許文献1および特許文献2には、ヒトのβ2GPI遺伝子をターゲットとするsiRNA配列の一部は開示されているが、該siRNA配列がヒトβ2GPI遺伝子の発現を抑制することは開示されていない。
また、siRNA類を含有する医薬は、例えば、特許文献3〜5等に記載されている。特許文献3には、siRNA類と、例えば、
Patent Document 1 and Patent Document 2 disclose part of siRNA sequences targeting the human β2GPI gene, but do not disclose that the siRNA sequence suppresses the expression of the human β2GPI gene.
Moreover, the pharmaceutical containing siRNA is described in patent documents 3-5 etc., for example. Patent Document 3 includes siRNAs and, for example,
2,2-ジリノレイル-4-(2-ジメチルアミノエチル)-[1,3]-ジオキソラン(2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane: DLin-KC2-DMA)等を含有する医薬が開示されている。特許文献4には、siRNA類と、例えば、 2,2-dilinoleyl-4- (2-dimethylaminoethyl)-[1,3] -dioxolane: DLin-KC2- A pharmaceutical containing DMA) is disclosed. Patent Document 4 includes siRNAs and, for example,
(6Z,9Z,28Z,31Z)-ヘプタトリアコンタ-6,9,28,31-テトラエン-19-イル 4-(ジメチルアミノ)ブタノアート((6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate: DLin-MC3-DMA)等を含有する医薬が開示されている。
そして、特許文献5には、カチオン性脂質および核酸を含有する組成物、および該組成物を用いて核酸を細胞内に導入する方法等が開示されている。
(6Z, 9Z, 28Z, 31Z) -Heptatriaconta-6,9,28,31-Tetraen-19-yl 4- (dimethylamino) butanoate ((6Z, 9Z, 28Z, 31Z) -heptatriaconta-6,9 , 28,31-tetraen-19-yl 4- (dimethylamino) butanoate: DLin-MC3-DMA) and the like are disclosed.
Patent Document 5 discloses a composition containing a cationic lipid and a nucleic acid, a method for introducing a nucleic acid into a cell using the composition, and the like.
本発明の目的は、β2GPI遺伝子発現を抑制する組成物、該組成物からなる医薬等を提供することである。 An object of the present invention is to provide a composition that suppresses β2GPI gene expression, a medicament comprising the composition, and the like.
本発明は、以下の(1)〜(61)に関する。
(1) センス鎖およびアンチセンス鎖から成り、少なくとも11個の塩基対の二重鎖領域を含む二本鎖核酸であって、前記アンチセンス鎖中の、少なくとも17個のヌクレオチドかつ多くとも30個のヌクレオチドの鎖長のオリゴヌクレオチド鎖において、表2−1〜表2−16に記載された群から選択される標的β2GPI mRNA配列と相補的である、薬物としての二本鎖核酸と、式(A)
The present invention relates to the following (1) to (61).
(1) A double-stranded nucleic acid consisting of a sense strand and an antisense strand and comprising a double-stranded region of at least 11 base pairs, wherein at least 17 nucleotides and at most 30 in the antisense strand A double-stranded nucleic acid as a drug that is complementary to a target β2GPI mRNA sequence selected from the group described in Tables 2-1 to 2-16 in an oligonucleotide chain of a length of A)
(式中、R1は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニルであり、
R2は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニル、アルコキシエチル、アルコキシプロピル、アルケニルオキシエチル、アルケニルオキシプロピル、アルキニルオキシエチルまたはアルキニルオキシプロピルであり、
R3およびR4は、同一または異なって炭素数1〜3のアルキルであるか、または一緒になって炭素数2〜8のアルキレンを形成するか、またはR3はR5と一緒になって炭素数2〜8のアルキレンを形成し、
R5は、水素原子、炭素数1〜6のアルキル、炭素数3〜6のアルケニル、アミノ、モノアルキルアミノ、ヒドロキシ、アルコキシ、カルバモイル、モノアルキルカルバモイル、ジアルキルカルバモイルまたは同一もしくは異なって1〜3つのアミノ、モノアルキルアミノ、ヒドロキシ、アルコキシ、カルバモイル、モノアルキルカルバモイルもしくはジアルキルカルバモイルで置換された炭素数1〜6のアルキルもしくは炭素数3〜6のアルケニルであるか、またはR3と一緒になって炭素数2〜8のアルキレンを形成し、
X1は、炭素数1〜6のアルキレンであり、
X2は、単結合であるか、または炭素数1〜6のアルキレンであり、ただし、X1とX2の炭素数の和は7以下であり、R5が、水素原子の場合、X2は単結合であり、R5がR3と一緒になって炭素数2〜8のアルキレンを形成する場合、X2は単結合であるか、またはメチレンもしくはエチレンである)、
式(B)
(In the formula, R 1 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms;
R 2 is linear or branched alkyl having 8 to 24 carbon atoms, alkenyl or alkynyl, alkoxyethyl, alkoxypropyl, alkenyloxyethyl, alkenyloxypropyl, alkynyloxyethyl or alkynyloxypropyl,
R 3 and R 4 are the same or different and are alkyl having 1 to 3 carbon atoms or are combined to form alkylene having 2 to 8 carbon atoms, or R 3 is combined with R 5 Forming alkylene having 2 to 8 carbon atoms,
R 5 is a hydrogen atom, alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, amino, monoalkylamino, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, or the same or different from 1 to 3 C 1-6 alkyl or C 3-6 alkenyl substituted with amino, monoalkylamino, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl or dialkylcarbamoyl, or carbon together with R 3 Forming alkylene of the number 2-8,
X 1 is alkylene having 1 to 6 carbon atoms,
X 2 is a single bond or alkylene having 1 to 6 carbon atoms, provided that the sum of the carbon number of X 1 and X 2 is 7 or less, and when R 5 is a hydrogen atom, X 2 Is a single bond, and when R 5 together with R 3 forms an alkylene of 2 to 8 carbon atoms, X 2 is a single bond, or is methylene or ethylene),
Formula (B)
(式中、R6は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルまたはアルキニルであり、
R7は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニル、アルコキシエチル、アルコキシプロピル、アルケニルオキシエチル、アルケニルオキシプロピル、アルキニルオキシエチルまたはアルキニルオキシプロピルである)、または
式(C)
(In the formula, R 6 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms;
R 7 is linear or branched alkyl having 8 to 24 carbon atoms, alkenyl or alkynyl, alkoxyethyl, alkoxypropyl, alkenyloxyethyl, alkenyloxypropyl, alkynyloxyethyl or alkynyloxypropyl), or a formula (C)
(式中、R8は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルまたはアルキニルであり、
R9は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニル、アルコキシエチル、アルコキシプロピル、アルケニルオキシエチル、アルケニルオキシプロピル、アルキニルオキシエチルまたはアルキニルオキシプロピルであり、
X3は、炭素数1〜3のアルキレンであり、
R10は、水素原子または炭素数1〜3のアルキルである)で表されるカチオン性脂質を含む、脂質粒子。
(2) R1、R2、R6、R7、R8およびR9が、それぞれテトラデシル、ヘキサデシル、(Z)-テトラデカ-9-エニル、(Z)-ヘキサデカ-9-エニル、(Z)-オクタデカ-6-エニル、(Z)-オクタデカ-9-エニル、(E)-オクタデカ-9-エニル、(Z)-オクタデカ-11-エニル、(9Z,12Z)-オクタデカ-9,12-ジエニル、(9Z,12Z,15Z)-オクタデカ-9,12,15-トリエニル、(Z)-イコサ-11-エニル、(11Z,14Z)-イコサ-11,14-ジエニルまたは(Z)-ドコサ-13-エニルである、前記(1)記載の脂質粒子。
(3)R1、R2、R6、R7、R8およびR9が、それぞれ (Z)-オクタデカ-9-エニル、(9Z,12Z)-オクタデカ-9,12-ジエニルまたは(11Z,14Z)-イコサ-11,14-ジエニルである、前記(1)記載の脂質粒子。
(4) X1が、炭素数1〜3のアルキレンであり、X2が、単結合またはメチレンである、前記(1)〜(3)のいずれかに記載の脂質粒子。
(5) X3が、メチレンまたはエチレンである、前記(1)〜(4)のいずれかに記載の脂質粒子。
(6) R3およびR4が、同一もしくは異なってメチルもしくはエチル、または一緒になってn-ペンチレンもしくは-ヘキシレンを形成する、前記(1)〜(5)のいずれかに記載の脂質粒子。
(7) R3およびR5が、一緒になってn-プロピレンまたはn-ブチレンを形成し、R4が、メチルまたはエチルである、前記(1)〜(5)のいずれかに記載の脂質粒子。
(8) R5およびR10が、それぞれ水素原子またはメチルである、前記(1)〜(5)のいずれかに記載の脂質粒子。
(9) 二重鎖領域が11〜27個の塩基対を含む二重鎖領域であり、表2−1〜表2−16に記載された群から選択される標的β2GPI mRNA配列と相補的である前記アンチセンス鎖の5’末端から2番目のヌクレオチドが、該標的β2GPI mRNA配列の3’末端から2番目のデオキシリボヌクレオチドと相補する、前記(1)〜(8)のいずれかに記載の脂質粒子。
(10) センス鎖が、21個のヌクレオチド鎖長であり、かつ前記アンチセンス鎖が、21個のヌクレオチド鎖長である、前記(1)〜(9)のいずれかに記載の脂質粒子。
(11) センス鎖が、21個のヌクレオチド鎖長であり、かつアンチセンス鎖が、21個のヌクレオチド鎖長である二本鎖核酸が、19塩基対の二重鎖領域を含む、(1)〜(10)のいずれかに記載の脂質粒子。
(12) センス鎖の3’末端およびアンチセンス鎖の5’末端は、平滑末端を形成する、前記(1)〜(9)のいずれかに記載の脂質粒子。
(13) 二本鎖核酸が、2’-O-メチル修飾ヌクレオチドを含む、前記(1)〜(12)のいずれかに記載の脂質粒子。
(14) 二重鎖領域内のヌクレオチドの40〜65%が2’-O-メチル修飾ヌクレオチドである、前記(13)記載の脂質粒子。
(15) アンチセンス鎖が、表4−1〜表4−5に記載されたアンチセンス鎖群から選択される配列を含む、(1)〜(14)のいずれかに記載の脂質粒子。
(16) センス鎖が、および表4−1〜表4−5に記載されたセンス鎖群から選択される配列を含む、前記(1)〜(14)のいずれかに記載の脂質粒子。
(17) 表4−1〜表4−5に記載のセンス鎖/アンチセンス鎖から成る群から選択される1対のセンス鎖/アンチセンス鎖の配列を含む、前記(1)〜(14)のいずれかに記載の脂質粒子。
(18) カチオン性脂質が、該二本鎖核酸と複合体を形成しているか、または中性脂質および/もしくは高分子を組み合わせたものと該二本鎖核酸との複合体を形成している、前記(1)〜(17)のいずれかに記載の脂質粒子。
(19) カチオン性脂質が、該二本鎖核酸と複合体を形成しているか、または中性脂質および/もしくは高分子を組み合わせたものと該二本鎖核酸との複合体を形成しており、脂質粒子が該複合体と該複合体を封入する脂質膜から構成された脂質粒子である、前記(1)〜(18)のいずれかに記載の脂質粒子。
(20) 前記(1)〜(19)のいずれかに記載の脂質粒子を含む、脂質粒子含有組成物。
(21) 前記(20)記載の組成物を用いて該二本鎖核酸を細胞内に導入することを含む、β2GPI遺伝子の発現を抑制する方法。
(22) 細胞が、哺乳動物の肝臓にある細胞である、前記(21)記載の方法。
(23) 細胞内に導入する方法が、静脈内投与によって細胞内に導入する方法である、前記(21)または(22)に記載の方法。
(24) 前記(20)記載の組成物を哺乳動物に投与することを含む、β2GPI関連疾患の治療方法。
(25) β2GPI関連疾患が、自己免疫疾患または血栓症である、前記(24)記載の方法。
(26) 投与する方法が、静脈内投与である、前記(24)または(25)記載の方法。
(27) 前記(20)記載の組成物を含む、β2GPI関連疾患の治療に用いるための医薬。
(28) β2GPI関連疾患が、自己免疫疾患または血栓症である、前記(27)記載の医薬。
(29) 静脈内投与用である、前記(27)または(28)記載の医薬。
(30) 前記(20)記載の組成物を含む、自己免疫疾患または血栓症の治療剤。
(31) 静脈内投与用である、前記(30)記載の自己免疫疾患または血栓症の治療剤。
(32) センス鎖およびアンチセンス鎖から成り、少なくとも11個の塩基対の二重鎖領域を含む二本鎖核酸であって、前記アンチセンス鎖中の、少なくとも17個のヌクレオチドかつ多くとも30個のヌクレオチドの鎖長のオリゴヌクレオチド鎖において、表2−1〜表2−16に記載された群から選択される標的β2GPI mRNA配列と相補的である、薬物としての二本鎖核酸と、式(A)
(In the formula, R 8 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms;
R 9 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms, alkoxyethyl, alkoxypropyl, alkenyloxyethyl, alkenyloxypropyl, alkynyloxyethyl or alkynyloxypropyl,
X 3 is alkylene having 1 to 3 carbon atoms,
R 10 is a hydrogen particle or a lipid particle containing a cationic lipid represented by C 1-3 alkyl.
(2) R 1 , R 2 , R 6 , R 7 , R 8 and R 9 are tetradecyl, hexadecyl, (Z) -tetradec-9-enyl, (Z) -hexadeca-9-enyl, (Z), respectively. -Octadeca-6-enyl, (Z) -octadeca-9-enyl, (E) -octadeca-9-enyl, (Z) -octadeca-11-enyl, (9Z, 12Z) -octadeca-9,12-dienyl , (9Z, 12Z, 15Z) -octadeca-9,12,15-trienyl, (Z) -icosa-11-enyl, (11Z, 14Z) -icosa-11,14-dienyl or (Z) -docosa-13 The lipid particle according to the above (1), which is an enil.
(3) R 1 , R 2 , R 6 , R 7 , R 8 and R 9 are (Z) -octadeca-9-enyl, (9Z, 12Z) -octadeca-9,12-dienyl or (11Z, The lipid particle according to (1), which is 14Z) -icosa-11,14-dienyl.
(4) The lipid particle according to any one of (1) to (3), wherein X 1 is alkylene having 1 to 3 carbon atoms, and X 2 is a single bond or methylene.
(5) The lipid particle according to any one of (1) to (4), wherein X 3 is methylene or ethylene.
(6) The lipid particle according to any one of (1) to (5) above, wherein R 3 and R 4 are the same or different and are methyl or ethyl, or together form n-pentylene or -hexylene.
(7) The lipid according to any one of (1) to (5) above, wherein R 3 and R 5 together form n-propylene or n-butylene, and R 4 is methyl or ethyl. particle.
(8) The lipid particle according to any one of (1) to (5), wherein R 5 and R 10 are each a hydrogen atom or methyl.
(9) The double-stranded region is a double-stranded region comprising 11 to 27 base pairs and is complementary to a target β2GPI mRNA sequence selected from the group described in Table 2-1 to Table 2-16 The lipid according to any one of (1) to (8), wherein the second nucleotide from the 5 ′ end of the antisense strand is complementary to the second deoxyribonucleotide from the 3 ′ end of the target β2GPI mRNA sequence. particle.
(10) The lipid particle according to any one of (1) to (9), wherein the sense strand has a length of 21 nucleotide chains, and the antisense strand has a length of 21 nucleotide chains.
(11) A double-stranded nucleic acid whose sense strand is 21 nucleotides in length and whose antisense strand is 21 nucleotides in length includes a 19-base pair duplex region, (1) -Lipid particle in any one of (10).
(12) The lipid particle according to any one of (1) to (9), wherein the 3 ′ end of the sense strand and the 5 ′ end of the antisense strand form a blunt end.
(13) The lipid particle according to any one of (1) to (12), wherein the double-stranded nucleic acid contains 2′-O-methyl modified nucleotides.
(14) The lipid particle according to (13), wherein 40 to 65% of the nucleotides in the double-stranded region are 2′-O-methyl modified nucleotides.
(15) The lipid particle according to any one of (1) to (14), wherein the antisense strand comprises a sequence selected from the group of antisense strands described in Tables 4-1 to 4-5.
(16) The lipid particle according to any one of (1) to (14), wherein the sense strand comprises a sequence selected from the sense strand group described in Tables 4-1 to 4-5.
(17) The sequences (1) to (14), comprising a pair of sense / antisense strand sequences selected from the group consisting of the sense strand / antisense strand described in Table 4-1 to Table 4-5 The lipid particle according to any one of the above.
(18) Cationic lipid forms a complex with the double-stranded nucleic acid, or forms a complex with a combination of neutral lipid and / or polymer and the double-stranded nucleic acid The lipid particle according to any one of (1) to (17).
(19) Cationic lipid forms a complex with the double-stranded nucleic acid, or forms a complex with a combination of neutral lipid and / or polymer and the double-stranded nucleic acid The lipid particle according to any one of (1) to (18), wherein the lipid particle is a lipid particle composed of the complex and a lipid membrane encapsulating the complex.
(20) A lipid particle-containing composition comprising the lipid particle according to any one of (1) to (19).
(21) A method for suppressing the expression of β2GPI gene, comprising introducing the double-stranded nucleic acid into a cell using the composition according to (20).
(22) The method according to (21) above, wherein the cell is a cell in a mammalian liver.
(23) The method according to (21) or (22) above, wherein the method of introducing into cells is a method of introducing into cells by intravenous administration.
(24) A method for treating a β2GPI-related disease, comprising administering the composition according to (20) to a mammal.
(25) The method according to (24) above, wherein the β2GPI-related disease is an autoimmune disease or thrombosis.
(26) The method according to (24) or (25) above, wherein the method of administration is intravenous administration.
(27) A medicament for use in the treatment of β2GPI-related diseases, comprising the composition according to (20).
(28) The medicament according to (27), wherein the β2GPI-related disease is an autoimmune disease or thrombosis.
(29) The medicament according to (27) or (28), which is for intravenous administration.
(30) A therapeutic agent for autoimmune disease or thrombosis comprising the composition according to (20).
(31) The therapeutic agent for autoimmune disease or thrombosis according to (30), which is for intravenous administration.
(32) A double-stranded nucleic acid comprising a sense strand and an antisense strand, and comprising a double-stranded region of at least 11 base pairs, wherein at least 17 nucleotides and at most 30 in the antisense strand A double-stranded nucleic acid as a drug that is complementary to a target β2GPI mRNA sequence selected from the group described in Tables 2-1 to 2-16 in an oligonucleotide chain of a length of A)
(式中、R1は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニルであり、
R2は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニル、アルコキシエチル、アルコキシプロピル、アルケニルオキシエチル、アルケニルオキシプロピル、アルキニルオキシエチルまたはアルキニルオキシプロピルであり、
R3およびR4は、同一または異なって炭素数1〜3のアルキルであるか、または一緒になって炭素数2〜8のアルキレンを形成するか、またはR3はR5と一緒になって炭素数2〜8のアルキレンを形成し、
R5は、水素原子、炭素数1〜6のアルキル、炭素数3〜6のアルケニル、アミノ、モノアルキルアミノ、ヒドロキシ、アルコキシ、カルバモイル、モノアルキルカルバモイル、ジアルキルカルバモイルまたは同一もしくは異なって1〜3つのアミノ、モノアルキルアミノ、ヒドロキシ、アルコキシ、カルバモイル、モノアルキルカルバモイルもしくはジアルキルカルバモイルで置換された炭素数1〜6のアルキルもしくは炭素数3〜6のアルケニルであるか、またはR3と一緒になって炭素数2〜8のアルキレンを形成し、
X1は、炭素数1〜6のアルキレンであり、
X2は、単結合であるか、または炭素数1〜6のアルキレンであり、ただし、X1とX2の炭素数の和は7以下であり、R5が、水素原子の場合、X2は単結合であり、R5がR3と一緒になって炭素数2〜6のアルキレンを形成する場合、X2は単結合であるか、またはメチレンもしくはエチレンである)、
式(B)
(In the formula, R 1 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms;
R 2 is linear or branched alkyl having 8 to 24 carbon atoms, alkenyl or alkynyl, alkoxyethyl, alkoxypropyl, alkenyloxyethyl, alkenyloxypropyl, alkynyloxyethyl or alkynyloxypropyl,
R 3 and R 4 are the same or different and are alkyl having 1 to 3 carbon atoms or are combined to form alkylene having 2 to 8 carbon atoms, or R 3 is combined with R 5 Forming alkylene having 2 to 8 carbon atoms,
R 5 is a hydrogen atom, alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, amino, monoalkylamino, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, or the same or different from 1 to 3 C 1-6 alkyl or C 3-6 alkenyl substituted with amino, monoalkylamino, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl or dialkylcarbamoyl, or carbon together with R 3 Forming alkylene of the number 2-8,
X 1 is alkylene having 1 to 6 carbon atoms,
X 2 is a single bond or alkylene having 1 to 6 carbon atoms, provided that the sum of the carbon number of X 1 and X 2 is 7 or less, and when R 5 is a hydrogen atom, X 2 Is a single bond, and when R 5 together with R 3 forms an alkylene of 2 to 6 carbon atoms, X 2 is a single bond, or is methylene or ethylene),
Formula (B)
(式中、R6は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルまたはアルキニルであり、
R7は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニル、アルコキシエチル、アルコキシプロピル、アルケニルオキシエチル、アルケニルオキシプロピル、アルキニルオキシエチルまたはアルキニルオキシプロピルである)、または
式(C)
(In the formula, R 6 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms;
R 7 is linear or branched alkyl having 8 to 24 carbon atoms, alkenyl or alkynyl, alkoxyethyl, alkoxypropyl, alkenyloxyethyl, alkenyloxypropyl, alkynyloxyethyl or alkynyloxypropyl), or a formula (C)
(式中、R8は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルまたはアルキニルであり、
R9は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニル、アルコキシエチル、アルコキシプロピル、アルケニルオキシエチル、アルケニルオキシプロピル、アルキニルオキシエチルまたはアルキニルオキシプロピルであり、
X3は、炭素数1〜3のアルキレンであり、
R10は、水素原子または炭素数1〜3のアルキルである)で表されるカチオン性脂質を含有する、脂質粒子含有組成物。
(33) R1、R2、R6、R7、R8およびR9が、それぞれテトラデシル、ヘキサデシル、(Z)-テトラデカ-9-エニル、(Z)-ヘキサデカ-9-エニル、(Z)-オクタデカ-6-エニル、(Z)-オクタデカ-9-エニル、(E)-オクタデカ-9-エニル、(Z)-オクタデカ-11-エニル、(9Z,12Z)-オクタデカ-9,12-ジエニル、(9Z,12Z,15Z)-オクタデカ-9,12,15-トリエニル、(Z)-イコサ-11-エニル、(11Z,14Z)-イコサ-11,14-ジエニルまたは(Z)-ドコサ-13-エニルである、前記(32)記載の組成物。
(34) R1、R2、R6、R7、R8およびR9が、それぞれ (Z)-オクタデカ-9-エニル、(9Z,12Z)-オクタデカ-9,12-ジエニルまたは(11Z,14Z)-イコサ-11,14-ジエニルである、前記(32)記載の組成物。
(35) X1が、炭素数1〜3のアルキレンであり、X2が、単結合またはメチレンである、前記(32)〜(34)のいずれかに記載の組成物。
(36) X3が、メチレンまたはエチレンである、前記(32)〜(35)のいずれかに記載の組成物。
(37) R3およびR4が、同一もしくは異なってメチルもしくはエチル、または一緒になってn-ペンチレンもしくは-ヘキシレンを形成する、前記(32)〜(36)のいずれかに記載の組成物。
(38) R3およびR5が、一緒になってn-プロピレンまたはn-ブチレンを形成し、R4が、メチルまたはエチルである、前記(32)〜(36)のいずれかに記載の組成物。
(39) R5およびR10が、それぞれ水素原子またはメチルである、前記(32)〜(36)のいずれかに記載の組成物。
(40) 二重鎖領域が11〜27個の塩基対を含む二重鎖領域であり、表2−1〜表2−16に記載された群から選択される標的β2GPI mRNA配列と相補的である前記アンチセンス鎖の5’末端から2番目のヌクレオチドが、該標的β2GPI mRNA配列の3’末端から2番目のデオキシリボヌクレオチドと相補する、前記(32)〜(39)のいずれかに記載の組成物。
(41) センス鎖が、21個のヌクレオチド鎖長であり、かつ前記アンチセンス鎖が、21個のヌクレオチド鎖長である、前記(32)〜(40)のいずれかに記載の組成物。
(42) センス鎖が、21個のヌクレオチド鎖長であり、かつアンチセンス鎖が、21個のヌクレオチド鎖長である二本鎖核酸が、19塩基対の二重鎖領域を含む、前記(32)〜(41)のいずれかに記載の組成物。
(43) センス鎖の3’末端およびアンチセンス鎖の5’末端は、平滑末端を形成する、前記(32)〜(40)のいずれかに記載の組成物。
(44) 二本鎖核酸が、2’-O-メチル修飾ヌクレオチドを含む、前記(32)〜(43)のいずれかに記載の組成物。
(45) 二重鎖領域内のヌクレオチドの40〜65%が2’-O-メチル修飾ヌクレオチドである、前記(44)記載の組成物。
(46) アンチセンス鎖が、表4−1〜表4−5に記載されたアンチセンス鎖群から選択される配列を含む、前記(32)〜(45)のいずれかに記載の組成物。
(47) センス鎖が、および表4−1〜表4−5に記載されたセンス鎖群から選択される配列を含む、前記(32)〜(45)のいずれかに記載の組成物。
(48) 表4−1〜表4−5に記載のセンス鎖/アンチセンス鎖から成る群から選択される1対のセンス鎖/アンチセンス鎖の配列を含む、前記(32)〜(47)のいずれかに記載の組成物。
(49) カチオン性脂質が、該二本鎖核酸と複合体を形成しているか、または中性脂質および/もしくは高分子を組み合わせたものと該二本鎖核酸との複合体を形成している、前記(32)〜(48)のいずれかに記載の組成物。
(50) カチオン性脂質が、該二本鎖核酸と複合体を形成しているか、または中性脂質および/もしくは高分子を組み合わせたものと該二本鎖核酸との複合体を形成しており、脂質粒子が該複合体と該複合体を封入する脂質膜から構成された脂質粒子である、前記(32)〜(49)のいずれかに記載の組成物。
(51) 前記(32)〜(50)のいずれかに記載の組成物を用いて該二本鎖核酸を細胞内に導入することを含む、β2GPI遺伝子の発現を抑制する方法。
(52) 細胞が、哺乳動物の肝臓にある細胞である、前記(51)記載の方法。
(53) 細胞内に導入する方法が、静脈内投与によって細胞内に導入する方法である、前記(51)または(52)に記載の方法。
(54) 前記(32)〜(50)のいずれかに記載の組成物を哺乳動物に投与することを含む、β2GPI関連疾患の治療方法。
(55) β2GPI関連疾患が、自己免疫疾患または血栓症である、前記(54)記載の方法。
(56) 投与する方法が、静脈内投与である、前記(54)または(55)記載の方法。
(57) 前記(32)〜(50)のいずれかに記載の組成物を含む、β2GPI関連疾患の治療に用いるための医薬。
(58) β2GPI関連疾患が、自己免疫疾患または血栓症である、前記(57)記載の医薬。
(59) 静脈内投与用である、前記(57)または(58)記載の医薬。
(60) 前記(32)〜(50)のいずれかに記載の組成物を含む、自己免疫疾患または血栓症の治療剤。
(61) 静脈内投与用である、前記(60)記載の自己免疫疾患または血栓症の治療剤。
(In the formula, R 8 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms;
R 9 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms, alkoxyethyl, alkoxypropyl, alkenyloxyethyl, alkenyloxypropyl, alkynyloxyethyl or alkynyloxypropyl,
X 3 is alkylene having 1 to 3 carbon atoms,
R 10 is a hydrogen atom or an alkyl having 1 to 3 carbon atoms).
(33) R 1 , R 2 , R 6 , R 7 , R 8 and R 9 are tetradecyl, hexadecyl, (Z) -tetradec-9-enyl, (Z) -hexadeca-9-enyl, (Z), respectively. -Octadeca-6-enyl, (Z) -octadeca-9-enyl, (E) -octadeca-9-enyl, (Z) -octadeca-11-enyl, (9Z, 12Z) -octadeca-9,12-dienyl , (9Z, 12Z, 15Z) -octadeca-9,12,15-trienyl, (Z) -icosa-11-enyl, (11Z, 14Z) -icosa-11,14-dienyl or (Z) -docosa-13 -The composition according to the above (32), which is an enyl.
(34) R 1 , R 2 , R 6 , R 7 , R 8 and R 9 are (Z) -octadeca-9-enyl, (9Z, 12Z) -octadeca-9,12-dienyl or (11Z, The composition according to the above (32), which is 14Z) -icosa-11,14-dienyl.
(35) The composition according to any one of (32) to (34), wherein X 1 is alkylene having 1 to 3 carbon atoms, and X 2 is a single bond or methylene.
(36) The composition according to any one of (32) to (35), wherein X 3 is methylene or ethylene.
(37) The composition according to any one of the above (32) to (36), wherein R 3 and R 4 are the same or different and are methyl or ethyl, or together, form n-pentylene or -hexylene.
(38) The composition according to any one of (32) to (36), wherein R 3 and R 5 are combined to form n-propylene or n-butylene, and R 4 is methyl or ethyl. object.
(39) The composition according to any one of (32) to (36), wherein R 5 and R 10 are each a hydrogen atom or methyl.
(40) The double-stranded region is a double-stranded region comprising 11 to 27 base pairs and is complementary to a target β2GPI mRNA sequence selected from the group described in Table 2-1 to Table 2-16 The composition according to any one of (32) to (39), wherein the second nucleotide from the 5 ′ end of the antisense strand is complementary to the second deoxyribonucleotide from the 3 ′ end of the target β2GPI mRNA sequence. object.
(41) The composition according to any one of (32) to (40), wherein the sense strand has a length of 21 nucleotide chains, and the antisense strand has a length of 21 nucleotide chains.
(42) The double-stranded nucleic acid in which the sense strand has a length of 21 nucleotides and the antisense strand has a length of 21 nucleotides includes a double-stranded region of 19 base pairs (32 ) To (41).
(43) The composition according to any one of (32) to (40), wherein the 3 ′ end of the sense strand and the 5 ′ end of the antisense strand form a blunt end.
(44) The composition according to any of (32) to (43), wherein the double-stranded nucleic acid comprises 2′-O-methyl modified nucleotides.
(45) The composition according to the above (44), wherein 40 to 65% of the nucleotides in the double-stranded region are 2′-O-methyl modified nucleotides.
(46) The composition according to any one of (32) to (45), wherein the antisense strand comprises a sequence selected from the antisense strand group described in Tables 4-1 to 4-5.
(47) The composition according to any of (32) to (45), wherein the sense strand comprises a sequence selected from the sense strand group described in Tables 4-1 to 4-5.
(48) The sequence (32) to (47), comprising a pair of sense / antisense strands selected from the group consisting of the sense strand / antisense strand described in Table 4-1 to Table 4-5 The composition in any one of.
(49) Cationic lipid forms a complex with the double-stranded nucleic acid, or forms a complex with a combination of neutral lipid and / or polymer and the double-stranded nucleic acid The composition according to any one of (32) to (48).
(50) Cationic lipid forms a complex with the double-stranded nucleic acid, or forms a complex with a combination of neutral lipid and / or polymer and the double-stranded nucleic acid The composition according to any one of (32) to (49), wherein the lipid particle is a lipid particle composed of the complex and a lipid membrane encapsulating the complex.
(51) A method for suppressing the expression of β2GPI gene, comprising introducing the double-stranded nucleic acid into a cell using the composition according to any one of (32) to (50).
(52) The method according to (51) above, wherein the cell is a cell in a mammalian liver.
(53) The method according to the above (51) or (52), wherein the method of introducing into a cell is a method of introducing into a cell by intravenous administration.
(54) A method for treating a β2GPI-related disease, comprising administering the composition according to any of (32) to (50) to a mammal.
(55) The method according to (54), wherein the β2GPI-related disease is an autoimmune disease or thrombosis.
(56) The method according to (54) or (55) above, wherein the method of administration is intravenous administration.
(57) A medicament for use in the treatment of β2GPI-related diseases, comprising the composition according to any one of (32) to (50).
(58) The medicament according to (57), wherein the β2GPI-related disease is an autoimmune disease or thrombosis.
(59) The medicament according to the above (57) or (58), which is for intravenous administration.
(60) A therapeutic agent for autoimmune disease or thrombosis comprising the composition according to any one of (32) to (50).
(61) The therapeutic agent for autoimmune disease or thrombosis according to (60), which is for intravenous administration.
例えば本発明の脂質粒子を含む組成物を、哺乳動物に投与して、生体内において、β2GPI遺伝子発現を抑制し、β2GPI関連疾患を治療することができる。 For example, a composition containing the lipid particles of the present invention can be administered to a mammal to suppress β2GPI gene expression in vivo and treat β2GPI-related diseases.
本発明の核酸が標的とするβ2GPI遺伝子(β2GPIをコードする遺伝子)としては、Genbank Accession No.NM_000042として登録されているβ2GPI cDNA(配列番号3541)に対応する、β2GPIの完全長mRNAを産生する遺伝子があげられる。
本発明は、薬物としてのβ2GPI遺伝子の発現を低下または停止させる能力を有する二本鎖核酸と、カチオン性脂質を含有する脂質粒子を提供する。
The β2GPI gene (gene encoding β2GPI) targeted by the nucleic acid of the present invention is a gene that produces β2GPI full-length mRNA corresponding to β2GPI cDNA (SEQ ID NO: 3541) registered as Genbank Accession No. NM_000042 Can be given.
The present invention provides a double-stranded nucleic acid having the ability to reduce or stop the expression of β2GPI gene as a drug, and a lipid particle containing a cationic lipid.
また、該脂質粒子を含む組成物を、哺乳動物に投与して、生体内において、β2GPI遺伝子発現を抑制し、β2GPI関連疾患を治療する方法も、提供する。
さらに、本発明は、抗β2GPI抗体に関連する障害を治療または予防するための方法も提供する。
本発明における脂質粒子は、式(A)
Also provided is a method of treating a β2GPI-related disease by administering the composition containing the lipid particles to a mammal, suppressing β2GPI gene expression in vivo.
Furthermore, the present invention also provides methods for treating or preventing disorders associated with anti-β2GPI antibodies.
The lipid particles in the present invention have the formula (A)
(式中、R1は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニルであり、
R2は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニル、アルコキシエチル、アルコキシプロピル、アルケニルオキシエチル、アルケニルオキシプロピル、アルキニルオキシエチルまたはアルキニルオキシプロピルであり、
R3およびR4は、同一または異なって炭素数1〜3のアルキルであるか、または一緒になって炭素数2〜8のアルキレンを形成するか、またはR3はR5と一緒になって炭素数2〜8のアルキレンを形成し、
R5は、水素原子、炭素数1〜6のアルキル、炭素数3〜6のアルケニル、アミノ、モノアルキルアミノ、ヒドロキシ、アルコキシ、カルバモイル、モノアルキルカルバモイル、ジアルキルカルバモイルまたは同一もしくは異なって1〜3つのアミノ、モノアルキルアミノ、ヒドロキシ、アルコキシ、カルバモイル、モノアルキルカルバモイルもしくはジアルキルカルバモイルで置換された炭素数1〜6のアルキルもしくは炭素数3〜6のアルケニルであるか、またはR3と一緒になって炭素数2〜8のアルキレンを形成し、
X1は、炭素数1〜6のアルキレンであり、
X2は、単結合であるか、または炭素数1〜6のアルキレンであり、ただし、X1とX2の炭素数の和は7以下であり、R5が、水素原子の場合、X2は単結合であり、R5がR3と一緒になって炭素数2〜6のアルキレンを形成する場合、X2は単結合であるか、またはメチレンもしくはエチレンである)、
式(B)
(In the formula, R 1 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms;
R 2 is linear or branched alkyl having 8 to 24 carbon atoms, alkenyl or alkynyl, alkoxyethyl, alkoxypropyl, alkenyloxyethyl, alkenyloxypropyl, alkynyloxyethyl or alkynyloxypropyl,
R 3 and R 4 are the same or different and are alkyl having 1 to 3 carbon atoms or are combined to form alkylene having 2 to 8 carbon atoms, or R 3 is combined with R 5 Forming alkylene having 2 to 8 carbon atoms,
R 5 is a hydrogen atom, alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, amino, monoalkylamino, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, or the same or different from 1 to 3 C 1-6 alkyl or C 3-6 alkenyl substituted with amino, monoalkylamino, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl or dialkylcarbamoyl, or carbon together with R 3 Forming alkylene of the number 2-8,
X 1 is alkylene having 1 to 6 carbon atoms,
X 2 is a single bond or alkylene having 1 to 6 carbon atoms, provided that the sum of the carbon number of X 1 and X 2 is 7 or less, and when R 5 is a hydrogen atom, X 2 Is a single bond, and when R 5 together with R 3 forms an alkylene of 2 to 6 carbon atoms, X 2 is a single bond, or is methylene or ethylene),
Formula (B)
(式中、R6は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルまたはアルキニルであり、
R7は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニル、アルコキシエチル、アルコキシプロピル、アルケニルオキシエチル、アルケニルオキシプロピル、アルキニルオキシエチルまたはアルキニルオキシプロピルである)、または
式(C)
(In the formula, R 6 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms;
R 7 is linear or branched alkyl having 8 to 24 carbon atoms, alkenyl or alkynyl, alkoxyethyl, alkoxypropyl, alkenyloxyethyl, alkenyloxypropyl, alkynyloxyethyl or alkynyloxypropyl), or a formula (C)
(式中、R8は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルまたはアルキニルであり、
R9は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニル、アルコキシエチル、アルコキシプロピル、アルケニルオキシエチル、アルケニルオキシプロピル、アルキニルオキシエチルまたはアルキニルオキシプロピルであり、
X3は、炭素数1〜3のアルキレンであり、
R10は、水素原子または炭素数1〜3のアルキルである)で表されるカチオン性脂質を含有する。以下、式(A)で表される化合物を化合物(A)、式(B)で表される化合物を化合物(B)、式(C)で表される化合物を化合物(C)ということもある。他の式番号の化合物についても同様である。
(In the formula, R 8 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms;
R 9 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms, alkoxyethyl, alkoxypropyl, alkenyloxyethyl, alkenyloxypropyl, alkynyloxyethyl or alkynyloxypropyl,
X 3 is alkylene having 1 to 3 carbon atoms,
R 10 is a cationic lipid represented by a hydrogen atom or alkyl having 1 to 3 carbon atoms. Hereinafter, the compound represented by the formula (A) may be referred to as the compound (A), the compound represented by the formula (B) as the compound (B), and the compound represented by the formula (C) as the compound (C). . The same applies to the compounds of other formula numbers.
炭素数8〜24の直鎖状または分枝状のアルキルとしては、例えばオクチル、デシル、ドデシル、トリデシル、テトラデシル、2,6,10-トリメチルウンデシル、ペンタデシル、3,7,11-トリメチルドデシル、ヘキサデシル、ヘプタデシル、オクタデシル、6,10,14-トリメチルペンタデカン-2-イル、ノナデシル、2,6,10,14-テトラメチルペンタデシル、イコシル、3,7,11,15-テトラメチルヘキサデシル、ヘニコシル、ドコシル、トリコシル、テトラコシル等があげられる。 Examples of linear or branched alkyl having 8 to 24 carbon atoms include octyl, decyl, dodecyl, tridecyl, tetradecyl, 2,6,10-trimethylundecyl, pentadecyl, 3,7,11-trimethyldodecyl, Hexadecyl, heptadecyl, octadecyl, 6,10,14-trimethylpentadecan-2-yl, nonadecyl, 2,6,10,14-tetramethylpentadecyl, icosyl, 3,7,11,15-tetramethylhexadecyl, henicosyl , Docosyl, tricosyl, tetracosyl and the like.
炭素数8〜24の直鎖状または分枝状のアルケニルとしては、1以上の2重結合を含む炭素数8〜24の直鎖状または分枝状のアルケニルであればよく、例えば(Z)-テトラデカ-9-エニル、(Z)-ヘキサデカ-9-エニル、(Z)-オクタデカ-6-エニル、(Z)-オクタデカ-9-エニル、(E)-オクタデカ-9-エニル、(Z)-オクタデカ-11-エニル、(9Z,12Z)-オクタデカ-9,12-ジエニル、(9Z,12Z,15Z)-オクタデカ-9,12,15-トリエニル、(Z)-イコサ-11-エニル、(11Z,14Z)-イコサ-11,14-ジエニル、3,7,11-トリメチルドデカ-2,6,10-トリエニル、3,7,11,15-テトラメチルヘキサデカ-2-エニル、(Z)-ドコサ-13-エニル等があげられ、好ましくは(Z)-ヘキサデカ-9-エニル、(Z)-オクタデカ-6-エニル、(Z)-オクタデカ-9-エニル、(9Z,12Z)-オクタデカ-9,12-ジエニル、(Z)-イコサ-11-エニル、(11Z,14Z)-イコサ-11,14-ジエニル、(Z)-ドコサ-13-エニル等があげられる。 The linear or branched alkenyl having 8 to 24 carbon atoms may be any linear or branched alkenyl having 8 to 24 carbon atoms containing one or more double bonds, for example (Z) -Tetradec-9-enyl, (Z) -hexadeca-9-enyl, (Z) -octadeca-6-enyl, (Z) -octadeca-9-enyl, (E) -octadeca-9-enyl, (Z) -Octadeca-11-enyl, (9Z, 12Z) -octadeca-9,12-dienyl, (9Z, 12Z, 15Z) -octadeca-9,12,15-trienyl, (Z) -icosa-11-enyl, ( 11Z, 14Z) -icosa-11,14-dienyl, 3,7,11-trimethyldodeca-2,6,10-trienyl, 3,7,11,15-tetramethylhexadec-2-enyl, (Z) -Docosa-13-enyl and the like, preferably (Z) -hexadec-9-enyl, (Z) -octadeca-6-enyl, (Z) -octadeca-9-enyl, (9Z, 12Z) -octadeca -9,12-dienyl, (Z) -icosa-11-enyl, (11Z, 14Z) -icosa-11,14-dienyl, (Z) -docosa-13-enyl, etc. And the like.
炭素数8〜24の直鎖状または分枝状のアルキニルとしては、1以上の3重結合を含む炭素数8〜24の直鎖状または分枝状のアルキニルであればよく、例えばドデカ-11-イニル、テトラデカ-6-イニル、ヘキサデカ-7-イニル、ヘキサデカ-5,7-ジイニル、オクタデカ-9-イニル等があげられる。
アルコキシエチルおよびアルコキシプロピルにおけるアルキル部分としては、例えば前記炭素数8〜24の直鎖状または分枝状のアルキルの例示であげた基等があげられる。
The linear or branched alkynyl having 8 to 24 carbon atoms may be any linear or branched alkynyl having 8 to 24 carbon atoms containing one or more triple bonds, such as dodeca-11. -Inyl, tetradec-6-ynyl, hexadec-7-ynyl, hexadec-5,7-diynyl, octadec-9-ynyl and the like.
Examples of the alkyl moiety in alkoxyethyl and alkoxypropyl include groups exemplified in the above-mentioned linear or branched alkyl having 8 to 24 carbon atoms.
アルケニルオキシエチルおよびアルケニルオキシプロピルにおけるアルケニル部分としては、例えば前記炭素数8〜24の直鎖状または分枝状のアルケニルの例示であげた基等があげられる。
アルキニルオキシエチルおよびアルキニルオキシプロピルにおけるアルキニル部分としては、例えば前記炭素数8〜24の直鎖状または分枝状のアルキニルの例示であげた基等があげられる。
Examples of the alkenyl moiety in alkenyloxyethyl and alkenyloxypropyl include groups exemplified in the above-mentioned linear or branched alkenyl having 8 to 24 carbon atoms.
Examples of the alkynyl moiety in alkynyloxyethyl and alkynyloxypropyl include groups exemplified in the above-mentioned linear or branched alkynyl having 8 to 24 carbon atoms.
なお、R1およびR2は、同一または異なって炭素数8〜24の直鎖状または分枝状のアルキルまたはアルケニルであることがより好ましく、同一または異なって炭素数8〜24の直鎖状または分枝状のアルケニルであることがさらに好ましく、同一または異なって炭素数8〜24の直鎖状のアルケニルであることがさらに好ましい。また、R1およびR2は、同一であることがより好ましく、その場合には、炭素数12〜24の直鎖状または分枝状のアルキル、アルケニルまたはアルキニルであることがより好ましく、炭素数12〜24の直鎖状のアルケニルであることがさらに好ましい。 R 1 and R 2 are preferably the same or different and are linear or branched alkyl or alkenyl having 8 to 24 carbon atoms, and are the same or different and are straight chain having 8 to 24 carbon atoms. Or it is more preferable that it is a branched alkenyl, and it is further more preferable that it is the same or different and is a C8-C24 linear alkenyl. R 1 and R 2 are more preferably the same, and in that case, they are more preferably straight-chain or branched alkyl, alkenyl or alkynyl having 12 to 24 carbon atoms. More preferably, it is 12-24 linear alkenyl.
R1およびR2が、異なる場合には、R1が炭素数16〜24の直鎖状または分枝状のアルキル、アルケニルまたはアルキニルであり、R2が炭素数8〜12の直鎖状または分枝状のアルキル、アルケニルまたはアルキニルであることも本発明の好ましい形態のひとつである。この場合、R1が炭素数16〜24の直鎖状のアルケニルであり、R2が炭素数8〜12の直鎖状のアルキルであることがより好ましく、R1が(Z)-オクタデカ-9-エニルまたは(9Z,12Z)-オクタデカ-9,12-ジエニルであり、R2がオクチル、デシルまたはドデシルであることが最も好ましい。また、R1およびR2が、異なる場合には、R1が、炭素数12〜24の直鎖状または分枝状のアルキル、アルケニルまたはアルキニルであり、R2がアルコキシエチル、アルコキシプロピル、アルケニルオキシエチル、アルケニルオキシプロピル、アルキニルオキシエチルまたはアルキニルオキシプロピルであることも本発明の好ましい形態のひとつである。この場合、R1が、炭素数16〜24の直鎖状のアルケニルであり、R2が、アルケニルオキシエチルであることがより好ましく、R1が、(Z)-オクタデカ-9-エニル、(9Z,12Z)-オクタデカ-9,12-ジエニルまたは(11Z,14Z)-イコサ-11,14-ジエニルであり、R2が、(Z)-オクタデカ-9-エニルオキシエチル、(9Z,12Z)-オクタデカ-9,12-ジエニルオキシエチルまたは(11Z,14Z)-イコサ-11,14-ジエニルオキシエチルであることがさらに好ましく、R1が、(9Z,12Z)-オクタデカ-9,12-ジエニルであり、R2が、(9Z,12Z)-オクタデカ-9,12-ジエニルオキシエチルであることが最も好ましい。 R 1 and R 2, when different, straight-chain or branched alkyl of R 1 is 16 to 24 carbon atoms, alkenyl or alkynyl, R 2 is a linear or having 8 to 12 carbon atoms Branched alkyl, alkenyl or alkynyl is also a preferred form of the invention. In this case, a straight-chain alkenyl of R 1 is 16 to 24 carbon atoms, more preferably R 2 is a linear alkyl of 8 to 12 carbon atoms, R 1 is (Z) - octadeca - Most preferably, it is 9-enyl or (9Z, 12Z) -octadec-9,12-dienyl and R 2 is octyl, decyl or dodecyl. In addition, when R 1 and R 2 are different, R 1 is a linear or branched alkyl, alkenyl or alkynyl having 12 to 24 carbon atoms, and R 2 is alkoxyethyl, alkoxypropyl, alkenyl. Oxyethyl, alkenyloxypropyl, alkynyloxyethyl or alkynyloxypropyl is also a preferred form of the present invention. In this case, R 1 is preferably straight-chain alkenyl having 16 to 24 carbon atoms, R 2 is more preferably alkenyloxyethyl, and R 1 is (Z) -octadeca-9-enyl, ( 9Z, 12Z) -octadec-9,12-dienyl or (11Z, 14Z) -icosa-11,14-dienyl, R 2 is (Z) -octadec-9-enyloxyethyl, (9Z, 12Z) More preferably, it is -octadeca-9,12-dienyloxyethyl or (11Z, 14Z) -icosa-11,14-dienyloxyethyl, and R 1 is (9Z, 12Z) -octadeca-9,12 Most preferred is -dienyl and R 2 is (9Z, 12Z) -octadeca-9,12-dienyloxyethyl.
R1および/またはR2が、同一または異なって炭素数8〜24の直鎖状もしくは分枝状のアルキル、アルケニルである場合には、同一または異なってテトラデシル、ヘキサデシル、(Z)-テトラデカ-9-エニル、(Z)-ヘキサデカ-9-エニル、(Z)-オクタデカ-6-エニル、(Z)-オクタデカ-9-エニル、(E)-オクタデカ-9-エニル、(Z)-オクタデカ-11-エニル、(9Z,12Z)-オクタデカ-9,12-ジエニル、(9Z,12Z,15Z)-オクタデカ-9,12,15-トリエニル、(Z)-イコサ-11-エニル 、(11Z,14Z)-イコサ-11,14-ジエニルまたは(Z)-ドコサ-13-エニルであることが好ましく、同一または異なってヘキサデシル、(Z)-ヘキサデカ-9-エニル、(Z)-オクタデカ-6-エニル、(Z)-オクタデカ-9-エニル、(9Z,12Z)-オクタデカ-9,12-ジエニル、(Z)-イコサ-11-エニルまたは(11Z,14Z)-イコサ-11,14-ジエニルであることがより好ましく、同一または異なって(Z)-オクタデカ-9-エニル、(9Z,12Z)-オクタデカ-9,12-ジエニルまたは(11Z,14Z)-イコサ-11,14-ジエニルであることがさらに好ましく、同一に(9Z,12Z)-オクタデカ-9,12-ジエニルであることが最も好ましい。 When R 1 and / or R 2 are the same or different and are linear or branched alkyl or alkenyl having 8 to 24 carbon atoms, the same or different tetradecyl, hexadecyl, (Z) -tetradeca- 9-enyl, (Z) -hexadeca-9-enyl, (Z) -octadeca-6-enyl, (Z) -octadeca-9-enyl, (E) -octadec-9-enyl, (Z) -octadeca- 11-enyl, (9Z, 12Z) -octadeca-9,12-dienyl, (9Z, 12Z, 15Z) -octadeca-9,12,15-trienyl, (Z) -icosa-11-enyl, (11Z, 14Z ) -Icosa-11,14-dienyl or (Z) -docosa-13-enyl, the same or different, hexadecyl, (Z) -hexadec-9-enyl, (Z) -octadeca-6-enyl , (Z) -octadeca-9-enyl, (9Z, 12Z) -octadeca-9,12-dienyl, (Z) -icosa-11-enyl or (11Z, 14Z) -icosa-11,14-dienyl More preferably, the same or different (Z) -octadeca-9-enyl, (9Z, 12Z) -octadeca-9,12-dienyl or (11Z, 14Z) -icosa-11,14-dienyl are more preferred, and the same (9Z , 12Z) -octadeca-9,12-dienyl is most preferred.
R6およびR7は、それぞれR1およびR2と同義である。ただし、R7が、炭素数16〜24の直鎖状または分枝状のアルキル、アルケニルまたはアルキニルである場合、R6およびR7は、同一に(9Z,12Z)-オクタデカ-9,12-ジエニルであることが好ましい。
R8およびR9は、それぞれR1およびR2と同義である。ただし、R8およびR9は、同一に炭素数16〜24の直鎖状または分枝状のアルキル、アルケニルまたはアルキニルであることが好ましく、同一に(9Z,12Z)-オクタデカ-9,12-ジエニルであることがより好ましい。
R 6 and R 7 are synonymous with R 1 and R 2 , respectively. Provided that when R 7 is linear or branched alkyl, alkenyl or alkynyl having 16 to 24 carbon atoms, R 6 and R 7 are the same as (9Z, 12Z) -octadeca-9,12- Dienyl is preferred.
R 8 and R 9 are synonymous with R 1 and R 2 , respectively. However, R 8 and R 9 are preferably straight or branched alkyl, alkenyl or alkynyl having 16 to 24 carbon atoms, and are identically (9Z, 12Z) -octadeca-9,12- More preferred is dienyl.
R3およびR4における、炭素数1〜3のアルキルとしては、例えばメチル、エチル、プロピル、イソプロピルおよびシクロプロピルがあげられ、好ましくはメチルおよびエチルがあげられ、さらに好ましくはメチルがあげられる。
R3とR4が一緒になって形成する、炭素数2〜8のアルキレンとしては、例えばエチレン、n-プロピレン、n-ブチレン、n-ペンチレン、n-ヘキシレン、n-ヘプチレン、n-オクチレン等があげられ、好ましくはn-ペンチレン、n-ヘキシレン、n-ヘプチレン等があげられ、より好ましくはn-ペンチレン、n-ヘキシレン等があげられ、さらに好ましくはn-ヘキシレンがあげられる。
Examples of the alkyl having 1 to 3 carbon atoms in R 3 and R 4 include methyl, ethyl, propyl, isopropyl and cyclopropyl, preferably methyl and ethyl, and more preferably methyl.
Examples of the alkylene having 2 to 8 carbon atoms formed by R 3 and R 4 together include, for example, ethylene, n-propylene, n-butylene, n-pentylene, n-hexylene, n-heptylene, n-octylene, etc. N-pentylene, n-hexylene, n-heptylene, etc. are preferred, n-pentylene, n-hexylene and the like are more preferred, and n-hexylene is more preferred.
なお、R3は、メチルもしくはエチルであるか、R4と一緒になって炭素数5〜7のアルキレンを形成するか、またはR5と一緒になって炭素数3〜5のアルキレンを形成することが好ましく、但し、R3がR4と一緒になって炭素数5〜7のアルキレンを形成しない場合には、R4はメチルまたはエチルであることが好ましく、メチルであることがより好ましい。さらに、R3は、メチルであるか、R4と一緒になってn-ペンチレンもしくはn-ヘキシレンを形成するか、またはR3がR5と一緒になってエチレン、n-プロピレンを形成することがより好ましく、但し、R3がR4と一緒になってn-ペンチレンもしくはn-ヘキシレンを形成しない場合には、R4はメチルであることがより好ましい。 R 3 is methyl or ethyl, forms an alkylene group having 5 to 7 carbon atoms with R 4 , or forms an alkylene group with 3 to 5 carbon atoms together with R 5 it is preferred, however, if R 3 does not form an alkylene having 5 to 7 carbon atoms together with R 4 is preferably R 4 is methyl or ethyl, more preferably methyl. In addition, R 3 is methyl, or together with R 4 forms n-pentylene or n-hexylene, or R 3 together with R 5 forms ethylene, n-propylene. is more preferable, however, if R 3 do not form together with R 4 n- pentylene or n- hexylene more preferably, R 4 is methyl.
R5における、炭素数1〜6のアルキルとしては、例えばメチル、エチル、プロピル、イソプロピル、シクロプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、シクロブチル、シクロプロピルメチル、ペンチル、イソペンチル、sec-ペンチル、ネオペンチル、tert-ペンチル、シクロペンチル、ヘキシル、シクロヘキシル等があげられ、好ましくはメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、sec-ペンチル、tert-ペンチル、ネオペンチル、ヘキシル等があげられ、さらに好ましくはメチル、エチル、プロピル等があげられる。 Examples of the alkyl having 1 to 6 carbon atoms in R 5 include methyl, ethyl, propyl, isopropyl, cyclopropyl, butyl, isobutyl, sec-butyl, tert-butyl, cyclobutyl, cyclopropylmethyl, pentyl, isopentyl, sec- Examples include pentyl, neopentyl, tert-pentyl, cyclopentyl, hexyl, cyclohexyl and the like, preferably methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, sec-pentyl, tert- Examples include pentyl, neopentyl, hexyl, and more preferably methyl, ethyl, propyl, and the like.
R5における、炭素数3〜6のアルケニルとしては、例えばアリル、1-プロペニル、ブテニル、ペンテニル、ヘキセニル等があげられ、好ましくはアリル等があげられる。
R5における、モノアルキルアミノとしては、1つの、例えば炭素数1〜6のアルキル(前記と同義)で置換されたアミノであればよく、例えばメチルアミノ、エチルアミノ、プロピルアミノ、ブチルアミノ、ペンチルアミノ、ヘキシルアミノ等があげられ、好ましくはメチルアミノ、エチルアミノ等があげられる。
Examples of the alkenyl having 3 to 6 carbon atoms in R 5 include allyl, 1-propenyl, butenyl, pentenyl, hexenyl and the like, preferably allyl and the like.
The monoalkylamino in R 5 may be any amino substituted with one, for example, an alkyl having 1 to 6 carbon atoms (as defined above), such as methylamino, ethylamino, propylamino, butylamino, pentyl. Amino, hexylamino and the like are preferable, and methylamino, ethylamino and the like are preferable.
R5における、アミノおよびモノアルキルアミノは、それぞれ、窒素原子上の孤立電子対に、水素イオンが配位して、アンモニオおよびモノアルキルアンモニオを形成していてもよく、アミノおよびモノアルキルアミノは、それぞれアンモニオおよびモノアルキルアンモニオを包含する。
本発明において、アミノおよびモノアルキルアミノの窒素原子上の孤立電子対に、水素イオンが配位したアンモニオおよびモノアルキルアンモニオは、製薬上許容し得る陰イオンと塩を形成していてもよい。
In R 5 , amino and monoalkylamino may each be coordinated by a hydrogen ion to a lone pair of electrons on the nitrogen atom to form ammonio and monoalkylammonio. Each include ammonio and monoalkylammonio.
In the present invention, ammonio and monoalkylammonio in which a hydrogen ion is coordinated to a lone electron pair on the nitrogen atom of amino and monoalkylamino may form a salt with a pharmaceutically acceptable anion.
R5における、アルコキシとしては、例えば炭素数1〜6のアルキル(前記と同義)で置換されたヒドロキシであればよく、例えばメトキシ、エトキシ、プロピルオキシ、ブチルオキシ、ペンチルオキシ、ヘキシルオキシ等があげられ、好ましくはメトキシ、エトキシ等があげられる。
R5における、モノアルキルカルバモイルおよびジアルキルカルバモイルとしては、それぞれ1つおよび同一または異なって2つの、例えば炭素数1〜6のアルキル(前記と同義)で置換されたカルバモイルがあげられ、より具体的にはメチルカルバモイル、エチルカルバモイル、プロピルカルバモイル、ブチルカルバモイル、ペンチルカルバモイル、ヘキシルカルバモイル、ジメチルカルバモイル、ジエチルカルバモイル、エチルメチルカルバモイル、メチルプロピルカルバモイル、ブチルメチルカルバモイル、メチルペンチルカルバモイル、ヘキシルメチルカルバモイル等があげられ、好ましくはメチルカルバモイル、エチルカルバモイル、ジメチルカルバモイル等があげられる。
The alkoxy in R 5 may be, for example, hydroxy substituted with alkyl having 1 to 6 carbons (as defined above), and examples thereof include methoxy, ethoxy, propyloxy, butyloxy, pentyloxy, hexyloxy and the like. Preferred examples include methoxy and ethoxy.
Examples of monoalkylcarbamoyl and dialkylcarbamoyl in R 5 include carbamoyl substituted with one and the same or different two, for example, alkyl having 1 to 6 carbons (as defined above), and more specifically. Is methylcarbamoyl, ethylcarbamoyl, propylcarbamoyl, butylcarbamoyl, pentylcarbamoyl, hexylcarbamoyl, dimethylcarbamoyl, diethylcarbamoyl, ethylmethylcarbamoyl, methylpropylcarbamoyl, butylmethylcarbamoyl, methylpentylcarbamoyl, hexylmethylcarbamoyl, etc. Includes methylcarbamoyl, ethylcarbamoyl, dimethylcarbamoyl and the like.
R5とR3が一緒になって形成する、炭素数2〜8のアルキレンとしては、例えばエチレン、n-プロピレン、n-ブチレン、n-ペンチレン、n-ヘキシレン、n-ヘプチレン、n-オクチレン等があげられ、好ましくはn-プロピレン、n-ブチレン、n-ペンチレン等があげられ、より好ましくはn-プロピレン、n-ブチレン等があげられ、さらに好ましくはn-プロピレンがあげられる。 Examples of the alkylene having 2 to 8 carbon atoms formed by R 5 and R 3 together include, for example, ethylene, n-propylene, n-butylene, n-pentylene, n-hexylene, n-heptylene, n-octylene and the like. Preferred are n-propylene, n-butylene, n-pentylene and the like, more preferred are n-propylene, n-butylene and the like, and more preferred is n-propylene.
なお、R5は、水素原子、炭素数1〜6のアルキル、モノアルキルアミノ、ヒドロキシ、アルコキシまたは同一もしくは異なって1〜3つのアミノ、モノアルキルアミノ、またはヒドロキシもしくはアルコキシで置換された炭素数1〜6のアルキルであるか、またはR3と一緒になって炭素数2〜6のアルキレンを形成することが好ましく、水素原子、メチル、アミノ、メチルアミノ、ヒドロキシ、メトキシ、または同一もしくは異なって1〜3つのアミノもしくはヒドロキシで置換されたメチルであるか、またはR3と一緒になって炭素数3〜5のアルキレンを形成することがより好ましく、水素原子、炭素数1〜3のアルキル、またはヒドロキシであるか、またはR3と一緒になってn-プロピレンまたはn-ブチレンを形成することがさらに好ましく、水素原子またはR3と一緒になってn-プロピレンを形成することが最も好ましい。 R 5 is a hydrogen atom, alkyl having 1 to 6 carbon atoms, monoalkylamino, hydroxy, alkoxy, or 1 or 3 carbon atoms substituted with 1 to 3 amino, monoalkylamino, hydroxy or alkoxy, which are the same or different. Is preferably an alkyl of ˜6, or together with R 3 to form an alkylene of 2 to 6 carbon atoms, a hydrogen atom, methyl, amino, methylamino, hydroxy, methoxy, or the same or different 1 More preferably methyl substituted with 3 amino or hydroxy, or together with R 3 to form an alkylene of 3 to 5 carbon atoms, a hydrogen atom, an alkyl of 1 to 3 carbon atoms, or hydroxy or where more preferably in together with R 3 to form a n- propylene or n- butylene, hydrogen atom or R 3 It is most preferred that taken together form n- propylene.
R10における、炭素数1〜3のアルキルとしては、例えばメチル、エチル、n−プロピル、イソプロピル、シクロプロピル等があげられ、好ましくはメチル、エチル、イソプロピル等があげられ、より好ましくはメチル、エチル等があげられる。なお、R10としては、水素原子またはメチルがさらに好ましく、水素原子が最も好ましい。
X1およびX2における、炭素数1〜6のアルキレンとしては、例えばメチレン、エチレン、n-プロピレン、n-ブチレン、n-ペンチレン、n-ヘキシレン等があげられる。
Examples of the alkyl having 1 to 3 carbon atoms in R 10 include methyl, ethyl, n-propyl, isopropyl, cyclopropyl and the like, preferably methyl, ethyl, isopropyl and the like, more preferably methyl, ethyl Etc. R 10 is more preferably a hydrogen atom or methyl, and most preferably a hydrogen atom.
Examples of the alkylene having 1 to 6 carbon atoms in X 1 and X 2 include methylene, ethylene, n-propylene, n-butylene, n-pentylene, n-hexylene and the like.
また、X1は、炭素数1〜3のアルキレンであることが好ましく、メチレンまたはエチレンであることが最も好ましく、X2は、単結合、メチレンまたはエチレンであることが好ましく、単結合またはメチレンであることがより好ましい。X1とX2の炭素数の和は、1〜3が好ましく、2が最も好ましい。これらいずれの場合にも、R3およびR4は、同一または異なってメチルもしくはエチルであり、R5は、水素原子、メチル、アミノ、メチルアミノ、ヒドロキシ、メトキシ、または同一もしくは異なって1〜3つのアミノもしくはヒドロキシで置換されたメチルであるか、R3とR4は一緒になって炭素数5〜7のアルキレンを形成し、R5は、水素原子、メチル、アミノ、メチルアミノ、ヒドロキシ、メトキシ、または同一もしくは異なって1〜3つのアミノもしくはヒドロキシで置換されたメチルであるか、またはR3とR5は一緒になって炭素数3〜5のアルキレンを形成し、R4はメチルまたはエチルであることが好ましく、R3およびR4は、メチルであり、R5は、水素原子であるか、R3とR4は一緒になってn-ペンチレンもしくはn-ヘキシレンを形成し、R5は、水素原子であるか、またはR3とR5は一緒になってn-プロピレンを形成し、R4はメチルであることがより好ましい。 X 1 is preferably an alkylene having 1 to 3 carbon atoms, most preferably methylene or ethylene, and X 2 is preferably a single bond, methylene or ethylene, and is a single bond or methylene. More preferably. The sum of the carbon number of X 1 and X 2 is preferably 1 to 3, and most preferably 2. In any of these cases, R 3 and R 4 are the same or different and are methyl or ethyl, and R 5 is a hydrogen atom, methyl, amino, methylamino, hydroxy, methoxy, or the same or different 1 to 3 Methyl substituted with one amino or hydroxy, or R 3 and R 4 together form an alkylene having 5 to 7 carbon atoms, R 5 is a hydrogen atom, methyl, amino, methylamino, hydroxy, Methoxy, or methyl identically or differently substituted with 1 to 3 amino or hydroxy, or R 3 and R 5 together form an alkylene of 3 to 5 carbon atoms, R 4 is methyl or Preferably it is ethyl, R 3 and R 4 are methyl and R 5 is a hydrogen atom or R 3 and R 4 together form n-pentylene or n-hexylene, R 5 is selected from the group consisting of hydrogen Or a child, or R 3 and R 5 form together n- propylene, more preferably R 4 is methyl.
X3における、炭素数1〜3のアルキレンとしては、例えばメチレン、エチレン、n-プロピレン等があげられ、好ましくはメチレン、エチレン等があげられる。
化合物(A)、(B)および(C)は、いずれかの窒素原子上の孤立電子対に、水素イオンが配位した場合に、製薬上許容し得る陰イオンと塩を形成していてもよい。
本発明において、製薬上許容し得る陰イオンとしては、例えば塩化物イオン、臭化物イオン、硝酸イオン、硫酸イオン、リン酸イオン等の無機イオン、酢酸イオン、シュウ酸イオン、マレイン酸イオン、フマル酸イオン、クエン酸イオン、安息香酸イオン、メタンスルホン酸イオン等の有機酸イオン等があげられる。
Examples of the alkylene having 1 to 3 carbon atoms in X 3 include methylene, ethylene, n-propylene and the like, preferably methylene, ethylene and the like.
Compounds (A), (B) and (C) may form a salt with a pharmaceutically acceptable anion when a hydrogen ion is coordinated to a lone pair of electrons on any nitrogen atom. Good.
In the present invention, examples of the pharmaceutically acceptable anion include inorganic ions such as chloride ion, bromide ion, nitrate ion, sulfate ion and phosphate ion, acetate ion, oxalate ion, maleate ion, and fumarate ion. And organic acid ions such as citrate ion, benzoate ion, and methanesulfonate ion.
次に化合物(A)、(B)および(C)の製造方法について説明する。なお、以下に示す製造方法において、定義した基が該製造方法の条件下で変化するかまたは該製造方法を実施するのに不適切な場合、有機合成化学で常用される保護基の導入および除去方法[例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス第3版(Protective Groups in Organic Synthesis, third edition)、グリーン(T.W.Greene)著、John Wiley&Sons Inc.(1999年)等に記載の方法]等を用いることにより、目的化合物を製造することができる。また、必要に応じて置換基導入等の反応工程の順序を変えることもできる。
製造方法1
化合物(A)は以下の方法によって製造することができる。
Next, production methods of the compounds (A), (B) and (C) will be described. In addition, in the production method shown below, when a defined group changes under the conditions of the production method or is inappropriate for carrying out the production method, introduction and removal of a protective group commonly used in organic synthetic chemistry Methods [e.g., methods described in Protective Groups in Organic Synthesis, third edition, TWGreene, John Wiley & Sons Inc. (1999)], etc. By using it, the target compound can be produced. Further, the order of reaction steps such as introduction of substituents can be changed as necessary.
Manufacturing method 1
Compound (A) can be produced by the following method.
(式中、R1、R2、R3、R4、R5、X1およびX2はそれぞれ前記と同義であり、Yは、塩素原子、臭素原子、ヨウ素原子、トリフルオロメタンスルホニルオキシ、メタンスルホニルオキシ、ベンゼンスルホニルオキシ、p-トルエンスルホニルオキシ等の脱離基を表し、Arはp-ニトロフェニル、o-ニトロフェニル、p-クロロフェニル等の置換フェニル基または無置換フェニル基を表す)
工程1および2
化合物(IIa)は、アンモニアと化合物(IIIa)を、無溶媒でまたは溶媒中、必要により好ましくは1〜10当量の塩基の存在下、室温と200℃の間の温度で、5分間〜100時間反応させることにより製造することができる。さらに、化合物(IIb)は、化合物(IIa)と化合物(IIIb)を、無溶媒でまたは溶媒中、必要により好ましくは1〜10当量の塩基の存在下、室温と200℃の間の温度で、5分間〜100時間反応させることにより製造することができる。
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 , X 1 and X 2 are as defined above, Y is a chlorine atom, bromine atom, iodine atom, trifluoromethanesulfonyloxy, methane (Leaving groups such as sulfonyloxy, benzenesulfonyloxy, p-toluenesulfonyloxy, etc., Ar represents a substituted or unsubstituted phenyl group such as p-nitrophenyl, o-nitrophenyl, p-chlorophenyl)
Step 1 and 2
Compound (IIa) is a mixture of ammonia and compound (IIIa), without solvent or in a solvent, and preferably in the presence of 1 to 10 equivalents of a base, at a temperature between room temperature and 200 ° C. for 5 minutes to 100 hours. It can be produced by reacting. Furthermore, compound (IIb) is obtained by reacting compound (IIa) and compound (IIIb) in the absence of solvent or in a solvent, preferably in the presence of 1 to 10 equivalents of a base, at a temperature between room temperature and 200 ° C. It can be produced by reacting for 5 minutes to 100 hours.
溶媒としては、例えばメタノール、エタノール、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、トルエン、酢酸エチル、アセトニトリル、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ピリジン、水等があげられ、これらは単独でまたは混合して用いられる。 Examples of the solvent include methanol, ethanol, dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N, N-dimethylformamide. , N, N-dimethylacetamide, N-methylpyrrolidone, pyridine, water and the like, and these may be used alone or in combination.
塩基としては、例えば炭酸セシウム、炭酸カリウム、水酸化カリウム、水酸化ナトリウム、ナトリウムメトキシド、カリウムtert-ブトキシド、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)等があげられる。
化合物(IIIa)は、市販品としてまたは公知の方法(例えば、第5版実験化学講座13 有機化合物の合成I」、第5版、p.374、丸善(2005年))もしくはそれに準じた方法で得ることができる。
Examples of the base include cesium carbonate, potassium carbonate, potassium hydroxide, sodium hydroxide, sodium methoxide, potassium tert-butoxide, triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine, 1,8-diazabicyclo [5.4.0]. -7-Undecene (DBU).
Compound (IIIa) is a commercially available product or a known method (for example, 5th edition, Experimental Chemistry Lecture 13, Synthesis of Organic Compounds I ”, 5th edition, p.374, Maruzen (2005)) or a method analogous thereto. Can be obtained.
化合物(IIIb)は、市販品としてまたは公知の方法(例えば、第5版実験化学講座13 有機化合物の合成I」、第5版、p.374、丸善(2005年))もしくはそれに準じた方法、または後述の製造方法で得ることができる。
R1とR2が同一の場合の化合物(IIb)は、工程1において、2当量以上の化合物(IIIa)を用いることで得ることができる。
工程3
化合物(VI)は、化合物(IVa)を、化合物(Va)と、無溶媒でまたは溶媒中、必要により好ましくは1〜10当量の添加剤の存在下、および/または必要により好ましくは1〜10当量の塩基の存在下、-20℃と150℃の間の温度で、5分間〜72時間反応させることにより製造することができる。
Compound (IIIb) is a commercially available product or a known method (e.g., 5th edition Experimental Chemistry Course 13 Synthesis of organic compounds I, 5th edition, p. 374, Maruzen (2005)) or a method analogous thereto, Or it can obtain with the below-mentioned manufacturing method.
Compound (IIb) in the case where R 1 and R 2 are the same can be obtained by using 2 equivalents or more of compound (IIIa) in Step 1.
Process 3
Compound (VI) is compound (IVa) with compound (Va) in the absence of solvent or in a solvent, preferably in the presence of 1 to 10 equivalents of an additive, and / or preferably 1 to 10 It can be produced by reacting at a temperature between −20 ° C. and 150 ° C. for 5 minutes to 72 hours in the presence of an equivalent amount of base.
溶媒としては、例えばジクロロメタン、クロロホルム、1,2-ジクロロエタン、トルエン、酢酸エチル、アセトニトリル、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド等があげられ、これらは単独でまたは混合して用いることができる。 Examples of the solvent include dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N, N-dimethylformamide, N, N -Dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide and the like can be mentioned, and these can be used alone or in combination.
添加剤としては、例えば1-ヒドロキシベンゾトリアゾール、4-ジメチルアミノピリジン等があげられる。
塩基としては、工程1および2で例示したものがあげられる。
化合物(Va)は、市販品として得ることができる。
化合物(IVa)は、市販品としてまたは公知の方法(例えば、第5版実験化学講座14 有機化合物の合成II」、第5版、p.1、丸善(2005年))もしくはそれに準じた方法で得ることができる。
工程4
化合物(A)は、化合物(IIb)を、化合物(VI)と、無溶媒でまたは溶媒中、必要により好ましくは1〜10当量の添加剤の存在下、および/または必要により好ましくは1〜10当量の塩基の存在下、-20℃と150℃の間の温度で、5分間〜72時間反応させることにより製造することができる。
Examples of the additive include 1-hydroxybenzotriazole, 4-dimethylaminopyridine and the like.
Examples of the base include those exemplified in Steps 1 and 2.
Compound (Va) can be obtained as a commercial product.
Compound (IVa) is a commercially available product or a known method (for example, 5th edition Experimental Chemistry Course 14 Synthesis of organic compounds II, 5th edition, p.1, Maruzen (2005)) or a method analogous thereto. Can be obtained.
Process 4
Compound (A) is compound (IIb), compound (VI), and in the absence of solvent or in a solvent, preferably in the presence of 1 to 10 equivalents of an additive, and / or preferably 1 to 10 It can be produced by reacting at a temperature between −20 ° C. and 150 ° C. for 5 minutes to 72 hours in the presence of an equivalent amount of base.
溶媒および添加剤としては、それぞれ工程3で例示したものがあげられる。
塩基としては、工程1および2で例示したものがあげられる。
製造方法2
化合物(IIIb)のうち、R2が炭素数8〜24の直鎖状または分枝状のアルコキシエチル、アルコキシプロピル、アルケニルオキシエチル、アルケニルオキシプロピル、アルキニルオキシエチルまたはアルキニルオキシプロピルであり、Yがメタンスルホニルオキシである、化合物(IIIc)は、以下の方法によって製造することができる。
Examples of the solvent and the additive include those exemplified in Step 3.
Examples of the base include those exemplified in Steps 1 and 2.
Manufacturing method 2
Among the compounds (IIIb), R 2 is linear or branched alkoxyethyl, alkoxypropyl, alkenyloxyethyl, alkenyloxypropyl, alkynyloxyethyl or alkynyloxypropyl having 8 to 24 carbon atoms, and Y is Compound (IIIc), which is methanesulfonyloxy, can be produced by the following method.
(式中、Yは前記と同義であり、R11は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルまたはアルキニルであり、X4はエチレンまたはプロピレンを表し、Msはメタンスルホニル基を表す)
工程5
化合物(IVd)は、化合物(IVb)を、化合物(IVc)と、無溶媒でまたは溶媒中、必要により好ましくは1〜10当量の塩基の存在下、室温と200℃の間の温度で、5分間〜100時間反応させることにより製造することができる。
(Wherein Y is as defined above, R 11 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms, X 4 represents ethylene or propylene, and Ms is methanesulfonyl. Represents a group)
Process 5
Compound (IVd) is obtained by reacting Compound (IVb) with Compound (IVc) in the absence of solvent or in a solvent, preferably in the presence of 1 to 10 equivalents of a base, at a temperature between room temperature and 200 ° C. It can be produced by reacting for from 100 minutes to 100 minutes.
溶媒としては、例えばジクロロメタン、クロロホルム、1,2-ジクロロエタン、トルエン、酢酸エチル、アセトニトリル、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド等があげられ、これらは単独でまたは混合して用いることができる。 Examples of the solvent include dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N, N-dimethylformamide, N, N -Dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide and the like can be mentioned, and these can be used alone or in combination.
塩基としては、工程1および2で例示したものがあげられる。
化合物(IVb)は、製造方法1に記載の化合物(IIIa)と同様である。
化合物(IVc)は、市販品として得ることができる。
工程6
化合物(IIIc)は、化合物(IVd)を、メシル化試薬と、無溶媒でまたは溶媒中、好ましくは1〜10当量の塩基の存在下、-20℃と150℃の間の温度で、5分間〜72時間反応させることにより製造することができる。
Examples of the base include those exemplified in Steps 1 and 2.
Compound (IVb) is the same as compound (IIIa) described in Production Method 1.
Compound (IVc) can be obtained as a commercial product.
Process 6
Compound (IIIc) is obtained by reacting Compound (IVd) with a mesylating reagent in the absence of a solvent or in a solvent, preferably in the presence of 1 to 10 equivalents of base, at a temperature between -20 ° C and 150 ° C for 5 minutes It can be produced by reacting for ~ 72 hours.
溶媒としては、工程5で例示したものがあげられる。
塩基としては、工程1および2で例示したものがあげられる。
メシル化試薬としては、例えばメタンスルホン酸無水物、メタンスルホン酸クロリド等があげられる。
製造方法3
化合物(IIb)は以下の方法によってもまた製造することができる。
Examples of the solvent include those exemplified in Step 5.
Examples of the base include those exemplified in Steps 1 and 2.
Examples of the mesylation reagent include methanesulfonic anhydride, methanesulfonic chloride and the like.
Manufacturing method 3
Compound (IIb) can also be produced by the following method.
(式中、R1、R2およびYはそれぞれ前記と同義であり、Bocはtert-ブトキシカルボニル基を表し、Nsは2-ニトロベンゼンスルホニル基を表す)
工程7
化合物(IVe)は、化合物(Vb)と化合物(IIIa)を、無溶媒でまたは溶媒中、必要により好ましくは1〜10当量の添加剤の存在下、および/または必要により好ましくは1〜10当量の塩基の存在下、室温と200℃の間の温度で、5分間〜100時間反応させることにより製造することができる。
(Wherein R 1 , R 2 and Y are as defined above, Boc represents a tert-butoxycarbonyl group, and Ns represents a 2-nitrobenzenesulfonyl group)
Process 7
Compound (IVe) comprises compound (Vb) and compound (IIIa) in the absence of solvent or in a solvent, preferably in the presence of 1 to 10 equivalents of an additive, and / or preferably 1 to 10 equivalents if necessary. In the presence of a base at a temperature between room temperature and 200 ° C. for 5 minutes to 100 hours.
溶媒および塩基としては、それぞれ工程1および2で例示したものがあげられる。
添加剤としては、例えばヨウ化n-テトラブチルアンモニウム、ヨウ化ナトリウム等があげられる。
化合物(Vb)は、市販品として得ることができる。
工程8
化合物(IVf)は、化合物(IVe)を、1当量〜大過剰量の酸で、無溶媒または溶媒中、必要により好ましくは1〜10当量の添加剤の存在下、-20℃と150℃の間の温度で、5分間〜72時間処理することにより製造することができる。
Examples of the solvent and the base include those exemplified in Steps 1 and 2, respectively.
Examples of the additive include n-tetrabutylammonium iodide, sodium iodide and the like.
Compound (Vb) can be obtained as a commercial product.
Process 8
Compound (IVf) is obtained by adding compound (IVe) at a temperature of −20 ° C. and 150 ° C. with 1 equivalent to a large excess of acid without solvent or in a solvent, preferably in the presence of 1 to 10 equivalents of an additive. It can be produced by treating at a temperature between 5 minutes and 72 hours.
溶媒としては、工程1および2で例示したものがあげられる。
酸としては、例えば塩酸、硫酸、リン酸、トリフルオロ酢酸等があげられる。
添加剤としては、例えばチオアニソール、ジメチルスルフィド、トリイソプロピルシラン等があげられる。
工程9
化合物(IVg)は、化合物(IIIb)と化合物(IVf)を、無溶媒でまたは溶媒中、必要により好ましくは1〜10当量の添加剤の存在下、および/または必要により好ましくは1〜10当量の塩基の存在下、室温と200℃の間の温度で、5分間〜100時間反応させることにより製造することができる。
Examples of the solvent include those exemplified in Steps 1 and 2.
Examples of the acid include hydrochloric acid, sulfuric acid, phosphoric acid, trifluoroacetic acid and the like.
Examples of the additive include thioanisole, dimethyl sulfide, triisopropylsilane and the like.
Step 9
Compound (IVg) is compound (IIIb) and compound (IVf) in the absence of solvent or in a solvent, preferably in the presence of 1 to 10 equivalents of an additive, and / or preferably 1 to 10 equivalents if necessary. In the presence of a base at a temperature between room temperature and 200 ° C. for 5 minutes to 100 hours.
溶媒および塩基としては、それぞれ工程1および2で例示したものがあげられる。
添加剤としては、工程7で例示したものがあげられる。
工程10
化合物(IIb)は、化合物(IVg)とチオール化合物を、無溶媒でまたは溶媒中、必要により好ましくは1〜10当量の塩基の存在下、室温と200℃の間の温度で、5分間〜100時間反応させることにより製造することができる。
Examples of the solvent and the base include those exemplified in Steps 1 and 2, respectively.
Examples of the additive include those exemplified in Step 7.
Process 10
Compound (IIb) is obtained by reacting compound (IVg) and thiol compound in the absence of solvent or in a solvent, preferably in the presence of 1 to 10 equivalents of base, at a temperature between room temperature and 200 ° C. for 5 minutes to 100 minutes. It can manufacture by making it react for time.
溶媒および塩基としては、それぞれ工程1および2で例示したものがあげられる。
チオール化合物としては、例えばメタンチオール、エタンチオール、ドデカンチオール、チオフェノール、メルカプト酢酸等があげられる。
化合物(B)は、上記製造方法1または3で示した化合物(IIb)の製造方法と同様の反応試薬および反応条件等を適用することにより製造することができる。
Examples of the solvent and the base include those exemplified in Steps 1 and 2, respectively.
Examples of the thiol compound include methanethiol, ethanethiol, dodecanethiol, thiophenol, mercaptoacetic acid, and the like.
Compound (B) can be produced by applying the same reaction reagents and reaction conditions as the production method of compound (IIb) shown in the above production method 1 or 3.
製造方法4
化合物(C)は以下の方法によって製造することができる。
Manufacturing method 4
Compound (C) can be produced by the following method.
(式中、R8、R9、R10、X3およびYはそれぞれ前記と同義である)
工程11
化合物(C)は、化合物(IIc)と化合物(Vc)を、無溶媒でまたは溶媒中、必要により好ましくは1〜10当量の添加剤の存在下、および/または必要により好ましくは1〜10当量の塩基の存在下、室温と200℃の間の温度で、5分間〜100時間反応させることにより製造することができる。
(Wherein R 8 , R 9 , R 10 , X 3 and Y are as defined above)
Step 11
Compound (C) is compound (IIc) and compound (Vc), without solvent or in a solvent, preferably in the presence of 1 to 10 equivalents of an additive, and / or preferably 1 to 10 equivalents if necessary. In the presence of a base at a temperature between room temperature and 200 ° C. for 5 minutes to 100 hours.
溶媒および塩基としては、それぞれ工程1および2で例示したものがあげられる。
添加剤としては、工程7で例示したものがあげられる。
化合物(IIc)は、上記製造方法1または3で示した化合物(IIb)の製造方法と同様の反応試薬および反応条件等を適用することにより製造することができる
化合物(Vc)は市販品としてまたは公知の方法(例えば、第5版実験化学講座13 有機化合物の合成I」、第5版、p.374、丸善(2005年))もしくはそれに準じた方法で得ることができる。
Examples of the solvent and the base include those exemplified in Steps 1 and 2, respectively.
Examples of the additive include those exemplified in Step 7.
Compound (IIc) can be produced by applying the same reaction reagent and reaction conditions as the production method of compound (IIb) shown in the above production method 1 or 3.Compound (Vc) is a commercially available product or It can be obtained by a known method (for example, 5th edition, Experimental Chemistry Lecture 13, Synthesis of Organic Compounds I, 5th edition, p. 374, Maruzen (2005)) or a method analogous thereto.
製造方法5
化合物(C)は以下の方法によってもまた製造することができる。
Manufacturing method 5
Compound (C) can also be produced by the following method.
(式中、R8、R9、R10、X3およびYはそれぞれ前記と同義である)
工程12および13
化合物(IVh)は、化合物(Vd)と化合物(IIId)を、製造方法1における工程1と同様の条件で反応させることにより製造することができる。さらに、化合物(C)は、化合物(IVh)と化合物(IIIe)を、製造方法1における工程2と同様の条件で反応させることにより製造することができる。
(Wherein R 8 , R 9 , R 10 , X 3 and Y are as defined above)
Steps 12 and 13
Compound (IVh) can be produced by reacting compound (Vd) and compound (IIId) under the same conditions as in Step 1 of Production Method 1. Furthermore, compound (C) can be produced by reacting compound (IVh) and compound (IIIe) under the same conditions as in step 2 in production method 1.
化合物(Vd)は、市販品または公知の方法(例えば、第5版実験化学講座13 有機化合物の合成I」、第5版、p.374、丸善(2005年))もしくはそれに準じた方法で得ることができる。
化合物(IIId)および化合物(IIIe)は、それぞれ製造方法1に記載の化合物(IIIa)および化合物(IIIb)と同様である。
R8とR9が同一の場合の化合物(C)は、工程12において、2当量以上の化合物(IIId)を用いることで得ることができる。
Compound (Vd) is commercially available or obtained by a known method (for example, 5th edition, Experimental Chemistry Lecture 13, Synthesis of Organic Compounds I ”, 5th edition, p.374, Maruzen (2005)) or a method analogous thereto. be able to.
Compound (IIId) and Compound (IIIe) are the same as Compound (IIIa) and Compound (IIIb) described in Production Method 1, respectively.
Compound (C) when R 8 and R 9 are the same can be obtained by using 2 equivalents or more of compound (IIId) in Step 12.
製造方法6
化合物(C)のうち、R10が水素原子である、化合物(Ca)は、以下の方法によってもまた製造することができる。
Manufacturing method 6
Among compounds (C), compound (Ca) in which R 10 is a hydrogen atom can also be produced by the following method.
(式中、R8、R9、X3およびYはそれぞれ前記と同義であり、Proはトリメチルシリル、トリエチルシリル、トリtert-ブチルシリル、tert-ブチルジメチルシリル、tert-ブチルジフェニルシリルまたはトリフェニルシリル等のシリル型保護基を表す)
工程14
化合物(IVi)は、化合物(IIc)と化合物(Ve)を、製造方法4における工程11と同様の条件で反応させることにより製造することができる。
(Wherein R 8 , R 9 , X 3 and Y are as defined above, and Pro is trimethylsilyl, triethylsilyl, tritert-butylsilyl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, triphenylsilyl, etc. Represents a silyl-type protecting group of
Process 14
Compound (IVi) can be produced by reacting compound (IIc) and compound (Ve) under the same conditions as in Step 11 in Production Method 4.
化合物(IIc)は、上記製造方法1または3で示した化合物(IIb)の製造方法と同様の反応試薬および反応条件等を適用することにより製造することができる
化合物(Ve)は市販品としてもしくは公知の方法(例えば、第5版実験化学講座18 有機化合物の合成VI」、第5版、p.171-172、丸善(2005年))、またはそれに準じた方法で得ることができる。
工程15
化合物(Ca)は、化合物(IVi)と脱保護試薬を、無溶媒でまたは溶媒中、-20℃と150℃の間の温度で、5分間〜72時間反応させることにより製造することができる。
Compound (IIc) can be produced by applying the same reaction reagent and reaction conditions as the production method of compound (IIb) shown in the above production method 1 or 3.Compound (Ve) is a commercially available product or It can be obtained by a known method (for example, 5th edition, Experimental Chemistry Course 18 Synthesis of Organic Compounds VI, 5th edition, p.171-172, Maruzen (2005)), or a method analogous thereto.
Process 15
Compound (Ca) can be produced by reacting compound (IVi) and a deprotecting reagent in the absence of solvent or in a solvent at a temperature between −20 ° C. and 150 ° C. for 5 minutes to 72 hours.
溶媒としては、工程1および2で例示したものがあげられる。
脱保護試薬としては、例えばフッ化テトラブチルアンモニウム、フッ化水素ピリジン複合体、フッ化水素酸等のフッ素化合物等、酢酸、トリフルオロ酢酸、パラトルエンスルホン酸ピリジニウム、塩酸等の酸等があげられる。
製造方法7
化合物(C)のうち、R10が水素原子であり、X3が炭素数1または2のアルキレンである化合物(Cb)は、以下の方法によっても製造することができる。
Examples of the solvent include those exemplified in Steps 1 and 2.
Examples of the deprotecting reagent include tetrabutylammonium fluoride, hydrogen fluoride pyridine complex, fluorine compounds such as hydrofluoric acid, and the like, acids such as acetic acid, trifluoroacetic acid, pyridinium paratoluenesulfonate, hydrochloric acid, and the like. .
Manufacturing method 7
Among compounds (C), compound (Cb) in which R 10 is a hydrogen atom and X 3 is alkylene having 1 or 2 carbon atoms can also be produced by the following method.
(式中、R8およびR9はそれぞれ前記と同義であり、X5はメチレンまたはエチレンを表す)
工程16
化合物(IVj)は、化合物(IIc)を、好ましくは1〜大過剰量のアクリル酸エチルと、無溶媒でまたは溶媒中、必要により好ましくは1〜10当量の塩基の存在下、室温と200℃の間の温度で、5分間〜100時間反応させることにより製造することができる。
(Wherein R 8 and R 9 are as defined above, and X 5 represents methylene or ethylene)
Step 16
Compound (IVj) is obtained by reacting Compound (IIc) with room temperature and 200 ° C., preferably in the presence of 1 to a large excess of ethyl acrylate, without solvent or in a solvent, and preferably in the presence of 1 to 10 equivalents of a base. It can manufacture by making it react for 5 to 100 hours at the temperature of between.
溶媒および塩基としては、それぞれ工程1および2で例示したものがあげられる。
化合物(IIc)は、上記製造方法1または3で示した化合物(IIb)の製造方法と同様の反応試薬および反応条件等を適用することにより製造することができる
工程17
化合物(IVk)は、化合物(IIc)を、好ましくは1〜大過剰量のブロモ酢酸エチルと、製造方法4における工程11と同様の条件で反応させることにより製造することができる。
Examples of the solvent and the base include those exemplified in Steps 1 and 2, respectively.
Compound (IIc) can be produced by applying the same reaction reagent and reaction conditions as the production method of compound (IIb) shown in production method 1 or 3 above.
Compound (IVk) can be produced by reacting compound (IIc) with preferably 1 to a large excess of ethyl bromoacetate under the same conditions as in Step 11 in Production Method 4.
化合物(IIc)は、上記製造方法1または3で示した化合物(IIb)の製造方法と同様の反応試薬および反応条件等を適用することにより製造することができる
工程18
化合物(Cb)は、化合物(IVj)または化合物(IVk)を、好ましくは1〜10当量の還元剤と、溶媒中、必要により好ましくは1〜10当量の添加剤の存在下、-20℃と150℃の間の温度で、5分間〜72時間反応させることにより製造することができる。
Compound (IIc) can be produced by applying the same reaction reagent and reaction conditions as the production method of compound (IIb) shown in the above production method 1 or 3.
Compound (Cb) is compound (IVj) or compound (IVk), preferably at -20 ° C. in the presence of 1 to 10 equivalents of a reducing agent and preferably 1 to 10 equivalents of an additive in a solvent. It can be produced by reacting at a temperature between 150 ° C. for 5 minutes to 72 hours.
溶媒としては、例えばテトラヒドロフラン、1,4-ジオキサン、ジエチルエーテル、ジクロロメタン、トルエン等があげられ、これらは単独でまたは混合して用いることができる。
還元剤としては、例えば水素化アルミニウムリチウム、水素化アルミニウム、水素化ジイソブチルアルミニウム、トリアセトキシ水素化ホウ素ナトリウム、シアン化水素化ホウ素ナトリウム、ボラン等があげられる。
Examples of the solvent include tetrahydrofuran, 1,4-dioxane, diethyl ether, dichloromethane, toluene and the like, and these can be used alone or in combination.
Examples of the reducing agent include lithium aluminum hydride, aluminum hydride, diisobutylaluminum hydride, sodium triacetoxyborohydride, sodium cyanoborohydride, and borane.
添加剤としては、例えば塩化アルミニウム、塩化セリウム、塩化鉄、酢酸、塩酸等があげられる。
上記各製造方法における中間体および目的化合物は、有機合成化学で常用される分離精製法、例えば、ろ過、抽出、洗浄、乾燥、濃縮、再結晶、各種クロマトグラフィー等に付して単離精製することができる。また、中間体においては特に精製することなく次の反応に供することも可能である。
Examples of the additive include aluminum chloride, cerium chloride, iron chloride, acetic acid, hydrochloric acid and the like.
The intermediates and target compounds in each of the above production methods are isolated and purified by separation and purification methods commonly used in synthetic organic chemistry, such as filtration, extraction, washing, drying, concentration, recrystallization, and various chromatography. be able to. The intermediate can be subjected to the next reaction without any particular purification.
化合物(A)、(B)および(C)において、構造中の窒素原子上の孤立電子対に水素イオンが配位してもよく、その場合には、製薬上許容し得る陰イオン(前記と同義)と塩を形成していてもよく、化合物(A)、(B)および(C)には、該窒素原子上の孤立電子対に水素イオンが配位した化合物も包含される。
化合物(A)、(B)および(C)の中には、幾何異性体、光学異性体等の立体異性体、互変異性体等が存在し得るものもあるが、化合物(A)、(B)および(C)は、これらを含め、全ての可能な異性体およびそれらの混合物を包含する。
In the compounds (A), (B) and (C), a hydrogen ion may be coordinated to a lone pair on the nitrogen atom in the structure, and in that case, a pharmaceutically acceptable anion (as described above). And the compounds (A), (B) and (C) also include compounds in which a hydrogen ion is coordinated to a lone electron pair on the nitrogen atom.
Among the compounds (A), (B) and (C), there are compounds in which stereoisomers such as geometric isomers and optical isomers, tautomers and the like may exist, but the compounds (A), ( B) and (C) include all possible isomers and mixtures thereof, including these.
化合物(A)、(B)および(C)中の各原子の一部またはすべては、それぞれ対応する同位体原子で置き換わっていてもよく、化合物(A)、(B)および(C)は、これら同位体原子で置き換わった化合物も包含する。例えば、化合物(A)、(B)および(C)中の水素原子の一部またはすべては、原子量2の水素原子(重水素原子)であってもよい。
化合物(A)、(B)および(C)中の各原子の一部またはすべてが、それぞれ対応する同位体原子で置き換わった化合物は、市販のビルディングブロックを用いて、上記各製造方法と同様な方法で製造することができる。また、化合物(A)、(B)および(C)中の水素原子の一部またはすべてが重水素原子で置き換わった化合物は、例えば、イリジウム錯体を触媒として用い、重水を重水素源として用いてアルコール、カルボン酸等を重水素化する方法[ジャーナル・オブ・アメリカン・ケミカル・ソサイアティ(J.Am.Chem.Soc.), Vol.124,No.10,2092(2002)参照]等を用いて合成することもできる。
Some or all of each atom in the compounds (A), (B) and (C) may be replaced by the corresponding isotope atoms, respectively, and the compounds (A), (B) and (C) are Also included are compounds in which these isotope atoms are replaced. For example, some or all of the hydrogen atoms in the compounds (A), (B), and (C) may be hydrogen atoms having an atomic weight of 2 (deuterium atoms).
A compound in which part or all of each atom in the compounds (A), (B) and (C) is replaced with the corresponding isotope atom is the same as in the above production methods using commercially available building blocks. It can be manufactured by the method. A compound in which some or all of the hydrogen atoms in the compounds (A), (B), and (C) are replaced with deuterium atoms can be obtained using, for example, an iridium complex as a catalyst and deuterium as a deuterium source. Using a method of deuterating alcohol, carboxylic acid, etc. [see Journal of American Chemical Society (J. Am. Chem. Soc.), Vol. 124, No. 10, 2092 (2002)] It can also be synthesized.
化合物(A)、(B)および(C)の具体例を表1−1〜表1−7に示す。ただし、化合物(A)、(B)および(C)はこれらに限定されるものではない。 Specific examples of the compounds (A), (B) and (C) are shown in Table 1-1 to Table 1-7. However, the compounds (A), (B) and (C) are not limited to these.
本発明において、β2GPI mRNAに対して相補的な塩基配列を含む核酸をアンチセンス鎖核酸と称し、アンチセンス鎖核酸の塩基配列に対して相補的な塩基配列を含む核酸をセンス鎖核酸とも称する。
本発明で用いられる薬物としての二本鎖核酸は、哺乳動物細胞に導入された場合、β2GPI遺伝子の発現を低下または停止させる能力を有する二本鎖核酸であって、センス鎖およびアンチセンス鎖を有する二本鎖核酸である。また、該センス鎖と該アンチセンス鎖とは少なくとも11個の塩基対を有し、該アンチセンス鎖中の、少なくとも17個のヌクレオチドかつ多くとも30個のヌクレオチド鎖長のオリゴヌクレオチド鎖において、表2−1〜表2−16に記載された群から選択される標的β2GPI mRNA配列と相補的である。
In the present invention, a nucleic acid containing a base sequence complementary to β2GPI mRNA is called an antisense strand nucleic acid, and a nucleic acid containing a base sequence complementary to the antisense strand nucleic acid is also called a sense strand nucleic acid.
The double-stranded nucleic acid as a drug used in the present invention is a double-stranded nucleic acid having the ability to reduce or stop the expression of β2GPI gene when introduced into a mammalian cell, and comprises a sense strand and an antisense strand. A double-stranded nucleic acid. Further, the sense strand and the antisense strand have at least 11 base pairs, and in the antisense strand of the antisense strand, the oligonucleotide strand having a length of at least 17 nucleotides and at most 30 nucleotides. It is complementary to a target β2GPI mRNA sequence selected from the group described in 2-1 to Table 2-16.
本発明で用いられる薬物としての二本鎖核酸としては、ヌクレオチドまたは該ヌクレオチドと同等の機能を有する分子が重合した分子であればいかなる分子であってもよく、例えばリボヌクレオチドの重合体であるRNA、デオキシリボヌクレオチドの重合体であるDNA、RNAとDNAとからなるキメラ核酸、およびこれらの核酸の少なくとも一つのヌクレオチドが該ヌクレオチドと同等の機能を有する分子で置換されたヌクレオチド重合体があげられる。また、これらの核酸内にヌクレオチドと同等の機能を有する分子を少なくとも一つ含む誘導体も、本発明で用いられる薬物としての二本鎖核酸に含まれる。またウラシル(U)は、チミン(T)に一義的に読み替えることができる。 The double-stranded nucleic acid as a drug used in the present invention may be any molecule as long as it is a molecule in which nucleotides or molecules having functions equivalent to the nucleotides are polymerized. For example, RNA that is a polymer of ribonucleotides DNA, which is a polymer of deoxyribonucleotides, chimeric nucleic acids composed of RNA and DNA, and nucleotide polymers in which at least one nucleotide of these nucleic acids is substituted with a molecule having a function equivalent to that of the nucleotide. A derivative containing at least one molecule having a function equivalent to a nucleotide in these nucleic acids is also included in the double-stranded nucleic acid as a drug used in the present invention. Uracil (U) can be uniquely read as thymine (T).
ヌクレオチドと同等の機能を有する分子としては、例えばヌクレオチド誘導体等があげられる。ヌクレオチド誘導体としては、ヌクレオチドに修飾を施した分子であればいかなる分子であってもよいが、例えばRNAまたはDNAと比較して、ヌクレアーゼ耐性の向上もしくは安定化させるため、相補鎖核酸との親和性をあげるため、細胞透過性をあげるため、または可視化させるために、リボヌクレオチドまたはデオキシリボヌクレオチドに修飾を施した分子等が好適に用いられる。 Examples of molecules having a function equivalent to nucleotides include nucleotide derivatives. The nucleotide derivative may be any molecule as long as it is a nucleotide-modified molecule. For example, in order to improve or stabilize nuclease resistance compared to RNA or DNA, affinity for complementary nucleic acid In order to increase cell permeability, to increase cell permeability, or to visualize, a molecule in which ribonucleotides or deoxyribonucleotides are modified is preferably used.
ヌクレオチドに修飾を施した分子としては、例えば糖部修飾ヌクレオチド、リン酸ジエステル結合修飾ヌクレオチドおよび塩基修飾ヌクレオチド、ならびに糖部、リン酸ジエステル結合および塩基の少なくとも2つが修飾されたヌクレオチド等があげられる。
糖部修飾ヌクレオチドとしては、ヌクレオチドを構成する糖の化学構造の一部あるいは全てに対し、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよいが、2’-修飾ヌクレオチドが好ましく用いられる。
Examples of the molecule in which the nucleotide is modified include a sugar moiety-modified nucleotide, a phosphodiester bond-modified nucleotide and a base-modified nucleotide, and a nucleotide in which at least two of the sugar moiety, phosphodiester bond and base are modified.
The sugar-modified nucleotide may be any nucleotide as long as it is modified or substituted with an arbitrary substituent for a part or all of the chemical structure of the sugar constituting the nucleotide, or substituted with an arbitrary atom. 2'-modified nucleotides are preferably used.
2’-修飾ヌクレオチドとしては、例えばリボースの2’-OH基がH、OR、R、R’OR、SH、SR、NH2、NHR、NR2、N3、CN、F、Cl、BrおよびIからなる群(Rはアルキルまたはアリール、好ましくは炭素数1〜6のアルキルであり、R’はアルキレン、好ましくは炭素数1〜6のアルキレンである)から選択される置換基で置換されたヌクレオチド、好ましくは2’-OH基がH、Fまたはメトキシ基で置換されたヌクレオチド、より好ましくは2’-OH基がFまたはメトキシ基で置換されたヌクレオチドがあげられる。また、2’-OH基が2-(メトキシ)エトキシ基、3-アミノプロポキシ基、2-[(N,N-ジメチルアミノ)オキシ]エトキシ基、3-(N,N-ジメチルアミノ)プロポキシ基、2-[2-(N,N-ジメチルアミノ)エトキシ]エトキシ基、2-(メチルアミノ)-2-オキソエトキシ基、2-(N-メチルカルバモイル)エトキシ基および2-シアノエトキシ基からなる群から選択される置換基で置換されたヌクレオチド等もあげられる。 2′-modified nucleotides include, for example, the 2′-OH group of ribose is H, OR, R, R′OR, SH, SR, NH 2 , NHR, NR 2 , N 3 , CN, F, Cl, Br and Substituted with a substituent selected from the group consisting of I (R is alkyl or aryl, preferably alkyl having 1 to 6 carbon atoms and R ′ is alkylene, preferably alkylene having 1 to 6 carbon atoms) A nucleotide, preferably a nucleotide in which the 2′-OH group is substituted with H, F or a methoxy group, more preferably a nucleotide in which the 2′-OH group is substituted with F or a methoxy group. In addition, the 2′-OH group is a 2- (methoxy) ethoxy group, a 3-aminopropoxy group, a 2-[(N, N-dimethylamino) oxy] ethoxy group, or a 3- (N, N-dimethylamino) propoxy group. 2- [2- (N, N-dimethylamino) ethoxy] ethoxy group, 2- (methylamino) -2-oxoethoxy group, 2- (N-methylcarbamoyl) ethoxy group and 2-cyanoethoxy group Examples thereof include nucleotides substituted with a substituent selected from the group.
二重鎖核酸領域内のヌクレオチドに対して、2’-O-メチル修飾ヌクレオチドは、10〜70%含まれることが好ましく、20〜40%含まれることがより好ましく、40〜65%含まれることが特に好ましい。また、センス鎖のヌクレオチドに対して、2’-O-メチル修飾ヌクレオチドは、20〜40%含まれることが好ましく、40〜60%含まれることがより好ましく、60%〜100%含まれることが特に好ましい。また、アンチセンス鎖のヌクレオチドに対して、2’-O-メチル修飾ヌクレオチドは、0〜40%含まれることが好ましく、10〜20%含まれることがより好ましく、20〜40%含まれることが特に好ましい。 The nucleotides in the double-stranded nucleic acid region are preferably 10 to 70%, more preferably 20 to 40%, and more preferably 40 to 65% of 2'-O-methyl modified nucleotides. Is particularly preferred. In addition, the 2′-O-methyl modified nucleotide is preferably contained in an amount of 20 to 40%, more preferably 40 to 60%, and more preferably 60% to 100% with respect to the nucleotide of the sense strand. Particularly preferred. In addition, 2′-O-methyl modified nucleotides are preferably contained in an amount of 0 to 40%, more preferably 10 to 20%, and more preferably 20 to 40% with respect to the nucleotide of the antisense strand. Particularly preferred.
また、糖部修飾ヌクレオチドとしては、糖部に架橋構造を導入することにより2つの環状構造を有する架橋構造型人工核酸(Bridged Nucleic Acid)(BNA)も好適に用いられる。具体的には、2'位の酸素原子と4'位の炭素原子がメチレンを介して架橋したロックト人工核酸(Locked Nucleic Acid)(LNA) [“テトラへドロン レターズ(Tetrahedron Letters)”, 38巻, 8735頁, (1997)及び“テトラへドロン(Tetrahedron)”, 54巻, 3607頁,(1998)]、エチレン架橋構造型人工核酸(Ethylene bridged nucleic acid)(ENA)[ヌクレイック アシッド リサーチ(Nucleic Acid Research), 32, e175(2004)]、Constrained Ethyl (cEt)[“ザ ジャーナル オブ オーガニック ケミストリー(The Journal of Organic Chemistry)” 75巻, 1569 (2010)]、Amido-Bridged Nucleic Acid (AmNA)[“ケム バイオ ケム(Chem. Bio. Chem.)” 13巻, 2513 (2012)]及び2’-O,4’-C-Spirocyclopropylene bridged nucleic acid (scpBNA)[“ケミカル コミュニケーションズ(Chemcal Communications)”, 51巻, 9737頁 (2015)]等が挙げられる。 In addition, as the sugar moiety-modified nucleotide, a crosslinked nucleic acid (BNA) having two cyclic structures by introducing a crosslinked structure into the sugar moiety is also preferably used. Specifically, Locked Nucleic Acid (LNA) in which 2'-position oxygen atom and 4'-position carbon atom are bridged via methylene ["Tetrahedron Letters", Volume 38 8735, (1997) and “Tetrahedron”, 54, 3607, (1998)], Ethylene bridged nucleic acid (ENA) [Nucleic Acid Research (Nucleic Acid) Research, 32, e175 (2004)], Constrained Ethyl (cEt) [“The Journal of Organic Chemistry” 75, 1569 (2010)], Amido-Bridged Nucleic Acid (AmNA) [“ Chem. Bio. Chem. ”, Vol. 13, 2513 (2012)] and 2'-O, 4'-C-Spirocyclopropylene bridged nucleic acid (scpBNA) [“ Chemical Communications ”, Vol. 51 , 9737 (2015)].
さらにペプチド核酸(PNA)[“アカウンツ オブ ケミカル リサーチ (ACCOUNTS OF CHEMICAL RESEARCH)”, 32, 624 (1999)]、オキシペプチド核酸(OPNA)[ “ジャーナルオブアメリカンケミカルソサイエティー (Journal of American Chemical Society)”, 123巻, 4653頁 (2001)]、ペプチドリボ核酸(PRNA)[ “ジャーナルオブアメリカンケミカルソサイエティー (Journal of American Chemical Society)”, 122巻, 6900頁 (2000)]等も糖部修飾ヌクレオチドとして挙げられる。 In addition, peptide nucleic acids (PNA) [“ACCOUNTS OF CHEMICAL RESEARCH”, 32, 624 (1999)], oxypeptide nucleic acids (OPNA) [“Journal of American Chemical Society” , 123, 4653 (2001)], peptide ribonucleic acid (PRNA) [“Journal of American Chemical Society”, 122, 6900 (2000)] etc. Can be mentioned.
リン酸ジエステル結合修飾ヌクレオチドとしては、ヌクレオチドのリン酸ジエステル結合の化学構造の一部あるいは全てに対し、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよく、例えば、リン酸ジエステル結合がホスホロチオエート結合に置換されたヌクレオチド、リン酸ジエステル結合がホスホロジチオエート結合に置換されたヌクレオチド、リン酸ジエステル結合がアルキルホスホネート結合に置換されたヌクレオチド、リン酸ジエステル結合がホスホロアミデート結合に置換されたヌクレオチド等があげられる。 The phosphodiester bond-modified nucleotide is any nucleotide that has been modified or substituted with an arbitrary substituent for a part or all of the chemical structure of the phosphodiester bond of the nucleotide, or with any atom. For example, a nucleotide in which a phosphodiester bond is replaced with a phosphorothioate bond, a nucleotide in which a phosphodiester bond is replaced with a phosphorodithioate bond, a nucleotide in which a phosphodiester bond is replaced with an alkylphosphonate bond, a phosphate Examples thereof include nucleotides in which a diester bond is substituted with a phosphoramidate bond.
塩基修飾ヌクレオチドとしては、ヌクレオチドの塩基の化学構造の一部あるいは全てに対し、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよく、例えば、塩基内の酸素原子が硫黄原子で置換されたもの、水素原子が炭素数1〜6のアルキル基、ハロゲン原子等で置換されたもの、メチル基が水素、ヒドロキシメチル基、炭素数2〜6のアルキル基等で置換されたもの、アミノ基が炭素数1〜6のアルキル基、炭素数1〜6のアルカノイル基、オキソ基、ヒドロキシ基等で置換されたものがあげられる。 As the base-modified nucleotide, any or all of the nucleotide base chemical structure modified or substituted with an arbitrary substituent or substituted with an arbitrary atom may be used. In which oxygen atom is substituted with sulfur atom, hydrogen atom is substituted with alkyl group having 1 to 6 carbon atoms, halogen atom, etc., methyl group is hydrogen, hydroxymethyl group, alkyl having 2 to 6 carbon atoms And those in which an amino group is substituted with an alkyl group having 1 to 6 carbon atoms, an alkanoyl group having 1 to 6 carbon atoms, an oxo group, a hydroxy group, or the like.
ヌクレオチド誘導体としては、ペプチド、蛋白質、糖、脂質、リン脂質、フェナジン、フォレート、フェナントリジン、アントラキノン、アクリジン、フルオレセイン、ローダミン、クマリン、色素など、別の化学物質を、直接またはリンカーを介してヌクレオチドに付加したものもあげられ、具体的には、5’-ポリアミン付加ヌクレオチド誘導体、コレステロール付加ヌクレオチド誘導体、ステロイド付加ヌクレオチド誘導体、胆汁酸付加ヌクレオチド誘導体、ビタミン付加ヌクレオチド誘導体、Cy5付加ヌクレオチド誘導体、Cy3付加ヌクレオチド誘導体、6-FAM付加ヌクレオチド誘導体、およびビオチン付加ヌクレオチド誘導体等があげられる。 Nucleotide derivatives include peptides, proteins, sugars, lipids, phospholipids, phenazine, folate, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, coumarin, dyes, and other chemical substances directly or via a linker. Specific examples include 5'-polyamine-added nucleotide derivatives, cholesterol-added nucleotide derivatives, steroid-added nucleotide derivatives, bile acid-added nucleotide derivatives, vitamin-added nucleotide derivatives, Cy5-added nucleotide derivatives, and Cy3-added nucleotides. Derivatives, 6-FAM addition nucleotide derivatives, biotin addition nucleotide derivatives and the like.
ヌクレオチド誘導体は、核酸内の他のヌクレオチドまたはヌクレオチド誘導体とアルキレン構造、ペプチド構造、ヌクレオチド構造、エーテル構造、エステル構造、およびこれらの少なくとも一つを組み合わせた構造等の架橋構造を形成してもよい。
本発明で用いられる薬物としての二本鎖核酸は、核酸の分子中の一部あるいは全部の原子が質量数の異なる原子(同位体,例えば重水素等)で置換されたものも包含する。
The nucleotide derivative may form a crosslinked structure such as an alkylene structure, a peptide structure, a nucleotide structure, an ether structure, an ester structure, and a structure obtained by combining at least one of these with other nucleotides or nucleotide derivatives in the nucleic acid.
The double-stranded nucleic acid as a drug used in the present invention includes those in which part or all of the atoms in the nucleic acid molecule are substituted with atoms having different mass numbers (isotopes such as deuterium).
本明細書において「相補」とは、2つの塩基間で塩基対合をし得る関係を意味し、例えば、アデニンとチミンまたはウラシルとの関係、並びにグアニンとシトシンとの関係のように緩やかな水素結合を介して、二重鎖領域全体として2重螺旋構造をとるものをいう。
本明細書において「相補的」とは、2つのヌクレオチド配列が完全に相補する場合だけでなく、該ヌクレオチド配列間で0〜30%、好ましくは0〜20%、より好ましくは0〜10%のミスマッチ塩基を有することができ、例えば、β2GPI mRNAに対して相補的なアンチセンス鎖は、該mRNAの部分塩基配列と完全に相補する塩基配列において、1つまたは複数の塩基の置換を含んでよいことを意味する。具体的には、アンチセンス鎖は、標的遺伝子の標的配列に対して1〜8個、好ましくは1〜6個、より好ましくは1〜4個、さらに好ましくは1〜3個、最も好ましくは1〜2個のミスマッチ塩基を有することができる。例えば、アンチセンス鎖が21塩基長の場合には、標的遺伝子の標的配列に対して1〜6個のミスマッチ塩基を有してもよく、そのミスマッチの位置は、それぞれの配列の5’末端または3’末端であってもよい。
In the present specification, “complementary” means a relationship that allows base pairing between two bases, for example, a moderate hydrogen such as a relationship between adenine and thymine or uracil, and a relationship between guanine and cytosine. It means a double-stranded structure as a whole double-stranded region through a bond.
As used herein, “complementary” refers to not only when two nucleotide sequences are completely complementary, but also between 0-30%, preferably 0-20%, more preferably 0-10% between the nucleotide sequences. For example, an antisense strand complementary to β2GPI mRNA may contain one or more base substitutions in the base sequence that is completely complementary to the partial base sequence of the mRNA. Means that. Specifically, the antisense strand is 1 to 8, preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 3, and most preferably 1 to the target sequence of the target gene. Can have ~ 2 mismatch bases. For example, when the antisense strand is 21 bases long, it may have 1 to 6 mismatch bases with respect to the target sequence of the target gene, and the position of the mismatch is the 5 ′ end of each sequence or It may be the 3 ′ end.
また、「相補的」とは、一方のヌクレオチド配列が、他方のヌクレオチド配列と完全に相補する塩基配列において、1つまたは複数の塩基が付加および/または欠失した配列である場合を包含する。例えば、β2GPI mRNAと本発明のアンチセンス鎖核酸とは、アンチセンス鎖における塩基の付加および/または欠失により、アンチセンス鎖および/または標的β2GPI mRNA領域に1個または2個のバルジ塩基を有してもよい。 The term “complementary” includes a case where one nucleotide sequence is a sequence in which one or more bases are added and / or deleted in a base sequence that is completely complementary to the other nucleotide sequence. For example, β2GPI mRNA and the antisense strand nucleic acid of the present invention have one or two bulge bases in the antisense strand and / or the target β2GPI mRNA region due to addition and / or deletion of a base in the antisense strand. May be.
本発明で用いられる薬物としての二本鎖核酸は、β2GPI mRNAの一部の塩基配列に対して相補的な塩基配列を含む核酸および/または該核酸の塩基配列に対して相補的な塩基配列を含む核酸であれば、いずれのヌクレオチドまたはその誘導体から構成されていてもよい。本発明の二本鎖核酸は、標的β2GPI mRNA配列に対して相補的な塩基配列を含む核酸と、該核酸の塩基配列に対して相補的な塩基配列を含む核酸とが、二重鎖を形成することができればいずれの長さでもよいが、二重鎖を形成できる配列の長さは、通常11〜35塩基であり、15〜30塩基が好ましく、17〜25塩基がより好ましく、17〜23塩基がさらに好ましく、19〜23塩基が特に好ましい。 The double-stranded nucleic acid as a drug used in the present invention has a nucleic acid containing a base sequence complementary to a part of the base sequence of β2GPI mRNA and / or a base sequence complementary to the base sequence of the nucleic acid. As long as it contains a nucleic acid, it may be composed of any nucleotide or derivative thereof. In the double-stranded nucleic acid of the present invention, a nucleic acid containing a base sequence complementary to the target β2GPI mRNA sequence and a nucleic acid containing a base sequence complementary to the base sequence of the nucleic acid form a double strand. The length of the sequence capable of forming a duplex is usually 11 to 35 bases, preferably 15 to 30 bases, more preferably 17 to 25 bases, and 17 to 23. Bases are more preferred, with 19-23 bases being particularly preferred.
本発明のアンチセンス鎖核酸としては、標的β2GPI mRNA配列に対して相補的な塩基配列を含む核酸が用いられるが、該核酸のうち1〜3塩基、好ましくは1〜2塩基、より好ましくは1塩基が欠失、置換または付加したものを用いてもよい。
β2GPIの発現を抑制する核酸としては、標的β2GPI mRNA配列に対して相補的な塩基配列を含む核酸であって、かつβ2GPIの発現を抑制する一本鎖核酸、もしくは標的β2GPI mRNA配列に対して相補的な塩基配列を含む核酸と、該核酸の塩基配列に対して相補的な塩基配列を含む核酸とからなり、かつβ2GPIの発現を抑制する二本鎖核酸が好適に用いられる。
As the antisense strand nucleic acid of the present invention, a nucleic acid containing a base sequence complementary to the target β2GPI mRNA sequence is used. Among these nucleic acids, 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 A base deleted, substituted or added may be used.
The nucleic acid that suppresses β2GPI expression is a nucleic acid that includes a base sequence complementary to the target β2GPI mRNA sequence, and is complementary to the target β2GPI mRNA sequence. A double-stranded nucleic acid consisting of a nucleic acid containing a basic sequence and a nucleic acid containing a base sequence complementary to the base sequence of the nucleic acid and suppressing β2GPI expression is preferably used.
本発明において二本鎖核酸とは、二本のヌクレオチド鎖が対合し二重鎖領域を有する核酸をいう。二重鎖領域とは、二本鎖核酸を構成するヌクレオチドまたはその誘導体が塩基対を構成して二重鎖を形成している部分をいう。二重鎖領域は、通常11〜27塩基対であり、15〜25塩基対が好ましく、15〜23塩基対がより好ましく、17〜21塩基対がさらに好ましく、17〜19塩基対が特に好ましい。 In the present invention, a double-stranded nucleic acid refers to a nucleic acid in which two nucleotide chains are paired and has a double-stranded region. A double-stranded region refers to a portion where nucleotides constituting a double-stranded nucleic acid or a derivative thereof constitute a base pair to form a double strand. The double-stranded region is usually 11 to 27 base pairs, preferably 15 to 25 base pairs, more preferably 15 to 23 base pairs, still more preferably 17 to 21 base pairs, and particularly preferably 17 to 19 base pairs.
二本鎖核酸を構成する一本鎖の核酸は、通常11〜30塩基からなるが、15〜29塩基からなることが好ましく、15〜27塩基からなることがより好ましく、15〜25塩基からなることがさらに好ましく、17〜23塩基からなることが特に好ましく、19〜21塩基からなることが最も好ましい。
本発明で用いられる薬物としての二本鎖核酸において、二重鎖領域に続く3’側または5’側に二重鎖を形成しない追加のヌクレオチドまたはヌクレオチド誘導体を有する場合には、これを突出部(オーバーハング)と呼ぶ。突出部を有する場合には、突出部を構成するヌクレオチドはリボヌクレオチド、デオキシリボヌクレオチドまたはこれらの誘導体であってもよい。
The single-stranded nucleic acid constituting the double-stranded nucleic acid usually consists of 11 to 30 bases, preferably 15 to 29 bases, more preferably 15 to 27 bases, and 15 to 25 bases. More preferably, it consists of 17 to 23 bases, particularly preferably 19 to 21 bases.
When the double-stranded nucleic acid as a drug used in the present invention has an additional nucleotide or nucleotide derivative that does not form a duplex on the 3 ′ side or 5 ′ side following the double-stranded region, this is used as an overhang. This is called (overhang). In the case of having an overhang, the nucleotide constituting the overhang may be ribonucleotide, deoxyribonucleotide or a derivative thereof.
突出部を有する二本鎖核酸としては、少なくとも一方の鎖の3’末端または5’末端に1〜6塩基、好ましくは1〜3塩基からなる突出部を有するものが用いられるが、2塩基からなる突出部を有するものがより好ましく用いられ、例えばdTdT(dTはデオキシチミジンを表す)またはUU(Uはウリジンを表す)からなる突出部を有するものがあげられる。突出部は、アンチセンス鎖のみ、センス鎖のみ、およびアンチセンス鎖とセンス鎖の両方に有することができるが、本発明において、アンチセンス鎖とセンス鎖の両方に突出部を有する二本鎖核酸が好ましく用いられる。なお、アンチセンス鎖は、二重鎖領域とそれに続く突出部とを含む、少なくとも17個のヌクレオチドかつ多くとも30個のヌクレオチドからなるオリゴヌクレオチド鎖において、表2−1〜表2-16に記載された群から選択される標的β2GPI mRNA配列と十分に相補的である。さらに、本発明の二本鎖核酸としては、例えばダイサー(Dicer)等のリボヌクレアーゼの作用により上記の二本鎖核酸を生成する核酸分子(国際公開第2005/089287号参照)や、3’末端や5’末端の突出部を有さず平滑末端を形成する二本鎖核酸、センス鎖のみが突出した二本鎖核酸(米国特許出願公開第2012/0040459号明細書参照)などを用いることもできる。 As the double-stranded nucleic acid having a protruding portion, one having a protruding portion consisting of 1 to 6 bases, preferably 1 to 3 bases at the 3 ′ end or 5 ′ end of at least one strand is used. More preferably, those having a protruding portion consisting of dTdT (dT represents deoxythymidine) or UU (U represents uridine) are used. In the present invention, a double-stranded nucleic acid having a protruding portion on both the antisense strand and the sense strand can be provided on the antisense strand only, only the sense strand, and both the antisense strand and the sense strand. Is preferably used. The antisense strand is an oligonucleotide strand composed of at least 17 nucleotides and at most 30 nucleotides including a double-stranded region and a subsequent overhang, and is described in Tables 2-1 to 2-16. Sufficiently complementary to a target β2GPI mRNA sequence selected from the selected group. Furthermore, as the double-stranded nucleic acid of the present invention, for example, a nucleic acid molecule that generates the above-mentioned double-stranded nucleic acid by the action of a ribonuclease such as Dicer (see International Publication No. 2005/089287), the 3 ′ end, It is also possible to use a double-stranded nucleic acid that does not have an overhang at the 5 ′ end and forms a blunt end, a double-stranded nucleic acid in which only the sense strand protrudes (see US Patent Application Publication No. 2012/0040459) .
本発明で用いられる薬物としての二本鎖核酸としては、標的遺伝子の塩基配列またはその相補鎖の塩基配列と同一の配列からなる核酸を用いてもよいが、該核酸の少なくとも一方の鎖の5’末端または3’末端が1〜4塩基削除された核酸と、該核酸の塩基配列に対して相補的な塩基配列を含む核酸とからなる二本鎖核酸を用いてもよい。
本発明で用いられる薬物としての二本鎖核酸は、RNA同士が二重鎖を形成した二本鎖RNA(dsRNA)、DNA同士が二重鎖を形成した二本鎖DNA(dsDNA)、またはRNAとDNAが二重鎖を形成したハイブリッド核酸であってもよい。あるいは、二本鎖のうちの一方もしくは両方の鎖がDNAとRNAとのキメラ核酸であってもよい。好ましくは二本鎖RNA(dsRNA)である。
As the double-stranded nucleic acid as a drug used in the present invention, a nucleic acid having the same sequence as the base sequence of the target gene or its complementary strand may be used, but 5 of at least one strand of the nucleic acid may be used. A double-stranded nucleic acid consisting of a nucleic acid from which 1 to 4 bases are deleted from the 'terminal or 3' terminal and a nucleic acid containing a base sequence complementary to the base sequence of the nucleic acid may be used.
The double-stranded nucleic acid as a drug used in the present invention is a double-stranded RNA (dsRNA) in which RNAs form a double strand, a double-stranded DNA (dsDNA) in which DNAs form a double strand, or RNA And a hybrid nucleic acid in which DNA forms a double strand. Alternatively, one or both of the double strands may be a chimeric nucleic acid of DNA and RNA. Double-stranded RNA (dsRNA) is preferred.
本発明のアンチセンス鎖の5’末端から2番目のヌクレオチドは、標的β2GPI mRNA配列の3’末端から2番目のデオキシリボヌクレオチドと相補であることが好ましく、アンチセンス鎖の5’末端から2〜7番目のヌクレオチドが、標的β2GPI mRNA配列の3’末端から2〜7番目のデオキシリボヌクレオチドと完全に相補であることがより好ましく、アンチセンス鎖の5’末端から2〜11番目のヌクレオチドが、標的β2GPI mRNA配列の3’末端から2〜11番目のデオキシリボヌクレオチドと完全に相補であることがさらに好ましい。また、本発明の核酸におけるアンチセンス鎖の5’末端から11番目のヌクレオチドが、標的β2GPI mRNA配列の3’末端から11番目のデオキシリボヌクレオチドと相補であることが好ましく、アンチセンス鎖の5’末端から9〜13番目のヌクレオチドが、標的β2GPI mRNA配列の3’末端から9〜13番目のデオキシリボヌクレオチドと完全に相補であることがより好ましく、アンチセンス鎖の5’末端から7〜15番目のヌクレオチドが、標的β2GPI mRNA配列の3’末端から7〜15番目のデオキシリボヌクレオチドと完全に相補であることがさらに好ましい。 The second nucleotide from the 5 ′ end of the antisense strand of the present invention is preferably complementary to the second deoxyribonucleotide from the 3 ′ end of the target β2GPI mRNA sequence, and 2-7 from the 5 ′ end of the antisense strand. More preferably, the second nucleotide is completely complementary to the 2-7th deoxyribonucleotide from the 3 ′ end of the target β2GPI mRNA sequence, and the 2-11th nucleotide from the 5 ′ end of the antisense strand is the target β2GPI More preferably, it is completely complementary to deoxyribonucleotides 2 to 11 from the 3 ′ end of the mRNA sequence. Further, the 11th nucleotide from the 5 ′ end of the antisense strand in the nucleic acid of the present invention is preferably complementary to the 11th deoxyribonucleotide from the 3 ′ end of the target β2GPI mRNA sequence, and the 5 ′ end of the antisense strand. It is more preferable that the 9th to 13th nucleotides are completely complementary to the 9th to 13th deoxyribonucleotides from the 3 ′ end of the target β2GPI mRNA sequence, and the 7th to 15th nucleotides from the 5 ′ end of the antisense strand Is more preferably completely complementary to the 7th to 15th deoxyribonucleotides from the 3 ′ end of the target β2GPI mRNA sequence.
本発明で用いられる薬物としての二本鎖核酸を製造する方法としては、特に限定されず、公知の化学合成を用いる方法、あるいは、酵素的転写法等があげられる。公知の化学合成を用いる方法として、ホスホロアミダイト法、ホスホロチオエート法、ホスホトリエステル法、CEM法[“ヌクレイックアシッドリサーチ(Nucleic Acid Research)”, 35, 3287 (2007)]等をあげることができ、例えば、ABI3900ハイスループット核酸合成機(アプライドバイオシステムズ(Applied Bio Systems)社製)により合成することができる。合成が終了した後は、固相からの脱離、保護基の脱保護および目的物の精製等を行う。精製により、純度90%以上、好ましくは95%以上の核酸を得るのが望ましい。二本鎖核酸の場合には、合成および精製したセンス鎖、アンチセンス鎖を適当な比率、例えば、アンチセンス鎖1当量に対して、センス鎖0.1〜10当量、好ましくは0.5〜2当量、より好ましくは0.9〜1.1当量、さらに好ましくは等モル量で混合した後、アニーリングを行って用いてもよいし、または、混合したものをアニーリングする工程を省いて直接用いてもよい。アニーリングは、二本鎖核酸を形成できる条件であればいかなる条件で行ってもよいが、通常、センス鎖、アンチセンス鎖をほぼ等モル量で混合した後、94℃程度で5分程度加熱したのち、室温まで徐冷することにより行われる。本発明の核酸を製造する酵素的転写法としては、目的の塩基配列を有したプラスミドまたはDNAを鋳型としてファージRNAポリメラーゼ、例えば、T7、T3、またはSP6RNAポリメラーゼを用いた転写による方法があげられる。 The method for producing a double-stranded nucleic acid as a drug used in the present invention is not particularly limited, and examples thereof include a method using a known chemical synthesis or an enzymatic transcription method. Examples of methods using known chemical synthesis include phosphoramidite method, phosphorothioate method, phosphotriester method, CEM method [“Nucleic Acid Research”, 35, 3287 (2007)]. For example, it can be synthesized by an ABI3900 high-throughput nucleic acid synthesizer (Applied Bio Systems). After the synthesis is completed, elimination from the solid phase, deprotection of the protecting group, purification of the target product, and the like are performed. It is desirable to obtain a nucleic acid having a purity of 90% or more, preferably 95% or more by purification. In the case of a double-stranded nucleic acid, the synthesized and purified sense strand and antisense strand are in an appropriate ratio, for example, 0.1 to 10 equivalents, preferably 0.5 to 2 equivalents of the sense strand relative to 1 equivalent of the antisense strand. Preferably, 0.9 to 1.1 equivalents, more preferably equimolar amounts are mixed and then annealed, or the mixed product may be used directly without the step of annealing. Annealing may be performed under any conditions that can form a double-stranded nucleic acid, but usually, the sense strand and the antisense strand are mixed in approximately equimolar amounts and then heated at about 94 ° C. for about 5 minutes. Then, it is performed by slowly cooling to room temperature. Examples of the enzymatic transcription method for producing the nucleic acid of the present invention include a transcription method using a phage RNA polymerase such as T7, T3, or SP6 RNA polymerase using a plasmid or DNA having the target base sequence as a template.
本発明で用いられる薬物としての二本鎖核酸は、5'末端、3'末端または/および配列内部が1つ以上のリガンドや蛍光団により修飾されていてもよく、リガンドや蛍光団により修飾された核酸をコンジュゲート核酸とも呼ぶ。固相上での伸張反応時に、固相上で反応可能な修飾剤を反応させることで、5'末端、3'末端または/および配列内部に修飾を施すことができる。また、アミノ基、メルカプト基、アジド基または3重結合などの官能基を導入した核酸をあらかじめ合成および精製しておき、それらに修飾化剤を作用させることでコンジュゲート核酸を得ることもできる。リガンドとしては、生体分子と親和性のある分子であれば良いが、例えば、コレステロール、脂肪酸、トコフェロール、レチノイドなどの脂質類、N-アセチルガラクトサミン(GalNAc)、ガラクトース(Gal)、マンノース(Man)などの糖類、フル抗体、Fab、VHHなどの抗体、低密度リポタンパク質(LDL)、ヒト血清アルブミンなどのタンパク質、RGD、NGR、R9、CPPなどのペプチド類、葉酸などの低分子、合成ポリアミノ酸などの合成ポリマー、あるいは核酸アプタマーなどがあげられ、これらを組み合わせて用いることもできる。蛍光団としてはCy3シリーズ, Alexaシリーズ、ブラックホールクエンチャーなどがあげられる。 The double-stranded nucleic acid as a drug used in the present invention may be modified with one or more ligands or fluorophores at the 5 ′ end, 3 ′ end or / and the inside of the sequence. The nucleic acid is also called a conjugated nucleic acid. At the time of extension reaction on the solid phase, the 5 ′ end, 3 ′ end or / and the inside of the sequence can be modified by reacting a modifying agent capable of reacting on the solid phase. Alternatively, a conjugated nucleic acid can be obtained by previously synthesizing and purifying a nucleic acid into which a functional group such as an amino group, a mercapto group, an azide group, or a triple bond has been introduced, and allowing a modifying agent to act on them. The ligand may be any molecule that has affinity for biomolecules.For example, lipids such as cholesterol, fatty acids, tocopherols, retinoids, N-acetylgalactosamine (GalNAc), galactose (Gal), mannose (Man), etc. Saccharides, full antibodies, antibodies such as Fab and VHH, low density lipoprotein (LDL), proteins such as human serum albumin, peptides such as RGD, NGR, R9, and CPP, small molecules such as folic acid, synthetic polyamino acids, etc. These synthetic polymers or nucleic acid aptamers can be used, and these can be used in combination. Examples of fluorophores include the Cy3 series, Alexa series, and black hole quenchers.
本発明のアンチセンス鎖およびセンス鎖は、例えば、Genbank Accession No.NM_000042として登録されているヒトβ2GPIの完全長mRNAのcDNA(センス鎖)の塩基配列(配列番号3541)に基づいて設計することができる。
β2GPIの発現抑制活性を有する核酸としては、β2GPI mRNAに対して相補的な塩基配列を含む本発明のアンチセンス鎖核酸と、該核酸の塩基配列に対して相補的な塩基配列を含む本発明のセンス鎖核酸とからなり、かつβ2GPIの発現抑制活性を有する二本鎖核酸があげられる。該二本鎖核酸を構成する一本鎖の核酸は、通常11〜30塩基からなるが、15〜29塩基からなることが好ましく、15〜27塩基からなることがより好ましく、15〜25塩基からなることがさらに好ましく、17〜23塩基からなることが特に好ましく、19〜21塩基からなることが最も好ましい。該二本鎖核酸は通常15〜27塩基対、好ましくは15〜25塩基対、より好ましくは15〜23塩基対、さらに好ましくは15〜21塩基対、特に好ましくは15〜19塩基対からなる二重鎖領域を有している。
The antisense strand and the sense strand of the present invention can be designed based on, for example, the base sequence (SEQ ID NO: 3541) of cDNA (sense strand) of human β2GPI full-length mRNA registered as Genbank Accession No. NM_000042. it can.
The nucleic acid having β2GPI expression inhibitory activity includes the antisense strand nucleic acid of the present invention containing a base sequence complementary to β2GPI mRNA and the nucleic acid of the present invention containing a base sequence complementary to the base sequence of the nucleic acid. Examples thereof include double-stranded nucleic acids consisting of a sense strand nucleic acid and having β2GPI expression inhibitory activity. The single-stranded nucleic acid constituting the double-stranded nucleic acid usually consists of 11 to 30 bases, preferably 15 to 29 bases, more preferably 15 to 27 bases, and more preferably 15 to 25 bases. More preferably, it consists of 17 to 23 bases, most preferably 19 to 21 bases. The double-stranded nucleic acid usually consists of 15 to 27 base pairs, preferably 15 to 25 base pairs, more preferably 15 to 23 base pairs, further preferably 15 to 21 base pairs, and particularly preferably 15 to 19 base pairs. Has a heavy chain region.
本発明における脂質粒子は、化合物(A)、化合物(B)または化合物(C)と、二本鎖核酸とを含有する脂質粒子であり、例えば、化合物(A)、化合物(B)または化合物(C)と、二本鎖核酸との複合体、あるいは化合物(A)、化合物(B)または化合物(C)に中性脂質および/もしくは高分子を組み合わせたものと、二本鎖核酸との複合体を含有する脂質粒子、該複合体および該複合体を封入する脂質膜から構成された脂質粒子等があげられる。脂質膜は、脂質一重膜(脂質1分子膜)でも脂質二重膜(脂質2分子膜)であってもよい。なお、該脂質膜に、化合物(A)、化合物(B)または化合物(C)、中性脂質および/または高分子を含有していてもよい。また、該複合体および/または該脂質膜に、化合物(A)、化合物(B)または化合物(C)以外のカチオン性脂質を含有していてもよい。 The lipid particle in the present invention is a lipid particle containing compound (A), compound (B) or compound (C) and a double-stranded nucleic acid, for example, compound (A), compound (B) or compound ( C) and double-stranded nucleic acid, or compound (A), compound (B) or compound (C) combined with neutral lipid and / or polymer and double-stranded nucleic acid Lipid particles containing a body, lipid particles composed of the complex, and a lipid membrane encapsulating the complex. The lipid membrane may be a lipid monolayer (lipid monomolecular membrane) or a lipid bilayer membrane (lipid bimolecular membrane). The lipid membrane may contain compound (A), compound (B) or compound (C), neutral lipid and / or polymer. Further, the complex and / or the lipid membrane may contain a cationic lipid other than the compound (A), the compound (B) or the compound (C).
該複合体の形態としては、いずれの場合も二本鎖核酸と脂質一重層からなる膜(逆ミセル)との複合体、二本鎖核酸とリポソームとの複合体、二本鎖核酸とミセルとの複合体等があげられ、好ましくは二本鎖核酸と脂質一重層からなる膜との複合体または二本鎖核酸とリポソームとの複合体があげられる。
該複合体および該複合体を封入する脂質二重膜から構成された脂質粒子としては、該複合体および該複合体を封入する脂質二重膜から構成されたリポソーム等があげられる。
As the form of the complex, in any case, a complex of a double-stranded nucleic acid and a membrane composed of a lipid monolayer (reverse micelle), a complex of a double-stranded nucleic acid and a liposome, a double-stranded nucleic acid and a micelle And a complex of a double-stranded nucleic acid and a membrane composed of a lipid monolayer, or a complex of a double-stranded nucleic acid and a liposome.
Examples of the lipid particles composed of the complex and a lipid bilayer encapsulating the complex include liposomes composed of the complex and a lipid bilayer encapsulating the complex.
なお、本発明における脂質粒子には、化合物(A)、化合物(B)または化合物(C)の一種または複数種を使用してもよく、また化合物(A)、化合物(B)または化合物(C)と、化合物(A)、化合物(B)または化合物(C)以外のカチオン性脂質を混合したものでもよい。
化合物(A)、化合物(B)または化合物(C)以外のカチオン性脂質としては、例えば、特開昭61-161246号公報(米国特許第5049386号明細書)中で開示される、DOTMA、DOTAP等、国際公開第91/16024号および国際公開第97/019675号中で開示される、N-[1-(2,3-ジオレイルオキシプロピル)]-N,N-ジメチル-N-ヒドロキシエチル臭化アンモニウム(DORIE)、2,3-ジオレイルオキシ-N-[2-(スペルミンカルボキシアミド)エチル]-N,N-ジメチル-1-プロパナミニウムトリフルオロ酢酸(DOSPA)等、国際公開第2005/121348号中で開示される、DLinDMA等、国際公開第2009/086558号中で開示される、DLin-K-DMA等があげられ、好ましくはDOTMA、DOTAP、DORIE、DOSPA、DLinDMA、DLin-K-DMA等の2つの非置換アルキル基を有する3級アミン部位または3つの非置換アルキル基を有する4級アンモニウム部位を有するカチオン性脂質があげられ、より好ましくは該3級アミン部位を有するカチオン性脂質があげられる。該3級アミン部位および該4級アンモニウム部位の非置換アルキル基はメチル基であることがより好ましい。
The lipid particles in the present invention may be one or more of the compound (A), the compound (B) or the compound (C), and the compound (A), the compound (B) or the compound (C ) And a cationic lipid other than compound (A), compound (B) or compound (C).
Examples of the cationic lipid other than the compound (A), the compound (B) or the compound (C) include, for example, DOTMA, DOTAP disclosed in JP-A-61-161246 (US Pat. No. 5,049,386). N- [1- (2,3-dioleyloxypropyl)]-N, N-dimethyl-N-hydroxyethyl as disclosed in WO 91/16024 and WO 97/019675, etc. Ammonium bromide (DORIE), 2,3-dioleyloxy-N- [2- (sperminecarboxamido) ethyl] -N, N-dimethyl-1-propanaminium trifluoroacetic acid (DOSPA), etc. DLinDMA disclosed in 2005/121348, DLin-K-DMA, etc. disclosed in International Publication No. 2009/086558, preferably DOTMA, DOTAP, DORIE, DOSPA, DLinDMA, DLin- Examples include cationic lipids having a tertiary amine moiety having two unsubstituted alkyl groups or a quaternary ammonium moiety having three unsubstituted alkyl groups, such as K-DMA. , More preferably a cationic lipid having the tertiary amine sites and the like. The unsubstituted alkyl group of the tertiary amine moiety and the quaternary ammonium moiety is more preferably a methyl group.
本発明における脂質粒子は、公知の製造方法またはそれに準じて製造することができ、いかなる製造方法で製造されたものであってもよい。例えば、脂質粒子の1つであるリポソームの製造には、公知のリポソームの調製方法が適用できる。公知のリポソームの調製方法としては、例えばバンガム(Bangham)らのリポソーム調製法[“ジャーナル オブ モレキュラー バイオロジー(J. Mol. Biol.)”,1965年,第13巻,p.238-252参照]、エタノール注入法[“ジャーナル オブ セル バイオロジー(J. Cell Biol.)”,1975年,第66巻,p.621-634参照]、フレンチプレス法[“エフイービーエス レターズ(FEBS Lett.)”, 1979年, 第99巻, p.210-214参照]、凍結融解法[“アーカイブス オブ バイオケミストリー アンド バイオフィジックス(Arch.Biochem.Biophys.)”,1981年,第212巻,p.186-194参照]、逆相蒸発法[“プロシーディングズ オブ ザ ナショナル アカデミー オブ サイエンス ユナイテッド ステイツ オブ アメリカ(Proc.Natl.Acad.Sci.USA)”,1978年,第75巻, p.4194-4198参照]またはpH勾配法(例えば特許第2572554号公報、特許第2659136号公報等参照)等があげられる。リポソームの製造の際にリポソームを分散させる溶液としては、例えば水、酸、アルカリ、種々の緩衝液、生理食塩水またはアミノ酸輸液等を用いることができる。また、リポソームの製造の際には、例えばクエン酸、アスコルビン酸、システインまたはエチレンジアミン四酢酸(EDTA)等の抗酸化剤、例えばグリセリン、ブドウ糖または塩化ナトリウム等の等張化剤等の添加も可能である。また、脂質等を例えばエタノール等の有機溶媒に溶解し、溶媒を留去した後、生理食塩水等を添加、振とう撹拌し、リポソームを形成させることによってもリポソームを製造することができる。 The lipid particles in the present invention can be produced according to a known production method or similar methods, and may be produced by any production method. For example, a known liposome preparation method can be applied to the production of a liposome, which is one of lipid particles. Known liposome preparation methods include, for example, Bangham et al. Liposome preparation method [see “J. Mol. Biol.”, 1965, Vol. 13, p.238-252]. , Ethanol injection method [“J. Cell Biol.”, 1975, Vol. 66, p.621-634], French press method [“FEBS Lett.” ” , 1979, 99, p. 210-214], freeze-thaw method [“Arch. Biochem. Biophys.”, 1981, 212, p. 186-194 Reference], reverse phase evaporation [see "Proceedings of the National Academy of Sciences United States of America", 1978, Vol. 75, p.4194-4198] or pH gradient method (see, for example, Japanese Patent No. 2572554, Japanese Patent No. 2659136) Etc. As a solution in which the liposome is dispersed in the production of the liposome, for example, water, acid, alkali, various buffers, physiological saline, amino acid infusion, or the like can be used. In the production of liposomes, for example, an antioxidant such as citric acid, ascorbic acid, cysteine or ethylenediaminetetraacetic acid (EDTA), for example, an isotonic agent such as glycerin, glucose or sodium chloride can be added. is there. Liposomes can also be produced by dissolving lipids or the like in an organic solvent such as ethanol and distilling off the solvent, and then adding physiological saline or the like and stirring to form liposomes.
また、本発明における脂質粒子は、例えば、化合物(A)、化合物(B)または化合物(C)をクロロホルムに予め溶解し、次いで二本鎖核酸の水溶液とメタノールを加えて混合してカチオン性脂質/二本鎖核酸の複合体を形成させ、さらにクロロホルム層を取り出し、これにポリエチレングリコール化リン脂質と中性の脂質と水を加えて油中水型(W/O)エマルジョンを形成し、逆相蒸発法で処理して製造する方法(特表2002-508765号公報参照)や、二本鎖核酸を、酸性の電解質水溶液に溶解し、脂質(エタノール中)を加え、エタノール濃度を20v/v%まで下げて前記二本鎖核酸内包リポソームを調製し、サイジングろ過し、透析によって、過剰のエタノールを除去した後、試料をさらにpHを上げて透析してリポソーム表面に付着した二本鎖核酸を除去して製造する方法(特表2002-501511号公報およびバイオキミカ エト バイオフィジカ アクタ(Biochimica et Biophysica Acta),2001年, 第1510巻, p.152-166参照)等によって製造することができる。 The lipid particles in the present invention may be prepared by, for example, dissolving compound (A), compound (B) or compound (C) in advance in chloroform, then adding an aqueous solution of double-stranded nucleic acid and methanol and mixing them to form a cationic lipid. / Double-stranded nucleic acid complex is formed, the chloroform layer is taken out, and polyethylene glycolated phospholipid, neutral lipid and water are added to this to form a water-in-oil (W / O) emulsion, and the reverse A method of manufacturing by the phase evaporation method (see JP-T-2002-508765), or dissolving a double-stranded nucleic acid in an acidic aqueous electrolyte solution, adding lipid (in ethanol), and adjusting the ethanol concentration to 20 v / v The double-stranded nucleic acid-encapsulating liposome is prepared by lowering the concentration to 2%, and after sizing filtration and removing excess ethanol by dialysis, the pH of the sample is further increased to dialyze the double-stranded nucleic acid attached to the liposome surface. Method to remove and manufacture ( Table 2002-501511 JP and Baiokimika eth bio Physica Acta (Biochimica et Biophysica Acta), 2001 years, 1510 Volume can be prepared by p.152-166 reference) and the like.
本発明における脂質粒子のうち、複合体および該複合体を封入した脂質二重膜から構成されたリポソームは、例えば、国際公開第02/28367号および国際公開第2006/080118号等に記載の製造方法に従って製造することができる。
また、本発明は上記脂質粒子を含む、脂質粒子含有組成物も提供する。本発明の組成物のうち、例えば化合物(A)、化合物(B)もしくは化合物(C)と核酸との複合体、または化合物(A)、化合物(B)もしくは化合物(C)に中性脂質および/もしくは高分子を組み合わせたものと核酸との複合体ならびに該複合体を封入した脂質膜を含有する組成物、化合物(A)、化合物(B)もしくは化合物(C)以外のカチオン性脂質と核酸との複合体、または化合物(A)、化合物(B)もしくは化合物(C)以外のカチオン性脂質に中性脂質および/もしくは高分子を組み合わせたものと核酸との複合体ならびに該複合体を封入する脂質膜を含有し、該脂質膜に化合物(A)、化合物(B)または化合物(C)を含有する組成物等は、国際公開第02/28367号および国際公開第2006/080118号等に記載の製造方法に従って、それぞれの複合体を製造し、水または0〜40%エタノール水溶液中に、該複合体を溶解させずに分散させ(A液)、別途、それぞれの脂質膜成分を、例えばエタノール水溶液中に溶解させ(B液)、等量または体積比1:1〜7:3のA液とB液を混合し、さらに適宜に水を加えることで得ることができる。なお、A液およびB液中のカチオン性脂質としては、一種または複数種の化合物(A)、化合物(B)もしくは化合物(C)、または化合物(A)、化合物(B)もしくは化合物(C)以外のカチオン性脂質を使用してよく、また化合物(A)、化合物(B)または化合物(C)と、化合物(A)、化合物(B)または化合物(C)以外のカチオン性脂質を組み合わせて混合して使用してもよい。
Among the lipid particles in the present invention, a liposome composed of a complex and a lipid bilayer membrane encapsulating the complex is produced, for example, as described in WO 02/28367 and WO 2006/080118 It can be manufactured according to the method.
The present invention also provides a lipid particle-containing composition comprising the lipid particle. Among the compositions of the present invention, for example, compound (A), compound (B) or complex of compound (C) and nucleic acid, or compound (A), compound (B) or compound (C) and neutral lipid and A composition comprising a combination of a polymer and a nucleic acid and a lipid membrane encapsulating the complex, a cationic lipid and a nucleic acid other than the compound (A), the compound (B) or the compound (C) Or a complex of a combination of a neutral lipid and / or polymer with a cationic lipid other than compound (A), compound (B) or compound (C) and a nucleic acid, and encapsulating the complex And a composition containing the compound (A), the compound (B) or the compound (C) in the lipid membrane is disclosed in WO 02/28367 and WO 2006/080118. According to the described manufacturing method, each complex is manufactured and in water or 0-40% ethanol aqueous solution. The complex is dispersed without dissolving (Liquid A), and each lipid membrane component is separately dissolved in, for example, an ethanol aqueous solution (Liquid B), in an equal volume or volume ratio of 1: 1 to 7: 3. It can be obtained by mixing liquid A and liquid B and adding water as appropriate. In addition, as the cationic lipid in the liquid A and liquid B, one or more kinds of compound (A), compound (B) or compound (C), or compound (A), compound (B) or compound (C) A cationic lipid other than the above may be used, and the compound (A), the compound (B) or the compound (C) may be combined with a cationic lipid other than the compound (A), the compound (B) or the compound (C). You may mix and use.
なお、本発明において、化合物(A)、化合物(B)もしくは化合物(C)と核酸との複合体、または化合物(A)、化合物(B)もしくは化合物(C)に中性脂質および/もしくは高分子を組み合わせたものと核酸との複合体ならびに該複合体を封入した脂質膜を含有する組成物、化合物(A)、化合物(B)もしくは化合物(C)以外のカチオン性脂質と核酸との複合体、または化合物(A)、化合物(B)または化合物(C)以外のカチオン性脂質に中性脂質および/もしくは高分子を組み合わせたものと核酸との複合体ならびに該複合体を封入する脂質膜を含有し、該脂質膜に化合物(A)、化合物(B)または化合物(C)を含有する組成物等の製造中および製造後に、複合体中の核酸と脂質膜中のカチオン性脂質との静電相互作用や、複合体中のカチオン性脂質と脂質膜中のカチオン性脂質との融合によって、複合体および膜の構造が変位したものも、それぞれ化合物(A)、化合物(B)もしくは化合物(C)と核酸との複合体、または化合物(A)、化合物(B)もしくは化合物(C)に中性脂質および/もしくは高分子を組み合わせたものと核酸との複合体ならびに該複合体を封入した脂質膜を含有する組成物、または化合物(A)、化合物(B)もしくは化合物(C)以外のカチオン性脂質と核酸との複合体、または化合物(A)、化合物(B)もしくは化合物(C)以外のカチオン性脂質に中性脂質および/もしくは高分子を組み合わせたものと核酸との複合体ならびに該複合体を封入する脂質膜を含有し、該脂質膜に化合物(A)、化合物(B)または化合物(C)を含有する組成物等に包含される。 In the present invention, the compound (A), the compound (B) or the complex of the compound (C) and the nucleic acid, or the compound (A), the compound (B) or the compound (C) is neutral lipid and / or high. A complex comprising a combination of molecules and a nucleic acid, and a composition comprising a lipid membrane encapsulating the complex, a complex comprising a compound (A), a compound (B) or a cationic lipid other than the compound (C) and a nucleic acid Or a complex of a lipid other than a compound (A), a compound (B) or a cationic lipid other than the compound (C) with a neutral lipid and / or a polymer and a nucleic acid, and a lipid membrane encapsulating the complex Between the nucleic acid in the complex and the cationic lipid in the lipid membrane during and after the production of the composition containing compound (A), compound (B) or compound (C) in the lipid membrane Electrostatic interaction and fusion of cationic lipid in complex with cationic lipid in lipid membrane The structure of the complex and the membrane is also displaced by the complex of compound (A), compound (B) or compound (C) and nucleic acid, or compound (A), compound (B) or compound (C ), A composition comprising a combination of a neutral lipid and / or polymer and a nucleic acid, and a lipid membrane encapsulating the complex, or a compound (A), compound (B) or compound (C) Complexes of non-cationic lipids and nucleic acids, or complexes of neutral lipids and / or polymers combined with cationic lipids other than compound (A), compound (B) or compound (C) And a lipid membrane that encapsulates the complex, and the lipid membrane contains a compound (A), compound (B), or compound (C).
国際公開第02/28367号および国際公開第2006/080118号等に記載の製造方法に従って、核酸(前記と同義)、好ましくは二本鎖核酸と化合物(A)、化合物(B)もしくは化合物(C)、および/または化合物(A)、化合物(B)もしくは化合物(C)以外のカチオン性脂質を含有するリポソームとの複合体を製造し、水または0〜40%エタノール水溶液中に、該複合体を溶解させずに分散させ(A液)、別途、化合物(A)、化合物(B)もしくは化合物(C)および/または化合物(A)、化合物(B)もしくは化合物(C)以外のカチオン性脂質を、エタノール水溶液中に溶解させ(B液)、等量または体積比1:1〜7:3のA液とB液を混合すること、または、さらに適宜に水を加えることでも、該核酸と該カチオン性脂質を含む脂質粒子含有組成物を得ることができる。該組成物は、好ましくはカチオン性脂質と核酸との複合体および該複合体を封入する脂質膜を含有する組成物であり、または該核酸と該カチオン性脂質を含有する脂質一重層からなる膜(逆ミセル)との複合体および該複合体を封入する脂質膜を含有する組成物であってもよい。これらの場合の脂質膜は、脂質一重膜(脂質1分子膜)でも脂質二重膜(脂質2分子膜)であってもよい。 According to the production methods described in WO 02/28367 and WO 2006/080118, etc., nucleic acids (as defined above), preferably double-stranded nucleic acids and compound (A), compound (B) or compound (C ), And / or a complex with a liposome containing a cationic lipid other than compound (A), compound (B), or compound (C), and the complex in water or 0-40% ethanol aqueous solution Disperse without dissolving (liquid A), separately, compound (A), compound (B) or compound (C) and / or cationic lipid other than compound (A), compound (B) or compound (C) Can be dissolved in an aqueous ethanol solution (solution B), and the same amount or volume ratio of 1: 1 to 7: 3 can be mixed with solution A and solution B, or by adding water as appropriate. A lipid particle-containing composition containing the cationic lipid can be obtained. The composition is preferably a composition comprising a complex of a cationic lipid and a nucleic acid and a lipid membrane encapsulating the complex, or a membrane comprising a lipid monolayer containing the nucleic acid and the cationic lipid It may be a composition containing a complex with (reverse micelle) and a lipid membrane encapsulating the complex. The lipid membrane in these cases may be a lipid monolayer (lipid monomolecular membrane) or a lipid bilayer membrane (lipid bimolecular membrane).
また、本開示の該核酸と該リポソームとの複合体中のリポソームは、予め大きさを、平均粒子径10nm〜400nm、より好ましくは20nm〜110nm、さらに好ましくは30nm〜80nmに調節したリポソームが好ましい。また、該複合体および/または脂質膜に、中性脂質および/または高分子を含有していてもよい。また、A液は、化合物(A)、化合物(B)もしくは化合物(C)、および/または化合物(A)、化合物(B)もしくは化合物(C)以外のカチオン性脂質と、該核酸との複合体を形成させることができれば、エタノール濃度は、20〜70%であってもよい。 The liposome in the complex of the nucleic acid of the present disclosure and the liposome is preferably a liposome whose size is adjusted in advance to an average particle size of 10 nm to 400 nm, more preferably 20 nm to 110 nm, and even more preferably 30 nm to 80 nm. . Further, the complex and / or lipid membrane may contain a neutral lipid and / or a polymer. Liquid A is a compound of compound (A), compound (B) or compound (C), and / or a cationic lipid other than compound (A), compound (B) or compound (C) and the nucleic acid. If the body can be formed, the ethanol concentration may be 20 to 70%.
また、等量のA液とB液を混合する代わりに、A液とB液を混合後に複合体が溶解せず、かつB液中のカチオン性脂質が溶解しないエタノール濃度となる比率で混ぜてもよい。より好ましくは複合体が溶解せず、B液中のカチオン性脂質が溶解せず、かつエタノール濃度が30〜60%のエタノール水溶液になるような比でA液とB液を混合することに代えてもよく、あるいはA液とB液を混合後に複合体が溶解しないようなエタノール濃度になるような比でA液とB液を混合し、さらに水を加えることで、B液中のカチオン性脂質が溶解しなくなるエタノール濃度にすることにしてもよい。 Also, instead of mixing equal amounts of liquid A and liquid B, mix them at a ratio that will result in an ethanol concentration that does not dissolve the complex after mixing liquid A and liquid B, and does not dissolve the cationic lipids in liquid B. Also good. More preferably, the complex A is not dissolved, the cationic lipid in the solution B is not dissolved, and the solution A and the solution B are mixed in such a ratio that the ethanol concentration is 30 to 60%. Alternatively, after mixing liquid A and liquid B, mix the liquid A and liquid B at a ratio that will result in an ethanol concentration that does not dissolve the complex, and then add water to add cationic water. The ethanol concentration at which the lipid does not dissolve may be used.
本明細書に開示の該A液中での核酸とリポソームとの複合体は、A液とB液を混合し、さらに適宜に水を加えた後には、カチオン性脂質を含有する脂質一重層からなる膜(逆ミセル)と核酸との複合体に形態が変化している。本開示の製造方法で得られる該核酸と該カチオン性脂質を含有する組成物は、好ましくはカチオン性脂質と核酸との複合体および該複合体を封入する脂質膜を含有する組成物であり、または、カチオン性脂質を含有する脂質一重層からなる膜(逆ミセル)と核酸との複合体および該複合体を封入する脂質膜を含有し、該脂質膜にカチオン性脂質を含有する組成物であり、その製造性(収率および/または均一性)は優れている。 The complex of a nucleic acid and a liposome in the liquid A disclosed in the present specification is prepared by mixing the liquid A and the liquid B, and further adding water appropriately, and then starting from a lipid monolayer containing a cationic lipid. The form is changed to a complex of a membrane (reverse micelle) and a nucleic acid. The composition containing the nucleic acid and the cationic lipid obtained by the production method of the present disclosure is preferably a composition containing a complex of a cationic lipid and a nucleic acid and a lipid membrane encapsulating the complex. Alternatively, a composition comprising a membrane (reverse micelle) composed of a lipid monolayer containing a cationic lipid and a nucleic acid, and a lipid membrane encapsulating the complex, the composition containing a cationic lipid in the lipid membrane And its manufacturability (yield and / or uniformity) is excellent.
該複合体中の化合物(A)、化合物(B)または化合物(C)の分子の総数は、該二本鎖核酸のリン原子の数に対して0.5〜8倍であるのが好ましく、1.5〜7倍であるのがより好ましく、2〜5.5倍であるのがさらに好ましい。また、該複合体中の化合物(A)、化合物(B)または化合物(C)、および化合物(A)、化合物(B)または化合物(C)以外のカチオン性脂質の分子の総数は、該二本鎖核酸のリン原子の数に対して0.5〜8倍であるのが好ましく、1.5〜7倍であるのがより好ましく、2〜5.5倍であるのがさらに好ましい。 The total number of molecules of the compound (A), compound (B) or compound (C) in the complex is preferably 0.5 to 8 times the number of phosphorus atoms of the double-stranded nucleic acid, It is more preferably 7 times, and further preferably 2 to 5.5 times. In addition, the total number of molecules of the compound (A), the compound (B) or the compound (C), and the cationic lipid other than the compound (A), the compound (B) or the compound (C) in the complex is the two It is preferably 0.5 to 8 times, more preferably 1.5 to 7 times, and even more preferably 2 to 5.5 times the number of phosphorus atoms in the double-stranded nucleic acid.
本発明の脂質粒子において、複合体および該複合体を封入する脂質膜から構成される場合には、該脂質粒子中の化合物(A)、化合物(B)または化合物(C)の分子の総数は、該二本鎖核酸のリン原子の数に対して1〜15倍であるのが好ましく、2.5〜12倍であるのがより好ましく、3.5〜9倍であるのがさらに好ましい。また、該脂質粒子中の化合物(A)、化合物(B)または化合物(C)、ならびに化合物(A)、化合物(B)または化合物(C)以外のカチオン性脂質の分子の総数は、該二本鎖核酸のリン原子の数に対して1〜15倍であるのが好ましく、2.5〜12倍であるのがより好ましく、3.5〜9倍であるのがさらに好ましい。 When the lipid particle of the present invention is composed of a complex and a lipid membrane encapsulating the complex, the total number of molecules of the compound (A), compound (B) or compound (C) in the lipid particle is The number of phosphorus atoms in the double-stranded nucleic acid is preferably 1 to 15 times, more preferably 2.5 to 12 times, and even more preferably 3.5 to 9 times. Further, the total number of molecules of the compound (A), compound (B) or compound (C), and cationic lipid other than the compound (A), compound (B) or compound (C) in the lipid particles is The number is preferably 1 to 15 times, more preferably 2.5 to 12 times, and still more preferably 3.5 to 9 times the number of phosphorus atoms in the double-stranded nucleic acid.
中性脂質としては、単純脂質、複合脂質または誘導脂質のいかなるものであってもよく、例えばリン脂質、グリセロ糖脂質、スフィンゴ糖脂質、スフィンゴイドまたはステロール等があげられるがこれらに限定されない。
本発明の脂質粒子において中性脂質を含有する場合には、中性脂質の分子の総数は、化合物(A)、化合物(B)または化合物(C)、ならびに化合物(A)、化合物(B)または化合物(C)以外のカチオン性脂質の分子の総数に対して0.1〜2倍であるのが好ましく、0.2〜1.5倍であるのがより好ましく、0.3〜1.2倍であるのがさらに好ましい。本発明における脂質粒子は、中性脂質を、複合体に含有していてもよく、該複合体を封入する脂質膜に含有していてもよく、少なくとも該複合体を封入する脂質膜に含有していることがより好ましく、該複合体および該該複合体を封入する脂質膜のどちらにも含有していることがさらに好ましい。
Neutral lipids may be any of simple lipids, complex lipids or derived lipids, such as, but not limited to, phospholipids, glyceroglycolipids, sphingoglycolipids, sphingoids or sterols.
When the lipid particles of the present invention contain neutral lipids, the total number of neutral lipid molecules is compound (A), compound (B) or compound (C), and compound (A), compound (B). Alternatively, it is preferably 0.1 to 2 times, more preferably 0.2 to 1.5 times, and still more preferably 0.3 to 1.2 times the total number of cationic lipid molecules other than compound (C). The lipid particles in the present invention may contain a neutral lipid in a complex, may be contained in a lipid membrane encapsulating the complex, or at least contained in a lipid membrane encapsulating the complex. More preferably, it is contained in both the complex and the lipid membrane encapsulating the complex.
中性脂質におけるリン脂質としては、例えばホスファチジルコリン(具体的には大豆ホスファチジルコリン、卵黄ホスファチジルコリン(EPC)、ジステアロイルホスファチジルコリン(DSPC)、ジパルミトイルホスファチジルコリン(DPPC)、パルミトイルオレオイルホスファチジルコリン(POPC)、ジミリストイルホスファチジルコリン(DMPC)、ジオレオイルホスファチジルコリン(DOPC)等)、ホスファチジルエタノールアミン(具体的にはジステアロイルホスファチジルエタノールアミン(DSPE)、ジパルミトイルホスファチジルエタノールアミン(DPPE)、ジオレオイルホスファチジルエタノールアミン(DOPE)、ジミリストイルホスホエタノールアミン(DMPE)、16-0-モノメチルPE、16-0-ジメチルPE、18-1-トランスPE、パルミトイルオレオイル-ホスファチジルエタノールアミン(POPE)、1 -ステアロイル-2-オレオイル-ホスファチジルエタノールアミン(SOPE)等)、グリセロリン脂質(具体的にはホスファチジルセリン、ホスファチジン酸、ホスファチジルグリセロール、ホスファチジルイノシトール、パルミトイルオレオイルホスファチジルグリセロール(POPG)、リゾホスファチジルコリン等)、スフィンゴリン脂質(具体的にはスフィンゴミエリン、セラミドホスホエタノールアミン、セラミドホスホグリセロール、セラミドホスホグリセロリン酸等)、グリセロホスホノ脂質、スフィンゴホスホノ脂質、天然レシチン(具体的には卵黄レシチン、大豆レシチン等)または水素添加リン脂質(具体的には水素添加大豆ホスファチジルコリン等)等の天然または合成のリン脂質があげられる。 Examples of phospholipids in neutral lipids include phosphatidylcholine (specifically soybean phosphatidylcholine, egg yolk phosphatidylcholine (EPC), distearoylphosphatidylcholine (DSPC), dipalmitoylphosphatidylcholine (DPPC), palmitoyloleoylphosphatidylcholine (POPC), dimyristoylphosphatidylcholine). (DMPC), dioleoylphosphatidylcholine (DOPC), etc.), phosphatidylethanolamine (specifically distearoyl phosphatidylethanolamine (DSPE), dipalmitoyl phosphatidylethanolamine (DPPE), dioleoylphosphatidylethanolamine (DOPE)), Dimyristoylphosphoethanolamine (DMPE), 16-0-monomethyl PE, 16-0-dimethyl PE, 18-1-trans PE, palmitoyl oleoyl-phosphatidylethanolamine (POP) E), 1-stearoyl-2-oleoyl-phosphatidylethanolamine (SOPE), etc.), glycerophospholipids (specifically phosphatidylserine, phosphatidic acid, phosphatidylglycerol, phosphatidylinositol, palmitoyloleoylphosphatidylglycerol (POPG), lyso) Phosphatidylcholine, etc.), sphingophospholipids (specifically sphingomyelin, ceramide phosphoethanolamine, ceramide phosphoglycerol, ceramide phosphoglycerophosphate, etc.), glycerophosphonolipids, sphingophosphonolipids, natural lecithin (specifically egg yolk lecithin) Natural or synthetic phospholipids such as hydrogenated phospholipid (specifically hydrogenated soybean phosphatidylcholine and the like).
中性脂質におけるグリセロ糖脂質としては、例えばスルホキシリボシルグリセリド、ジグリコシルジグリセリド、ジガラクトシルジグリセリド、ガラクトシルジグリセリドまたはグリコシルジグリセリド等があげられる。
中性脂質におけるスフィンゴ糖脂質としては、例えばガラクトシルセレブロシド、ラクトシルセレブロシドまたはガングリオシド等があげられる。
Examples of the glyceroglycolipid in the neutral lipid include sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride and the like.
Examples of the glycosphingolipid in the neutral lipid include galactosyl cerebroside, lactosyl cerebroside, ganglioside, and the like.
中性脂質におけるスフィンゴイドとしては、例えばスフィンガン、イコサスフィンガン、スフィンゴシンまたはそれらの誘導体等があげられる。誘導体としては、例えばスフィンガン、イコサスフィンガンまたはスフィンゴシン等の-NH2を-NHCO(CH2)xCH3(式中、xは0〜18の整数であり、中でも6、12または18が好ましい)に変換したもの等があげられる。
中性脂質におけるステロールとしては、例えばコレステロール、ジヒドロコレステロール、ラノステロール、β-シトステロール、カンペステロール、スチグマステロール、ブラシカステロール、エルゴカステロール、フコステロールまたは3β-[N-(N',N'-ジメチルアミノエチル)カルバモイル]コレステロール(DC-Chol)等があげられる。
Examples of the sphingoid in the neutral lipid include sphingan, icosasphingan, sphingosine, and derivatives thereof. Examples of the derivative, for example sphingan, equalizer suspension fins cancer or -NH 2 sphingosine such -NHCO (CH 2) xCH 3 (wherein, x is an integer of 0 to 18, among them 6,12 or 18 is preferred) And the like converted to.
Examples of sterols in neutral lipids include cholesterol, dihydrocholesterol, lanosterol, β-sitosterol, campesterol, stigmasterol, brassicasterol, ergocasterol, fucosterol or 3β- [N- (N ', N'-dimethyl Aminoethyl) carbamoyl] cholesterol (DC-Chol) and the like.
中性脂質として、好ましくはリン脂質、ステロール等があげられ、より好ましくは、ホスファチジルコリン、ホスファチジルエタノールアミン、コレステロールがあげられ、さらに好ましくは、ホスファチジルエタノールアミン、コレステロールおよびそれらの組み合わせがあげられる。
高分子としては、例えばタンパク質、アルブミン、デキストラン、ポリフェクト(polyfect)、キトサン、デキストラン硫酸、例えばポリ-L-リジン、ポリエチレンイミン、ポリアスパラギン酸、スチレンマレイン酸共重合体、イソプロピルアクリルアミド-アクリルピロリドン共重合体、ポリエチレングリコール修飾デンドリマー、ポリ乳酸、ポリ乳酸ポリグリコール酸またはポリエチレングリコール化ポリ乳酸等の高分子またはそれらの塩の1以上があげられる。
Neutral lipids are preferably phospholipids, sterols, and the like, more preferably phosphatidylcholine, phosphatidylethanolamine, and cholesterol, and still more preferably phosphatidylethanolamine, cholesterol, and combinations thereof.
Examples of the polymer include protein, albumin, dextran, polyfect, chitosan, dextran sulfate, such as poly-L-lysine, polyethyleneimine, polyaspartic acid, styrene maleic acid copolymer, isopropylacrylamide-acrylpyrrolidone copolymer Examples thereof include one or more polymers such as a polymer, a polyethylene glycol-modified dendrimer, polylactic acid, polylactic acid polyglycolic acid, or polyethylene glycolated polylactic acid, or a salt thereof.
ここで、高分子における塩は、例えば金属塩、アンモニウム塩、酸付加塩、有機アミン付加塩、アミノ酸付加塩等を包含する。金属塩としては、例えばリチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩、アルミニウム塩または亜鉛塩等があげられる。アンモニウム塩としては、例えばアンモニウムまたはテトラメチルアンモニウム等の塩があげられる。酸付加塩としては、例えば塩酸塩、硫酸塩、硝酸塩またはリン酸塩等の無機酸塩、および酢酸塩、マレイン酸塩、フマル酸塩またはクエン酸塩等の有機酸塩があげられる。有機アミン付加塩としては、例えばモルホリンまたはピペリジン等の付加塩があげられる。アミノ酸付加塩としては、例えばグリシン、フェニルアラニン、アスパラギン酸、グルタミン酸またはリジン等の付加塩があげられる。 Here, the salts in the polymer include, for example, metal salts, ammonium salts, acid addition salts, organic amine addition salts, amino acid addition salts and the like. Examples of the metal salt include alkali metal salts such as lithium salt, sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salt and zinc salt. Examples of the ammonium salt include salts such as ammonium and tetramethylammonium. Examples of the acid addition salt include inorganic acid salts such as hydrochloride, sulfate, nitrate or phosphate, and organic acid salts such as acetate, maleate, fumarate or citrate. Examples of organic amine addition salts include addition salts such as morpholine and piperidine. Examples of amino acid addition salts include addition salts such as glycine, phenylalanine, aspartic acid, glutamic acid or lysine.
また、本発明における脂質粒子は、さらに水溶性高分子の脂質誘導体もしくは脂肪酸誘導体を含有することが好ましい。該水溶性高分子の脂質誘導体もしくは脂肪酸誘導体は、複合体に含有していてもよく、複合体を封入する脂質膜に含有していてもよく、複合体および該複合体を封入する脂質膜ともに含有していることがより好ましい。
本発明の脂質粒子において水溶性高分子の脂質誘導体もしくは脂肪酸誘導体を含有する場合には、水溶性高分子の脂質誘導体および脂肪酸誘導体の分子の総数は、化合物(A)、化合物(B)または化合物(C)、ならびに化合物(A)、化合物(B)または化合物(C)以外のカチオン性脂質の分子の総数に対して0.01〜0.3倍であるのが好ましく、0.02〜0.25倍であるのがより好ましく、0.03〜0.15倍であるのがさらに好ましい。
The lipid particles in the present invention preferably further contain a water-soluble polymer lipid derivative or fatty acid derivative. The lipid derivative or fatty acid derivative of the water-soluble polymer may be contained in a complex, may be contained in a lipid membrane encapsulating the complex, and both the complex and the lipid membrane encapsulating the complex It is more preferable to contain.
When the lipid particle of the present invention contains a lipid derivative or fatty acid derivative of a water-soluble polymer, the total number of molecules of the lipid derivative and fatty acid derivative of the water-soluble polymer is compound (A), compound (B) or compound (C), and preferably 0.01 to 0.3 times, more preferably 0.02 to 0.25 times the total number of molecules of the cationic lipid other than compound (A), compound (B) or compound (C). Preferably, it is 0.03 to 0.15 times.
水溶性高分子の脂質誘導体もしくは脂肪酸誘導体は、分子の一部が脂質粒子の他の構成成分と例えば疎水性親和力、静電的相互作用等で結合する性質をもち、他の部分が脂質粒子の製造時の溶媒と例えば親水性親和力、静電的相互作用等で結合する性質をもつ、2面性をもつ物質であるのが好ましい。
水溶性高分子の脂質誘導体または脂肪酸誘導体としては、例えばポリエチレングリコール、ポリグリセリン、ポリエチレンイミン、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、オリゴ糖、デキストリン、水溶性セルロース、デキストラン、コンドロイチン硫酸、キトサン、ポリビニルピロリドン、ポリアスパラギン酸アミド、ポリ-L-リジン、マンナン、プルラン、オリゴグリセロール等またはそれらの誘導体と、前記脂質粒子の定義の中であげた中性脂質もしくは化合物(A)、化合物(B)または化合物(C)、または例えばステアリン酸、パルミチン酸、ミリスチン酸またはラウリン酸等の脂肪酸とが結合してなるもの、それらの塩等があげられ、より好ましくは、ポリエチレングリコール誘導体、ポリグリセリン誘導体等の脂質誘導体または脂肪酸誘導体およびそれらの塩があげられ、さらに好ましくは、ポリエチレングリコール誘導体の脂質誘導体または脂肪酸誘導体およびそれらの塩があげられる。
A water-soluble polymer lipid derivative or fatty acid derivative has a property that a part of the molecule binds to other constituents of the lipid particle by, for example, hydrophobic affinity, electrostatic interaction, etc., and the other part is a lipid particle. A substance having a two-sided property, which has a property of binding with a solvent at the time of manufacture, for example, by hydrophilic affinity, electrostatic interaction or the like, is preferable.
Examples of lipid derivatives or fatty acid derivatives of water-soluble polymers include polyethylene glycol, polyglycerin, polyethyleneimine, polyvinyl alcohol, polyacrylic acid, polyacrylamide, oligosaccharide, dextrin, water-soluble cellulose, dextran, chondroitin sulfate, chitosan, polyvinyl Pyrrolidone, polyaspartic acid amide, poly-L-lysine, mannan, pullulan, oligoglycerol and the like or their derivatives and neutral lipids or compounds (A), compounds (B) or Compound (C) or, for example, those formed by bonding with fatty acids such as stearic acid, palmitic acid, myristic acid or lauric acid, salts thereof, and the like, more preferably polyethylene glycol derivatives, polyglycerin derivatives, etc. Lipid Mentioned conductor or fatty acid derivatives and their salts, more preferably, a lipid derivative or a fatty acid derivative of a polyethylene glycol derivatives and salts thereof.
ポリエチレングリコール誘導体の脂質誘導体または脂肪酸誘導体としては、例えばポリエチレングリコール化脂質(具体的にはポリエチレングリコール-ホスファチジルエタノールアミン(より具体的には1,2-ジステアロイル-sn-グリセロ-3-ホスホエタノールアミン-N-[メトキシ(ポリエチレングリコール)-2000](PEG-DSPE)、1,2-ジミリストイル-sn-グリセロ-3-ホスホエタノールアミン-N-[メトキシ(ポリエチレングリコール)-2000](PEG-DMPE)等)、ポリオキシエチレン硬化ヒマシ油60、クレモフォアイーエル(CREMOPHOR EL)等)、ポリエチレングリコールソルビタン脂肪酸エステル類(具体的にはモノオレイン酸ポリオキシエチレンソルビタン等)またはポリエチレングリコール脂肪酸エステル類等があげられ、より好ましくは、ポリエチレングリコール化脂質があげられ、さらに好ましくはPEG-DSPE、PEG-DMPEがあげられる。 Examples of lipid derivatives or fatty acid derivatives of polyethylene glycol derivatives include polyethylene glycolated lipids (specifically, polyethylene glycol-phosphatidylethanolamine (more specifically, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine). -N- [methoxy (polyethylene glycol) -2000] (PEG-DSPE), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol) -2000] (PEG-DMPE )), Polyoxyethylene hydrogenated castor oil 60, Cremophor EL, etc.), polyethylene glycol sorbitan fatty acid esters (specifically, polyoxyethylene sorbitan monooleate) or polyethylene glycol fatty acid esters, etc. And more preferably, polyethylene glycolated lipids. Preferably, PEG-DSPE, the PEG-DMPE like to.
ポリグリセリン誘導体の脂質誘導体または脂肪酸誘導体としては、例えばポリグリセリン化脂質(具体的にはポリグリセリン-ホスファチジルエタノールアミン等)またはポリグリセリン脂肪酸エステル類等があげられ、より好ましくは、ポリグリセリン化脂質があげられる。
また、本発明における脂質粒子には、例えば水溶性高分子、ポリオキシエチレン誘導体等による表面改質も任意に行うことができる[ラジック(D.D.Lasic)、マーティン(F.Martin)編,“ステルス リポソームズ(Stealth Liposomes)”(米国),シーアールシー プレス インク(CRC Press Inc), 1995年, p.93-102参照]。表面改質に使用し得る高分子としては、例えばデキストラン、プルラン、マンナン、アミロペクチンまたはヒドロキシエチルデンプン等があげられる。ポリオキシエチレン誘導体としては、例えばポリソルベート80、プルロニックF68、ポリオキシエチレン硬化ヒマシ油60、ポリオキシエチレンラウリルアルコールまたはPEG-DSPE等があげられる。該表面改質によって、脂質粒子中の複合体および脂質膜に水溶性高分子の脂質誘導体もしくは脂肪酸誘導体を含有させることができる。
Examples of lipid derivatives or fatty acid derivatives of polyglycerin derivatives include polyglycerinized lipids (specifically polyglycerin-phosphatidylethanolamine) and polyglycerin fatty acid esters, and more preferably polyglycerinized lipids. can give.
The lipid particles in the present invention can be optionally subjected to surface modification with, for example, a water-soluble polymer, a polyoxyethylene derivative, etc. [Radics, edited by F. Martin, “Stealth Liposomes” (Stealth Liposomes) ”(USA), CRC Press Inc, 1995, p. 93-102]. Examples of the polymer that can be used for the surface modification include dextran, pullulan, mannan, amylopectin, and hydroxyethyl starch. Examples of the polyoxyethylene derivative include polysorbate 80, Pluronic F68, polyoxyethylene hydrogenated castor oil 60, polyoxyethylene lauryl alcohol, and PEG-DSPE. By the surface modification, a lipid derivative or a fatty acid derivative of a water-soluble polymer can be contained in the complex and lipid membrane in the lipid particle.
本発明における脂質粒子の平均粒子径は、所望により自由に選択できるが、下記する平均粒子径とするのが好ましい。平均粒子径を調節する方法としては、例えばエクストルージョン法、大きな多重膜リポソーム(MLV)等を機械的に粉砕(具体的にはマントンゴウリン、マイクロフルイダイザー等を使用)する方法[ミュラー(R.H.Muller)、ベニタ(S.Benita)、ボーム(B.Bohm)編著,“エマルジョン アンド ナノサスペンジョンズ フォー ザ フォーミュレーション オブ ポアリー ソラブル ドラッグズ(Emulsion and Nanosuspensions for the Formulation of Poorly Soluble Drugs)”,ドイツ,サイエンティフィック パブリッシャーズ スチュットガルト(Scientific Publishers Stuttgart), 1998年, p.267-294参照]等があげられる。 The average particle diameter of the lipid particles in the present invention can be freely selected as desired, but is preferably the average particle diameter described below. As a method for adjusting the average particle size, for example, an extrusion method, a method of mechanically crushing large multilamellar liposomes (MLV) or the like (specifically using a manton gourin, a microfluidizer, etc.) [Müller (RH Muller, S. Benita, B. Bohm, “Emulsion and Nanosuspensions for the Formulation of Poorly Soluble Drugs”, Germany Scientific Publishers Stuttgart (1998, p.267-294)].
本発明における脂質粒子の大きさは、平均粒子径が約10nm〜1000nmであるのが好ましく、約30nm〜300nmであるのがより好ましく、約50nm〜200nmであるのがさらに好ましい。
本発明における脂質粒子の平均粒子径は、例えば動的光散乱法等で測定することができる。
本発明の脂質粒子含有組成物を、哺乳動物の細胞に投与することで、該組成物中の二本鎖核酸を細胞内に導入することができる。
In the present invention, the lipid particles preferably have an average particle diameter of about 10 nm to 1000 nm, more preferably about 30 nm to 300 nm, and further preferably about 50 nm to 200 nm.
The average particle diameter of lipid particles in the present invention can be measured by, for example, a dynamic light scattering method.
By administering the lipid particle-containing composition of the present invention to a mammalian cell, the double-stranded nucleic acid in the composition can be introduced into the cell.
インビボにおける本発明の脂質粒子含有組成物の哺乳動物の細胞への導入方法は、インビボにおいて行うことのできる公知のトランスフェクションの手順に従って行えばよい。本発明の脂質粒子含有組成物を、人を含む哺乳動物に静脈内投与することで、例えば血管、肝臓、肺、脾臓および/または腎臓へ送達され、送達臓器または部位の細胞内に本発明の組成物中の二本鎖核酸を導入することができる。 The method for introducing the lipid particle-containing composition of the present invention into a mammalian cell in vivo may be performed according to known transfection procedures that can be performed in vivo. The lipid particle-containing composition of the present invention is intravenously administered to mammals including humans, and delivered to, for example, blood vessels, liver, lungs, spleen and / or kidneys, and the composition of the present invention is delivered into cells of a delivery organ or site. Double stranded nucleic acids in the composition can be introduced.
送達臓器または部位の細胞内に本発明の脂質粒子を含む組成物中の二本鎖核酸が導入されると、その細胞内のβ2GPI遺伝子の発現を低下させ、β2GPI関連疾患、例えば全身性エリテマトーデス(SLE)、抗リン脂質抗体症候群、末期腎不全患者における血液透析合併症および動脈硬化を治療あるいは予防することができる。投与対象は、哺乳動物であり、人であることが好ましい。 When a double-stranded nucleic acid in a composition containing lipid particles of the present invention is introduced into a cell of a delivery organ or site, the expression of β2GPI gene in the cell is decreased, and β2GPI-related diseases such as systemic lupus erythematosus ( SLE), antiphospholipid syndrome, hemodialysis complications and arteriosclerosis in patients with end-stage renal failure. The administration target is a mammal, and preferably a human.
本発明の脂質粒子含有組成物を、β2GPI関連疾患の治療剤または予防剤として使用する場合、投与経路としては、治療に際し最も効果的な投与経路を使用するのが望ましく、好ましくは静脈内投与、皮下投与または筋肉内投与をあげることができ、より好ましくは静脈内投与があげられる。
投与量は、投与対象の病状や年齢、投与経路等によって異なるが、例えば二本鎖核酸に換算した1日投与量が0.1μg〜1000 mgとなるように投与すればよく、1日投与量が1〜100 mgとなるように投与することがより好ましい
静脈内投与または筋肉内投与に適当な製剤としては、例えば注射剤があげられ、上述の方法により調製した脂質粒子の分散液をそのまま例えば注射剤等の形態として用いることも可能であるが、該分散液から例えば濾過、遠心分離等によって溶媒を除去して使用することも、該分散液を凍結乾燥して使用する、および/または例えばマンニトール、ラクトース、トレハロース、マルトースもしくはグリシン等の賦形剤を加えた分散液を凍結乾燥して使用することもできる。
When the lipid particle-containing composition of the present invention is used as a therapeutic or prophylactic agent for β2GPI-related diseases, it is desirable to use the most effective route for treatment, preferably intravenous administration, Subcutaneous administration or intramuscular administration can be exemplified, and intravenous administration is more preferred.
The dose varies depending on the medical condition, age, administration route, etc. of the administration subject, but it may be administered, for example, so that the daily dose converted to double-stranded nucleic acid is 0.1 μg to 1000 mg. More preferably, the dosage is 1 to 100 mg. Suitable formulations for intravenous or intramuscular administration include, for example, injections. For example, a dispersion of lipid particles prepared by the above-described method is directly injected. It can also be used in the form of an agent, etc., but it can be used after removing the solvent from the dispersion by, for example, filtration, centrifugation, etc., or by lyophilizing the dispersion and / or, for example, mannitol A dispersion containing an excipient such as lactose, trehalose, maltose or glycine can be freeze-dried for use.
注射剤の場合、前記の脂質粒子の分散液または前記の溶媒を除去または凍結乾燥した脂質粒子含有組成物に、例えば水、酸、アルカリ、種々の緩衝液、生理食塩水またはアミノ酸輸液等を混合して注射剤を調製することが好ましい。また、例えばクエン酸、アスコルビン酸、システインもしくはEDTA等の抗酸化剤、またはグリセリン、ブドウ糖もしくは塩化ナトリウム等の等張化剤等を添加して注射剤を調製することも可能である。また、例えばグリセリン等の凍結保存剤を加えて凍結保存することもできる。 In the case of injections, for example, water, acid, alkali, various buffer solutions, physiological saline or amino acid infusion, etc. are mixed with the lipid particle dispersion or the lipid particle-containing composition from which the solvent has been removed or lyophilized. Thus, it is preferable to prepare an injection. In addition, for example, an injection can be prepared by adding an antioxidant such as citric acid, ascorbic acid, cysteine or EDTA, or an isotonic agent such as glycerin, glucose or sodium chloride. Moreover, it can also be cryopreserved by adding a cryopreservation agent such as glycerin.
次に、実施例、参考例および試験例により、本発明を具体的に説明する。ただし、本発明はこれら実施例および試験例に限定されるものではない。
なお、参考例に示されたプロトン核磁気共鳴スペクトル(1H NMR)は、270MHz、300MHzまたは400MHzで測定されたものであり、化合物および測定条件によっては交換性プロトンが明瞭には観測されないことがある。なお、シグナルの多重度の表記としては通常用いられるものを用いているが、brとは見かけ上幅広いシグナルであることを表す。
参考例1
ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)アミン(化合物B-1)
アンモニア(東京化成工業社製、約2 mol/Lメタノール溶液、18.0 mL、36.0 mmol)に、(9Z,12Z)-オクタデカ-9,12-ジエニル メタンスルホナート(ニューチェック・プレップ・インク(Nu-Chek Prep,Inc)社製、1.55 g、4.50 mmol)を加え、マイクロ波反応装置を用いて130℃で3時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えてクロロホルムで5回抽出した。有機層を合わせて飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後ろ過し、減圧濃縮することで(9Z,12Z)-オクタデカ-9,12-ジエニルアミンの粗生成物を得た。
Next, the present invention will be specifically described by way of examples, reference examples and test examples. However, the present invention is not limited to these examples and test examples.
The proton nuclear magnetic resonance spectrum ( 1 H NMR) shown in the reference example was measured at 270 MHz, 300 MHz, or 400 MHz, and exchangeable protons may not be clearly observed depending on the compound and measurement conditions. is there. In addition, although what is used normally is used as the notation of the multiplicity of signals, br represents an apparently wide signal.
Reference example 1
Di ((9Z, 12Z) -octadeca-9,12-dienyl) amine (Compound B-1)
Ammonia (Tokyo Chemical Industry, approx. 2 mol / L methanol solution, 18.0 mL, 36.0 mmol) was added to (9Z, 12Z) -octadeca-9,12-dienyl methanesulfonate (New Check Prep Chek Prep, Inc), 1.55 g, 4.50 mmol) was added, and the mixture was stirred at 130 ° C. for 3 hours using a microwave reactor. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was extracted 5 times with chloroform. The organic layers were combined, washed with saturated brine, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure to obtain a crude product of (9Z, 12Z) -octadeca-9,12-dienylamine.
得られた粗生成物に(9Z,12Z)-オクタデカ-9,12-ジエニル メタンスルホナート(Nu-Chek Prep,Inc社製、1.24 g、3.60 mmol)および50%水酸化ナトリウム水溶液(1.44 g、18.0 mmol)を加え、油浴上110℃で60分間攪拌した。室温まで冷却後、反応液を酢酸エチルで希釈し、水、ついで飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後ろ過し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=100/0〜95/5)で精製することにより、化合物B-1(0.838 g、収率36.2%)を得た。
ESI-MS m/z: 515(M + H)+; 1H-NMR(CDCl3) δ: 0.89(t, J= 6.9Hz, 6H), 1.30(br s, 33H), 1.41-1.54(m, 4H), 2.01-2.09(m, 8H), 2.59(t, J= 7.2 Hz, 4H), 2.77(t, J= 5.6 Hz, 4H), 5.28-5.43(m, 8H).
参考例2
ジ((Z)-オクタデカ-9-エニル)アミン(化合物B-2)
参考例1と同様の方法で、アンモニア(東京化成工業社製、約2 mol/Lメタノール溶液、12.0 mL、24.0 mmol)および(Z)-オクタデカ-9-エニル メタンスルホナート(Nu-Chek Prep,Inc社製、1.87 g、5.40 mmol)を用い、化合物B-2(0.562 g、収率36.2%)を得た。
ESI-MS m/z: 519(M + H)+; 1H-NMR(CDCl3) δ: 0.88(t, J= 6.7 Hz, 6H), 1.29(br s, 45H), 1.41-1.52(m, 4H), 1.97-2.05(m, 8H), 2.58(t, J= 7.2 Hz, 4H), 5.28-5.40(m, 4H).
参考例3
ジ((Z)-ヘキサデカ-9-エニル)アミン(化合物B-3)
参考例1と同様の方法で、アンモニア(シグマ・アルドリッチ(SIGMA-ALDRICH)社製、約7 mol/Lメタノール溶液、1.66 mL、11.6 mmol)および(Z)-ヘキサデカ-9-エニル メタンスルホナート(Nu-Chek Prep,Inc社製、0.488 g、1.46 mmol)を用い、化合物B-3(0.243 g、収率36.0%)を得た。
1H-NMR(CDCl3) δ: 0.89(t, J= 6.9 Hz, 6H), 1.24-1.37(m, 37H), 1.43-1.52(m, 4H), 1.98-2.05(m, 8H), 2.58(t, J= 7.2 Hz, 4H), 5.31-5.38(m, 4H).
参考例4
ジ((11Z,14Z)-イコサ-11,14-ジエニル)アミン(化合物B-4)
参考例1と同様の方法で、アンモニア(SIGMA-ALDRICH社製、約7 mol/Lメタノール溶液、1.60 mL、11.2 mmol)および(11Z,14Z)-イコサ-11,14-ジエニル メタンスルホナート(Nu-Chek Prep,Inc社製、0.521 g、1.40 mmol)を用い、化合物B-4(0.292 g、収率36.6%)を得た。
1H-NMR(CDCl3) δ: 0.89(t, J= 6.8 Hz, 6H), 1.24-1.39(m, 41H), 1.43-1.51(m, 4H), 2.02-2.08(m, 8H), 2.58(t, J= 7.3 Hz, 4H), 2.77(t, J= 6.7 Hz, 4H), 5.30-5.41(m, 8H).
参考例5
3-(ジメチルアミノ)プロピル ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマート(化合物A-1)
参考例1で得られる化合物B-1(1.35 g、2.63 mmol)をクロロホルム(18 mL)に溶解させ、“ジャーナル・オブ・アメリカン・ケミカル・ソサイエティー(J.Am.Chem.Soc.)”,1981年,第103巻,p.4194-4199記載の方法に準じた方法で合成した3-(ジメチルアミノ)プロピル-4-ニトロフェニル-カルボナート塩酸塩(化合物VI-1)(1.20 g、3.94 mmol)およびトリエチルアミン(1.47 mL、10.5 mmol)を加え、マイクロ波反応装置を用いて110℃で60分間攪拌した。反応液に化合物VI-1(200 mg、0.658 mmol)を加え、マイクロ波反応装置を用いて110℃で20分間攪拌した。反応液に化合物VI-1(200 mg、0.658 mmol)を加え、マイクロ波反応装置を用いて110℃で20分間攪拌した。反応液に化合物VI-1(200 mg、0.658 mmol)を加え、マイクロ波反応装置を用いて110℃で20分間攪拌した。反応液をクロロホルムで希釈し、1 mol/L水酸化ナトリウム水溶液で3回洗浄し、ついで飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後ろ過し、減圧濃縮した。得られた残渣を少量のn-ヘキサン/酢酸エチル(1/4)に溶解してアミノ修飾シリカゲルのパッドに吸着させ、n-ヘキサン/酢酸エチル(1/4)で溶出し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=100/0〜95/5)で精製することで化合物A-1(1.39 g、収率82.2%)を得た。
ESI-MS m/z: 644(M + H)+; 1H-NMR(CDCl3) δ: 0.89(t, J= 6.7 Hz, 6H), 1.29(br s, 32H), 1.45-1.56(m, 4H), 1.74-1.85(m, 2H), 2.00-2.09(m, 8H), 2.23(s, 6H), 2.35(t, J=7.4 Hz, 2H), 2.77(t, J=5.8 Hz, 4H), 3.13-3.23(m, 4H), 4.10(t, J= 6.4 Hz, 2H), 5.28-5.43(m, 8H).
参考例6
3-(ジメチルアミノ)プロピル ジ((Z)-オクタデカ-9-エニル)カルバマート(化合物A-2)
参考例5と同様の方法で、化合物B-1の代わりに参考例2で得られる化合物B-2(0.156 g、0.301 mmol)を用い、化合物A-2(0.267 g、収率88.7%)を得た。
ESI-MS m/z: 648(M + H)+; 1H-NMR(CDCl3) δ: 0.88(t, J= 6.6 Hz, 6H), 1.28(br s, 44H), 1.45-1.55(m, 4H), 1.75-1.85(m, 2H), 1.97-2.04(m, 8H), 2.23(s, 6H), 2.34(t, J=7.6 Hz, 2H), 3.13-3.24(m, 4H), 4.10(t, J= 6.4 Hz, 2H), 5.28-5.40(m, 4H).
参考例7
3-(ジメチルアミノ)プロピル ジ((Z)-ヘキサデカ-9-エニル)カルバマート(化合物A-3)
参考例5と同様の方法で、化合物B-1の代わりに参考例3で得られる化合物B-3(0.164 g、0.355 mmol)を用い、化合物A-3(0.116 g、収率55.2%)を得た。
ESI-MS m/z: 592(M + H)+; 1H-NMR(CDCl3) δ: 0.88(t, J= 6.9 Hz, 6H), 1.21-1.38(m, 36H), 1.47-1.54(m, 4H), 1.75-1.83(m, 2H), 2.00-2.04(m, 8H), 2.22(s, 6H), 2.34(t, J=7.4 Hz, 2H), 3.11-3.24(m, 4H), 4.10(t, J= 6.4 Hz, 2H), 5.30-5.38(m, 4H).
参考例8
3-(ジメチルアミノ)プロピル ジ((11Z,14Z)-イコサ-11,14-ジエニル)カルバマート(化合物A-4)
参考例5と同様の方法で、化合物B-1の代わりに参考例4で得られる化合物B-4(0.288 g、0.505 mmol)を用い、化合物A-4(0.290 g、収率82.2%)を得た。
ESI-MS m/z: 700(M + H)+; 1H-NMR(CDCl3) δ: 0.89(t, J= 6.8 Hz, 6H), 1.21-1.40(m, 40H), 1.46-1.54(m, 4H), 1.76-1.83(m, 2H), 2.02-2.08(m, 8H), 2.23(s, 6H), 2.35(t, J=7.6 Hz, 2H), 2.77(t, J= 6.7 Hz, 4H), 3.10-3.24(m, 4H), 4.10(t, J= 6.4 Hz, 2H), 5.30-5.41(m, 8H).
参考例9
2-(ジメチルアミノ)エチル ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマート(化合物A-5)
参考例5と同様の方法で、参考例1で得られる化合物B-1(0.215 g、0.418 mmol)および、化合物VI-1の代わりに“ジャーナル・オブ・アメリカン・ケミカル・ソサイエティー(J.Am.Chem.Soc.)”,1981年,第103巻,p.4194-4199記載の方法に準じた方法で合成した2-(ジメチルアミノ)エチル-4-ニトロフェニル-カルボナート塩酸塩(化合物VI-2)(0.162 g、0.557 mmol)を用いて、化合物A-5(0.184 g、収率70.0%)を得た。
ESI-MS m/z: 630(M + H)+; 1H-NMR(CDCl3) δ: 0.89(t, J= 6.8 Hz, 6H), 1.12-1.39(m, 32H), 1.45-1.54(m, 4H), 2.00-2.07(m, 8H), 2.28(s, 6H), 2.57(t, J= 7.2 Hz, 2H), 2.77(t, J= 6.7 Hz, 4H), 3.11-3.24(m, 4H), 4.17(t, J= 6.7 Hz, 2H), 5.28-5.41(m, 8H).
参考例A-4 2-(1-メチルピロリジン-2-イル)エチル 4-ニトロフェニル カルボナート塩酸塩(化合物VI-3)
クロロぎ酸4-ニトロフェニル(東京化成工業社製、1.761 g、8.56 mmol)のジエチルエーテル(20 mL)溶液に、2-(1-メチルピロリジン-2-イル)エタノール(東京化成工業社製、1.0 mL、7.13 mmol)のジエチルエーテル(20 mL)溶液を加え、室温にて終夜攪拌した。反応液を減圧濃縮し、得られた残渣をエタノール/ジエチルエーテル(1/1)より結晶化させ、濾取することで化合物VI-3(1.27 g、収率54%)を得た。
1H-NMR(DMSO-d6)δ: 1.59-1.77(m, 2H), 1.82-2.09(m, 3H), 2.15-2.26(m, 1H), 2.76(s, 3H), 2.93-3.05(m, 2H), 3.61-3.20(m, 3H), 4.80(br s, 1H), 6.95(d, J= 9.2 Hz, 2H), 8.11(d, J= 9.2 Hz, 2H)
参考例A-5 4-ニトロフェニル 3-(ピペリジン-1-イル)プロピル カルボナート塩酸塩(化合物VI-4)
クロロぎ酸4-ニトロフェニル(1.58 g、7.67 mmol)のジエチルエーテル(32 mL)溶液に、3-(ピペリジン-1-イル)プロパン-1-オール(SIGMA-ALDRICH社製、1.00 mL、6.39 mmol)を加え、室温にて終夜攪拌した。反応液を減圧濃縮し、得られた残渣をエタノールより結晶化させ、濾取することで化合物VI-4(1.86 g、収率84%)を得た。
ESI-MS m/z: 309(M + H)+; 1H-NMR(DMSO-d6)δ: 1.28-1.49(m, 1H), 1.62-1.89(m, 5H), 2.10-2.26(m, 2H), 2.76-2.96(m, 2H), 3.04-3.19(m, 2H), 3.36-3.49(m, 2H), 4.33(t, J= 6.1 Hz, 2H), 7.58(d, J= 9.2 Hz, 2H), 8.33(d, J= 9.2 Hz, 2H), 10.37(br s, 1H).
参考例A-6 4-ニトロフェニル 3-(ピロリジン-1-イル)プロピル カルボナート塩酸塩(化合物VI-5)
クロロぎ酸4-ニトロフェニル(596 mg、2.84 mmol)のジエチルエーテル(10 mL)溶液に、3-(ピロリジン-1-イル)プロパン-1-オール(ABCR社製、386 mg、2.84 mmol)ジエチルエーテル(10 mL)溶液を加え、室温にて2時間攪拌した。反応液を減圧濃縮し、得られた残渣をエタノールより結晶化させ、濾取することで化合物VI-5(498 mg、収率53%)を得た。
1H-NMR(DMSO-d6)δ: 1.76-1.84(m, 2H), 1.85-2.00(m, 4H), 3.11-3.16(m, 2H), 3.30-3.44(m, 4H), 3.47(t, J= 6.0 Hz, 2H), 4,77(br s, 1H), 6.95(d, J= 9.2 Hz, 2H), 8.11(d, J= 9.2 Hz, 2H)
参考例10
2-(1-メチルピロリジン-2-イル)エチル ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマート(化合物A-6)
参考例1で得られる化合物B-1(0.161 g、0.314 mmol)をアセトニトリル(3.0 mL)に溶解させ、参考例A-4で得られる化合物VI-3(0.156 g、0.470 mmol)およびトリエチルアミン(0.219 mL、1.57 mmol)を加え、80℃で2時間攪拌した。反応液を酢酸エチルで希釈し、水で洗浄し、無水硫酸マグネシウムで乾燥後ろ過し、減圧濃縮した。得られた残渣をアミノシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル = 80/20)で精製することにより、化合物A-6(0.172 g、収率82%)を得た。
ESI-MS m/z: 670(M + H)+; 1H-NMR(CDCl3) δ: 0.89(t, J= 6.9 Hz, 6H), 1.20-1.40(m, 32H), 1.45-1.57(m, 6H), 1.62-1.83(m, 2H), 1.94-2.18(m, 12H), 2.31(s, 3H), 2.77(t, J= 6.7 Hz, 4H), 3.03-3.26(m, 5H), 4.06-4.17(m, 2H), 5.29-5.42(m, 8H).
参考例11
3-(ピペリジン-1-イル)プロピル ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマート(化合物A-7)
参考例5と同様の方法で、化合物VI-1の代わりに参考例A-5で得られる化合物VI-4を用いて、化合物A-7(0.387 g、収率81%)を得た。
ESI-MS m/z: 684(M + H)+; 1H-NMR(CDCl3) δ: 0.89(t, J= 6.9 Hz, 6H), 1.21-1.62(m, 42H), 1.79-1.86(m, 2H), 2.02-2.08(m, 8H), 2.32-2.42(m, 6H), 2.77(t, J= 6.7 Hz, 4H), 3.10-3.43(m, 4H), 4.09(t, J=6.4 Hz, 2H), 5.29-5.42(m, 8H).
参考例12
3-(ピロリジン-1-イル)プロピル ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマート(化合物A-8)
参考例10と同様の方法で、化合物VI-3の代わりに参考例A-6で得られる化合物VI-5(0.168 g、0.508 mmol)を用い、化合物A-8(0.225 g、収率99%)を得た。
ESI-MS m/z: 670(M + H)+; 1H-NMR(CDCl3) δ: 0.89(t, J= 6.9 Hz, 6H), 1.21-1.40(m, 32H), 1.46-1.55(m, 4H), 1.76-1.80(m, 4H), 1.82-1.89(m, 2H), 2.01-2.08(m, 8H), 2.47-2.55(m, 6H), 2.77(t, J= 6.7 Hz, 4H), 3.11-3.24(m, 4H), 4.11(t, J= 6.4 Hz, 2H), 5.29-5.42(m, 8H).
参考例A-7 2-ニトロ-N-((9Z,12Z)-オクタデカ-9,12-ジエニル)ベンゼンスルホンアミド(化合物IVf-1)
(9Z,12Z)-オクタデカ-9,12-ジエニル メタンスルホナート(Nu-Chek Prep,Inc社製、2.85 g、8.27 mmol)のアセトニトリル(30 ml)溶液に、炭酸セシウム(6.74 g、20.67 mmol)、ヨウ化テトラブチルアンモニウム(東京化成工業社製、3.05 g、8.27 mmol)およびN-(tert-ブトキシカルボニル)-2-ニトロベンゼンスルホンアミド(東京化成工業社製、2.50 g、8.27 mmol)を加え、3時間加熱還流下反応させた。反応液を室温まで冷却し、水を加えて酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥後ろ過し、減圧濃縮した。残渣をカラムクロマトグラフィー(n-ヘキサン/酢酸エチル = 91/9〜70/30)で精製することにより、tert-ブチル(2-ニトロフェニル)スルホニル((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)カルバマート(3.21 g、収率70.5%)を得た。
The crude product obtained was (9Z, 12Z) -octadeca-9,12-dienyl methanesulfonate (Nu-Chek Prep, Inc., 1.24 g, 3.60 mmol) and 50% aqueous sodium hydroxide (1.44 g, 18.0 mmol) was added and stirred on an oil bath at 110 ° C. for 60 minutes. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate, washed with water and then with saturated brine, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform / methanol = 100/0 to 95/5) to obtain Compound B-1 (0.838 g, yield 36.2%).
ESI-MS m / z: 515 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9Hz, 6H), 1.30 (br s, 33H), 1.41-1.54 (m , 4H), 2.01-2.09 (m, 8H), 2.59 (t, J = 7.2 Hz, 4H), 2.77 (t, J = 5.6 Hz, 4H), 5.28-5.43 (m, 8H).
Reference example 2
Di ((Z) -octadeca-9-enyl) amine (Compound B-2)
In the same manner as in Reference Example 1, ammonia (manufactured by Tokyo Chemical Industry Co., Ltd., about 2 mol / L methanol solution, 12.0 mL, 24.0 mmol) and (Z) -octadeca-9-enyl methanesulfonate (Nu-Chek Prep, Inc., 1.87 g, 5.40 mmol) was used to obtain compound B-2 (0.562 g, yield 36.2%).
ESI-MS m / z: 519 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.7 Hz, 6H), 1.29 (br s, 45H), 1.41-1.52 (m , 4H), 1.97-2.05 (m, 8H), 2.58 (t, J = 7.2 Hz, 4H), 5.28-5.40 (m, 4H).
Reference example 3
Di ((Z) -hexadec-9-enyl) amine (Compound B-3)
In the same manner as in Reference Example 1, ammonia (manufactured by SIGMA-ALDRICH, approximately 7 mol / L methanol solution, 1.66 mL, 11.6 mmol) and (Z) -hexadec-9-enyl methanesulfonate ( Nu-Chek Prep, Inc., 0.488 g, 1.46 mmol) was used to obtain compound B-3 (0.243 g, yield 36.0%).
1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.24-1.37 (m, 37H), 1.43-1.52 (m, 4H), 1.98-2.05 (m, 8H), 2.58 (t, J = 7.2 Hz, 4H), 5.31-5.38 (m, 4H).
Reference example 4
Di ((11Z, 14Z) -icosa-11,14-dienyl) amine (Compound B-4)
Ammonia (SIGMA-ALDRICH, approximately 7 mol / L methanol solution, 1.60 mL, 11.2 mmol) and (11Z, 14Z) -icosa-11,14-dienyl methanesulfonate (Nu -Chek Prep, Inc., 0.521 g, 1.40 mmol) was used to obtain compound B-4 (0.292 g, yield 36.6%).
1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.8 Hz, 6H), 1.24-1.39 (m, 41H), 1.43-1.51 (m, 4H), 2.02-2.08 (m, 8H), 2.58 (t, J = 7.3 Hz, 4H), 2.77 (t, J = 6.7 Hz, 4H), 5.30-5.41 (m, 8H).
Reference Example 5
3- (Dimethylamino) propyl di ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate (Compound A-1)
Compound B-1 (1.35 g, 2.63 mmol) obtained in Reference Example 1 was dissolved in chloroform (18 mL), “Journal of American Chemical Society (J. Am. Chem. Soc.)”, 1981. 3- (dimethylamino) propyl-4-nitrophenyl-carbonate hydrochloride (Compound VI-1) (1.20 g, 3.94 mmol) synthesized by a method according to the method described in Y., Vol. 103, p.4194-4199 And triethylamine (1.47 mL, 10.5 mmol) were added and stirred at 110 ° C. for 60 minutes using a microwave reactor. Compound VI-1 (200 mg, 0.658 mmol) was added to the reaction solution, and the mixture was stirred at 110 ° C. for 20 minutes using a microwave reactor. Compound VI-1 (200 mg, 0.658 mmol) was added to the reaction solution, and the mixture was stirred at 110 ° C. for 20 minutes using a microwave reactor. Compound VI-1 (200 mg, 0.658 mmol) was added to the reaction solution, and the mixture was stirred at 110 ° C. for 20 minutes using a microwave reactor. The reaction solution was diluted with chloroform, washed with 1 mol / L aqueous sodium hydroxide solution three times, then with saturated brine, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The obtained residue was dissolved in a small amount of n-hexane / ethyl acetate (1/4), adsorbed on a pad of amino-modified silica gel, eluted with n-hexane / ethyl acetate (1/4), and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform / methanol = 100/0 to 95/5) to obtain Compound A-1 (1.39 g, yield 82.2%).
ESI-MS m / z: 644 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.7 Hz, 6H), 1.29 (br s, 32H), 1.45-1.56 (m , 4H), 1.74-1.85 (m, 2H), 2.00-2.09 (m, 8H), 2.23 (s, 6H), 2.35 (t, J = 7.4 Hz, 2H), 2.77 (t, J = 5.8 Hz, 4H), 3.13-3.23 (m, 4H), 4.10 (t, J = 6.4 Hz, 2H), 5.28-5.43 (m, 8H).
Reference Example 6
3- (Dimethylamino) propyl di ((Z) -octadeca-9-enyl) carbamate (Compound A-2)
In the same manner as in Reference Example 5, using Compound B-2 (0.156 g, 0.301 mmol) obtained in Reference Example 2 instead of Compound B-1, Compound A-2 (0.267 g, yield 88.7%) was obtained. Obtained.
ESI-MS m / z: 648 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.6 Hz, 6H), 1.28 (br s, 44H), 1.45-1.55 (m , 4H), 1.75-1.85 (m, 2H), 1.97-2.04 (m, 8H), 2.23 (s, 6H), 2.34 (t, J = 7.6 Hz, 2H), 3.13-3.24 (m, 4H), 4.10 (t, J = 6.4 Hz, 2H), 5.28-5.40 (m, 4H).
Reference Example 7
3- (Dimethylamino) propyl di ((Z) -hexadec-9-enyl) carbamate (Compound A-3)
In the same manner as in Reference Example 5, using Compound B-3 (0.164 g, 0.355 mmol) obtained in Reference Example 3 instead of Compound B-1, Compound A-3 (0.116 g, yield 55.2%) was obtained. Obtained.
ESI-MS m / z: 592 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.9 Hz, 6H), 1.21-1.38 (m, 36H), 1.47-1.54 ( m, 4H), 1.75-1.83 (m, 2H), 2.00-2.04 (m, 8H), 2.22 (s, 6H), 2.34 (t, J = 7.4 Hz, 2H), 3.11-3.24 (m, 4H) , 4.10 (t, J = 6.4 Hz, 2H), 5.30-5.38 (m, 4H).
Reference Example 8
3- (Dimethylamino) propyl di ((11Z, 14Z) -icosa-11,14-dienyl) carbamate (Compound A-4)
In the same manner as in Reference Example 5, using Compound B-4 (0.288 g, 0.505 mmol) obtained in Reference Example 4 instead of Compound B-1, Compound A-4 (0.290 g, yield 82.2%) was used. Obtained.
ESI-MS m / z: 700 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.8 Hz, 6H), 1.21-1.40 (m, 40H), 1.46-1.54 ( m, 4H), 1.76-1.83 (m, 2H), 2.02-2.08 (m, 8H), 2.23 (s, 6H), 2.35 (t, J = 7.6 Hz, 2H), 2.77 (t, J = 6.7 Hz , 4H), 3.10-3.24 (m, 4H), 4.10 (t, J = 6.4 Hz, 2H), 5.30-5.41 (m, 8H).
Reference Example 9
2- (Dimethylamino) ethyl di ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate (Compound A-5)
In the same manner as in Reference Example 5, Compound B-1 (0.215 g, 0.418 mmol) obtained in Reference Example 1 and “Journal of American Chemical Society (J. Am. Chem. Soc.) ”, 1981, Vol. 103, p. 4194-4199, 2- (dimethylamino) ethyl-4-nitrophenyl-carbonate hydrochloride (compound VI-2 ) (0.162 g, 0.557 mmol) was used to obtain compound A-5 (0.184 g, yield 70.0%).
ESI-MS m / z: 630 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.8 Hz, 6H), 1.12-1.39 (m, 32H), 1.45-1.54 ( m, 4H), 2.00-2.07 (m, 8H), 2.28 (s, 6H), 2.57 (t, J = 7.2 Hz, 2H), 2.77 (t, J = 6.7 Hz, 4H), 3.11-3.24 (m , 4H), 4.17 (t, J = 6.7 Hz, 2H), 5.28-5.41 (m, 8H).
Reference Example A-4 2- (1-Methylpyrrolidin-2-yl) ethyl 4-nitrophenyl carbonate hydrochloride (Compound VI-3)
To a solution of 4-nitrophenyl chloroformate (Tokyo Chemical Industry, 1.761 g, 8.56 mmol) in diethyl ether (20 mL), 2- (1-methylpyrrolidin-2-yl) ethanol (Tokyo Chemical Industry, 1.0 mL, 7.13 mmol) in diethyl ether (20 mL) was added, and the mixture was stirred at room temperature overnight. The reaction mixture was concentrated under reduced pressure, and the resulting residue was crystallized from ethanol / diethyl ether (1/1) and collected by filtration to give compound VI-3 (1.27 g, yield 54%).
1 H-NMR (DMSO-d 6 ) δ: 1.59-1.77 (m, 2H), 1.82-2.09 (m, 3H), 2.15-2.26 (m, 1H), 2.76 (s, 3H), 2.93-3.05 ( m, 2H), 3.61-3.20 (m, 3H), 4.80 (br s, 1H), 6.95 (d, J = 9.2 Hz, 2H), 8.11 (d, J = 9.2 Hz, 2H)
Reference Example A-5 4-Nitrophenyl 3- (piperidin-1-yl) propyl carbonate hydrochloride (Compound VI-4)
To a solution of 4-nitrophenyl chloroformate (1.58 g, 7.67 mmol) in diethyl ether (32 mL), 3- (piperidin-1-yl) propan-1-ol (SIGMA-ALDRICH, 1.00 mL, 6.39 mmol) ) And stirred at room temperature overnight. The reaction solution was concentrated under reduced pressure, and the resulting residue was crystallized from ethanol and collected by filtration to obtain Compound VI-4 (1.86 g, yield 84%).
ESI-MS m / z: 309 (M + H) + ; 1 H-NMR (DMSO-d 6 ) δ: 1.28-1.49 (m, 1H), 1.62-1.89 (m, 5H), 2.10-2.26 (m , 2H), 2.76-2.96 (m, 2H), 3.04-3.19 (m, 2H), 3.36-3.49 (m, 2H), 4.33 (t, J = 6.1 Hz, 2H), 7.58 (d, J = 9.2 Hz, 2H), 8.33 (d, J = 9.2 Hz, 2H), 10.37 (br s, 1H).
Reference Example A-6 4-Nitrophenyl 3- (pyrrolidin-1-yl) propyl carbonate hydrochloride (Compound VI-5)
To a solution of 4-nitrophenyl chloroformate (596 mg, 2.84 mmol) in diethyl ether (10 mL), 3- (pyrrolidin-1-yl) propan-1-ol (ABCR, 386 mg, 2.84 mmol) diethyl An ether (10 mL) solution was added, and the mixture was stirred at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure, and the resulting residue was crystallized from ethanol and collected by filtration to obtain Compound VI-5 (498 mg, yield 53%).
1 H-NMR (DMSO-d 6 ) δ: 1.76-1.84 (m, 2H), 1.85-2.00 (m, 4H), 3.11-3.16 (m, 2H), 3.30-3.44 (m, 4H), 3.47 ( t, J = 6.0 Hz, 2H), 4,77 (br s, 1H), 6.95 (d, J = 9.2 Hz, 2H), 8.11 (d, J = 9.2 Hz, 2H)
Reference Example 10
2- (1-Methylpyrrolidin-2-yl) ethyl di ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate (Compound A-6)
Compound B-1 (0.161 g, 0.314 mmol) obtained in Reference Example 1 was dissolved in acetonitrile (3.0 mL), and Compound VI-3 (0.156 g, 0.470 mmol) and triethylamine (0.219) obtained in Reference Example A-4 were dissolved. mL, 1.57 mmol) was added, and the mixture was stirred at 80 ° C. for 2 hours. The reaction solution was diluted with ethyl acetate, washed with water, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The obtained residue was purified by amino silica gel column chromatography (n-hexane / ethyl acetate = 80/20) to give Compound A-6 (0.172 g, yield 82%).
ESI-MS m / z: 670 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.20-1.40 (m, 32H), 1.45-1.57 ( m, 6H), 1.62-1.83 (m, 2H), 1.94-2.18 (m, 12H), 2.31 (s, 3H), 2.77 (t, J = 6.7 Hz, 4H), 3.03-3.26 (m, 5H) , 4.06-4.17 (m, 2H), 5.29-5.42 (m, 8H).
Reference Example 11
3- (Piperidin-1-yl) propyl di ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate (Compound A-7)
In the same manner as in Reference Example 5, compound A-7 (0.387 g, yield 81%) was obtained using compound VI-4 obtained in Reference Example A-5 instead of compound VI-1.
ESI-MS m / z: 684 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.21-1.62 (m, 42H), 1.79-1.86 ( m, 2H), 2.02-2.08 (m, 8H), 2.32-2.42 (m, 6H), 2.77 (t, J = 6.7 Hz, 4H), 3.10-3.43 (m, 4H), 4.09 (t, J = 6.4 Hz, 2H), 5.29-5.42 (m, 8H).
Reference Example 12
3- (Pyrrolidin-1-yl) propyl di ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate (Compound A-8)
In the same manner as in Reference Example 10, using Compound VI-5 (0.168 g, 0.508 mmol) obtained in Reference Example A-6 instead of Compound VI-3, Compound A-8 (0.225 g, yield 99%) )
ESI-MS m / z: 670 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.21-1.40 (m, 32H), 1.46-1.55 ( m, 4H), 1.76-1.80 (m, 4H), 1.82-1.89 (m, 2H), 2.01-2.08 (m, 8H), 2.47-2.55 (m, 6H), 2.77 (t, J = 6.7 Hz, 4H), 3.11-3.24 (m, 4H), 4.11 (t, J = 6.4 Hz, 2H), 5.29-5.42 (m, 8H).
Reference Example A-7 2-Nitro-N-((9Z, 12Z) -octadeca-9,12-dienyl) benzenesulfonamide (Compound IVf-1)
To a solution of (9Z, 12Z) -octadeca-9,12-dienyl methanesulfonate (Nu-Chek Prep, Inc, 2.85 g, 8.27 mmol) in acetonitrile (30 ml), cesium carbonate (6.74 g, 20.67 mmol) , Tetrabutylammonium iodide (Tokyo Chemical Industry, 3.05 g, 8.27 mmol) and N- (tert-butoxycarbonyl) -2-nitrobenzenesulfonamide (Tokyo Chemical Industry, 2.50 g, 8.27 mmol) were added, The reaction was carried out under reflux for 3 hours. The reaction mixture was cooled to room temperature, water was added, and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (n-hexane / ethyl acetate = 91/9 to 70/30) to give tert-butyl (2-nitrophenyl) sulfonyl ((9Z, 12Z) -octadeca-9,12- Dien-1-yl) carbamate (3.21 g, yield 70.5%) was obtained.
tert-ブチル(2-ニトロフェニル)スルホニル((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)カルバマート(3.21 g、5.83 mmol)のジクロロメタン(22.5 ml)溶液にトリフルオロ酢酸(9.63 ml、126 mmol)を加え、室温で0.5時間攪拌した。反応液にジクロロメタンおよび水酸化ナトリウム水溶液(1 mol/L、100 mL)を加え、さらに飽和炭酸水素ナトリウム水溶液を加えて水層のpHを8以上に調整した。得られた混合物をジクロロメタンで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後ろ過し、減圧濃縮した。残渣をカラムクロマトグラフィー(n-ヘキサン/クロロホルム = 50/50〜0/100)で精製し、化合物IVf-1(2.48 g、収率94%)を得た。
ESI-MS m/z: 451(M + H)+; 1H-NMR(CDCl3) δ: 0.89(t, J= 7.0 Hz, 3H), 1.22-1.39(m, 16H), 1.52(m, 2H), 2.01-2.05(m, 4H), 2.77(t, J= 6.6 Hz, 2H), 3.09(q, J= 6.7 Hz, 2H), 5.23(m, 1H), 5.31-5.42(m, 4H), 7.71-7.76(m, 2H), 7.78-7.87(1H), 8.13-8.15(m, 1H).
参考例13
ドデシル((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)アミン(化合物B-5)
参考例A-7で得られる化合物IVf-1(0.714 g、1.584 mmol)と1-ブロモドデカン(東京化成工業製、0.474 g、1.90 mmol)のアセトニトリル(6 ml)溶液にヨウ化テトラブチルアンモニウム(東京化成工業社製、0.585 g、1.58 mmol)および炭酸セシウム(1.03 g、3.17 mmol)を加え、60℃で1時間攪拌した。反応液に水を加え、n-ヘキサンで3回抽出した。抽出液をカラムクロマトグラフィー(n-ヘキサン/酢酸エチル = 94/6〜84/16)で精製してN-ドデシル-2-ニトロ-N-((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)ベンゼンスルホンアミド(0.750 g、収率76%)を得た。
To a solution of tert-butyl (2-nitrophenyl) sulfonyl ((9Z, 12Z) -octadeca-9,12-dien-1-yl) carbamate (3.21 g, 5.83 mmol) in dichloromethane (22.5 ml) in trifluoroacetic acid (9.63 ml, 126 mmol) was added and stirred at room temperature for 0.5 hour. Dichloromethane and an aqueous sodium hydroxide solution (1 mol / L, 100 mL) were added to the reaction solution, and a saturated aqueous sodium hydrogen carbonate solution was further added to adjust the pH of the aqueous layer to 8 or more. The resulting mixture was extracted with dichloromethane, washed with saturated brine, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (n-hexane / chloroform = 50 / 50-0 / 100) to obtain Compound IVf-1 (2.48 g, yield 94%).
ESI-MS m / z: 451 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 7.0 Hz, 3H), 1.22-1.39 (m, 16H), 1.52 (m, 2H), 2.01-2.05 (m, 4H), 2.77 (t, J = 6.6 Hz, 2H), 3.09 (q, J = 6.7 Hz, 2H), 5.23 (m, 1H), 5.31-5.42 (m, 4H ), 7.71-7.76 (m, 2H), 7.78-7.87 (1H), 8.13-8.15 (m, 1H).
Reference Example 13
Dodecyl ((9Z, 12Z) -octadeca-9,12-dien-1-yl) amine (Compound B-5)
To a solution of compound IVf-1 (0.714 g, 1.584 mmol) obtained in Reference Example A-7 and 1-bromododecane (manufactured by Tokyo Chemical Industry Co., Ltd., 0.474 g, 1.90 mmol) in acetonitrile (6 ml) tetrabutylammonium iodide ( Tokyo Chemical Industry Co., Ltd., 0.585 g, 1.58 mmol) and cesium carbonate (1.03 g, 3.17 mmol) were added and stirred at 60 ° C. for 1 hour. Water was added to the reaction mixture, and the mixture was extracted 3 times with n-hexane. The extract was purified by column chromatography (n-hexane / ethyl acetate = 94 / 6-84 / 16) to give N-dodecyl-2-nitro-N-((9Z, 12Z) -octadeca-9,12-diene. 1-yl) benzenesulfonamide (0.750 g, 76% yield) was obtained.
N-ドデシル-2-ニトロ-N-((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)ベンゼンスルホンアミド(0.748 g、1.21 mmol)のアセトニトリル(7 ml)溶液に1-ドデカンチオール(東京化成工業社製、0.611 g、3.02 mmol)および1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(ナカライテスク社製、0.460 g、3.02 mmol)を加え、60℃で1時間攪拌した。反応液に水を加え、酢酸エチルで2回抽出した。有機層を合わせ、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後ろ過し、減圧濃縮した。残渣をカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=80:20、ついでクロロホルム/メタノール = 100/0〜88/12)で精製することで化合物B-5(0.534 g、定量的収率)を得た。
ESI-MS m/z: 434(M + H)+; 1H-NMR(CDCl3) δ: 0.88(t, J= 6.9 Hz, 3H), 0.89(t, J= 6.9 Hz, 3H), 1.24-1.38(m, 35H), 1.49-1.54(m, 4H), 2.05(q, J= 7.0 Hz, 4H), 2.62(t, J= 7.4 Hz, 4H), 2.77(t, J= 6.8 Hz, 2H), 5.30-5.41(m, 4H).
参考例14
デシル((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)アミン(化合物B-6)
参考例13と同様の方法で、参考例A-7で得られる化合物IVf-1(0.619 g、1.37 mmol)および、1-ブロモドデカンの代わりに1-ブロモデカン(東京化成工業社製、0.365 g、1.65 mmol)を用い、化合物B-6(0.423 g、収率76%)を得た。
ESI-MS m/z: 406(M + H)+; 1H-NMR(CDCl3) δ: 0.88(t, J= 7.1 Hz, 3H), 0.89(t, J= 6.9 Hz, 3H), 1.25-1.38(m, 31H), 1.46-1.50(m, 4H), 2.05(q, J= 7.0 Hz, 4H), 2.59(t, J= 7.2 Hz, 4H), 2.77(t, J= 6.9 Hz, 2H), 5.31-5.40(m, 4H).
参考例15
((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)(オクチル)アミン(化合物B-7)
参考例13と同様の方法で、参考例A-7で得られる化合物IVf-1(0.714 g、1.58 mmol)および、1-ブロモドデカンの代わりに1-ブロモオクタン(東京化成工業社製、0.367 g、1.90 mmol)を用い、化合物B-7(0.519 g、収率87%)を得た。
ESI-MS m/z: 378(M + H)+; 1H-NMR(CDCl3) δ: 0.88(t, J= 7.1 Hz, 3H), 0.89(t, J= 6.9 Hz, 3H), 1.24-1.39(m, 27H), 1.48-1.54(m, 4H), 2.05(q, J=7.0 Hz, 4H), 2.62(t, J=7.4 Hz, 4H), 2.77(t, J=6.6 Hz, 2H), 5.30-5.41(m, 4H).
参考例16
3-(ジメチルアミノ)プロピル ドデシル((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマート(化合物A-9)
参考例5と同様の方法で、化合物B-1の代わりに参考例13で得られる化合物B-5(0.260 g、0.600 mmol)を用い、化合物A-9(0.309 g、収率91%)を得た。
ESI-MS m/z: 563(M + H)+; 1H-NMR(CDCl3) δ: 0.88(t, J= 6.9 Hz, 3H), 0.89(t, J= 6.9 Hz, 3H), 1.23-1.38(m, 34H), 1.48-1.53(m, 4H), 1.77-1.82(m, 2H), 2.05(q, J= 7.1 Hz, 4H), 2.23(s, 6H), 2.34(t, J= 7.6 Hz, 2H), 2.77(t, J= 6.6 Hz, 2H), 3.13-3.22(m, 4H), 4.10(t, J= 6.5 Hz, 2H), 5.30-5.41(m, 4H).
参考例17
3-(ジメチルアミノ)プロピル デシル((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマート(化合物A-10)
参考例5と同様の方法で、化合物B-1の代わりに参考例14で得られる化合物B-6(0.185 g、0.456 mmol)を用い、化合物A-10(0.228 g、収率93%)を得た。
ESI-MS m/z: 535(M + H)+; 1H-NMR(CDCl3) δ: 0.88(t, J= 6.8 Hz, 3H), 0.89(t, J= 6.7 Hz, 3H), 1.24-1.38(m, 30H), 1.48-1.53(m, 4H), 1.77-1.82(m, 2H), 2.05(q, J= 7.0 Hz, 4H), 2.22(s, 6H), 2.34(t, J= 7.5 Hz, 2H), 2.77(t, J= 6.8 Hz, 2H), 3.14-3.22(m, 4H), 4.10(t, J= 6.4 Hz, 2H), 5.31-5.40(m, 4H).
参考例18
3-(ジメチルアミノ)プロピル ((9Z,12Z)-オクタデカ-9,12-ジエニル)(オクチル)カルバマート(化合物A-11)
参考例5と同様の方法で、化合物B-1の代わりに参考例15で得られる化合物B-7(0.227 g、0.600 mmol)を用い、化合物A-11(0.275 g、収率90%)を得た。
ESI-MS m/z: 507(M + H)+; 1H-NMR(CDCl3) δ: 0.88(t, J= 6.9 Hz, 3H), 0.89(t, J= 6.9 Hz, 3H), 1.22-1.39(m, 26H), 1.47-1.54(m, 4H), 1.76-1.82(m, 2H), 2.05(q, J= 6.0 Hz, 4H), 2.23(s, 6H), 2.34(t, J= 7.6 Hz, 2H), 2.77(t, J= 6.6 Hz, 2H), 3.12-3.22(m, 4H), 4.10(t, J= 6.5 Hz, 2H), 5.30-5.41(m, 4H).
参考例A-8 2-((9Z,12Z)-オクタデカ-9,12-ジエニルオキシ)エチル メタンスルホナート(化合物IIIc-1)
(9Z,12Z)-オクタデカ-9,12-ジエン-1-イル メタンスルホナート(983 mg、2.85 mmol)にエチレングリコール(3.16 ml、57.1 mmol)および1,4-ジオキサン(5 ml)を加え、1日間加熱還流下攪拌した。反応液を室温まで冷却後、水酸化ナトリウム水溶液(0.5 mol/L)を加えてn-ヘキサンで2回抽出した。有機層を合わせ、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後ろ過し、減圧濃縮した。残渣をカラムクロマトグラフィー(クロロホルム100%)で精製することで2-((9Z,12Z)-オクタデカ-9,12-ジエニルオキシ)エタノール(668 mg、収率75%)を得た。
1-dodecane in a solution of N-dodecyl-2-nitro-N-((9Z, 12Z) -octadeca-9,12-dien-1-yl) benzenesulfonamide (0.748 g, 1.21 mmol) in acetonitrile (7 ml) Add thiol (manufactured by Tokyo Chemical Industry Co., Ltd., 0.611 g, 3.02 mmol) and 1,8-diazabicyclo [5.4.0] -7-undecene (manufactured by Nacalai Tesque, 0.460 g, 3.02 mmol), and stir at 60 ° C. for 1 hour did. Water was added to the reaction mixture, and the mixture was extracted twice with ethyl acetate. The organic layers were combined, washed with saturated brine, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (n-hexane / ethyl acetate = 80: 20, then chloroform / methanol = 100/0 to 88/12) to obtain compound B-5 (0.534 g, quantitative yield). It was.
ESI-MS m / z: 434 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.9 Hz, 3H), 0.89 (t, J = 6.9 Hz, 3H), 1.24 -1.38 (m, 35H), 1.49-1.54 (m, 4H), 2.05 (q, J = 7.0 Hz, 4H), 2.62 (t, J = 7.4 Hz, 4H), 2.77 (t, J = 6.8 Hz, 2H), 5.30-5.41 (m, 4H).
Reference Example 14
Decyl ((9Z, 12Z) -octadeca-9,12-dien-1-yl) amine (Compound B-6)
In the same manner as in Reference Example 13, compound IVf-1 (0.619 g, 1.37 mmol) obtained in Reference Example A-7, and 1-bromodecane instead of 1-bromododecane (manufactured by Tokyo Chemical Industry Co., Ltd., 0.365 g, 1.65 mmol) was used to obtain compound B-6 (0.423 g, yield 76%).
ESI-MS m / z: 406 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 7.1 Hz, 3H), 0.89 (t, J = 6.9 Hz, 3H), 1.25 -1.38 (m, 31H), 1.46-1.50 (m, 4H), 2.05 (q, J = 7.0 Hz, 4H), 2.59 (t, J = 7.2 Hz, 4H), 2.77 (t, J = 6.9 Hz, 2H), 5.31-5.40 (m, 4H).
Reference Example 15
((9Z, 12Z) -Octadeca-9,12-dien-1-yl) (octyl) amine (Compound B-7)
In the same manner as in Reference Example 13, Compound IVf-1 (0.714 g, 1.58 mmol) obtained in Reference Example A-7 and 1-bromooctane (manufactured by Tokyo Chemical Industry Co., Ltd., 0.367 g instead of 1-bromododecane) , 1.90 mmol) was used to obtain compound B-7 (0.519 g, yield 87%).
ESI-MS m / z: 378 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 7.1 Hz, 3H), 0.89 (t, J = 6.9 Hz, 3H), 1.24 -1.39 (m, 27H), 1.48-1.54 (m, 4H), 2.05 (q, J = 7.0 Hz, 4H), 2.62 (t, J = 7.4 Hz, 4H), 2.77 (t, J = 6.6 Hz, 2H), 5.30-5.41 (m, 4H).
Reference Example 16
3- (Dimethylamino) propyl dodecyl ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate (Compound A-9)
In the same manner as in Reference Example 5, using Compound B-5 (0.260 g, 0.600 mmol) obtained in Reference Example 13 instead of Compound B-1, Compound A-9 (0.309 g, 91% yield) was obtained. Obtained.
ESI-MS m / z: 563 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.9 Hz, 3H), 0.89 (t, J = 6.9 Hz, 3H), 1.23 -1.38 (m, 34H), 1.48-1.53 (m, 4H), 1.77-1.82 (m, 2H), 2.05 (q, J = 7.1 Hz, 4H), 2.23 (s, 6H), 2.34 (t, J = 7.6 Hz, 2H), 2.77 (t, J = 6.6 Hz, 2H), 3.13-3.22 (m, 4H), 4.10 (t, J = 6.5 Hz, 2H), 5.30-5.41 (m, 4H).
Reference Example 17
3- (Dimethylamino) propyldecyl ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate (Compound A-10)
In the same manner as in Reference Example 5, using Compound B-6 (0.185 g, 0.456 mmol) obtained in Reference Example 14 instead of Compound B-1, Compound A-10 (0.228 g, 93% yield) was obtained. Obtained.
ESI-MS m / z: 535 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.8 Hz, 3H), 0.89 (t, J = 6.7 Hz, 3H), 1.24 -1.38 (m, 30H), 1.48-1.53 (m, 4H), 1.77-1.82 (m, 2H), 2.05 (q, J = 7.0 Hz, 4H), 2.22 (s, 6H), 2.34 (t, J = 7.5 Hz, 2H), 2.77 (t, J = 6.8 Hz, 2H), 3.14-3.22 (m, 4H), 4.10 (t, J = 6.4 Hz, 2H), 5.31-5.40 (m, 4H).
Reference Example 18
3- (Dimethylamino) propyl ((9Z, 12Z) -octadeca-9,12-dienyl) (octyl) carbamate (Compound A-11)
In the same manner as in Reference Example 5, using Compound B-7 (0.227 g, 0.600 mmol) obtained in Reference Example 15 instead of Compound B-1, Compound A-11 (0.275 g, 90% yield) was obtained. Obtained.
ESI-MS m / z: 507 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.9 Hz, 3H), 0.89 (t, J = 6.9 Hz, 3H), 1.22 -1.39 (m, 26H), 1.47-1.54 (m, 4H), 1.76-1.82 (m, 2H), 2.05 (q, J = 6.0 Hz, 4H), 2.23 (s, 6H), 2.34 (t, J = 7.6 Hz, 2H), 2.77 (t, J = 6.6 Hz, 2H), 3.12-3.22 (m, 4H), 4.10 (t, J = 6.5 Hz, 2H), 5.30-5.41 (m, 4H).
Reference Example A-8 2-((9Z, 12Z) -octadeca-9,12-dienyloxy) ethyl methanesulfonate (Compound IIIc-1)
Ethylene glycol (3.16 ml, 57.1 mmol) and 1,4-dioxane (5 ml) were added to (9Z, 12Z) -octadeca-9,12-dien-1-yl methanesulfonate (983 mg, 2.85 mmol), The mixture was stirred for 1 day with heating under reflux. The reaction mixture was cooled to room temperature, aqueous sodium hydroxide solution (0.5 mol / L) was added, and the mixture was extracted twice with n-hexane. The organic layers were combined, washed with saturated brine, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (chloroform 100%) to give 2-((9Z, 12Z) -octadeca-9,12-dienyloxy) ethanol (668 mg, yield 75%).
2-((9Z,12Z)-オクタデカ-9,12-ジエニルオキシ)エタノール(660 mg、2.13 mmol)とトリエチルアミン(0.444 mL、3.19 mmol)のジクロロメタン(9 ml)溶液に、0℃で無水メシル酸(SIGMA-ALDRICH社製、0.247 ml、3.19 mmol)を加え、室温で40分間攪拌した。反応液に水を加え、クロロホルムで抽出した。有機層を、塩酸(1 mol/L)、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後ろ過し、減圧濃縮して化合物IIIc-1を得た。
参考例19
(9Z,12Z)-N-(2-((9Z,12Z)-オクタデカ-9,12-ジエニルオキシ)エチル)オクタデカ-9,12-ジエン-1-アミン(化合物B-8)
参考例13と同様の方法で、参考例A-7で得られる化合物IVf-1(0.798 g、1.77 mmol)および、1-ブロモドデカンの代わりに参考例A-8で得られる化合物IIIc-1(0.826 g、2.13 mmol)を用い、化合物B-8(0.676 g、収率68%)を得た。
ESI-MS m/z: 558(M + H)+; 1H-NMR(CDCl3) δ: 0.89(t, J= 6.9 Hz, 6H), 1.27-1.38(m, 32H), 1.46-1.52(m, 2H), 1.54-1.60(m, 3H), 2.05(q, J=7.0 Hz, 8H), 2.61(t, J=7.3 Hz, 2H), 2.77(t, J=5.5 Hz, 6H), 3.42(t, J=6.8 Hz, 2H), 3.52(t, J=5.4 Hz, 2H), 5.30-5.41(m, 8H).
参考例20
3-(ジメチルアミノ)プロピル ((9Z,12Z)-オクタデカ-9,12-ジエニル)(2-((9Z,12Z)-オクタデカ-9,12-ジエニルオキシ)エチル)カルバマート(化合物A-12)
参考例5と同様の方法で、化合物B-1の代わりに参考例19で得られる化合物B-8(0.184 g、0.330 mmol)を用い、化合物A-12(0.208 g、収率92%)を得た。
ESI-MS m/z: 687(M + H)+; 1H-NMR(CDCl3) δ: 0.89(t, J= 6.9 Hz, 6H), 1.25-1.38(m, 32H), 1.50-1.57(m, 4H), 1.77-1.83(m, 2H), 2.05(q, J= 7.0 Hz, 8H), 2.22(s, 6H), 2.34(t, J= 7.4 Hz, 2H), 2.77(t, J= 6.6 Hz, 4H), 3.23-3.54(m, 8H), 4.11(t, J= 6.5 Hz, 2H), 5.30-5.41(m, 8H).
参考例A-11 3-(ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)アミノ)プロピオン酸エチル(化合物IVj-1)
実施例1で得られる化合物B-1(0.788 g、1.53 mmol)をエタノール(8 mL)に溶解させ、アクリル酸エチル(東京化成工業社製、1.67 mL、15.3 mmol)およびナトリウムエトキシド(和光純薬工業社製、0.0520 g、0.767 mmol)を加え、加熱還流下、3時間攪拌した。反応液を減圧濃縮した後、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル = 85/15)で精製することにより、化合物IVj-1(0.699 g、収率74%)を得た。
ESI-MS m/z: 615(M + H)+; 1H-NMR(CDCl3) δ: 0.89(t, J= 6.9 Hz, 6H), 1.21-1.45(m, 39H), 2.02-2.08(m, 8H), 2.35-2.44(m, 6H), 2.75-2.80(m, 6H), 4.12(q, J= 7.0 Hz, 2H), 5.30-5.42(m, 8H).
参考例21
3-(ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)アミノ)プロパン-1-オール(化合物C-1)
参考例A-11で得られる化合物IVj-1(0.199 g、0.324 mmol)をテトラヒドロフラン(2 mL)に溶解させ、氷冷下、水素化リチウムアルミニウム(純正化学社製、0.012 g、0.324 mmol)を加え、3時間攪拌した。反応液に水(0.0600 mL、3.33 mmol)およびフッ化ナトリウム(ナカライテスク社製、0.408 g、9.72 mmol)を加え、室温にて0.5時間攪拌した。不溶物をセライト濾過により除去した。ろ液を濃縮後、シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール = 98/2)で精製することにより、化合物C-1(0.181 g、収率98%)を得た。
ESI-MS m/z: 573(M + H)+; 1H-NMR(CDCl3) δ: 0.89(t, J= 6.9 Hz, 6H), 1.21-1.40(m, 32H), 1.42-1.51(m, 4H), 1.64-1.71(m, 2H), 2.02-2.08(m, 8H), 2.40(t, J= 7.3 Hz, 4H), 2.64(t, J= 5.3 Hz, 2H), 2.77(t, J= 6.7 Hz, 4H), 3.79(t, J= 5.3 Hz, 2H), 5.30-5.42(m, 8H).
参考例22
4-(ジメチルアミノ)ブチル ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマート (化合物A-13)
工程1
クロロぎ酸4-ニトロフェニル (0.867 g、4.21 mmol) のジクロロメタン (20 mL) 溶液に、4-(tert-ブチルジメチルシリル)オキシ-1-ブタノール (SIGMA-ALDRICH社製、1.0 mL、4.21 mmol) とトリエチルアミン (0.881 mL, 6.32 mmol) を加え、室温にて1時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えてクロロホルムで2回抽出した。有機層を、無水硫酸マグネシウムで乾燥後ろ過し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル = 90/10) で精製することにより、4-(tert-ブチルジメチルシリルオキシ)ブチル 4-ニトロフェニル カルボナート (1. 44 g、収率92%) を得た。
工程2
参考例10と同様の方法で、化合物VI-3の代わりに工程1で得られる4-(tert-ブチルジメチルシリルオキシ)ブチル 4-ニトロフェニル カルボナート (0.640 g、1.733 mmol) を用いて、4-(tert-ブチルジメチルシリルオキシ)ブチル ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマートの粗精製物を得た。得られた 4-(tert-ブチルジメチルシリルオキシ)ブチル ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマートの粗精製物をテトラヒドロフラン (10 mL) に溶解し、フッ化テトラブチルアンモニウム(東京化成工業社製、約 1 mol/L テトラヒドロフラン溶液、2.14 mL、2.14 mmol)を加え、室温にて1時間攪拌した。反応液にフッ化テトラ-n-ブチルアンモニウム(約 1 mol/L テトラヒドロフラン溶液、2.14 mL、2.14 mmol) を加え、室温で2時間攪拌後、50℃で1時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えて酢酸エチルで2回抽出した。有機層を、無水硫酸マグネシウムで乾燥後ろ過し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール = 95/5) で精製することにより、4-ヒドロキシブチル-ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマート (0.652 g、収率73%) を得た。
工程3
工程2で得られた 4-ヒドロキシブチル ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマート (0.193 g、0.306 mmol) のジクロロメタン (2 mL) 溶液に、氷冷下、メシル酸クロリド (純正化学社製、0.0360 mL、0.460 mmol) とトリエチルアミン (0.0930 mL、0.919 mmol) を加え、0℃にて30分間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えてクロロホルムで2回抽出した。有機層を、無水硫酸マグネシウムで乾燥後ろ過し、減圧濃縮した。得られた残渣をテトラヒドロフラン (1 mL) に溶解し、ジメチルアミン (アルドリッチ社製、約 2 mol/L テトラヒドロフラン溶液、1.53 mL、3.06 mmol) を加え、マイクロ波反応装置を用いて100℃で1時間攪拌後、マイクロ波反応装置を用いて130℃で1時間攪拌した。反応液を減圧濃縮し、得られた残渣をアミノシリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル = 80/20) で精製することにより、化合物A-13 (0.159 g、収率79%) を得た。
ESI-MS m/z: 658 (M + H)+; 1H-NMR(CDCl3)δ: 0.90 (q, J= 6.5 Hz, 6H), 1.20-1.38 (m, 32H), 1.45-1.56 (m, 6H), 1.61-1.69 (m, 2H), 2.01-2.08 (m, 8H), 2.21 (s, 6H), 2.28 (t, J= 7.6 Hz, 2H), 2.77 (t, J= 6.6 Hz, 4H), 3.12-3.23 (m, 4H), 4.07 (t, J= 6.6 Hz, 2H), 5.29-5.42 (m, 8H).
参考例A-14 (1-メチルピペリジン-4-イル)メチル 4-ニトロフェニル カルボナート塩酸塩 (化合物VI-6)
クロロぎ酸4-ニトロフェニル (1.50 g、7.28 mmol) のテトラヒドロフラン (32 mL) 溶液に、1-メチル-4-ピペリジンメタノール (東京化成工業社製、1.0 mL、7.28 mmol) を加え、室温にて2時間攪拌した。析出した結晶を濾取することで化合物VI-6 (1.55 g、収率64%) を得た。
ESI-MS m/z: 295 (M + H)+; 1H-NMR(CDCl3)δ: 1.93-2.19 (m, 4H), 2.68-2.82 (m, 3H), 3.51-3.62 (m, 5H), 4.21 (d, J= 6.0 Hz, 2H), 7.38 (d, J= 9.1 Hz, 2H), 8.27 (d, J= 9.1 Hz, 2H), 12.44 (br s, 1H).
参考例A-15 (1-メチルピペリジン-3-イル)メチル 4-ニトロフェニル カルボナート塩酸塩 (化合物VI-7)
参考例A-14と同様の方法で、1-メチル-4-ピペリジンメタノールの代わりに 1-メチル-3-ピペリジンメタノール (東京化成工業社製、1.0 mL、7.21 mmol) を用い、化合物VI-7 (2.32 g、収率97%) を得た。
ESI-MS m/z: 295 (M + H)+.
参考例A-16 (1-メチルピペリジン-2-イル)メチル 4-ニトロフェニル カルボナート塩酸塩 (化合物VI-8)
参考例A-14と同様の方法で、1-メチル-4-ピペリジンメタノールの代わりに 1-メチル-2-ピペリジンメタノール (東京化成工業社製、1.0 mL、7.43 mmol) を用い、化合物VI-8 (2.37 g、収率96%) を得た。
1H-NMR (CDCl3) δ: 1.51-1.63 (m, 1H), 1.81-2.38 (m, 5H), 2.85-2.99 (m, 4H), 3.21-3.30 (m, 1H), 3.49-3.60 (m, 1H), 4.66 (dd, J= 13.1, 2.4 Hz, 1H), 4.78-4.86 (m, 1H), 7.47 (d, J= 9.1 Hz, 2H), 8.28 (d, J= 9.1 Hz, 2H), 12.40 (br s, 1H).
参考例A-17 3-(アゼパン-1-イル)プロピル 4-ニトロフェニル カルボナート塩酸塩(化合物VI-9)
参考例A-14と同様の方法で、1-メチル-4-ピペリジンメタノールの代わりに3-(アゼパン-1-イル)プロパノール (ケンブリッジ(CHEMBRIDGE)社製, 0.700 g, 4.45 mmol)を用いて、化合物VI-9 (1.47 g、収率92%)を得た。
ESI-MS m/z: 323 (M + H)+; 1H-NMR(CDCl3) δ: 1.60-1.75 (m, 2H), 1.79-1.94 (m, 5H), 2.15-2.27 (m, 2H), 2.44-2.53 (m, 2H), 2.90-3.02 (m, 2H), 3.14-3.24 (m, 2H), 3.55-3.65 (m, 2H), 4.41 (t, J= 5.9 Hz, 2H), 7.37-7.43 (m, 2H), 8.25-8.32 (m, 2H), 12.48 (br s, 1H).
参考例A-18 1-メチルピペリジン-4-イル 4-ニトロフェニル カルボナート塩酸塩
(化合物VI-10)
参考例A-14と同様の方法で、1-メチル-4-ピペリジンメタノールの代わりに1-メチルピペリジン-4-オール (シグマ・アルドリッチ(SIGMA-ALDRICH)社製, 0.300 g, 2.60 mmol)を用いて、化合物VI-10 (0.740 g、収率90%)を得た。
ESI-MS m/z: 281 (M + H)+ .
参考例A-19 1-メチルピペリジン-3-イル 4-ニトロフェニル カルボナート塩酸塩(化合物VI-11)
参考例A-14と同様の方法で、1-メチル-4-ピペリジンメタノールの代わりに1-メチルピペリジン-3-オール (シグマ・アルドリッチ(SIGMA-ALDRICH)社製, 0.305 g, 2.65 mmol)を用いて、化合物VI-11 (0.410 g、収率49%)を得た。
ESI-MS m/z: 281 (M + H)+ .
参考例A-20 、(1-メチルピロリジン-3-イル)メチル 4-ニトロフェニル カルボナート塩酸塩(化合物VI-12)
参考例A-14と同様の方法で、1-メチル-4-ピペリジンメタノールの代わりに (1-メチル-3-ピロリジニル)メタノール (マトリックス サイエンティフィック (Matrix Scientific) 社製、0.500 g、7.43 mmol) を用い、化合物VI-12 (0.943 g、収率69%) を得た。
ESI-MS m/z: 281 (M + H)+ .
参考例23
(1-メチルピペリジン-4-イル)メチル ジ((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)カルバマート (化合物A-14)
参考例10と同様の方法で、化合物VI-3の代わりに参考例A-14で得られた化合物VI-6 (0.228 g、0.689 mmol) を用い、化合物A-14 (0.258 g、収率84%) を得た。
ESI-MS m/z: 670 (M + H)+; 1H-NMR (CDCl3) δ: 0.89 (t, J= 6.9 Hz, 6H), 1.22-1.39 (m, 32H), 1.46-1.54 (m, 4H), 1.56-1.66 (m, 3H), 1.67-1.74 (m, 2H), 1.88-1.95 (m, 2H), 2.05 (q, J= 6.9 Hz, 8H), 2.26 (s, 3H), 2.77 (t, J= 6.8 Hz, 4H), 2.85 (d, J= 11.7 Hz, 2H), 3.13-3.23 (m, 4H), 3.92 (d, J= 6.3 Hz, 2H), 5.30-5.42 (m, 8H).
参考例24
(1-メチルピペリジン-3-イル)メチル ジ((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)カルバマート (化合物A-15)
参考例10と同様の方法で、化合物VI-3の代わりに参考例A-15で得られた化合物VI-7 (0.238 g、0.719 mmol) を用い、化合物A-15 (0.239 g、収率74%) を得た。
ESI-MS m/z: 670 (M + H)+; 1H-NMR (CDCl3) δ: 0.89 (t, J= 6.9 Hz, 6H), 0.92-1.02 (m, 1H), 1.22-1.39 (m, 32H), 1.46-1.54 (m, 4H), 1.55-1.65 (m, 1H), 1.66-1.74 (m, 3H), 1.82-1.89 (m, 1H), 1.91-2.00 (m, 1H), 2.05 (q, J= 7.0 Hz, 8H), 2.26 (s, 3H), 2.74-2.80 (m, 5H), 2.84-2.89 (m, 1H), 3.12-3.23 (m, 4H), 3.87 (dd, J= 10.7, 7.6 Hz, 1H), 3.97 (dd, J= 10.7, 5.4 Hz, 1H), 5.30-5.41 (m, 8H).
参考例25
(1-メチルピペリジン-2-イル)メチル ジ((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)カルバマート (化合物A-16)
参考例10と同様の方法で、化合物VI-3の代わりに参考例A-16で得られた化合物VI-8 (0.256 g、0.774 mmol) を用い、化合物A-16 (0.313 g、収率91%) を得た。
ESI-MS m/z: 670 (M + H)+; 1H-NMR (CDCl3) δ: 0.89 (t, J= 6.9 Hz, 6H), 1.22-1.39 (m, 32H), 1.46-1.64 (m, 8H), 1.71-1.76 (m, 2H), 2.02-2.12 (m, 10H), 2.32 (s, 3H), 2.77 (t, J= 6.8 Hz, 4H), 2.79-2.84 (m, 1H), 3.11-3.24 (m, 4H), 4.05 (dd, J= 11.1, 4.9 Hz, 1H), 4.17 (dd, J= 11.1, 4.9 Hz, 1H), 5.30-5.42 (m, 8H).
参考例26
2-(1-メチルピロリジン-2-イル)エチル ジ((Z)-オクタデカ-9-エニル)カルバマート (化合物A-17)
参考例10と同様の方法で、化合物B-1の代わりに参考例2で得られる化合物B-2(0.300 g、0.579 mmol)を用い、化合物A-17 (0.360 g、収率92%) を得た。
ESI-MS m/z: 674 (M + H)+; 1H-NMR (CDCl3) δ: 0.88 (t, J= 6.9 Hz, 6H), 1.21-1.38 (m, 44H), 1.45-1.85 (m, 8H), 1.93-2.18 (m, 12H), 2.32 (s, 3H), 3.03-3.26 (m, 5H), 4.05-4.18 (m, 2H), 5.30-5.39 (m, 4H).
参考例27
(1-メチルピぺリジン-3-イル)メチル ジ((Z)-オクタデカ-9-エニル)カルバマート (化合物A-18)
参考例10と同様の方法で、化合物B-1の代わりに参考例2で得られる化合物B-2(0.300 g、0.579 mmol) および、化合物VI-3の代わりに参考例A-15で得られた化合物VI-7(0.287 g、0.896 mmol) を用い、化合物A-18 (0.390 g、収率100%) を得た。
ESI-MS m/z: 674 (M + H)+; 1H-NMR (CDCl3) δ: 0.85-1.04 (m, 7H), 1.20-1.38 (m, 44H), 1.46-1.74 (m, 8H), 1.82-2.06 (m, 10H), 2.26 (s, 3H), 2.74-2.82 (m, 1H), 2.83-2.89 (m, 1H), 3.10-3.25 (m, 4H), 3.87 (dd, J= 10.5, 7.3 Hz, 1H), 3.98 (dd, J= 10.5, 5.3 Hz, 1H), 5.30-5.39 (m, 4H).
参考例28
2-(1-メチルピロリジン-2-イル)エチル ジ((11Z,14Z)-イコサ-11,14-ジエニル)カルバマート (化合物A-19)
参考例10と同様の方法で、化合物B-1の代わりに参考例4で得られる化合物B-4(0.300 g、0.526 mmol)を用い、化合物A-19 (0.369 g、収率97%) を得た。
ESI-MS m/z: 726 (M + H)+; 1H-NMR (CDCl3) δ: 0.89 (t, J= 6.9 Hz, 6H), 1.21-1.40 (m, 40H), 1.44-1.85 (m, 8H), 1.93-2.18 (m, 12H), 2.32 (s, 3H), 2.77 (t, J= 6.4 Hz, 4H), 3.04-3.27 (m, 5H), 4.05-4.18 (m, 2H), 5.29-5.42 (m, 8H).
参考例29
(1-メチルピぺリジン-3-イル)メチル ジ((11Z,14Z)-イコサ-11,14-ジエニル)カルバマート (化合物A-20)
参考例10と同様の方法で、化合物B-1の代わりに参考例4で得られる化合物B-4(0.300 g、0.526 mmol) および、化合物VI-3の代わりに参考例A-15で得られた化合物VI-7 (0.261 g、0.789 mmol) を用い、化合物A-20 (0.374 g、収率98%) を得た。
ESI-MS m/z: 726 (M + H)+; 1H-NMR (CDCl3) δ: 0.85-1.04 (m, 7H), 1.21-1.40 (m, 40H), 1.45-1.75 (m, 8H), 1.82-2.09 (m, 10H), 2.26 (s, 3H), 2.74-2.90 (m, 6H), 3.11-3.24 (m, 4H), 3.87 (dd, J= 10.5, 7.5 Hz, 1H), 3.98 (dd, J= 10.5, 5.5 Hz, 1H), 5.29-5.43 (m, 8H).
参考例30
(1-メチルピロリジン-2-イル)メチル ジ((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)カルバマート (化合物A-21)
参考例1で得られる化合物B-1 (0.0831 g、0.162 mmol) をジクロロエタン (1 mL) に溶解させ、1,1'-カルボニルジイミダゾール (ナカライテスク社製、0.0394g、0.243 mmol) を加え、室温で終夜攪拌した。反応液にヨードメタン (東京化成工業社製、0.101 mL、1.62 mmol) を加え、60℃で終夜攪拌した。反応液を減圧濃縮した。得られた残渣をテトラヒドロフラン (1 mL) に溶解し、1-メチルピロリジン-2-メタノール (和光純薬工業社製、0.0372 g、0.323 mmol) とトリエチルアミン (0.0563 mL、0.404 mmol) を加え、室温で終夜攪拌した後、反応液を60℃で3時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えてn-ヘキサンで2回抽出した。有機層を、無水硫酸マグネシウムで乾燥後ろ過し、減圧濃縮した。得られた残渣をアミノシリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル = 90/10) で精製することにより、化合物A-21 (0.0318 g、収率30%) を得た。
ESI-MS m/z: 656 (M + H)+; 1H-NMR(CDCl3)δ: 0.89 (t, J= 6.9 Hz, 6H), 1.24-1.39 (m, 32H), 1.46-1.67 (m, 5H), 1.67-1.85 (m, 2H), 1.89-2.00 (m, 1H), 2.05 (q, J= 7.0 Hz, 8H), 2.21-2.30 (m, 1H), 2.42 (s, 3H), 2.43-2.51 (m, 1H), 2.77 (t, J= 6.6 Hz, 4H), 3.03-3.08 (m, 1H), 3.11-3.25 (m, 4H), 4.00 (dd, J= 10.5, 6.0 Hz, 1H), 4.08 (dd, J= 10.5, 5.5 Hz, 1H), 5.29-5.42 (m, 8H).
参考例31
(1-メチルピロリジン-3-イル)メチル ジ(9Z,12Z)-オクタデカ-9,12-ジエニルカルバマート (化合物A-22)
参考例10と同様の方法で、化合物VI-3の代わりに参考例A-20で得られる化合物VI-12 (0.277 g、0.876 mmol) を用い、化合物A-22 (0.263 g、収率66%) を得た。
ESI-MS m/z: 656 (M + H)+; 1H-NMR (CDCl3) δ: 0.89 (t, J= 6.9 Hz, 6H), 1.20-1.40 (m, 32H), 1.44-1.78 (m, 5H), 1.92-2.09 (m, 9H), 2.24 (dd, J= 9.4, 6.2 Hz, 1H), 2.34 (s, 3H), 2.39-2.63 (m, 3H), 2.68-2.80 (m, 5H), 3.10-3.25 (m, 4H), 3.95 (dd, J= 10.5, 7.8 Hz, 1H), 4.03 (dd, J= 10.5, 6.4 Hz, 1H), 5.28-5.42 (m, 8H).
参考例32
2-(1-メチルピペリジン-2-イル)エチル ジ(9Z,12Z)-オクタデカ-9,12-ジエニルカルバマート (化合物A-23)
工程1
クロロぎ酸4-ニトロフェニル (0.844 g、7.19 mmol) のテトラヒドロフラン (12 mL) 溶液に、2-(1-メチルピペリジン-2-イル)エタノール(Matrix Scientific社製、0.500 g、3.49 mmol) を加え、室温にて終夜攪拌した。反応液を減圧濃縮し、2-(1-メチルピペリジン-2-イル)エチル 4-ニトロフェニル カルボナート塩酸塩の粗精製物を得た。
工程2
参考例10と同様の方法で、化合物VI-3の代わりに工程1で得られた 2-(1-メチルピペリジン-2-イル)エチル 4-ニトロフェニル カルボナート塩酸塩の粗精製物 (0.302 g、0.876 mmol) を用い、化合物A-23 (0.299 g、収率75%) を得た。
ESI-MS m/z: 684 (M + H)+; 1H-NMR (CDCl3) δ: 0.89 (t, J=6.9 Hz, 6H), 1.19-1.40 (m, 32H), 1.45-1.75 (m, 11H), 1.93-2.11 (m, 11H), 2.27 (s, 3H), 2.74-2.86 (m, 5H), 3.10-3.24 (m, 4H), 4.06-4.19 (m, 2H), 5.29-5.42 (m, 8H).
参考例33
3-(アゼパン-1-イル)プロピル ジ((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)カルバマート(化合物A-24)
参考例10と同様の方法で、化合物VI-3の代わりに参考例A-17で得られる化合物VI-9を用いて、化合物A-24 (0.136 g、収率67%)を得た。
ESI-MS m/z: 698(M + H)+; 1H-NMR(CDCl3) δ: 0.86-0.94 (m, 6H), 1.22-1.41 (m, 36H), 1.45-1.67 (m, 8H), 1.75-1.85 (m, 2H), 2.00-2.11 (m, 8H), 2.55 (t, J= 7.5 Hz, 2H), 2.62 (t, J= 5.1 Hz, 4H), 2.77 (t, J= 5.9 Hz, 4H), 3.13-3.23 (m, 4H), 4.10 (t, J= 6.4 Hz, 2H), 5.28-5.45 (m, 8H).
参考例34
3-(ピペリジン-1-イル)プロピル ((9Z,12Z)-オクタデカ-9,12-ジエニル)(2-((9Z,12Z)-オクタデカ-9,12-ジエニルオキシ)エチル)カルバマート(化合物A-29)
参考例10と同様の方法で、化合物B-1の代わりに参考例19で得られる化合物B-8(0.150 g、0.269 mmol) および、化合物VI-3の代わりに参考例A-5で得られる化合物VI-4(0.201 g、0.672 mmol)を用いて、化合物A-29(0.170 g、収率87%)を得た。
ESI-MS m/z: 728(M + H)+; 1H-NMR(CDCl3) δ: 0.89 (t, J= 6.8 Hz, 6H), 1.22-1.40 (m, 32H), 1.40-1.63 (m, 14H), 1.78-1.87 (m, 2H), 2.05 (q, J= 6.6 Hz, 8H), 2.33-2.41 (m, 6H), 2.77 (t, J= 6.0 Hz, 4H), 3.20-3.31 (m, 2H), 3.40 (t, J= 6.6 Hz, 4H), 3.46-3.57 (m, 2H), 4.10 (t, J= 6.4 Hz, 2H), 5.27-5.45 (m, 8H).
参考例35
2-(1-メチルピロリジン-2-イル)エチル ((9Z,12Z)-オクタデカ-9,12-ジエニル)(2-((9Z,12Z)-オクタデカ-9,12-ジエニルオキシ)エチル)カルバマート(化合物A-30)
参考例10と同様の方法で、化合物B-1の代わりに参考例19で得られる化合物B-8(0.120 g、0.215 mmol)を用いて、化合物A-30(0.140 g、収率91%)を得た。
ESI-MS m/z: 714(M + H)+; 1H-NMR(CDCl3) δ: 0.89 (t, J= 6.8 Hz, 6H), 1.21-1.40 (m, 32H), 1.45-1.59 (m, 6H), 1.64-1.82 (m, 2H), 1.93-2.17 (m, 12H), 2.31 (s, 3H), 2.70-2.81 (m, 4H), 3.06 (t, J= 7.8 Hz, 1H), 3.20-3.31 (m, 2H), 3.40 (t, J= 5.9 Hz, 4H), 3.46-3.58 (m, 2H), 4.06-4.17 (m, 2H), 5.28-5.44 (m, 8H).
参考例36
3-(アゼパン-1-イル)プロピル ((9Z,12Z)-オクタデカ-9,12-ジエニル)(2-((9Z,12Z)-オクタデカ-9,12-ジエニルオキシ)エチル)カルバマート(化合物A-31)
参考例10と同様の方法で、化合物B-1の代わりに参考例19で得られる化合物B-8(0.150 g、0.269 mmol) および、化合物VI-3の代わりに参考例A-17で得られる化合物VI-9(0.145 g、0.403 mmol)を用いて、化合物A-31(0.170 g、収率85%)を得た。
ESI-MS m/z: 742(M + H)+; 1H-NMR(CDCl3) δ: 0.89 (t, J= 6.8 Hz, 6H), 1.21-1.39 (m, 32H), 1.48-1.65 (m, 12H), 1.72-1.85 (m, 2H), 2.05 (q, J= 6.6 Hz, 8H), 2.55 (t, J= 7.5 Hz, 2H), 2.61 (t, J= 5.3 Hz, 4H), 2.77 (t, J= 5.9 Hz, 4H), 3.21-3.30 (m, 2H), 3.40 (t, J= 6.8 Hz, 4H), 3.46-3.55 (m, 2H), 4.10 (t, J= 6.4 Hz, 2H), 5.26-5.42 (m, 8H).
参考例37
(1-メチルピペリジン-3-イル)メチル ((9Z,12Z)-オクタデカ-9,12-ジエニル)(2-((9Z,12Z)-オクタデカ-9,12-ジエニルオキシ)エチル)カルバマート(化合物A-32)
参考例10と同様の方法で、化合物B-1の代わりに参考例19で得られる化合物B-8(0.150 g、0.269 mmol) および、化合物VI-3の代わりに参考例A-15で得られる化合物VI-7(0.133 g、0.403 mmol)を用いて、化合物A-32(0.145 g、収率76%)を得た。
ESI-MS m/z: 714(M + H)+; 1H-NMR(CDCl3) δ: 0.91 (t, J= 6.8 Hz, 6H), 1.23-1.45 (m, 32H), 1.49-1.77 (m, 9H), 1.83-2.03 (m, 2H), 2.07 (q, J= 6.6 Hz, 8H), 2.28 (s, 3H), 2.76-2.91 (m, 2H), 2.80 (t, J= 5.9 Hz, 4H), 3.21-3.33 (m, 2H), 3.43 (t, J= 6.4 Hz, 4H), 3.48-3.58 (m, 2H), 3.85-4.05 (m, 2H), 5.30-5.47 (m, 8H).
参考例A-21 2-((Z)-オクタデカ-9-エニルオキシ)エチル メタンスルホナート (化合物IIIc-2)
参考例8と同様の方法で、(9Z,12Z)-オクタデカ-9,12-ジエン-1-イル メタンスルホナートの代わりに(Z)-オクタデカ-9-エン-1-イル メタンスルホナート(2.00 g、5.77 mmol)を用いて、化合物IIIc-2(1.29 g、収率57%)を得た。
ESI-MS m/z: 391 (M + H)+; 1H-NMR(CDCl3) δ: 0.89 (t, J= 6.6 Hz, 3H), 1.22-1.38 (m, 22H), 1.50-1.62 (m, 2H), 1.97-2.05 (m, 4H), 3.06 (s, 3H), 3.48 (t, J= 6.8 Hz, 2H), 3.67-3.72 (m, 2H), 4.36-4.39 (m, 2H), 5.35 (t, J= 5.5 Hz, 2H).
参考例A-22 2-((Z)-ヘキサデカ-9-エニルオキシ)エチル メタンスルホナート (化合物IIIc-3)
参考例8と同様の方法で、(9Z,12Z)-オクタデカ-9,12-ジエン-1-イル メタンスルホナートの代わりに(Z)-ヘキサデカ-9-エン-1-イル メタンスルホナート(2.00 g、6.28 mmol)を用いて、化合物IIIc-3 (1.52 g、収率67%)を得た。
ESI-MS m/z: 363 (M + H)+; 1H-NMR(CDCl3) δ: 0.90 (t, J= 6.6 Hz, 3H), 1.25-1.38 (m, 18H), 1.53-1.62 (m, 2H), 1.98-2.06 (m, 4H), 3.07 (s, 3H), 3.49 (t, J= 6.6 Hz, 2H), 3.68-3.72 (m, 2H), 4.36-4.40 (m, 2H), 5.36 (t, J= 5.5 Hz, 2H).
参考例38
(9Z,12Z)-N-(2-((Z)-オクタデカ-9-エニルオキシ)エチル)オクタデカ-9,12-ジエン-1-アミン(化合物B-9)
参考例13と同様の方法で、参考例A-7で得られる化合物IVf-1 (0.800 g、1.78 mmol)および、1-ブロモドデカンの代わりに参考例A-21で得られる化合物IIIc-2 (0.728 g、1.86 mmol)を用い、化合物B-9 (0.600 g、収率60%)を得た。
ESI-MS m/z: 560 (M + H)+; 1H-NMR(CDCl3) δ: 0.86-0.94 (m, 6H), 1.24-1.39 (m, 40), 1.51-1.62 (m, 2H), 1.96-2.10 (m, 8H), 2.68 (t, J= 7.3 Hz, 2H), 2.78 (t, J= 6.0 Hz, 2H), 2.85 (t, J= 5.1 Hz, 2H), 3.45 (t, J= 6.8 Hz, 2H), 3.57 (t, J= 5.1 Hz, 2H), 5.30-5.44 (m, 6H).
参考例39
(9Z,12Z)-N-(2-((Z)-ヘキサデカ-9-エニルオキシ)エチル)オクタデカ-9,12-ジエン-1-アミン(化合物B-10)
参考例13と同様の方法で、参考例A-7で得られる化合物IVf-1 (0.610 g、1.35 mmol)および、1-ブロモドデカンの代わりに参考例A-22で得られる化合物IIIc-3 (0.589 g、1.62 mmol)を用い、化合物B-10 (0.550 g、収率76%)を得た。
ESI-MS m/z: 532 (M + H)+; 1H-NMR(CDCl3) δ: 0.85-0.93 (m, 6H), 1.23-1.38 (m, 34H), 1.45-1.54 (m, 4H), 1.94-2.11 (m, 8H), 2.60 (t, J= 7.3 Hz, 2H), 2.77 (t, J= 5.4 Hz, 4H), 3.43 (t, J= 6.8 Hz, 2H), 3.53 (t, J= 5.4 Hz, 2H), 5.29-5.44 (m, 6H).
参考例40
3-(ピペリジン-1-イル)プロピル (2-((Z)-オクタデカ-9-エニルオキシ)エチル)((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマート(化合物A-33)
参考例10と同様の方法で、化合物B-1の代わりに参考例38で得られる化合物B-9 (0.130 g、0.232 mmol) および、化合物VI-3の代わりに参考例A-5で得られる化合物VI-4 (0.120 g、0.348 mmol)を用いて、化合物A-33 (0.137 g、収率81%)を得た。
ESI-MS m/z: 729 (M + H)+; 1H-NMR(CDCl3) δ: 0.84-0.92 (m, 6H), 1.20-1.36 (m, 38H), 1.40-1.62 (m, 10H), 1.77-1.87 (m, 2H), 1.96-2.09 (m, 8H), 2.37 (t, J= 7.5 Hz, 6H), 2.77 (t, J= 5.9 Hz, 2H), 3.20-3.31 (m, 2H), 3.40 (t, J= 6.6 Hz, 4H), 3.45-3.56 (m, 2H), 4.10 (t, J= 6.4 Hz, 2H), 5.28-5.44 (m, 6H).
参考例41
2-(1-メチルピロリジン-2-イル)エチル (2-((Z)-オクタデカ-9-エニルオキシ)エチル)((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマート(化合物A-34)
参考例10と同様の方法で、化合物B-1の代わりに参考例38で得られる化合物B-9 (0.130 g、0.232 mmol)を用いて、化合物A-34 (0.131 g、収率79%)を得た。
ESI-MS m/z: 716 (M + H)+; 1H-NMR(CDCl3) δ: 0.85-0.92 (m, 6H), 1.20-1.39 (38H, m), 1.47-1.61 (m, 8H), 1.66-1.83 (m, 2H), 1.93-2.18 (10H, m), 2.32 (s, 3H), 2.78 (t, J= 5.9 Hz, 2H), 3.07 (t, J= 8.4 Hz, 1H), 3.21-3.31 (m, 2H), 3.41 (t, J= 6.6 Hz, 4H), 3.47-3.56 (m, 2H), 4.08-4.19 (m, 2H), 5.29-5.43 (m, 6H).
参考例42
3-(ジメチルアミノ)プロピル (2-((Z)-オクタデカ-9-エニルオキシ)エチル)((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマート(化合物A-35)
参考例10と同様の方法で、化合物B-1の代わりに参考例38で得られる化合物B-9 (0.130 g、0.232 mmol) および、化合物VI-3の代わりに化合物VI-1 (0.106 g、0.348 mmol)を用いて、化合物A-35 (0.100 g、収率63%)を得た。
ESI-MS m/z: 690 (M + H)+; 1H-NMR(CDCl3) δ: 0.85-0.92 (m, 6H), 1.20-1.39 (m, 38H), 1.45-1.59 (m, 4H), 1.74-1.84 (m, 2H), 1.96-2.09 (m, 8H), 2.23 (s, 6H), 2.34 (t, J= 7.5 Hz, 2H), 2.77 (t, J= 5.7 Hz, 2H), 3.21-3.30 (m, 2H), 3.35-3.44 (m, 4H), 3.45-3.55 (m, 2H), 4.11 (t, J= 6.4 Hz, 2H), 5.26-5.44 (m, 6H).
参考例43
3-(ジメチルアミノ)プロピル (2-((Z)-ヘキサデカ-9-エニルオキシ)エチル)((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマート(化合物A-36)
参考例10と同様の方法で、化合物B-1の代わりに参考例39で得られる化合物B-10 (0.150 g、0.282 mmol) および、化合物VI-3の代わりに化合物VI-1 ( 0.095 g, 0.310 mmol)を用いて、化合物A-36 (0.148 g、収率79%)を得た。
ESI-MS m/z: 662 (M + H)+; 1H-NMR(CDCl3) δ: 0.85-0.94 (m, 6H), 1.21-1.39 (m, 34H), 1.47-1.59 (m, 4H), 1.76-1.84 (m, 2H), 1.94-2.09 (m, 8H), 2.23 (s, 6H), 2.34 (t, J= 7.3 Hz, 2H), 2.77 (t, J= 6.3 Hz, 2H), 3.20-3.31 (m, 2H), 3.31-3.45 (m, 4H), 3.45-3.57 (m, 2H), 4.11 (t, J= 6.3 Hz, 2H), 5.27-5.46 (m, 6H).
参考例44
3-(ピペリジン-1-イル)プロピル (2-((Z)-ヘキサデカ-9-エニルオキシ)エチル)((9Z,12Z)-オクタデカ-9,12-ジエニル)カルバマート(化合物A-37)
参考例10と同様の方法で、化合物B-1の代わりに参考例39で得られる化合物B-10 (0.150 g、0.282 mmol) および、化合物VI-3の代わりに参考例A-5で得られる化合物VI-4 (0.107 g、0.310 mmol)を用いて、化合物A-37 (0.148 g、収率75%)を得た。
ESI-MS m/z: 702 (M + H)+; 1H-NMR(CDCl3) δ: 0.82-0.96 (m, 6H), 1.23-1.39 (m, 34H), 1.39-1.48 (m, 2H), 1.49-1.61 (m, 8H), 1.79-1.86 (m, 2H), 1.95-2.09 (m, 8H), 2.33-2.42 (m, 6H), 2.78 (t, J= 6.8 Hz, 2H), 3.21-3.32 (m, 2H), 3.34-3.44 (m, 4H), 3.46-3.56 (m, 2H), 4.10 (t, J= 6.3 Hz, 2H), 5.29-5.44 (m, 6H).
参考例45
3-(ジ((Z)-オクタデカ-9-エニル)アミノ)プロパン-1-オール(化合物C-2)
工程1
参考例A-11と同様の方法で、化合物B-1の代わりに参考例2で得られる化合物B-2(500 mg、0.965 mmol)を用い、3-(ジ((Z)-オクタデカ-9-エニル)アミノ)プロピオン酸エチル(548 mg、収率92%)を得た。
工程2
参考例21と同様の方法で、化合物IVj-1の代わりに3-(ジ((Z)-オクタデカ-9-エニル)アミノ)プロピオン酸エチル(548 mg、0.887 mmol)を用い、化合物C-2 (0.445 g, 収率87%)を得た。
To a solution of 2-((9Z, 12Z) -octadeca-9,12-dienyloxy) ethanol (660 mg, 2.13 mmol) and triethylamine (0.444 mL, 3.19 mmol) in dichloromethane (9 ml) at 0 ° C. SIGMA-ALDRICH, 0.247 ml, 3.19 mmol) was added, and the mixture was stirred at room temperature for 40 minutes. Water was added to the reaction mixture, and the mixture was extracted with chloroform. The organic layer was washed with hydrochloric acid (1 mol / L), saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure to give compound IIIc-1.
Reference Example 19
(9Z, 12Z) -N- (2-((9Z, 12Z) -octadeca-9,12-dienyloxy) ethyl) octadeca-9,12-dien-1-amine (Compound B-8)
In the same manner as in Reference Example 13, compound IVf-1 (0.798 g, 1.77 mmol) obtained in Reference Example A-7 and compound IIIc-1 obtained in Reference Example A-8 instead of 1-bromododecane ( 0.826 g, 2.13 mmol) was used to obtain compound B-8 (0.676 g, yield 68%).
ESI-MS m / z: 558 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.27-1.38 (m, 32H), 1.46-1.52 ( m, 2H), 1.54-1.60 (m, 3H), 2.05 (q, J = 7.0 Hz, 8H), 2.61 (t, J = 7.3 Hz, 2H), 2.77 (t, J = 5.5 Hz, 6H), 3.42 (t, J = 6.8 Hz, 2H), 3.52 (t, J = 5.4 Hz, 2H), 5.30-5.41 (m, 8H).
Reference Example 20
3- (Dimethylamino) propyl ((9Z, 12Z) -octadeca-9,12-dienyl) (2-((9Z, 12Z) -octadeca-9,12-dienyloxy) ethyl) carbamate (Compound A-12)
In the same manner as in Reference Example 5, using Compound B-8 (0.184 g, 0.330 mmol) obtained in Reference Example 19 instead of Compound B-1, Compound A-12 (0.208 g, 92% yield) was obtained. Obtained.
ESI-MS m / z: 687 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.25-1.38 (m, 32H), 1.50-1.57 ( m, 4H), 1.77-1.83 (m, 2H), 2.05 (q, J = 7.0 Hz, 8H), 2.22 (s, 6H), 2.34 (t, J = 7.4 Hz, 2H), 2.77 (t, J = 6.6 Hz, 4H), 3.23-3.54 (m, 8H), 4.11 (t, J = 6.5 Hz, 2H), 5.30-5.41 (m, 8H).
Reference Example A-11 Ethyl 3- (di ((9Z, 12Z) -octadeca-9,12-dienyl) amino) propionate (Compound IVj-1)
Compound B-1 (0.788 g, 1.53 mmol) obtained in Example 1 was dissolved in ethanol (8 mL), ethyl acrylate (Tokyo Chemical Industry Co., Ltd., 1.67 mL, 15.3 mmol) and sodium ethoxide (Wako Pure Chemical Industries, Ltd.) Yakuhin Kogyo Co., Ltd., 0.0520 g, 0.767 mmol) was added, and the mixture was stirred for 3 hours with heating under reflux. The reaction mixture was concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane / ethyl acetate = 85/15) to give compound IVj-1 (0.699 g, yield 74%). It was.
ESI-MS m / z: 615 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.21-1.45 (m, 39H), 2.02-2.08 ( m, 8H), 2.35-2.44 (m, 6H), 2.75-2.80 (m, 6H), 4.12 (q, J = 7.0 Hz, 2H), 5.30-5.42 (m, 8H).
Reference Example 21
3- (Di ((9Z, 12Z) -octadeca-9,12-dienyl) amino) propan-1-ol (Compound C-1)
Compound IVj-1 (0.199 g, 0.324 mmol) obtained in Reference Example A-11 was dissolved in tetrahydrofuran (2 mL). Under ice-cooling, lithium aluminum hydride (Pure Chemical Co., Ltd., 0.012 g, 0.324 mmol) was added. The mixture was further stirred for 3 hours. Water (0.0600 mL, 3.33 mmol) and sodium fluoride (Nacalai Tesque, 0.408 g, 9.72 mmol) were added to the reaction solution, and the mixture was stirred at room temperature for 0.5 hour. Insolubles were removed by celite filtration. The filtrate was concentrated and purified by silica gel column chromatography (chloroform / methanol = 98/2) to give compound C-1 (0.181 g, yield 98%).
ESI-MS m / z: 573 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.21-1.40 (m, 32H), 1.42-1.51 ( m, 4H), 1.64-1.71 (m, 2H), 2.02-2.08 (m, 8H), 2.40 (t, J = 7.3 Hz, 4H), 2.64 (t, J = 5.3 Hz, 2H), 2.77 (t , J = 6.7 Hz, 4H), 3.79 (t, J = 5.3 Hz, 2H), 5.30-5.42 (m, 8H).
Reference Example 22
4- (Dimethylamino) butyl di ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate (Compound A-13)
Process 1
To a solution of 4-nitrophenyl chloroformate (0.867 g, 4.21 mmol) in dichloromethane (20 mL), 4- (tert-butyldimethylsilyl) oxy-1-butanol (SIGMA-ALDRICH, 1.0 mL, 4.21 mmol) And triethylamine (0.881 mL, 6.32 mmol) were added, and the mixture was stirred at room temperature for 1 hour. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was extracted twice with chloroform. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (n-hexane / ethyl acetate = 90/10) to give 4- (tert-butyldimethylsilyloxy) butyl 4-nitrophenyl carbonate (1.44 g, yield). 92%).
Process 2
In the same manner as in Reference Example 10, using 4- (tert-butyldimethylsilyloxy) butyl 4-nitrophenyl carbonate (0.640 g, 1.733 mmol) obtained in Step 1 instead of compound VI-3, A crude product of (tert-butyldimethylsilyloxy) butyl di ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate was obtained. The obtained crude 4- (tert-butyldimethylsilyloxy) butyl di ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate was dissolved in tetrahydrofuran (10 mL), and tetrabutylammonium fluoride was dissolved. (Tokyo Chemical Industry Co., Ltd., about 1 mol / L tetrahydrofuran solution, 2.14 mL, 2.14 mmol) was added, and the mixture was stirred at room temperature for 1 hour. Tetra-n-butylammonium fluoride (about 1 mol / L tetrahydrofuran solution, 2.14 mL, 2.14 mmol) was added to the reaction solution, and the mixture was stirred at room temperature for 2 hours and then at 50 ° C. for 1 hour. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was extracted twice with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform / methanol = 95/5) to give 4-hydroxybutyl-di ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate (0.652 g, Yield 73%).
Process 3
To a solution of 4-hydroxybutyl di ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate (0.193 g, 0.306 mmol) obtained in step 2 in dichloromethane (2 mL) was added mesylic acid chloride under ice-cooling. (Pure Chemical Co., Ltd., 0.0360 mL, 0.460 mmol) and triethylamine (0.0930 mL, 0.919 mmol) were added and stirred at 0 ° C. for 30 minutes. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was extracted twice with chloroform. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. Dissolve the resulting residue in tetrahydrofuran (1 mL), add dimethylamine (manufactured by Aldrich, approximately 2 mol / L tetrahydrofuran solution, 1.53 mL, 3.06 mmol), and use a microwave reactor at 100 ° C for 1 hour. After stirring, the mixture was stirred at 130 ° C. for 1 hour using a microwave reactor. The reaction mixture was concentrated under reduced pressure, and the resulting residue was purified by amino silica gel column chromatography (n-hexane / ethyl acetate = 80/20) to give compound A-13 (0.159 g, yield 79%). It was.
ESI-MS m / z: 658 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.90 (q, J = 6.5 Hz, 6H), 1.20-1.38 (m, 32H), 1.45-1.56 ( m, 6H), 1.61-1.69 (m, 2H), 2.01-2.08 (m, 8H), 2.21 (s, 6H), 2.28 (t, J = 7.6 Hz, 2H), 2.77 (t, J = 6.6 Hz , 4H), 3.12-3.23 (m, 4H), 4.07 (t, J = 6.6 Hz, 2H), 5.29-5.42 (m, 8H).
Reference Example A-14 (1-Methylpiperidin-4-yl) methyl 4-nitrophenyl carbonate hydrochloride (Compound VI-6)
To a solution of 4-nitrophenyl chloroformate (1.50 g, 7.28 mmol) in tetrahydrofuran (32 mL) was added 1-methyl-4-piperidinemethanol (manufactured by Tokyo Chemical Industry Co., Ltd., 1.0 mL, 7.28 mmol) at room temperature. Stir for 2 hours. The precipitated crystals were collected by filtration to obtain Compound VI-6 (1.55 g, yield 64%).
ESI-MS m / z: 295 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 1.93-2.19 (m, 4H), 2.68-2.82 (m, 3H), 3.51-3.62 (m, 5H ), 4.21 (d, J = 6.0 Hz, 2H), 7.38 (d, J = 9.1 Hz, 2H), 8.27 (d, J = 9.1 Hz, 2H), 12.44 (br s, 1H).
Reference Example A-15 (1-Methylpiperidin-3-yl) methyl 4-nitrophenyl carbonate hydrochloride (Compound VI-7)
In the same manner as in Reference Example A-14, 1-methyl-3-piperidinemethanol (manufactured by Tokyo Chemical Industry Co., Ltd., 1.0 mL, 7.21 mmol) was used instead of 1-methyl-4-piperidinemethanol, and compound VI-7 (2.32 g, 97% yield) was obtained.
ESI-MS m / z: 295 (M + H) + .
Reference Example A-16 (1-Methylpiperidin-2-yl) methyl 4-nitrophenyl carbonate hydrochloride (Compound VI-8)
In the same manner as in Reference Example A-14, 1-methyl-2-piperidinemethanol (manufactured by Tokyo Chemical Industry Co., Ltd., 1.0 mL, 7.43 mmol) was used instead of 1-methyl-4-piperidinemethanol, and compound VI-8 (2.37 g, yield 96%) was obtained.
1 H-NMR (CDCl 3 ) δ: 1.51-1.63 (m, 1H), 1.81-2.38 (m, 5H), 2.85-2.99 (m, 4H), 3.21-3.30 (m, 1H), 3.49-3.60 ( m, 1H), 4.66 (dd, J = 13.1, 2.4 Hz, 1H), 4.78-4.86 (m, 1H), 7.47 (d, J = 9.1 Hz, 2H), 8.28 (d, J = 9.1 Hz, 2H ), 12.40 (br s, 1H).
Reference Example A-17 3- (Azepan-1-yl) propyl 4-nitrophenyl carbonate hydrochloride (Compound VI-9)
In the same manner as in Reference Example A-14, instead of 1-methyl-4-piperidinemethanol, 3- (azepan-1-yl) propanol (CHEMBRIDGE, 0.700 g, 4.45 mmol) was used. Compound VI-9 (1.47 g, yield 92%) was obtained.
ESI-MS m / z: 323 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 1.60-1.75 (m, 2H), 1.79-1.94 (m, 5H), 2.15-2.27 (m, 2H ), 2.44-2.53 (m, 2H), 2.90-3.02 (m, 2H), 3.14-3.24 (m, 2H), 3.55-3.65 (m, 2H), 4.41 (t, J = 5.9 Hz, 2H), 7.37-7.43 (m, 2H), 8.25-8.32 (m, 2H), 12.48 (br s, 1H).
Reference Example A-18 1-Methylpiperidin-4-yl 4-nitrophenyl carbonate hydrochloride
(Compound VI-10)
In the same manner as in Reference Example A-14, instead of 1-methyl-4-piperidinemethanol, 1-methylpiperidin-4-ol (manufactured by SIGMA-ALDRICH, 0.300 g, 2.60 mmol) was used. Compound VI-10 (0.740 g, yield 90%) was obtained.
ESI-MS m / z: 281 (M + H) + .
Reference Example A-19 1-Methylpiperidin-3-yl 4-nitrophenyl carbonate hydrochloride (Compound VI-11)
In the same manner as in Reference Example A-14, instead of 1-methyl-4-piperidinemethanol, 1-methylpiperidin-3-ol (manufactured by SIGMA-ALDRICH, 0.305 g, 2.65 mmol) was used. Compound VI-11 (0.410 g, yield 49%) was obtained.
ESI-MS m / z: 281 (M + H) + .
Reference Example A-20, (1-methylpyrrolidin-3-yl) methyl 4-nitrophenyl carbonate hydrochloride (Compound VI-12)
In the same manner as in Reference Example A-14, instead of 1-methyl-4-piperidinemethanol, (1-methyl-3-pyrrolidinyl) methanol (Matrix Scientific, 0.500 g, 7.43 mmol) To give compound VI-12 (0.943 g, yield 69%).
ESI-MS m / z: 281 (M + H) + .
Reference Example 23
(1-Methylpiperidin-4-yl) methyl di ((9Z, 12Z) -octadeca-9,12-dien-1-yl) carbamate (Compound A-14)
In the same manner as in Reference Example 10, using Compound VI-6 (0.228 g, 0.689 mmol) obtained in Reference Example A-14 instead of Compound VI-3, Compound A-14 (0.258 g, yield 84) %).
ESI-MS m / z: 670 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.22-1.39 (m, 32H), 1.46-1.54 ( m, 4H), 1.56-1.66 (m, 3H), 1.67-1.74 (m, 2H), 1.88-1.95 (m, 2H), 2.05 (q, J = 6.9 Hz, 8H), 2.26 (s, 3H) , 2.77 (t, J = 6.8 Hz, 4H), 2.85 (d, J = 11.7 Hz, 2H), 3.13-3.23 (m, 4H), 3.92 (d, J = 6.3 Hz, 2H), 5.30-5.42 ( m, 8H).
Reference Example 24
(1-Methylpiperidin-3-yl) methyl di ((9Z, 12Z) -octadeca-9,12-dien-1-yl) carbamate (Compound A-15)
In the same manner as in Reference Example 10, using Compound VI-7 (0.238 g, 0.719 mmol) obtained in Reference Example A-15 instead of Compound VI-3, Compound A-15 (0.239 g, yield 74) %).
ESI-MS m / z: 670 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 0.92-1.02 (m, 1H), 1.22-1.39 ( m, 32H), 1.46-1.54 (m, 4H), 1.55-1.65 (m, 1H), 1.66-1.74 (m, 3H), 1.82-1.89 (m, 1H), 1.91-2.00 (m, 1H), 2.05 (q, J = 7.0 Hz, 8H), 2.26 (s, 3H), 2.74-2.80 (m, 5H), 2.84-2.89 (m, 1H), 3.12-3.23 (m, 4H), 3.87 (dd, J = 10.7, 7.6 Hz, 1H), 3.97 (dd, J = 10.7, 5.4 Hz, 1H), 5.30-5.41 (m, 8H).
Reference Example 25
(1-Methylpiperidin-2-yl) methyl di ((9Z, 12Z) -octadeca-9,12-dien-1-yl) carbamate (Compound A-16)
In the same manner as in Reference Example 10, using Compound VI-8 (0.256 g, 0.774 mmol) obtained in Reference Example A-16 instead of Compound VI-3, Compound A-16 (0.313 g, yield 91) %).
ESI-MS m / z: 670 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.22-1.39 (m, 32H), 1.46-1.64 ( m, 8H), 1.71-1.76 (m, 2H), 2.02-2.12 (m, 10H), 2.32 (s, 3H), 2.77 (t, J = 6.8 Hz, 4H), 2.79-2.84 (m, 1H) , 3.11-3.24 (m, 4H), 4.05 (dd, J = 11.1, 4.9 Hz, 1H), 4.17 (dd, J = 11.1, 4.9 Hz, 1H), 5.30-5.42 (m, 8H).
Reference Example 26
2- (1-Methylpyrrolidin-2-yl) ethyl di ((Z) -octadeca-9-enyl) carbamate (Compound A-17)
In the same manner as in Reference Example 10, using Compound B-2 (0.300 g, 0.579 mmol) obtained in Reference Example 2 instead of Compound B-1, Compound A-17 (0.360 g, 92% yield) was obtained. Obtained.
ESI-MS m / z: 674 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.9 Hz, 6H), 1.21-1.38 (m, 44H), 1.45-1.85 ( m, 8H), 1.93-2.18 (m, 12H), 2.32 (s, 3H), 3.03-3.26 (m, 5H), 4.05-4.18 (m, 2H), 5.30-5.39 (m, 4H).
Reference Example 27
(1-Methylpiperidin-3-yl) methyl di ((Z) -octadeca-9-enyl) carbamate (Compound A-18)
In the same manner as in Reference Example 10, compound B-2 (0.300 g, 0.579 mmol) obtained in Reference Example 2 instead of Compound B-1 and Reference Example A-15 instead of Compound VI-3 Compound A-18 (0.390 g, yield 100%) was obtained using Compound VI-7 (0.287 g, 0.896 mmol).
ESI-MS m / z: 674 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.85-1.04 (m, 7H), 1.20-1.38 (m, 44H), 1.46-1.74 (m, 8H ), 1.82-2.06 (m, 10H), 2.26 (s, 3H), 2.74-2.82 (m, 1H), 2.83-2.89 (m, 1H), 3.10-3.25 (m, 4H), 3.87 (dd, J = 10.5, 7.3 Hz, 1H), 3.98 (dd, J = 10.5, 5.3 Hz, 1H), 5.30-5.39 (m, 4H).
Reference Example 28
2- (1-Methylpyrrolidin-2-yl) ethyl di ((11Z, 14Z) -icosa-11,14-dienyl) carbamate (Compound A-19)
In the same manner as in Reference Example 10, using Compound B-4 (0.300 g, 0.526 mmol) obtained in Reference Example 4 instead of Compound B-1, Compound A-19 (0.369 g, 97% yield) was obtained. Obtained.
ESI-MS m / z: 726 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.21-1.40 (m, 40H), 1.44-1.85 ( m, 8H), 1.93-2.18 (m, 12H), 2.32 (s, 3H), 2.77 (t, J = 6.4 Hz, 4H), 3.04-3.27 (m, 5H), 4.05-4.18 (m, 2H) , 5.29-5.42 (m, 8H).
Reference Example 29
(1-Methylpiperidin-3-yl) methyl di ((11Z, 14Z) -icosa-11,14-dienyl) carbamate (Compound A-20)
In the same manner as in Reference Example 10, compound B-4 (0.300 g, 0.526 mmol) obtained in Reference Example 4 instead of Compound B-1 and Reference Example A-15 instead of Compound VI-3 Compound A-7 (0.374 g, yield 98%) was obtained using Compound VI-7 (0.261 g, 0.789 mmol).
ESI-MS m / z: 726 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.85-1.04 (m, 7H), 1.21-1.40 (m, 40H), 1.45-1.75 (m, 8H ), 1.82-2.09 (m, 10H), 2.26 (s, 3H), 2.74-2.90 (m, 6H), 3.11-3.24 (m, 4H), 3.87 (dd, J = 10.5, 7.5 Hz, 1H), 3.98 (dd, J = 10.5, 5.5 Hz, 1H), 5.29-5.43 (m, 8H).
Reference Example 30
(1-Methylpyrrolidin-2-yl) methyl di ((9Z, 12Z) -octadeca-9,12-dien-1-yl) carbamate (Compound A-21)
Compound B-1 (0.0831 g, 0.162 mmol) obtained in Reference Example 1 was dissolved in dichloroethane (1 mL), 1,1′-carbonyldiimidazole (manufactured by Nacalai Tesque, 0.0394 g, 0.243 mmol) was added, Stir at room temperature overnight. Iodomethane (manufactured by Tokyo Chemical Industry Co., Ltd., 0.101 mL, 1.62 mmol) was added to the reaction solution, and the mixture was stirred at 60 ° C. overnight. The reaction solution was concentrated under reduced pressure. Dissolve the resulting residue in tetrahydrofuran (1 mL), add 1-methylpyrrolidine-2-methanol (manufactured by Wako Pure Chemical Industries, 0.0372 g, 0.323 mmol) and triethylamine (0.0563 mL, 0.404 mmol) at room temperature. After stirring overnight, the reaction was stirred at 60 ° C. for 3 hours. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was extracted twice with n-hexane. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The obtained residue was purified by amino silica gel column chromatography (n-hexane / ethyl acetate = 90/10) to obtain Compound A-21 (0.0318 g, yield 30%).
ESI-MS m / z: 656 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.24-1.39 (m, 32H), 1.46-1.67 ( m, 5H), 1.67-1.85 (m, 2H), 1.89-2.00 (m, 1H), 2.05 (q, J = 7.0 Hz, 8H), 2.21-2.30 (m, 1H), 2.42 (s, 3H) , 2.43-2.51 (m, 1H), 2.77 (t, J = 6.6 Hz, 4H), 3.03-3.08 (m, 1H), 3.11-3.25 (m, 4H), 4.00 (dd, J = 10.5, 6.0 Hz , 1H), 4.08 (dd, J = 10.5, 5.5 Hz, 1H), 5.29-5.42 (m, 8H).
Reference Example 31
(1-Methylpyrrolidin-3-yl) methyl di (9Z, 12Z) -octadeca-9,12-dienylcarbamate (Compound A-22)
In the same manner as in Reference Example 10, using Compound VI-12 (0.277 g, 0.876 mmol) obtained in Reference Example A-20 instead of Compound VI-3, Compound A-22 (0.263 g, 66% yield) )
ESI-MS m / z: 656 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.20-1.40 (m, 32H), 1.44-1.78 ( m, 5H), 1.92-2.09 (m, 9H), 2.24 (dd, J = 9.4, 6.2 Hz, 1H), 2.34 (s, 3H), 2.39-2.63 (m, 3H), 2.68-2.80 (m, 5H), 3.10-3.25 (m, 4H), 3.95 (dd, J = 10.5, 7.8 Hz, 1H), 4.03 (dd, J = 10.5, 6.4 Hz, 1H), 5.28-5.42 (m, 8H).
Reference Example 32
2- (1-Methylpiperidin-2-yl) ethyl di (9Z, 12Z) -octadeca-9,12-dienylcarbamate (Compound A-23)
Process 1
To a solution of 4-nitrophenyl chloroformate (0.844 g, 7.19 mmol) in tetrahydrofuran (12 mL) was added 2- (1-methylpiperidin-2-yl) ethanol (Matrix Scientific, 0.500 g, 3.49 mmol). And stirred at room temperature overnight. The reaction solution was concentrated under reduced pressure to obtain a crude product of 2- (1-methylpiperidin-2-yl) ethyl 4-nitrophenyl carbonate hydrochloride.
Process 2
Crude product of 2- (1-methylpiperidin-2-yl) ethyl 4-nitrophenyl carbonate hydrochloride obtained in Step 1 instead of compound VI-3 in the same manner as in Reference Example 10 (0.302 g, 0.876 mmol) was used to obtain compound A-23 (0.299 g, yield 75%).
ESI-MS m / z: 684 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.19-1.40 (m, 32H), 1.45-1.75 ( m, 11H), 1.93-2.11 (m, 11H), 2.27 (s, 3H), 2.74-2.86 (m, 5H), 3.10-3.24 (m, 4H), 4.06-4.19 (m, 2H), 5.29- 5.42 (m, 8H).
Reference Example 33
3- (Azepan-1-yl) propyl di ((9Z, 12Z) -octadeca-9,12-dien-1-yl) carbamate (Compound A-24)
In the same manner as in Reference Example 10, compound VI-24 (0.136 g, yield 67%) was obtained using compound VI-9 obtained in Reference Example A-17 instead of compound VI-3.
ESI-MS m / z: 698 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.86-0.94 (m, 6H), 1.22-1.41 (m, 36H), 1.45-1.67 (m, 8H ), 1.75-1.85 (m, 2H), 2.00-2.11 (m, 8H), 2.55 (t, J = 7.5 Hz, 2H), 2.62 (t, J = 5.1 Hz, 4H), 2.77 (t, J = 5.9 Hz, 4H), 3.13-3.23 (m, 4H), 4.10 (t, J = 6.4 Hz, 2H), 5.28-5.45 (m, 8H).
Reference Example 34
3- (Piperidin-1-yl) propyl ((9Z, 12Z) -octadeca-9,12-dienyl) (2-((9Z, 12Z) -octadeca-9,12-dienyloxy) ethyl) carbamate (Compound A- 29)
In the same manner as in Reference Example 10, Compound B-8 (0.150 g, 0.269 mmol) obtained in Reference Example 19 instead of Compound B-1 and Reference Example A-5 instead of Compound VI-3 Compound A-4 (0.170 g, yield 87%) was obtained using compound VI-4 (0.201 g, 0.672 mmol).
ESI-MS m / z: 728 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.8 Hz, 6H), 1.22-1.40 (m, 32H), 1.40-1.63 ( m, 14H), 1.78-1.87 (m, 2H), 2.05 (q, J = 6.6 Hz, 8H), 2.33-2.41 (m, 6H), 2.77 (t, J = 6.0 Hz, 4H), 3.20-3.31 (m, 2H), 3.40 (t, J = 6.6 Hz, 4H), 3.46-3.57 (m, 2H), 4.10 (t, J = 6.4 Hz, 2H), 5.27-5.45 (m, 8H).
Reference Example 35
2- (1-Methylpyrrolidin-2-yl) ethyl ((9Z, 12Z) -octadeca-9,12-dienyl) (2-((9Z, 12Z) -octadeca-9,12-dienyloxy) ethyl) carbamate ( Compound A-30)
In the same manner as in Reference Example 10, using Compound B-8 (0.120 g, 0.215 mmol) obtained in Reference Example 19 instead of Compound B-1, Compound A-30 (0.140 g, 91% yield) Got.
ESI-MS m / z: 714 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.8 Hz, 6H), 1.21-1.40 (m, 32H), 1.45-1.59 ( m, 6H), 1.64-1.82 (m, 2H), 1.93-2.17 (m, 12H), 2.31 (s, 3H), 2.70-2.81 (m, 4H), 3.06 (t, J = 7.8 Hz, 1H) , 3.20-3.31 (m, 2H), 3.40 (t, J = 5.9 Hz, 4H), 3.46-3.58 (m, 2H), 4.06-4.17 (m, 2H), 5.28-5.44 (m, 8H).
Reference Example 36
3- (Azepan-1-yl) propyl ((9Z, 12Z) -octadeca-9,12-dienyl) (2-((9Z, 12Z) -octadeca-9,12-dienyloxy) ethyl) carbamate (compound A- 31)
In the same manner as in Reference Example 10, Compound B-8 (0.150 g, 0.269 mmol) obtained in Reference Example 19 instead of Compound B-1 and Reference Example A-17 instead of Compound VI-3 Compound A-9 (0.170 g, 85% yield) was obtained using Compound VI-9 (0.145 g, 0.403 mmol).
ESI-MS m / z: 742 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.8 Hz, 6H), 1.21-1.39 (m, 32H), 1.48-1.65 ( m, 12H), 1.72-1.85 (m, 2H), 2.05 (q, J = 6.6 Hz, 8H), 2.55 (t, J = 7.5 Hz, 2H), 2.61 (t, J = 5.3 Hz, 4H), 2.77 (t, J = 5.9 Hz, 4H), 3.21-3.30 (m, 2H), 3.40 (t, J = 6.8 Hz, 4H), 3.46-3.55 (m, 2H), 4.10 (t, J = 6.4 Hz , 2H), 5.26-5.42 (m, 8H).
Reference Example 37
(1-Methylpiperidin-3-yl) methyl ((9Z, 12Z) -octadeca-9,12-dienyl) (2-((9Z, 12Z) -octadeca-9,12-dienyloxy) ethyl) carbamate (Compound A -32)
In the same manner as in Reference Example 10, compound B-8 (0.150 g, 0.269 mmol) obtained in Reference Example 19 instead of Compound B-1 and obtained in Reference Example A-15 instead of Compound VI-3 Compound A-32 (0.145 g, yield 76%) was obtained using compound VI-7 (0.133 g, 0.403 mmol).
ESI-MS m / z: 714 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.91 (t, J = 6.8 Hz, 6H), 1.23-1.45 (m, 32H), 1.49-1.77 ( m, 9H), 1.83-2.03 (m, 2H), 2.07 (q, J = 6.6 Hz, 8H), 2.28 (s, 3H), 2.76-2.91 (m, 2H), 2.80 (t, J = 5.9 Hz , 4H), 3.21-3.33 (m, 2H), 3.43 (t, J = 6.4 Hz, 4H), 3.48-3.58 (m, 2H), 3.85-4.05 (m, 2H), 5.30-5.47 (m, 8H ).
Reference Example A-21 2-((Z) -octadeca-9-enyloxy) ethyl methanesulfonate (Compound IIIc-2)
In the same manner as in Reference Example 8, instead of (9Z, 12Z) -octadeca-9,12-dien-1-yl methanesulfonate, (Z) -octadeca-9-en-1-yl methanesulfonate (2.00 g, 5.77 mmol) was used to give compound IIIc-2 (1.29 g, 57% yield).
ESI-MS m / z: 391 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.6 Hz, 3H), 1.22-1.38 (m, 22H), 1.50-1.62 ( m, 2H), 1.97-2.05 (m, 4H), 3.06 (s, 3H), 3.48 (t, J = 6.8 Hz, 2H), 3.67-3.72 (m, 2H), 4.36-4.39 (m, 2H) , 5.35 (t, J = 5.5 Hz, 2H).
Reference Example A-22 2-((Z) -hexadec-9-enyloxy) ethyl methanesulfonate (Compound IIIc-3)
In the same manner as in Reference Example 8, instead of (9Z, 12Z) -octadeca-9,12-dien-1-yl methanesulfonate, (Z) -hexadeca-9-en-1-yl methanesulfonate (2.00 g, 6.28 mmol) was used to give compound IIIc-3 (1.52 g, 67% yield).
ESI-MS m / z: 363 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.90 (t, J = 6.6 Hz, 3H), 1.25-1.38 (m, 18H), 1.53-1.62 ( m, 2H), 1.98-2.06 (m, 4H), 3.07 (s, 3H), 3.49 (t, J = 6.6 Hz, 2H), 3.68-3.72 (m, 2H), 4.36-4.40 (m, 2H) , 5.36 (t, J = 5.5 Hz, 2H).
Reference Example 38
(9Z, 12Z) -N- (2-((Z) -octadeca-9-enyloxy) ethyl) octadeca-9,12-dien-1-amine (Compound B-9)
In the same manner as in Reference Example 13, Compound IVf-1 (0.800 g, 1.78 mmol) obtained in Reference Example A-7 and Compound IIIc-2 (Reference Example A-21 instead of 1-bromododecane) 0.728 g, 1.86 mmol) was used to obtain compound B-9 (0.600 g, yield 60%).
ESI-MS m / z: 560 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.86-0.94 (m, 6H), 1.24-1.39 (m, 40), 1.51-1.62 (m, 2H ), 1.96-2.10 (m, 8H), 2.68 (t, J = 7.3 Hz, 2H), 2.78 (t, J = 6.0 Hz, 2H), 2.85 (t, J = 5.1 Hz, 2H), 3.45 (t , J = 6.8 Hz, 2H), 3.57 (t, J = 5.1 Hz, 2H), 5.30-5.44 (m, 6H).
Reference Example 39
(9Z, 12Z) -N- (2-((Z) -Hexadeca-9-enyloxy) ethyl) octadeca-9,12-dien-1-amine (Compound B-10)
In the same manner as in Reference Example 13, Compound IVf-1 (0.610 g, 1.35 mmol) obtained in Reference Example A-7 and Compound IIIc-3 (Reference Example A-22 instead of 1-bromododecane) ( 0.589 g, 1.62 mmol) was used to obtain compound B-10 (0.550 g, yield 76%).
ESI-MS m / z: 532 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.85-0.93 (m, 6H), 1.23-1.38 (m, 34H), 1.45-1.54 (m, 4H ), 1.94-2.11 (m, 8H), 2.60 (t, J = 7.3 Hz, 2H), 2.77 (t, J = 5.4 Hz, 4H), 3.43 (t, J = 6.8 Hz, 2H), 3.53 (t , J = 5.4 Hz, 2H), 5.29-5.44 (m, 6H).
Reference Example 40
3- (Piperidin-1-yl) propyl (2-((Z) -octadeca-9-enyloxy) ethyl) ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate (Compound A-33)
In the same manner as in Reference Example 10, Compound B-9 (0.130 g, 0.232 mmol) obtained in Reference Example 38 instead of Compound B-1 and obtained in Reference Example A-5 instead of Compound VI-3 Compound A-4 (0.137 g, 81% yield) was obtained using Compound VI-4 (0.120 g, 0.348 mmol).
ESI-MS m / z: 729 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.84-0.92 (m, 6H), 1.20-1.36 (m, 38H), 1.40-1.62 (m, 10H ), 1.77-1.87 (m, 2H), 1.96-2.09 (m, 8H), 2.37 (t, J = 7.5 Hz, 6H), 2.77 (t, J = 5.9 Hz, 2H), 3.20-3.31 (m, 2H), 3.40 (t, J = 6.6 Hz, 4H), 3.45-3.56 (m, 2H), 4.10 (t, J = 6.4 Hz, 2H), 5.28-5.44 (m, 6H).
Reference Example 41
2- (1-Methylpyrrolidin-2-yl) ethyl (2-((Z) -octadeca-9-enyloxy) ethyl) ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate (Compound A-34 )
In the same manner as in Reference Example 10, using Compound B-9 (0.130 g, 0.232 mmol) obtained in Reference Example 38 instead of Compound B-1, Compound A-34 (0.131 g, yield 79%) Got.
ESI-MS m / z: 716 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.85-0.92 (m, 6H), 1.20-1.39 (38H, m), 1.47-1.61 (m, 8H ), 1.66-1.83 (m, 2H), 1.93-2.18 (10H, m), 2.32 (s, 3H), 2.78 (t, J = 5.9 Hz, 2H), 3.07 (t, J = 8.4 Hz, 1H) , 3.21-3.31 (m, 2H), 3.41 (t, J = 6.6 Hz, 4H), 3.47-3.56 (m, 2H), 4.08-4.19 (m, 2H), 5.29-5.43 (m, 6H).
Reference Example 42
3- (Dimethylamino) propyl (2-((Z) -octadeca-9-enyloxy) ethyl) ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate (Compound A-35)
In the same manner as in Reference Example 10, Compound B-9 (0.130 g, 0.232 mmol) obtained in Reference Example 38 instead of Compound B-1 and Compound VI-1 (0.106 g, instead of Compound VI-3) 0.348 mmol) was used to give compound A-35 (0.100 g, 63% yield).
ESI-MS m / z: 690 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.85-0.92 (m, 6H), 1.20-1.39 (m, 38H), 1.45-1.59 (m, 4H ), 1.74-1.84 (m, 2H), 1.96-2.09 (m, 8H), 2.23 (s, 6H), 2.34 (t, J = 7.5 Hz, 2H), 2.77 (t, J = 5.7 Hz, 2H) , 3.21-3.30 (m, 2H), 3.35-3.44 (m, 4H), 3.45-3.55 (m, 2H), 4.11 (t, J = 6.4 Hz, 2H), 5.26-5.44 (m, 6H).
Reference Example 43
3- (Dimethylamino) propyl (2-((Z) -hexadec-9-enyloxy) ethyl) ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate (Compound A-36)
In the same manner as in Reference Example 10, instead of Compound B-1, Compound B-10 (0.150 g, 0.282 mmol) obtained in Reference Example 39 and Compound VI-1 (0.095 g, 0.310 mmol) was used to obtain compound A-36 (0.148 g, yield 79%).
ESI-MS m / z: 662 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.85-0.94 (m, 6H), 1.21-1.39 (m, 34H), 1.47-1.59 (m, 4H ), 1.76-1.84 (m, 2H), 1.94-2.09 (m, 8H), 2.23 (s, 6H), 2.34 (t, J = 7.3 Hz, 2H), 2.77 (t, J = 6.3 Hz, 2H) , 3.20-3.31 (m, 2H), 3.31-3.45 (m, 4H), 3.45-3.57 (m, 2H), 4.11 (t, J = 6.3 Hz, 2H), 5.27-5.46 (m, 6H).
Reference Example 44
3- (Piperidin-1-yl) propyl (2-((Z) -hexadec-9-enyloxy) ethyl) ((9Z, 12Z) -octadeca-9,12-dienyl) carbamate (Compound A-37)
In the same manner as in Reference Example 10, Compound B-10 (0.150 g, 0.282 mmol) obtained in Reference Example 39 instead of Compound B-1 and obtained in Reference Example A-5 instead of Compound VI-3 Compound A-4 (0.148 g, yield 75%) was obtained using Compound VI-4 (0.107 g, 0.310 mmol).
ESI-MS m / z: 702 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.82-0.96 (m, 6H), 1.23-1.39 (m, 34H), 1.39-1.48 (m, 2H ), 1.49-1.61 (m, 8H), 1.79-1.86 (m, 2H), 1.95-2.09 (m, 8H), 2.33-2.42 (m, 6H), 2.78 (t, J = 6.8 Hz, 2H), 3.21-3.32 (m, 2H), 3.34-3.44 (m, 4H), 3.46-3.56 (m, 2H), 4.10 (t, J = 6.3 Hz, 2H), 5.29-5.44 (m, 6H).
Reference Example 45
3- (Di ((Z) -octadeca-9-enyl) amino) propan-1-ol (Compound C-2)
Process 1
In the same manner as in Reference Example A-11, instead of Compound B-1, using Compound B-2 (500 mg, 0.965 mmol) obtained in Reference Example 2, 3- (di ((Z) -octadeca-9 -Ethyl) amino) ethyl propionate (548 mg, 92% yield) was obtained.
Process 2
In the same manner as in Reference Example 21, using ethyl 3- (di ((Z) -octadeca-9-enyl) amino) propionate (548 mg, 0.887 mmol) instead of compound IVj-1, compound C-2 (0.445 g, 87% yield) was obtained.
ESI-MS m/z: 577(M + H)+; 1H-NMR(CDCl3) δ: 0.88(t, J= 6.9 Hz, 6H), 1.24-1.42(m, 44H), 1.42-1.50(m, 4H), 1.65-1.70(m, 2H), 2.01(q, J= 6.4 Hz, 8H), 2.40(t, J= 7.5 Hz, 4H), 2.63(t, J= 5.5 Hz, 2H), 3.79(t, J= 5.3 Hz, 2H), 5.30-5.39(m, 4H).
参考例46
3-(ジ((11Z,14Z)-イコサ-11,14-ジエニル)アミノ)プロパン-1-オール(化合物C-3)
工程1
参考例A-11と同様の方法で、化合物B-1の代わりに参考例4で得られる化合物B-4(400 mg、0.702 mmol)を用い、3-(ジ((11Z,14Z)-イコサ-11,14-ジエニル)アミノ)プロピオン酸エチル(548 mg、収率90%)を得た。
工程2
参考例21と同様の方法で、化合物IVj-1の代わりに3-(ジ((11Z,14Z)-イコサ-11,14-ジエニル)アミノ)プロピオン酸エチル(424 mg、0.633 mmol)を用い、化合物C-3 (352 mg, 収率88%)を得た。
ESI-MS m/z: 629(M + H)+; 1H-NMR(CDCl3) δ: 0.89(t, J= 6.9 Hz, 6H), 1.24-1.40(m, 40H), 1.42-1.50(m, 4H), 1.64-1.70(m, 2H), 2.02-2.08(m, 8H), 2.40(t, J= 7.5 Hz, 4H), 2.63(t, J= 5.3 Hz, 2H), 2.78(t, J= 6.4 Hz, 4H), 3.79(t, J= 5.0 Hz, 2H), 5.29-5.42(m, 8H).
参考例47
2-(ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)アミノ)エタノール(化合物C-4)
工程1
参考例1で得られる化合物B-1(600 mg, 1.17 mmol)の1,2-ジクロロエタン(2.0 mL)溶液に炭酸カリウム(243 mg, 1.76 mmol)およびブロモ酢酸エチル(195 μL, 1.76 mmol)を加え、85℃で終夜攪拌した。得られた混合物に水を加えてヘプタンで2回抽出した。有機層を合わせて、水で洗浄し、無水硫酸ナトリウムで乾燥し、ろ過し、減圧濃縮した。残渣をアミノシリカゲルカラムクロマトグラフィー(ヘプタン/酢酸エチル = 100/0〜95/5)で精製することにより2-(ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)アミノ)酢酸エチル(527 mg, 収率75%)を得た。
工程2
参考例21と同様の方法で、化合物IVj-1の代わりに2-(ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)アミノ)酢酸エチル(527 mg、0.878 mmol)を用い、化合物C-4 (433 mg, 収率88%)を得た。
ESI-MS m/z: 559(M + H)+; 1H-NMR(CDCl3) δ: 0.89(t, J= 6.9 Hz, 6H), 1.24-1.39(m, 32H), 1.39-1.46(m, 4H), 2.02-2.08(m, 8H), 2.43(t, J= 7.5 Hz, 4H), 2.57(t, J= 5.3 Hz, 2H), 2.77(t, J= 6.2 Hz, 4H), 3.52(t, J= 5.5 Hz, 2H), 5.29-5.41(m, 8H).
参考例48
4-(ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)アミノ)ブタン-1-オール(化合物C-5)
工程1
参考例1で得られる化合物B-1(500 mg, 0.973 mmol)の1,2-ジクロロエタン(2.0 mL)溶液に炭酸カリウム(202 mg, 1.46 mmol)およびtert-ブチル(4-ヨードブトキシ)ジメチルシラン(SIGMA-ALDRICH社製, 378 μL, 1.46 mmol)を加え、85℃で4時間攪拌した。得られた混合物に水を加えてヘプタンで2回抽出した。有機層を合わせて、水で洗浄し、無水硫酸ナトリウムで乾燥し、ろ過し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘプタン/酢酸エチル = 95/5〜80/20)で精製することにより(4-(tert-ブチルジメチルシリルオキシ)ブチル)ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)アミン (233 mg, 収率34%)を得た。
工程2
(4-(tert-ブチルジメチルシリルオキシ)ブチル)ジ((9Z,12Z)-オクタデカ-9,12-ジエニル)アミン (233 mg, 0.333 mmol)のテトラヒドロフラン(5 mL)溶液に、フッ化テトラブチルアンモニウム(1 mol/L テトラヒドロフラン溶液, 0.666 mL, 0.666 mmol)を加え、室温で終夜攪拌した。得られた混合物に飽和食塩水を加えて酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥し、ろ過し、減圧濃縮した。残渣をアミノシリカゲルカラムクロマトグラフィー(ヘプタン/酢酸エチル=90/10)で精製し、さらにシリカゲルカラムクロマトグラフィー(酢酸エチル/メタノール = 100/0〜90/10)で精製することにより化合物C-5 (160 mg, 収率82%)を得た。
ESI-MS m/z: 587(M + H)+; 1H-NMR(CDCl3) δ: 0.89(t, J= 6.9 Hz, 6H), 1.23-1.40(m, 32H), 1.43-1.51(m, 4H), 1.62-1.68(m, 4H), 2.05(q, J= 7.0 Hz, 8H), 2.41-2.45(m, 6H), 2.77(t, J= 6.6 Hz, 4H), 3.53-3.56(m, 2H), 5.29-5.42(m, 8H).
参考例DS-1 二本鎖核酸の調製
配列番号1〜1180に示すリボヌクレオチドから成るセンス鎖、配列番号1181〜2360に示すリボヌクレオチドから成るアンチセンス鎖およびそれらをアニーリングさせた二本鎖核酸(配列番号n(n=1〜1180)に示すセンス鎖と配列番号[n+1180]に示すアンチセンス鎖とが対をなす)をシグマアルドリッチ社より入手した。
試験例1 β2GPI mRNAのノックダウン活性の測定
96ウェルの培養プレートにヒト肝臓癌由来の細胞株であるHepG2細胞(ATCCより入手、ATCC番号:HB-8065)を、5,000細胞/80μL/ウェルとなるよう播種した。培地は、10%ウシ胎仔血清(FBS)を含むMEM培地(ライフテクノロジー社製、カタログ番号11095-098)を用いた。表2に記載の二本鎖核酸とRNAiMaxトランスフェクション試薬(ライフテクノロジー社製、カタログ番号:1401251)をOpti-MEM 培地(ライフテクノロジー社製、カタログ番号11058-021)で希釈して、二本鎖核酸の終濃度が100pmol/Lとなるように20μLのsiRNA/RNAiMax混合液を各々96ウェルの培養プレートに添加し、37℃、5% CO2条件下で24時間培養した。その後、細胞をPBS(Phosphate buffered saline)で洗浄し、各々のプレートからCells-to-Ctキット(アプライドバイオシステムズ社製、カタログ番号:AM1728)を用いて製品に添付された説明書に記載された方法に従いcDNAを合成した。このcDNA 5μLをマイクロオプティカル(MicroAmpOptical) 96ウェルプレート(アプライドバイオシステムズ(Applied Bio Systems)社製、カタログ番号4326659)に加え、更に10μLのタックマンジーンエクスプレッションマスターミックス(TaqMan Gene Expression Master Mix)(アプライドバイオシステムズ(Applied Systems)社製、カタログ番号4369016)、3μLのウルトラディスティルドウォーター(UltraPure Distilled Water)(ライフテクノロジーズ(Life Technologies)社製、カタログ番号:10977-015)、1μLのヒトβ2GPIプローブ、1μLのヒトグリセルアルデヒド3-リン酸脱水素酵素(D-glyceraldehyde-3-phosphate dehydrogenase、以下gapdhと表す)プローブを添加し、エービーアイ7900エイチティーファスト(ABI7900HT Fast)(エービーアイ社(ABI社)製)を用い、添付された使用説明書に記載された方法に従ってPCR反応させることにより、ヒトβ2GPI遺伝子および構成的発現遺伝子であるgapdh遺伝子をPCR反応させてmRNA増幅量をそれぞれ測定し、gapdhのmRNA増幅量を内部対照として、β2GPIのmRNAの準定量値を算出した。siRNAを添加せずにトランスフェクション試薬だけでHepG2細胞を処理した時のβ2GPImRNA量の準定量値を算出し、これを1.0とした際の各siRNAを導入した時のβ2GPI mRNA相対発現量を算出した。本実験を3回行い、β2GPI mRNA相対発現量の平均値を表2−1〜表2−16に示した。
ESI-MS m / z: 577 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.9 Hz, 6H), 1.24-1.42 (m, 44H), 1.42-1.50 ( m, 4H), 1.65-1.70 (m, 2H), 2.01 (q, J = 6.4 Hz, 8H), 2.40 (t, J = 7.5 Hz, 4H), 2.63 (t, J = 5.5 Hz, 2H), 3.79 (t, J = 5.3 Hz, 2H), 5.30-5.39 (m, 4H).
Reference Example 46
3- (Di ((11Z, 14Z) -icosa-11,14-dienyl) amino) propan-1-ol (Compound C-3)
Process 1
In the same manner as in Reference Example A-11, using Compound B-4 (400 mg, 0.702 mmol) obtained in Reference Example 4 instead of Compound B-1, 3- (di ((11Z, 14Z) -icosa -11,14-dienyl) amino) ethyl propionate (548 mg, 90% yield) was obtained.
Process 2
In the same manner as in Reference Example 21, ethyl 3- (di ((11Z, 14Z) -icosa-11,14-dienyl) amino) propionate (424 mg, 0.633 mmol) was used instead of compound IVj-1. Compound C-3 (352 mg, yield 88%) was obtained.
ESI-MS m / z: 629 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.24-1.40 (m, 40H), 1.42-1.50 ( m, 4H), 1.64-1.70 (m, 2H), 2.02-2.08 (m, 8H), 2.40 (t, J = 7.5 Hz, 4H), 2.63 (t, J = 5.3 Hz, 2H), 2.78 (t , J = 6.4 Hz, 4H), 3.79 (t, J = 5.0 Hz, 2H), 5.29-5.42 (m, 8H).
Reference Example 47
2- (di ((9Z, 12Z) -octadeca-9,12-dienyl) amino) ethanol (compound C-4)
Process 1
To a solution of Compound B-1 (600 mg, 1.17 mmol) obtained in Reference Example 1 in 1,2-dichloroethane (2.0 mL) was added potassium carbonate (243 mg, 1.76 mmol) and ethyl bromoacetate (195 μL, 1.76 mmol). The mixture was further stirred at 85 ° C. overnight. Water was added to the resulting mixture, and the mixture was extracted twice with heptane. The organic layers were combined, washed with water, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by amino silica gel column chromatography (heptane / ethyl acetate = 100/0 to 95/5) to give 2- (di ((9Z, 12Z) -octadeca-9,12-dienyl) amino) ethyl acetate ( 527 mg, 75% yield).
Process 2
In the same manner as in Reference Example 21, instead of compound IVj-1, 2- (di ((9Z, 12Z) -octadeca-9,12-dienyl) amino) ethyl acetate (527 mg, 0.878 mmol) was used. C-4 (433 mg, yield 88%) was obtained.
ESI-MS m / z: 559 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.24-1.39 (m, 32H), 1.39-1.46 ( m, 4H), 2.02-2.08 (m, 8H), 2.43 (t, J = 7.5 Hz, 4H), 2.57 (t, J = 5.3 Hz, 2H), 2.77 (t, J = 6.2 Hz, 4H), 3.52 (t, J = 5.5 Hz, 2H), 5.29-5.41 (m, 8H).
Reference Example 48
4- (Di ((9Z, 12Z) -octadeca-9,12-dienyl) amino) butan-1-ol (Compound C-5)
Process 1
To a solution of Compound B-1 (500 mg, 0.973 mmol) obtained in Reference Example 1 in 1,2-dichloroethane (2.0 mL), potassium carbonate (202 mg, 1.46 mmol) and tert-butyl (4-iodobutoxy) dimethylsilane (SIGMA-ALDRICH, 378 μL, 1.46 mmol) was added and stirred at 85 ° C. for 4 hours. Water was added to the resulting mixture, and the mixture was extracted twice with heptane. The organic layers were combined, washed with water, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (heptane / ethyl acetate = 95 / 5-80 / 20) to give (4- (tert-butyldimethylsilyloxy) butyl) di ((9Z, 12Z) -octadeca-9, 12-Dienyl) amine (233 mg, 34% yield) was obtained.
Process 2
To a solution of (4- (tert-butyldimethylsilyloxy) butyl) di ((9Z, 12Z) -octadeca-9,12-dienyl) amine (233 mg, 0.333 mmol) in tetrahydrofuran (5 mL) was added tetrabutyl fluoride. Ammonium (1 mol / L tetrahydrofuran solution, 0.666 mL, 0.666 mmol) was added, and the mixture was stirred at room temperature overnight. To the obtained mixture was added saturated brine, and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by amino silica gel column chromatography (heptane / ethyl acetate = 90/10), and further purified by silica gel column chromatography (ethyl acetate / methanol = 100/0 to 90/10) to give compound C-5 ( 160 mg, yield 82%).
ESI-MS m / z: 587 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.9 Hz, 6H), 1.23-1.40 (m, 32H), 1.43-1.51 ( m, 4H), 1.62-1.68 (m, 4H), 2.05 (q, J = 7.0 Hz, 8H), 2.41-2.45 (m, 6H), 2.77 (t, J = 6.6 Hz, 4H), 3.53-3.56 (m, 2H), 5.29-5.42 (m, 8H).
Reference Example DS-1 Preparation of Double-Stranded Nucleic Acid A sense strand consisting of ribonucleotides shown in SEQ ID NOs: 1-1180, an antisense strand consisting of ribonucleotides shown in SEQ ID NOs: 1181-2360, and double-stranded nucleic acids obtained by annealing them ( A sense strand represented by SEQ ID NO: n (n = 1 to 1180) and an antisense strand represented by SEQ ID NO: [n + 1180] were paired from Sigma-Aldrich.
Test Example 1 Measurement of β2GPI mRNA knockdown activity
HepG2 cells (obtained from ATCC, ATCC number: HB-8065), a cell line derived from human liver cancer, were seeded in a 96-well culture plate at 5,000 cells / 80 μL / well. As the medium, a MEM medium (Life Technologies, catalog number 11095-098) containing 10% fetal bovine serum (FBS) was used. Double-stranded nucleic acids listed in Table 2 and RNAiMax transfection reagent (Life Technology, catalog number: 1401251) are diluted with Opti-MEM medium (Life Technology, catalog number 11058-021) 20 μL of siRNA / RNAiMax mixture was added to each 96-well culture plate so that the final concentration of nucleic acid was 100 pmol / L, and cultured for 24 hours at 37 ° C. and 5% CO 2 . After that, the cells were washed with PBS (Phosphate buffered saline) and described in the instructions attached to the product from each plate using the Cells-to-Ct kit (Applied Biosystems, catalog number: AM1728). CDNA was synthesized according to the method. Add 5 μL of this cDNA to a MicroAmpOptical 96-well plate (Applied Bio Systems, catalog number 4326659), and add 10 μL of TaqMan Gene Expression Master Mix (Applied Biosystems). (Applied Systems, catalog number 4369016), 3 μL UltraPure Distilled Water (Life Technologies, catalog number: 10977-015), 1 μL human β2GPI probe, 1 μL human A glyceraldehyde 3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate dehydrogenase, hereinafter referred to as gapdh) probe is added, and ABI 7900 HT Fast (ABI7900HT Fast) (manufactured by ABI (ABI)) PCR reaction according to the method described in the attached instruction manual More, the gapdh gene is a human Beta2GPI genes and constitutive expression gene by a PCR reaction to measure mRNA amplification amount, respectively, as an internal control for mRNA amplification amount of gapdh, was calculated quasi quantitative value of mRNA of Beta2GPI. A semi-quantitative value of β2GPI mRNA amount was calculated when HepG2 cells were treated with transfection reagent alone without adding siRNA, and β2GPI mRNA relative expression level was calculated when each siRNA was introduced at 1.0. . This experiment was performed three times, and the average values of the relative expression levels of β2GPI mRNA are shown in Tables 2-1 to 2-16.
更に、ノックダウン活性の高い二本鎖核酸を選抜するために、二本鎖核酸の終濃度を10pmol/Lに下げて上記と同じ実験系でβ2GPI遺伝子の相対発現量を算出した。その結果を表3に示す。 Furthermore, in order to select a double-stranded nucleic acid with high knockdown activity, the final concentration of the double-stranded nucleic acid was lowered to 10 pmol / L, and the relative expression level of the β2GPI gene was calculated in the same experimental system as described above. The results are shown in Table 3.
試験例2 化学修飾した二本鎖核酸のノックダウン活性
配列番号3542〜3701に示すリボヌクレオチド配列から成るセンス鎖、配列番号3702〜3861に示すリボヌクレオチド配列から成るアンチセンス鎖およびそれらをアニーリングさせた二本鎖核酸(AH1181〜AH1340;配列番号n(n=3542〜3701)に示すセンス鎖と配列番号[n+160]に示すアンチセンス鎖とが対をなす)をシグマアルドリッチ社またはジーンデザイン社より入手した(表4−1〜表4−5参照;表中、大文字は非修飾RNAを、小文字は2’-O-メチル修飾RNAを、それぞれ示す)。二本鎖核酸番号AH1181〜1204は配列番号2456に示すβ2GPI部分配列を、AH1205〜1233は配列番号2459に示すβ2GPI部分配列を、AH1234〜1243は配列番号2485に示すβ2GPI部分配列を、AH1244〜1253は配列番号2486に示すβ2GPI部分配列、AH1254〜1263は配列番号3053に示すβ2GPI部分配列、AH1264〜1271は配列番号3185に示すβ2GPI部分配列、AH1272〜1282は配列番号3239に示すβ2GPI部分配列、AH1283〜1297は配列番号3303に示すβ2GPI部分配列、AH1298〜1311は配列番号3385に示すβ2GPI部分配列、AH1312〜1316は配列番号3398に示すβ2GPI部分配列、AH1317〜1325は配列番号3399に示すβ2GPI部分配列、およびAH1326〜1340は配列番号3499に示すβ2GPI部分配列を、それぞれ標的配列とする。
Test Example 2 Knockdown Activity of Chemically Modified Double-stranded Nucleic Acid A sense strand consisting of the ribonucleotide sequence shown in SEQ ID NOs: 3542 to 3701, an antisense strand consisting of the ribonucleotide sequence shown in SEQ ID NOs: 3702 to 3861, and annealing them Obtain double-stranded nucleic acid (AH1181-AH1340; sense strand shown in SEQ ID NO: n (n = 3542-3701) and antisense strand shown in SEQ ID NO: [n + 160]) from Sigma-Aldrich or Gene Design (See Tables 4-1 to 4-5; in the tables, uppercase letters indicate unmodified RNA, and lowercase letters indicate 2′-O-methyl-modified RNA). The double-stranded nucleic acid number AH1181-1204 is the β2GPI partial sequence shown in SEQ ID NO: 2456, AH1205-1233 is the β2GPI partial sequence shown in SEQ ID NO: 2459, AH1234-1243 is the β2GPI partial sequence shown in SEQ ID NO: 2485, and AH1244-1253 Is a β2GPI partial sequence shown in SEQ ID NO: 2486, AH1254-1263 is a β2GPI partial sequence shown in SEQ ID NO: 3053, AH1264-1271 is a β2GPI partial sequence shown in SEQ ID NO: 3185, AH1272-11282 is a β2GPI partial sequence shown in SEQ ID NO: 3239, AH1283 ˜1297 is the β2GPI partial sequence shown in SEQ ID NO: 3303, AH1298-1311 is the β2GPI partial sequence shown in SEQ ID NO: 3385, AH1312-1316 is the β2GPI partial sequence shown in SEQ ID NO: 3398, and AH1317-1325 is shown in SEQ ID NO: 3399. 2GPI subsequences, and AH1326~1340 is a β2GPI partial sequence shown in SEQ ID NO: 3499, respectively to the target sequence.
これらの二本鎖核酸を、試験例1と同様の方法で、HepG2細胞に導入し24時間経過した際のβ2GPI mRNA相対発現量を算出した。その結果を表4−1〜4-5に示す。 These double-stranded nucleic acids were introduced into HepG2 cells in the same manner as in Test Example 1, and the relative expression level of β2GPI mRNA was calculated after 24 hours. The results are shown in Tables 4-1 to 4-5.
実施例1 化合物C-1をカチオン性脂質として含有し、AH1188、AH1191、AH1213またはAH1218を二本鎖核酸として含有する脂質粒子を含む組成物の調製
1,2-ジミリストイル-sn-グリセロ-3-ホスホエタノールアミン-N-[メトキシ(ポリエチレングリコール)-2000 ナトリウム塩](PEG-DMPE Na)、ジステアロイルホスファチジルコリン(DSPC)およびコレステロールは日油社より購入した。
Example 1 Preparation of a composition comprising lipid particles containing Compound C-1 as a cationic lipid and containing AH1188, AH1191, AH1213 or AH1218 as a double-stranded nucleic acid
1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol) -2000 sodium salt] (PEG-DMPE Na), distearoylphosphatidylcholine (DSPC) and cholesterol from NOF Corporation Purchased.
各二本鎖核酸を24 mg/mLの濃度で蒸留水に溶解し、siRNA溶液を得た。
化合物C-1/PEG-DMPE Na=57.3/5.52 mmol/Lとなるように、各試料を秤量し、塩酸およびエタノールを含有する水溶液に懸濁させ、vortex攪拌ミキサーで攪拌および、加温を繰り返して均一な懸濁液を得た。この懸濁液を室温下で、0.05 μmのポリカーボネートメンブランフィルターに通し、化合物C-1/PEG-DMPE Naの粒子(リポソーム)の分散液を得た。粒子径測定装置(ゼータサイザー ナノ ZS (Zetasizer Nano ZS)、マルバーン(Malvern)社製、以下同じ)で得られたリポソームの平均粒子径を測定し、30 nmから100 nmの範囲内であることを確認した。得られたリポソームの分散液と、各siRNA 溶液を、リポソームの分散液:siRNA 溶液=3:1の割合で混合し、さらに3倍量の蒸留水を加えて混合することで化合物C-1/PEG-DMPE Na/siRNA複合体の分散液を調製した。
Each double-stranded nucleic acid was dissolved in distilled water at a concentration of 24 mg / mL to obtain a siRNA solution.
Compound C-1 / PEG-DMPE Na = 57.3 / 5.52 mmol / L Weigh each sample, suspend it in an aqueous solution containing hydrochloric acid and ethanol, and stir and heat repeatedly with a vortex mixer. And a uniform suspension was obtained. The suspension was passed through a 0.05 μm polycarbonate membrane filter at room temperature to obtain a dispersion of compound C-1 / PEG-DMPE Na particles (liposomes). Measure the average particle size of liposomes obtained with a particle size measurement device (Zetasizer Nano ZS, manufactured by Malvern, the same shall apply hereinafter) and confirm that it is within the range of 30 nm to 100 nm. confirmed. The resulting liposome dispersion and each siRNA solution were mixed at a ratio of liposome dispersion: siRNA solution = 3: 1, and further mixed with 3 times the amount of distilled water to obtain compound C-1 / A dispersion of PEG-DMPE Na / siRNA complex was prepared.
一方、化合物C-1/PEG-DMPE Na/DSPC/コレステロール = 8.947/1.078/5.707/13.698 mmol/Lとなるように、各試料を秤量し90 vol%エタノールに溶解させ、脂質膜構成成分の溶液を調製した。
得られた脂質膜構成成分の溶液を加温した後、得られた化合物C-1/PEG-DMPE Na/siRNA複合体の分散液と、1:1の割合で混合し、さらに数倍量の蒸留水を混合して、粗製剤を得た。
On the other hand, each sample was weighed and dissolved in 90 vol% ethanol so that the compound C-1 / PEG-DMPE Na / DSPC / cholesterol = 8.947 / 1.078 / 5.707 / 13.698 mmol / L, and the solution of lipid membrane components Was prepared.
After heating the resulting lipid membrane component solution, the resulting mixture was mixed with the resulting compound C-1 / PEG-DMPE Na / siRNA complex dispersion at a ratio of 1: 1, and then several times the amount. Distilled water was mixed to obtain a crude preparation.
得られた粗製剤はアミコンウルトラ(Millipore社製)を用いて濃縮後、生理食塩水で希釈し、0.2 μmのフィルター(東洋濾紙社製)を用いてクリーンベンチ内でろ過した。得られた組成物を、siRNA濃度を測定後に、生理食塩水を用いて希釈することで、製剤1〜4(化合物C-1をカチオン性脂質として含有し、AH1188、AH1191、AH1213またはAH1218を二本鎖核酸として含有する組成物)を得た。 The obtained crude preparation was concentrated using Amicon Ultra (manufactured by Millipore), diluted with physiological saline, and filtered in a clean bench using a 0.2 μm filter (manufactured by Toyo Roshi Kaisha, Ltd.). The obtained composition was diluted with physiological saline after measuring the siRNA concentration, whereby preparations 1 to 4 (compound C-1 was contained as a cationic lipid and AH1188, AH1191, AH1213 or AH1218 A composition containing as a single-stranded nucleic acid) was obtained.
粒子径測定装置で製剤中の脂質粒子の平均粒子径を測定した。結果を表5に示す。 The average particle size of lipid particles in the preparation was measured with a particle size measuring device. The results are shown in Table 5.
実施例2 化合物C-4をカチオン性脂質として含有し、AH1187、AH1191、AH1213またはAH1225を二本鎖核酸として含有する脂質粒子を含む組成物の調製
実施例1と同様にして以下のように製剤を調製した。
各二本鎖核酸を12 mg/mLの濃度で蒸留水に溶解し、siRNA溶液を得た。
化合物C-4/PEG-DMPE Na=57.3/5.52 mmol/Lとなるように、各試料を秤量し、塩酸およびエタノールを含有する水溶液に懸濁させ、vortex攪拌ミキサーで攪拌および、加温を繰り返して均一な懸濁液を得た。この懸濁液を室温下で、0.05 μmのポリカーボネートメンブランフィルターに通し、化合物C-4/PEG-DMPE Naの粒子(リポソーム)の分散液を得た。粒子径測定装置で得られたリポソームの平均粒子径を測定し、30 nmから100 nmの範囲内であることを確認した。得られたリポソームの分散液と、各siRNA 溶液を、リポソームの分散液:siRNA 溶液=3:1の割合で混合し、さらに11倍量の蒸留水を加えて混合することで化合物C-4/PEG-DMPE Na/siRNA複合体の分散液を調製した。
Example 2 Preparation of Composition Containing Lipid Particles Containing Compound C-4 as Cationic Lipid and AH1187, AH1191, AH1213, or AH1225 as Double-Stranded Nucleic Acid Was prepared.
Each double-stranded nucleic acid was dissolved in distilled water at a concentration of 12 mg / mL to obtain a siRNA solution.
Compound C-4 / PEG-DMPE Each sample was weighed so that Na = 57.3 / 5.52 mmol / L, suspended in an aqueous solution containing hydrochloric acid and ethanol, and stirred and heated repeatedly with a vortex mixer. And a uniform suspension was obtained. This suspension was passed through a 0.05 μm polycarbonate membrane filter at room temperature to obtain a dispersion of compound C-4 / PEG-DMPE Na particles (liposomes). The average particle size of the liposomes obtained with a particle size measuring device was measured and confirmed to be within the range of 30 nm to 100 nm. The resulting liposome dispersion and each siRNA solution were mixed at a ratio of liposome dispersion: siRNA solution = 3: 1, and further mixed with 11 times the amount of distilled water. A dispersion of PEG-DMPE Na / siRNA complex was prepared.
一方、化合物C-4/PEG-DMPE Na/DSPC/コレステロール = 4.470/0.074/2.990/7.182 mmol/Lとなるように、各試料を秤量し100 vol%エタノールに溶解させ、脂質膜構成成分の溶液を調製した。
得られた脂質膜構成成分の溶液と、得られた化合物C-4/PEG-DMPE Na/siRNA複合体の分散液を、2:3の割合で混合し、さらに数倍量の蒸留水を混合して、粗製剤を得た。
On the other hand, each sample was weighed and dissolved in 100 vol% ethanol so that the compound C-4 / PEG-DMPE Na / DSPC / cholesterol = 4.470 / 0.074 / 2.990 / 7.182 mmol / L. Was prepared.
The resulting lipid membrane component solution and the resulting compound C-4 / PEG-DMPE Na / siRNA complex dispersion are mixed at a ratio of 2: 3, and then several times the amount of distilled water is mixed. Thus, a crude preparation was obtained.
得られた粗製剤はアミコンウルトラを用いて濃縮後、生理食塩水で希釈し、0.2 μmのフィルターを用いてクリーンベンチ内でろ過した。得られた組成物を、siRNA濃度を測定後に、生理食塩水を用いて希釈することで、製剤5〜8(化合物C-4をカチオン性脂質として含有し、AH1187、AH1191、AH1213またはAH1225を二本鎖核酸として含有する組成物)を得た。粒子径測定装置で製剤中の脂質粒子の平均粒子径を測定した。結果を表6に示す。 The obtained crude preparation was concentrated using Amicon Ultra, diluted with physiological saline, and filtered in a clean bench using a 0.2 μm filter. After the siRNA concentration was measured, the obtained composition was diluted with physiological saline, whereby preparations 5 to 8 (compound C-4 was contained as a cationic lipid and AH1187, AH1191, AH1213, or AH1225 A composition containing as a single-stranded nucleic acid) was obtained. The average particle size of lipid particles in the preparation was measured with a particle size measuring device. The results are shown in Table 6.
実施例3 化合物C-1または化合物C-4をカチオン性脂質として含有し、AH1191を二本鎖核酸として含有する脂質粒子を含む組成物の調製
実施例1と同様にして以下のように製剤を調製した。
各二本鎖核酸を12 mg/mLの濃度で蒸留水に溶解し、siRNA溶液を得た。
カチオン性脂質/PEG-DMPE Na=57.3/5.52 mmol/Lとなるように、各試料を秤量し、塩酸およびエタノールを含有する水溶液に懸濁させ、vortex攪拌ミキサーで攪拌および、加温を繰り返して均一な懸濁液を得た。この懸濁液を室温下で、0.05 μmのポリカーボネートメンブランフィルターに通し、カチオン性脂質/PEG-DMPE Naの粒子(リポソーム)の分散液を得た。粒子径測定装置で得られたリポソームの平均粒子径を測定し、30 nmから100 nmの範囲内であることを確認した。得られたリポソームの分散液と、各siRNA 溶液を、リポソームの分散液:siRNA 溶液=3:1の割合で混合し、さらに11倍量の蒸留水を加えて混合することでカチオン性脂質/PEG-DMPE Na/siRNA複合体の分散液を調製した。
Example 3 Preparation of Composition Containing Lipid Particles Containing Compound C-1 or Compound C-4 as a Cationic Lipid and AH1191 as a Double-Stranded Nucleic Acid A formulation is prepared as follows in the same manner as in Example 1. Prepared.
Each double-stranded nucleic acid was dissolved in distilled water at a concentration of 12 mg / mL to obtain a siRNA solution.
Weigh each sample so that it becomes cationic lipid / PEG-DMPE Na = 57.3 / 5.52 mmol / L, suspend it in an aqueous solution containing hydrochloric acid and ethanol, and stir and heat repeatedly with a vortex mixer. A homogeneous suspension was obtained. This suspension was passed through a 0.05 μm polycarbonate membrane filter at room temperature to obtain a dispersion of cationic lipid / PEG-DMPE Na particles (liposomes). The average particle size of the liposomes obtained with a particle size measuring device was measured and confirmed to be within the range of 30 nm to 100 nm. The resulting liposome dispersion and each siRNA solution are mixed at a ratio of liposome dispersion: siRNA solution = 3: 1, and 11 times the amount of distilled water is added and mixed to mix the cationic lipid / PEG. -A dispersion of DMPE Na / siRNA complex was prepared.
一方、カチオン性脂質/PEG-DMPE Na/DSPC/コレステロール = 4.470/0.074/2.990/7.182 mmol/Lとなるように、各試料を秤量し100 vol%エタノールに溶解させ、脂質膜構成成分の溶液を調製した。
得られた脂質膜構成成分の溶液と、得られたカチオン性脂質/PEG-DMPE Na/siRNA複合体の分散液を、2:3の割合で混合し、これを数倍量の蒸留水に加えて、粗製剤を得た。
On the other hand, each sample was weighed and dissolved in 100 vol% ethanol so that the cationic lipid / PEG-DMPE Na / DSPC / cholesterol = 4.470 / 0.074 / 2.990 / 7.182 mmol / L. Prepared.
The resulting lipid membrane component solution and the resulting cationic lipid / PEG-DMPE Na / siRNA complex dispersion are mixed at a ratio of 2: 3, and this is added to several times the amount of distilled water. Thus, a crude preparation was obtained.
得られた粗製剤はアミコンウルトラを用いて濃縮後、生理食塩水で希釈し、0.2 μmのフィルターを用いてクリーンベンチ内でろ過した。得られた組成物を、siRNA濃度を測定後に、生理食塩水を用いて希釈することで、製剤9および10 (化合物C-1または化合物C-4をカチオン性脂質として含有し、AH1191を二本鎖核酸として含有する組成物)を得た。
粒子径測定装置で製剤中の脂質粒子の平均粒子径を測定した。結果を表7に示す。
The obtained crude preparation was concentrated using Amicon Ultra, diluted with physiological saline, and filtered in a clean bench using a 0.2 μm filter. After the siRNA concentration was measured, the obtained composition was diluted with physiological saline to prepare preparations 9 and 10 (compound C-1 or compound C-4 as a cationic lipid and two AH1191s). A composition containing as a strand nucleic acid) was obtained.
The average particle size of lipid particles in the preparation was measured with a particle size measuring device. The results are shown in Table 7.
試験例3
製剤のマウスにおけるin vivo活性(血中β2GPIタンパク質発現抑制)
実施例1で得られた各製剤につき、それぞれ以下の方法によりin vivo評価試験を実施した。なお、各製剤は、試験に合わせて生理食塩水(大塚製薬社製)で希釈して用いた。
血中タンパク質濃度を測定するために使用するマウスβ2GPIに対する抗体はウサギをマウスβ2GPIで免疫することで作製した。ウサギ(日本白色種)を馴化飼育後、フロイント完全アジュバントと混合したマウスβ2GPI組換えタンパク質を背部皮下投与した。初回投与から14日後に、フロイント不完全アジュバントと混合したマウスβ2GPI組換えタンパク質を背部皮下および大腿部筋肉内投与した。2度目の投与から14日後に採血し、得られた血清から抗体をマブセレクト シュア(ジーイー ヘルスケア社, カタログ番号:17-0618-02)を用いて製品の説明書に記載された方法に従い、精製した。得られた抗体をペルオキシダーゼ ラベリングキット-NH2(同仁化学研究所社製、カタログ番号:LK11)を用いて、製品の説明書に記載された方法に従い、HRP標識した。
Test example 3
In vivo activity of the preparation in mice (inhibition of blood β2GPI protein expression)
Each formulation obtained in Example 1 was subjected to an in vivo evaluation test by the following method. Each preparation was diluted with physiological saline (manufactured by Otsuka Pharmaceutical Co., Ltd.) according to the test.
The antibody against mouse β2GPI used for measuring blood protein concentration was prepared by immunizing a rabbit with mouse β2GPI. After the rabbit (Japanese white breed) was acclimated and bred, mouse β2GPI recombinant protein mixed with Freund's complete adjuvant was subcutaneously administered to the back. Fourteen days after the first administration, mouse β2GPI recombinant protein mixed with Freund's incomplete adjuvant was administered subcutaneously in the back and in the thigh muscle. Blood was collected 14 days after the second administration, and antibodies were collected from the obtained serum using Mab Select Sure (GE Healthcare, catalog number: 17-0618-02) according to the method described in the product instructions. Purified. The obtained antibody was labeled with HRP using a peroxidase labeling kit-NH2 (manufactured by Dojindo Laboratories, catalog number: LK11) according to the method described in the product instructions.
マウス(Balb/c、日本クレアより入手)を馴化飼育後、各製剤を、siRNA濃度として0.1 mg/kgでマウスに静脈内投与した。投与から2日後の血液をヘパリンリチウムを塗布したマイクロティナ(ベクトン・ディッキンソン社製、365965)に採血し、小型冷却遠心機(05PR-22:日立社製)を用いて8000 rpm、8分間、4℃で遠心分離し、血漿を採取した。得られた血漿中のβ2GPIタンパク濃度を、以下の方法により測定した。抗マウス/ラット アポリポタンパク質H 抗体(アールアンドディーシステムズ(R&D Systems)社製、カタログ:AF6575)を4mg/mLで100mLずつ96wellのイムノプレートに分注し、4℃の条件で16時間固相化した。抗体溶液を除去した後、1%(w/v)になるよう滅菌水で溶解したブロックエース(DSファーマ、カタログ番号:UK-B40)を200mLずつ分注し、室温で1時間ブロッキングした。ブロックエース溶液を除去した後、ダルベッコリン酸緩衝生理食塩水(カルシウム、マグネシウム不含、ナカライテスク社製、カタログ番号:14249-95)で希釈したマウス血しょうおよびマウスβ2GPI組換えタンパク質溶液(標準液)を50mLずつ分注し、室温で1時間反応させた。Tween-PBS(和光社製、カタログ番号:288-09368)を用いて3回洗浄を行った後、ブロックエース粉末質量/DPBS体積の比が0.1%(w/v)であるブロックエースを含むダルベッコリン酸緩衝生理食塩水で希釈した上記HRP標識ウサギ抗体を50mLずつ分注し、室温で1時間反応させた。Tween-PBSで3回洗浄後、TMBサブストレートクロモゲン(TMB+ Substrate-Chromogen)(ダコ(Dako)社製、カタログ番号:S1599)を50mL添加し、15分反応させた後0.5mol/L硫酸(和光社製、カタログ番号:192-04755)を50mL添加することで反応を終了させた。反応液の吸光度をARVO-X3(パーキンエルマー(Perkin Elmer)社製、450nm)もしくはEnVision-2102(パーキンエルマー(Perkin Elmer)社製、450nm)で測定した。得られた吸光度から検量線を作成し、血漿中のβ2GPIタンパク質濃度を算出した。 Mice (Balb / c, obtained from CLEA Japan, Inc.) were acclimated and bred, and then each formulation was intravenously administered to mice at an siRNA concentration of 0.1 mg / kg. Two days after administration, blood was collected in microtina (Becton Dickinson, 365965) coated with heparin lithium, and 8000 rpm, 8 minutes, 4 minutes using a small cooling centrifuge (05PR-22: Hitachi). Plasma was collected by centrifugation at 0 ° C. The β2GPI protein concentration in the obtained plasma was measured by the following method. Dispense anti-mouse / rat apolipoprotein H antibody (manufactured by R & D Systems, catalog: AF6575) at 4 mg / mL into 96-well immunoplates at 96 ° C for 16 hours at 4 ° C did. After removing the antibody solution, 200 ml each of Block Ace (DS Pharma, catalog number: UK-B40) dissolved in sterilized water to 1% (w / v) was dispensed and blocked at room temperature for 1 hour. After removing the Block Ace solution, mouse plasma and mouse β2GPI recombinant protein solution (standard solution) diluted with Dulbecco's phosphate buffered saline (without calcium and magnesium, manufactured by Nacalai Tesque, catalog number: 14249-95) ) Was dispensed in 50 mL portions and allowed to react at room temperature for 1 hour. After washing 3 times with Tween-PBS (Wako, Catalog No. 288-09368), Dulbecco containing Block Ace with a ratio of Block Ace powder mass / DPBS volume of 0.1% (w / v) 50 mL of the above HRP-labeled rabbit antibody diluted with phosphate buffered saline was dispensed and allowed to react at room temperature for 1 hour. After washing 3 times with Tween-PBS, 50 mL of TMB substrate chromogen (TMB + Substrate-Chromogen) (manufactured by Dako, catalog number: S1599) was added, reacted for 15 minutes, and then 0.5 mol / L sulfuric acid ( The reaction was terminated by adding 50 mL of Wako, catalog number: 192-04755). The absorbance of the reaction solution was measured with ARVO-X3 (Perkin Elmer, 450 nm) or EnVision-2102 (Perkin Elmer, 450 nm). A calibration curve was created from the obtained absorbance, and the β2GPI protein concentration in plasma was calculated.
算出された血漿中のβ2GPIタンパク質濃度の結果を、生理食塩水投与群に対する抑制率として表8に示す。 The results of the calculated β2GPI protein concentration in plasma are shown in Table 8 as the inhibition rate with respect to the physiological saline administration group.
試験例4
製剤のHepG2細胞に対するin vitro活性(肝臓中β2GPI mRNA発現抑制)
実施例2で得られた各製剤につき、それぞれ以下の方法により、ヒト肝がん由来細胞株HepG2細胞(HB-8065)に導入した。
核酸の最終濃度が1-10000 pmol/Lとなるように、オプティメム(Opti-MEM、ギブコ(GIBCO)社、31985)で希釈した各製剤を、96ウェルの培養プレートに、20μLずつ分注した後、10%ウシ胎仔血清(FBS、SAFCバイオサイエンス(SAFC Biosciences)社、12203C)を含むOpti-MEMに懸濁させたHepG2細胞を、細胞数12500/80μL/ウェルとなるように播種し、37℃、5%CO2条件下で培養することで、各製剤をHepG2細胞内に導入した。また陰性対照の群として何も処理しない細胞を播種した。
Test example 4
In vitro activity of the preparation against HepG2 cells (suppression of β2GPI mRNA expression in the liver)
Each preparation obtained in Example 2 was introduced into a human liver cancer-derived cell line HepG2 cell (HB-8065) by the following method.
After dispensing each preparation diluted with Optimem (Opti-MEM, GIBCO, 31985) so that the final concentration of nucleic acid is 1-10000 pmol / L, it is dispensed 20 μL each into a 96-well culture plate HepG2 cells suspended in Opti-MEM containing 10% fetal bovine serum (FBS, SAFC Biosciences, 12203C) were seeded at a cell number of 12500/80 μL / well, and incubated at 37 ° C. Each formulation was introduced into HepG2 cells by culturing under 5% CO 2 conditions. In addition, as a negative control group, cells not treated were seeded.
各製剤を導入した細胞を37℃の5%CO2インキュベーター内で24時間培養し、氷冷したリン酸緩衝化生理食塩水(PBS、ギブコ社(GIBCO社)製、カタログ番号14190)で洗浄し、スーパープレップ(登録商標)セルリシスアンドアールティーキットフォーキューピーシーアール (東洋紡社製、カタログ番号SCQ-101)を用いて、製品に添付された説明書に記載された方法に従い、全RNAの回収と、得られた全RNAを鋳型とする逆転写反応によるcDNAの作製とを行った。 Cells into which each preparation has been introduced are cultured for 24 hours in a 5% CO 2 incubator at 37 ° C, and washed with ice-cold phosphate buffered saline (PBS, manufactured by Gibco (GIBCO), catalog number 14190). , Super Prep (Registered Trademark) Cellulosis and RT Tea Kit Forkyu PCR (Toyobo Co., Ltd., Catalog No.SCQ-101) was used to collect total RNA according to the method described in the instructions attached to the product. Then, cDNA was prepared by reverse transcription reaction using the obtained total RNA as a template.
得られたcDNAを鋳型とし、タックマン(登録商標)ジーンエクスプレッションアッセイズプローブ(アプライドバイオシステムズ社製)をプローブとして、エービーアイ7900エイチティーファスト(ABI7900HT Fast)(エービーアイ社(ABI社)製)を用い、添付された使用説明書に記載された方法に従ってPCR反応させることにより、β2GPI遺伝子および構成的発現遺伝子であるグリセルアルデヒド3-リン酸脱水素酵素(D-glyceraldehyde-3-phosphate dehydrogenase、以下gapdhと表す)遺伝子をPCR反応させてmRNA増幅量をそれぞれ測定し、gapdhのmRNA増幅量を内部対照として、β2GPIのmRNAの準定量値を算出した。同様に測定した陰性対照におけるβ2GPIのmRNAの準定量値を1として、β2GPIのmRNAの準定量値から、β2GPIのmRNAの発現率を求めた。得られたβ2GPIのmRNAの発現率の結果を、IC50値として表9に示す。 Using the obtained cDNA as a template, Tacman (registered trademark) Gene Expression Assays probe (Applied Biosystems) as a probe, ABI7900HT Fast (ABI7900HT Fast) (ABI (ABI)) By using a PCR reaction according to the method described in the attached instruction manual, β2GPI gene and constitutive expression gene glyceraldehyde 3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate dehydrogenase, hereinafter The mRNA amplification amount was measured by PCR reaction of the gene (denoted gapdh), and the semi-quantitative value of β2GPI mRNA was calculated using the gapdh mRNA amplification amount as an internal control. The expression rate of β2GPI mRNA was determined from the semiquantitative value of β2GPI mRNA, with the semiquantitative value of β2GPI mRNA in the negative control measured in the same manner as 1. The results of the expression rate of the obtained β2GPI mRNA are shown in Table 9 as IC50 values.
試験例5
製剤のマウスにおけるin vivo活性(肝臓中β2GPI mRNA発現抑制)
実施例2で得られた各製剤につき、それぞれ以下の方法によりin vivo評価試験を実施した。なお、各製剤は、試験に合わせて生理食塩水(大塚製薬社製)で希釈して用いた。マウス(Balb/c、日本クレアより入手)を馴化飼育後、各製剤を、siRNA濃度として0.03 mg/kgでマウスに静脈内投与した。投与から2日後に肝臓を採取し液体窒素で凍結保存した。肝臓凍結サンプルをトリゾール(登録商標)アールエヌエーアイソレーションリージェンツ (ライフテクノロジーズ社(Life Technologies)社製、カタログ番号15596026)およびマグナピュアセルラーアールエヌエーラージボリュームキット (ロシュ社(Roche社)製、カタログ番号05467535001)を用いて、製品に添付された説明書に記載された方法に従い、全RNAの回収を行った。さらにトランスクリプターファーストストランドシーディーエヌエーシンセシスキット (ロシュ社(Roche社)製、カタログ番号04897030001)を用いて、製品に添付された説明書に記載された方法に従い、得られた全RNAを鋳型とする逆転写反応によるcDNAの作製を行った。得られたcDNAを鋳型とし、タックマン(登録商標)ジーンエクスプレッションアッセイズプローブ(アプライドバイオシステムズ社製)をプローブとして、エービーアイ7900エイチティーファストABI7900HT Fast(ABI社製)を用い、添付された使用説明書に記載された方法に従ってPCR反応させることにより、β2GPI遺伝子および構成的発現遺伝子であるグリセルアルデヒド3-リン酸脱水素酵素(D-glyceraldehyde-3-phosphate dehydrogenase、以下gapdhと表す)遺伝子をPCR反応させてmRNA増幅量をそれぞれ測定し、gapdhのmRNA増幅量を内部対照として、β2GPIのmRNAの準定量値を算出した。同様に測定した生理食塩水投与群におけるβ2GPIのmRNAの準定量値を1として、β2GPIのmRNAの準定量値から、β2GPIのmRNAの発現率を求めた。得られたβ2GPIのmRNAの発現抑制率の結果を表10に示す。
Test Example 5
In vivo activity of the preparation in mice (inhibition of β2GPI mRNA expression in the liver)
Each formulation obtained in Example 2 was subjected to an in vivo evaluation test by the following method. Each preparation was diluted with physiological saline (manufactured by Otsuka Pharmaceutical Co., Ltd.) according to the test. Mice (Balb / c, obtained from Clea Japan) were acclimated and bred, and then each formulation was intravenously administered to mice at an siRNA concentration of 0.03 mg / kg. Two days after administration, the liver was collected and stored frozen in liquid nitrogen. Liver frozen samples were prepared using Trizol® NA Isolation Regents (Life Technologies, catalog number 15596026) and Magna Pure Cellular NA Volume Volume Kit (Roche), catalog number 05467535001) was used to collect total RNA according to the method described in the instructions attached to the product. Furthermore, reverse transcription using the total RNA obtained as a template according to the method described in the instructions attached to the product using the transcripter first strand CDNA synthesis kit (Roche, catalog number 04897030001). CDNA was prepared by photoreaction. Using the obtained cDNA as a template, Tackman (registered trademark) Gene Expression Assays probe (Applied Biosystems) as a probe, AB I 7900 H Fast ABI 7900HT Fast (ABI) attached, instructions attached PCR reaction according to the method described in the document, the β2GPI gene and the constitutively expressed gene glyceraldehyde 3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate dehydrogenase) The amount of amplified mRNA was measured for each reaction, and the semi-quantitative value of β2GPI mRNA was calculated using the amount of amplified mRNA of gapdh as an internal control. Similarly, the β2GPI mRNA expression rate was determined from the β2GPI mRNA quasi-quantitative value of 1 in the same physiological saline administration group. Table 10 shows the results of the expression suppression rate of the obtained β2GPI mRNA.
試験例6
製剤のマウスにおけるin vivo活性(血中β2GPIタンパク質発現抑制)
試験例3と同様の方法で、製剤5〜8をsiRNA濃度として0.03 mg/kgずつbalb/cマウスに投与し、投与7日後において採血して、β2GPIタンパク質量を測定した。測定した血中β2GPIタンパク質量を生理食塩水投与群に対する抑制率として表11に示す。
Test Example 6
In vivo activity of the preparation in mice (inhibition of blood β2GPI protein expression)
In the same manner as in Test Example 3, preparations 5 to 8 were administered to balb / c mice at 0.03 mg / kg as siRNA concentrations, and blood was collected 7 days after administration to measure the amount of β2GPI protein. Table 11 shows the measured amount of β2GPI protein in the blood as the inhibition rate relative to the physiological saline administration group.
試験例7
製剤のマウスにおける免疫刺激性の評価
製剤5〜8をsiRNA濃度として0.3 mg/kgずつbalb/cマウスに投与し、投与24時間後の血液を凝固促進剤を塗布したマイクロティナ(BD社製、365967)に採血し、小型冷却遠心機(05PR-22:日立社製)を用いて8000 rpm、8分間、4℃で遠心分離し、血清を採取した。得られた血清中のGranulocyte-colony stimulating factor (G-CSF)、 Keratinocyte-derived Cytokine (KCまたはGRO)、Interferon -γ (IFN-g)、Tumor Necrosis Factor (TNF)、Interleukin-1b (IL-1b)、Interleukin-10 (IL-10)およびInterleukin-6 (IL-6)の値を、ビーディーシービーエーフレックスセット(ビーディー社(BD社)製)およびビーディーファックスバース(BD FACSVers) フローサイトメーター(BD社製)を用いて、製品に添付された説明書に記載された方法に従い定量した。
Test Example 7
Evaluation of immunostimulatory properties in mice of preparations Microtina (manufactured by BD Co., Ltd.) in which preparations 5 to 8 were administered to balb / c mice at 0.3 mg / kg as siRNA concentrations, and blood was applied 24 hours after administration. 365967) and centrifuged at 8000 rpm for 8 minutes at 4 ° C. using a small refrigerated centrifuge (05PR-22: manufactured by Hitachi) to collect serum. Granulocyte-colony stimulating factor (G-CSF), Keratinocyte-derived Cytokine (KC or GRO), Interferon-γ (IFN-g), Tumor Necrosis Factor (TNF), Interleukin-1b (IL-1b) ), Interleukin-10 (IL-10) and Interleukin-6 (IL-6) values were calculated using the BDCB Flex Set (BD Corporation) and BD FACSVers flow cytometer ( BD), and was quantified according to the method described in the instructions attached to the product.
測定した血中G-CSFおよびKC濃度を表12に示す。表12に示した以外のサイトカイン(IFN-g, TNF, IL-1b, IL-10およびIL-6)については生理食塩水および製剤5〜8を投与した群でいずれも定量下限(10 pg/mL)以下であった。 The measured blood G-CSF and KC concentrations are shown in Table 12. For cytokines other than those shown in Table 12 (IFN-g, TNF, IL-1b, IL-10, and IL-6), the lower limit of quantification (10 pg / mL) or less.
試験例8
製剤のマウスにおけるin vivo活性(血中β2GPI mRNA発現抑制)
試験例5と同様にして、実施例3で得られた製剤9, 10をsiRNA濃度として0.01 mg/kgずつbalb/cマウスに投与し、投与2日後における肝臓中のβ2GPI mRNA量を測定した。測定したmRNA量を生理食塩水投与群に対する抑制率として表13に示す。
Test Example 8
In vivo activity of the preparation in mice (inhibition of blood β2GPI mRNA expression)
In the same manner as in Test Example 5, preparations 9 and 10 obtained in Example 3 were administered to balb / c mice at 0.01 mg / kg as siRNA concentrations, and the amount of β2GPI mRNA in the liver 2 days after administration was measured. Table 13 shows the measured mRNA amount as the inhibition rate relative to the physiological saline administration group.
試験例9
製剤を投与したマウス血液に対するループスアンチコアグラント試験結果
実施例2で得られた製剤6をマウスに投与し、β2GPI依存性LAの解除が可能か否か評価した。
馴化飼育したマウス(Balb/c、日本クレア社より入手)に実施例2で得られた製剤6をsiRNA濃度で0.1mg/kg、静脈内投与した。対照群となるマウスには生理食塩水を投与した。なお、試験は生理食塩水投与群2匹、製剤6投与群3匹を用いて実施し、生理食塩水投与群を個体番号1〜2とし、製剤6投与群を個体番号3〜5とした。
Test Example 9
Results of Lupus Anticoagulant Test on Blood of Mice Administered with Formulation Formulation 6 obtained in Example 2 was administered to mice to evaluate whether or not β2GPI-dependent LA can be released.
The formulation 6 obtained in Example 2 was intravenously administered at 0.1 mg / kg in siRNA concentration to acclimated mice (Balb / c, obtained from Clea Japan, Inc.). Saline was administered to the control group of mice. The test was carried out using 2 saline administration groups and 3 preparation 6 administration groups. The saline administration group was assigned individual numbers 1-2, and the preparation 6 administration group was assigned individual numbers 3-5.
投与から2日後に3.2%クエン酸溶液:血液 = 1:9の体積比となる様に採血し、採取した血液を小型冷却遠心機(MX305:トミー社製)によって1500×g (g:遠心力)、15分間、室温条件下で遠心分離した。この上清となる血漿を同条件で再度遠心分離し、バフィーコート上の血漿を回収し、これを二重遠心血漿としてLA活性評価に供した。
各個体から得られた二重遠心血漿90mLを1.5mLエッペンドルフチューブに添加し、ここに試験例2で用いたウサギ由来抗β2GPI抗体(30 mg/mL)あるいはリン酸緩衝化生理食塩水(DPBS)を10uL添加した後に室温で1時間インキュベーションした。これを37℃に設定したウォーターバス(SM-05N、タイテック社製)を用いて1分間加温し、同様に加温した100uLのLAテスト「グラディポア」試薬1(エムビーエル(MBL)社製、カタログ番号4150)をdRVVT測定用凝固活性化試薬として混合した。LA活性評価として、血液凝固を目視によって判定した。凝固時間はストップウォッチを用いて計測した。各個体について、β2GPI依存性LAとして抗β2GPI抗体添加時の凝固時間を、LA陰性時の凝固時間としてDPBS添加時の凝固時間を取得した。得られた試験結果を図1に示した。図1から明らかなように、生理食塩水投与マウスでは抗β2GPI抗体存在下の凝固時間延長、すなわちβ2GPI依存性LA活性が認められたのに対して、製剤6を投与したマウスでは抗β2GPI抗体存在下あっても凝固時間の延長は認められなかった。これは血中β2GPIの発現を低下させることでβ2GPI依存性LAを解除可能であることを示している。よって、本発明の脂質粒子を含む組成物を哺乳動物に投与し、生体内においてβ2GPI遺伝子の発現を低下させることによって、β2GPI関連疾患を治療できることが明らかとなった。
Two days after administration, blood was collected so that the volume ratio was 3.2% citrate solution: blood = 1: 9, and the collected blood was collected at 1500 × g (g: centrifugal force) using a small cooling centrifuge (MX305: manufactured by Tommy). ), And centrifuged at room temperature for 15 minutes. The supernatant plasma was centrifuged again under the same conditions, and the plasma on the buffy coat was collected, and this was subjected to LA activity evaluation as double-centrifuged plasma.
90 mL of double-centrifuged plasma obtained from each individual was added to a 1.5 mL Eppendorf tube, where the rabbit-derived anti-β2GPI antibody (30 mg / mL) used in Test Example 2 or phosphate buffered saline (DPBS) Was added for 1 hour at room temperature. This was warmed for 1 minute using a water bath (SM-05N, manufactured by Taitec Co., Ltd.) set at 37 ° C, and 100 uL LA test “Gladipore” reagent 1 (MBL (MBL), catalog) No. 4150) was mixed as a coagulation activation reagent for dRVVT measurement. As an evaluation of LA activity, blood coagulation was determined visually. The clotting time was measured using a stopwatch. For each individual, the clotting time when the anti-β2GPI antibody was added was obtained as β2GPI-dependent LA, and the clotting time when DPBS was added as the clotting time when LA was negative. The test results obtained are shown in FIG. As is clear from FIG. 1, in the mice administered with saline, coagulation time was prolonged in the presence of anti-β2GPI antibody, that is, β2GPI-dependent LA activity was observed, whereas in mice administered with formulation 6, anti-β2GPI antibody was present. There was no extension of the clotting time even if it was below. This indicates that β2GPI-dependent LA can be released by reducing the expression of β2GPI in blood. Therefore, it has been clarified that β2GPI-related diseases can be treated by administering a composition containing lipid particles of the present invention to a mammal and reducing the expression of the β2GPI gene in vivo.
本発明の脂質粒子を含む組成物を、哺乳動物に投与して、生体内において、β2GPI遺伝子発現を抑制し、β2GPI関連疾患を治療することができる。 A composition containing the lipid particles of the present invention can be administered to a mammal to suppress β2GPI gene expression in vivo and treat β2GPI-related diseases.
Claims (31)
(式中、R1は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニルであり、
R2は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニル、アルコキシエチル、アルコキシプロピル、アルケニルオキシエチル、アルケニルオキシプロピル、アルキニルオキシエチルまたはアルキニルオキシプロピルであり、
R3およびR4は、同一または異なって炭素数1〜3のアルキルであるか、または一緒になって炭素数2〜8のアルキレンを形成するか、またはR3はR5と一緒になって炭素数2〜8のアルキレンを形成し、
R5は、水素原子、炭素数1〜6のアルキル、炭素数3〜6のアルケニル、アミノ、モノアルキルアミノ、ヒドロキシ、アルコキシ、カルバモイル、モノアルキルカルバモイル、ジアルキルカルバモイルまたは同一もしくは異なって1〜3つのアミノ、モノアルキルアミノ、ヒドロキシ、アルコキシ、カルバモイル、モノアルキルカルバモイルもしくはジアルキルカルバモイルで置換された炭素数1〜6のアルキルもしくは炭素数3〜6のアルケニルであるか、またはR3と一緒になって炭素数2〜8のアルキレンを形成し、
X1は、炭素数1〜6のアルキレンであり、
X2は、単結合であるか、または炭素数1〜6のアルキレンであり、ただし、X1とX2の炭素数の和は7以下であり、R5が、水素原子の場合、X2は単結合であり、R5がR3と一緒になって炭素数2〜8のアルキレンを形成する場合、X2は単結合であるか、またはメチレンもしくはエチレンである)、
式(B)
(式中、R6は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルまたはアルキニルであり、
R7は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニル、アルコキシエチル、アルコキシプロピル、アルケニルオキシエチル、アルケニルオキシプロピル、アルキニルオキシエチルまたはアルキニルオキシプロピルである)、または
式(C)
(式中、R8は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルまたはアルキニルであり、
R9は炭素数8〜24の直鎖状または分枝状のアルキル、アルケニルもしくはアルキニル、アルコキシエチル、アルコキシプロピル、アルケニルオキシエチル、アルケニルオキシプロピル、アルキニルオキシエチルまたはアルキニルオキシプロピルであり、
X3は、炭素数1〜3のアルキレンであり、
R10は、水素原子または炭素数1〜3のアルキルである)で表されるカチオン性脂質を含む、脂質粒子。 A double-stranded nucleic acid consisting of a sense strand and an antisense strand, comprising a double-stranded region of at least 11 base pairs, comprising at least 17 nucleotides and at most 30 nucleotides in said antisense strand A double-stranded nucleic acid as a drug that is complementary to a target β2GPI mRNA sequence selected from the group described in Tables 2-1 to 2-16 in an oligonucleotide chain of a chain length; and a formula (A)
(In the formula, R 1 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms;
R 2 is linear or branched alkyl having 8 to 24 carbon atoms, alkenyl or alkynyl, alkoxyethyl, alkoxypropyl, alkenyloxyethyl, alkenyloxypropyl, alkynyloxyethyl or alkynyloxypropyl,
R 3 and R 4 are the same or different and are alkyl having 1 to 3 carbon atoms or are combined to form alkylene having 2 to 8 carbon atoms, or R 3 is combined with R 5 Forming alkylene having 2 to 8 carbon atoms,
R 5 is a hydrogen atom, alkyl having 1 to 6 carbon atoms, alkenyl having 3 to 6 carbon atoms, amino, monoalkylamino, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl, dialkylcarbamoyl, or the same or different from 1 to 3 C 1-6 alkyl or C 3-6 alkenyl substituted with amino, monoalkylamino, hydroxy, alkoxy, carbamoyl, monoalkylcarbamoyl or dialkylcarbamoyl, or carbon together with R 3 Forming alkylene of the number 2-8,
X 1 is alkylene having 1 to 6 carbon atoms,
X 2 is a single bond or alkylene having 1 to 6 carbon atoms, provided that the sum of the carbon number of X 1 and X 2 is 7 or less, and when R 5 is a hydrogen atom, X 2 Is a single bond, and when R 5 together with R 3 forms an alkylene of 2 to 8 carbon atoms, X 2 is a single bond, or is methylene or ethylene),
Formula (B)
(In the formula, R 6 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms;
R 7 is linear or branched alkyl having 8 to 24 carbon atoms, alkenyl or alkynyl, alkoxyethyl, alkoxypropyl, alkenyloxyethyl, alkenyloxypropyl, alkynyloxyethyl or alkynyloxypropyl), or a formula (C)
(In the formula, R 8 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms;
R 9 is linear or branched alkyl, alkenyl or alkynyl having 8 to 24 carbon atoms, alkoxyethyl, alkoxypropyl, alkenyloxyethyl, alkenyloxypropyl, alkynyloxyethyl or alkynyloxypropyl,
X 3 is alkylene having 1 to 3 carbon atoms,
R 10 is a hydrogen particle or a lipid particle containing a cationic lipid represented by C 1-3 alkyl.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015141352A JP2018150239A (en) | 2015-07-15 | 2015-07-15 | β2GPI GENE SILENCING RNAi PHARMACEUTICAL COMPOSITION |
TW105122521A TW201705965A (en) | 2015-07-15 | 2016-07-15 | [beta]2GPI GENE-SILENCING RNAi MEDICINE COMPOSITION |
PCT/JP2016/071076 WO2017010573A1 (en) | 2015-07-15 | 2016-07-15 | β2GPI GENE-SILENCING RNAi MEDICINE COMPOSITION |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015141352A JP2018150239A (en) | 2015-07-15 | 2015-07-15 | β2GPI GENE SILENCING RNAi PHARMACEUTICAL COMPOSITION |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018150239A true JP2018150239A (en) | 2018-09-27 |
Family
ID=57757451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015141352A Pending JP2018150239A (en) | 2015-07-15 | 2015-07-15 | β2GPI GENE SILENCING RNAi PHARMACEUTICAL COMPOSITION |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2018150239A (en) |
TW (1) | TW201705965A (en) |
WO (1) | WO2017010573A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017010575A1 (en) * | 2015-07-16 | 2018-04-26 | 協和発酵キリン株式会社 | β2GPI gene expression-suppressing nucleic acid complex |
TW201920668A (en) * | 2017-08-02 | 2019-06-01 | 日商協和醱酵麒麟有限公司 | Nucleic acid complex |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO2355851T3 (en) * | 2008-11-10 | 2018-09-01 |
-
2015
- 2015-07-15 JP JP2015141352A patent/JP2018150239A/en active Pending
-
2016
- 2016-07-15 TW TW105122521A patent/TW201705965A/en unknown
- 2016-07-15 WO PCT/JP2016/071076 patent/WO2017010573A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2017010573A1 (en) | 2017-01-19 |
TW201705965A (en) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6226476B2 (en) | Cationic lipid | |
JP6182457B2 (en) | Lipid nanoparticles for drug delivery systems containing cationic lipids | |
JP6182458B2 (en) | Lipid nanoparticles containing a combination of cationic lipids | |
JP2019508371A (en) | Compounds and compositions for intracellular delivery of drugs | |
JP6272226B2 (en) | KRAS gene expression-suppressing RNAi pharmaceutical composition | |
WO2018225871A1 (en) | Compound serving as cationic lipid | |
WO2016002753A1 (en) | Cationic lipid | |
WO2017010573A1 (en) | β2GPI GENE-SILENCING RNAi MEDICINE COMPOSITION | |
JP6495408B2 (en) | Cationic lipid | |
KR20170012366A (en) | Ckap5-gene-silencing rnai pharmaceutical composition | |
JP7043411B2 (en) | Compounds as cationic lipids | |
WO2018225873A1 (en) | Nucleic-acid-containing nanoparticles |