JP2018147838A - Methods for discharging and processing wasted lithium ion battery - Google Patents

Methods for discharging and processing wasted lithium ion battery Download PDF

Info

Publication number
JP2018147838A
JP2018147838A JP2017044526A JP2017044526A JP2018147838A JP 2018147838 A JP2018147838 A JP 2018147838A JP 2017044526 A JP2017044526 A JP 2017044526A JP 2017044526 A JP2017044526 A JP 2017044526A JP 2018147838 A JP2018147838 A JP 2018147838A
Authority
JP
Japan
Prior art keywords
lithium ion
ion battery
surfactant
aqueous solution
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017044526A
Other languages
Japanese (ja)
Other versions
JP6847716B2 (en
Inventor
充志 中村
Mitsuji Nakamura
充志 中村
典敏 田村
Noritoshi Tamura
典敏 田村
泰之 石田
Yasuyuki Ishida
泰之 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2017044526A priority Critical patent/JP6847716B2/en
Publication of JP2018147838A publication Critical patent/JP2018147838A/en
Application granted granted Critical
Publication of JP6847716B2 publication Critical patent/JP6847716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide methods for discharging and processing a wasted lithium ion battery, which can reduce an environmental load and suppress the rapid change in voltage in discharge, and thus enable the achievement of a safe work operation.SOLUTION: A method for discharging a wasted lithium ion battery comprises immersing the lithium ion battery in an aqueous solution containing a surfactant and then discharging the battery. The concentration of the surfactant in the aqueous solution may be made 0.5% or more and 1.5% or less. The electric conductivity of the aqueous solution may be made 500 ms/m or more and 5000 ms/m or less. A method for processing a wasted lithium ion battery comprises : immersing the lithium ion battery in an aqueous solution containing a surfactant and then discharging the battery; roasting the lithium ion battery thus discharged; and smashing the lithium ion battery thus roasted, followed by classification.SELECTED DRAWING: Figure 3

Description

本発明は、ハイブリッド自動車や電気自動車等の電源として使用された廃リチウムイオン電池の放電方法及び処理方法に関する。   The present invention relates to a method for discharging and treating a waste lithium ion battery used as a power source for a hybrid vehicle or an electric vehicle.

ハイブリッド自動車や電気自動車等の電動車両用の電源として用いられるリチウムイオン電池は、リチウムイオン電池セルとして電池モジュールに複数配列され、電池モジュールを樹脂製の箱型筐体内に複数収納した電池パックとして車両に搭載される。この電池パックにおいて、複数の電池モジュールはワイヤーハーネス等で電気的に接続され、電池パックには、さらに電池制御システムや強電回路を遮断する回路やスイッチ等が搭載されている。   A lithium ion battery used as a power source for an electric vehicle such as a hybrid vehicle or an electric vehicle is arranged in a plurality of battery modules as lithium ion battery cells, and the vehicle is a battery pack in which a plurality of battery modules are housed in a resin-made box-shaped housing. Mounted on. In this battery pack, a plurality of battery modules are electrically connected by a wire harness or the like, and the battery pack is further mounted with a circuit, a switch, and the like for cutting off the battery control system and the high-power circuit.

リチウムイオン電池は、アルミ箔にリチウム、コバルト、ニッケル等を塗布した正極材と、銅箔に黒鉛等を塗布した負極材と、電解液と、セパレーター等からなるため、リチウム、コバルト、ニッケル、銅、アルミニウム等の有価物を含む。そのため、廃棄されたリチウム電池からこれらの有価物を回収することは、資源に乏しいわが国にとって極めて有益である。   A lithium ion battery is composed of a positive electrode material in which lithium, cobalt, nickel, etc. are applied to an aluminum foil, a negative electrode material in which graphite, etc. is applied to a copper foil, an electrolytic solution, a separator, etc., so that lithium, cobalt, nickel, copper Including valuable materials such as aluminum. Therefore, recovering these valuable materials from discarded lithium batteries is extremely beneficial for Japan, which is scarce of resources.

廃リチウムイオン電池から上記有価物を回収するため、焙焼、破砕又は粉砕、篩い分け、選別等による分離回収が行われている。焙焼処理は、電解液に含まれるプロピレンカーボネート、エチレンカーボネート等の有機溶媒、六フッ化リン酸リチウムの支持塩、ポリエチレンやポリプロピレン等のセパレーターを熱分解し、除去することを目的としている。   In order to recover the valuable materials from the waste lithium ion battery, separation and recovery are performed by roasting, crushing or crushing, sieving, sorting, and the like. The purpose of the roasting treatment is to thermally decompose and remove an organic solvent such as propylene carbonate and ethylene carbonate, a supporting salt of lithium hexafluorophosphate, and a separator such as polyethylene and polypropylene contained in the electrolytic solution.

しかし、充電された状態のリチウムイオン電池を焙焼すると、内部の有機電解液が蒸発し、内部の容積が急激に膨張するなどして、電池が爆発する危険がある。そのため、焙焼に先立ち、リチウムイオン電池の放電を行うことが好ましい。   However, when a charged lithium ion battery is roasted, the internal organic electrolyte solution evaporates, and the internal volume rapidly expands. Therefore, it is preferable to discharge the lithium ion battery prior to roasting.

一般的な電池の放電方法として、電池を電気回路に接続して放電させる方法がある。しかし、この方法によりリチウムイオン電池の放電を行う場合は、放電の完了までに長時間を要するため、この方法をリチウムイオン電池の放電に採用することは難しい。   As a general battery discharging method, there is a method of discharging a battery by connecting it to an electric circuit. However, when a lithium ion battery is discharged by this method, it takes a long time to complete the discharge, and it is difficult to employ this method for discharging a lithium ion battery.

そこで、電気回路による放電以外の放電方法であって、リチウムイオン電池に採用可能なものとして、リチウムイオン電池を、その内部に含まれる有機電解液と同様の電解液に浸漬して放電させる方法(特許文献1参照)や、塩化ナトリウム等の塩化物水溶液に浸漬して放電させる方法(特許文献2参照)がある。   Therefore, as a discharge method other than the discharge by the electric circuit, which can be adopted for the lithium ion battery, the lithium ion battery is discharged by being immersed in the same electrolyte as the organic electrolyte contained therein ( And a method of discharging by immersing in an aqueous solution of chloride such as sodium chloride (see Patent Document 2).

特開平10−255861号公報Japanese Patent Laid-Open No. 10-255861 特開平10−223264号公報JP-A-10-223264

しかし、リチウムイオン電池を有機電解液に浸漬して放電させる方法を用いる場合、高濃度の有機電解液を用いる必要があるため、放電後の排水による環境負荷が大きくなってしまう。   However, when using a method in which a lithium ion battery is immersed and discharged in an organic electrolyte, it is necessary to use a high-concentration organic electrolyte, which increases the environmental load due to drainage after discharge.

また、塩化物水溶液に浸漬して放電させる方法を用いる場合、後工程である加熱処理で用いる炉が塩素により腐食する虞がある。また、塩化物水溶液は高い導電性を有するため、リチウムイオン電池が短絡して電圧が急激に変化し、水溶液が突沸するなどの問題が発生する虞がある。   Moreover, when using the method of immersing in chloride aqueous solution and discharging, there exists a possibility that the furnace used by the heat processing which is a post process may corrode with chlorine. In addition, since the aqueous chloride solution has high conductivity, there is a risk that the lithium ion battery will short-circuit and the voltage will change abruptly, causing problems such as sudden boiling of the aqueous solution.

そこで、本発明は、上記従来の技術における問題点に鑑みてなされたものであって、環境負荷を低減すると共に、放電時の急激な電圧の変化を抑制し、廃リチウムイオン電池の放電及び処理に伴う作業を安全にを行うことを目的とする。   Therefore, the present invention has been made in view of the above-described problems in the prior art, and reduces the environmental load and suppresses a rapid voltage change during discharge, thereby discharging and treating a waste lithium ion battery. The purpose is to safely perform the work involved.

上記目的を達成するため、本発明は、リチウムイオン電池の放電方法であって、リチウムイオン電池を、界面活性剤を含む水溶液に浸漬して放電させることを特徴とする。   In order to achieve the above object, the present invention is a method for discharging a lithium ion battery, wherein the lithium ion battery is immersed in an aqueous solution containing a surfactant and discharged.

本発明によれば、界面活性剤を用いて放電を行うことにより、環境負荷を低減すると共に、放電時の急激な電圧の変化を抑制し、放電を安全に行うことが可能となる。   According to the present invention, by performing discharge using a surfactant, it is possible to reduce the environmental load, suppress a sudden change in voltage during discharge, and perform discharge safely.

上記放電方法では、前記水溶液の電気伝導率を500ms/m以上5000ms/m以下とすることができる。水溶液の電気伝導率が500ms/m未満になると、放電に要する時間が著しく長くなり、実用的でない。また、界面活性剤を含む水溶液は、電気伝導率が5000ms/mを上回ることは難しく、界面活性剤を過剰添加してもコストの増加を招くだけで、放電の促進効果は飽和してしまう。   In the above discharge method, the electrical conductivity of the aqueous solution can be 500 ms / m or more and 5000 ms / m or less. When the electric conductivity of the aqueous solution is less than 500 ms / m, the time required for discharge becomes extremely long, which is not practical. In addition, it is difficult for an aqueous solution containing a surfactant to have an electrical conductivity exceeding 5000 ms / m, and even if the surfactant is excessively added, only the cost is increased, and the discharge promoting effect is saturated.

上記放電方法は、前記水溶液中の前記界面活性剤の濃度を、0.5%以上1.5%以下とすることができる。これにより、十分な放電効果を奏しつつ、界面活性剤の消費を抑制し、環境負荷を低減することが可能となる。   In the above discharge method, the concentration of the surfactant in the aqueous solution can be 0.5% or more and 1.5% or less. Thereby, it is possible to suppress the consumption of the surfactant and reduce the environmental load while exhibiting a sufficient discharge effect.

また、本発明は、リチウムイオン電池の処理方法であって、リチウムイオン電池を、界面活性剤を含む水溶液に浸漬して放電させる工程と、放電後の前記リチウムイオン電池を焙焼する工程と、焙焼後の前記リチウムイオン電池を粉砕して分級する工程とを備えることを特徴とする。   Further, the present invention is a method for treating a lithium ion battery, the step of immersing the lithium ion battery in an aqueous solution containing a surfactant and discharging, and the step of roasting the lithium ion battery after discharge, And crushing and classifying the lithium ion battery after roasting.

本発明によれば、リチウムイオン電池の放電を、環境負荷を低減しつつ安全に行うことが可能であると共に、放電処理後のリチウムイオン電池の焙焼を安全に行うことが可能となる。   According to the present invention, the lithium ion battery can be discharged safely while reducing the environmental load, and the lithium ion battery can be roasted safely after the discharge treatment.

上記処理方法では、前記水溶液の電気伝導率を500ms/m以上5000ms/m以下とすることができる。水溶液の電気伝導率が500ms/m未満になると、放電に要する時間が著しく長くなり、実用的でない。また、界面活性剤を含む水溶液は電気伝導率が5000ms/mを上回ることは難しく、界面活性剤を過剰添加してもコストの増加を招くだけで、放電の促進効果は飽和してしまう。   In the treatment method, the electrical conductivity of the aqueous solution can be 500 ms / m or more and 5000 ms / m or less. When the electric conductivity of the aqueous solution is less than 500 ms / m, the time required for discharge becomes extremely long, which is not practical. In addition, it is difficult for an aqueous solution containing a surfactant to have an electric conductivity exceeding 5000 ms / m. Even if an excessive amount of a surfactant is added, only an increase in cost is caused and the effect of promoting discharge is saturated.

上記処理方法は、前記水溶液中の前記界面活性剤の濃度を、0.5%以上1.5%以下とすることができる。これにより、十分な放電効果を奏しつつ、界面活性剤の消費を抑制し、環境負荷を低減することが可能となる。   In the treatment method, the concentration of the surfactant in the aqueous solution can be 0.5% or more and 1.5% or less. Thereby, it is possible to suppress the consumption of the surfactant and reduce the environmental load while exhibiting a sufficient discharge effect.

以上のように、本発明によれば、環境負荷を低減すると共に、放電時の急激な電圧の変化を抑制し、環境負荷を低減すると共に、放電時の急激な電圧の変化を抑制し、作業を安全に行うことのできる廃リチウムイオン電池の放電方法及び処理方法を提供することができる。   As described above, according to the present invention, the environmental load is reduced, the rapid voltage change during discharge is suppressed, the environmental load is reduced, and the rapid voltage change during discharge is suppressed. It is possible to provide a discharge method and a treatment method for a waste lithium ion battery that can be safely performed.

リチウムイオン電池の放電実験装置を示す全体構成図である。It is a whole block diagram which shows the discharge experiment apparatus of a lithium ion battery. 図1の実験装置を用いた実験結果を示すグラフである。It is a graph which shows the experimental result using the experimental apparatus of FIG. 図2のグラフに示す結果のうち120分までの結果を抽出したグラフである。It is the graph which extracted the result to 120 minutes among the results shown in the graph of FIG.

次に、本発明を実施するための形態について、図面を参照しながら詳細に説明する。   Next, an embodiment for carrying out the present invention will be described in detail with reference to the drawings.

リチウムイオン電池のリサイクル処理時に、焙焼の前に行うリチウムイオン電池の放電に際し、本実施形態では、リチウムイオン電池を界面活性剤を含む水溶液に浸漬させる。   During the lithium ion battery recycling process, in discharging the lithium ion battery before roasting, in the present embodiment, the lithium ion battery is immersed in an aqueous solution containing a surfactant.

界面活性剤には、陰イオン性界面活性剤を用いる。具体的には、直鎖アルキルベンゼンスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、ナフタレンスルホン酸ナトリウム、ナフタレンジスルホン酸二ナトリウム等のスルホン酸型の陰イオン性界面活性剤、アルファスルホ脂肪酸メチルエステル塩、オクタン酸ナトリウム等のカルボン酸型の陰イオン性界面活性剤、ラウリル硫酸ナトリウム、ラウレス硫酸ナトリウム等の硫酸エステル型の陰イオン性界面活性剤等を用いることができる。   An anionic surfactant is used as the surfactant. Specifically, sulfonic acid type anionic surfactants such as sodium linear alkylbenzene sulfonate, sodium alkylbenzene sulfonate, sodium naphthalene sulfonate, and disodium naphthalene disulfonate, alpha sulfo fatty acid methyl ester salt, sodium octanoate Carboxylic acid type anionic surfactants such as sulfate ester type anionic surfactants such as sodium lauryl sulfate and sodium laureth sulfate can be used.

尚、陽イオン性界面活性剤及び両イオン性界面活性剤は、大部分のものが塩素を含み、放電により塩素が発生する等の危険が伴うため不適切である。また、非イオン性界面活性剤は、親水部が非電解質のため、放電促進効果がなく不適切である。   Most of the cationic surfactants and amphoteric surfactants are unsuitable because they contain chlorine and there is a risk that chlorine is generated by discharge. In addition, the nonionic surfactant is inappropriate because it has a non-electrolyte hydrophilic portion and has no effect of promoting discharge.

界面活性剤は、1種類のみ用いてもよく、あるいは複数の種類の界面活性剤を混合して用いてもよい。界面活性剤は毒性が極めて少ないため、これを含む廃液による環境負荷を従来の有機電解液等を用いる場合よりも低減することができる。   Only one type of surfactant may be used, or a plurality of types of surfactants may be mixed and used. Since the surfactant has extremely low toxicity, the environmental load due to the waste liquid containing the surfactant can be reduced as compared with the case of using a conventional organic electrolyte or the like.

界面活性剤を含む水溶液は、界面活性剤を工業用水(工水)に溶解させて調製する。界面活性剤を含む水溶液は、界面活性剤のみが溶解しているものでもよく、あるいは界面活性剤以外の成分も溶解しているものであってもよい。但し、この水溶液は塩化ナトリウム等の塩化物を含まないものとする必要がある。   The aqueous solution containing the surfactant is prepared by dissolving the surfactant in industrial water (engineering water). The aqueous solution containing the surfactant may be one in which only the surfactant is dissolved, or one in which components other than the surfactant are also dissolved. However, this aqueous solution needs to be free from chlorides such as sodium chloride.

界面活性剤を含む水溶液の電気伝導率は、500ms/m以上5000ms/m以下とする。水溶液の電気伝導率が500ms/m未満になると、放電に要する時間が著しく長くなり、実用的でない。また、界面活性剤を含む水溶液は電気伝導率が5000ms/mを上回ることは難しく、界面活性剤を過剰添加してもコストの増加を招くだけで、放電の促進効果は飽和してしまう。   The electric conductivity of the aqueous solution containing the surfactant is set to 500 ms / m or more and 5000 ms / m or less. When the electric conductivity of the aqueous solution is less than 500 ms / m, the time required for discharge becomes extremely long, which is not practical. In addition, it is difficult for an aqueous solution containing a surfactant to have an electric conductivity exceeding 5000 ms / m. Even if an excessive amount of a surfactant is added, only an increase in cost is caused and the effect of promoting discharge is saturated.

界面活性剤を含む水溶液中の界面活性剤の濃度は、0.5%以上1.5%以下に調整する。界面活性剤の濃度が0.5%未満であると、水溶液の電気伝導率が極めて低くなり、リチウムイオン電池の放電を行えないか、放電に長時間を要して実用的でない。一方、界面活性剤の濃度が1.5%を超えると、リチウムイオン電池の放電が急激になり突沸を招く虞があり、水溶液の廃棄時に環境への負荷も大きくなる。   The concentration of the surfactant in the aqueous solution containing the surfactant is adjusted to 0.5% or more and 1.5% or less. If the concentration of the surfactant is less than 0.5%, the electric conductivity of the aqueous solution becomes extremely low, and the lithium ion battery cannot be discharged, or it takes a long time to discharge, which is not practical. On the other hand, when the concentration of the surfactant exceeds 1.5%, the discharge of the lithium ion battery may be abrupt and may cause bumping, and the environmental load increases when the aqueous solution is discarded.

上記濃度の界面活性剤を含む水溶液へのリチウムイオン電池の浸漬は、後述するようにリチウムイオン電池の電圧が急激に低下し始めるまで行う。これにより、リチウムイオン電池の充電量を安全に焙焼できる程度まで低下させることが可能となる。   The immersion of the lithium ion battery in the aqueous solution containing the surfactant having the above concentration is performed until the voltage of the lithium ion battery starts to rapidly decrease as will be described later. Thereby, it becomes possible to reduce the charge amount of a lithium ion battery to the grade which can be safely roasted.

放電後のリチウムイオン電池は、その後焙焼され、焙焼後のリチウムイオン電池を粉砕した後分級し、リチウム、コバルト、ニッケル、銅、アルミニウム等の有価物を回収する。このように廃リチウムイオン電池を処理することで、有価物をリサイクルすることができる。   The discharged lithium ion battery is then roasted, and after the roasted lithium ion battery is pulverized and classified, valuable materials such as lithium, cobalt, nickel, copper, and aluminum are recovered. By treating the waste lithium ion battery in this way, valuable materials can be recycled.

次に、界面活性剤を含む水溶液を用いたリチウムイオン電池の放電に関する実験例について説明する。この実験では、リチウムイオン電池LBとして、平均電圧が39.4Vの車載用リチウムイオン電池を用いた。   Next, an experimental example regarding discharge of a lithium ion battery using an aqueous solution containing a surfactant will be described. In this experiment, an in-vehicle lithium ion battery having an average voltage of 39.4 V was used as the lithium ion battery LB.

図1は、リチウムイオン電池の放電実験装置を示す全体構成図である。   FIG. 1 is an overall configuration diagram showing a discharge experiment apparatus for a lithium ion battery.

実験装置1は、測定用容器2と、貯蔵用容器4と、廃液用容器9と、測定機13と、カメラ14とを主に備えて構成されている。   The experimental apparatus 1 mainly includes a measurement container 2, a storage container 4, a waste liquid container 9, a measuring machine 13, and a camera 14.

測定用容器2は、容量が50Lで、リチウムイオン電池LBを工業用水、食塩水又は界面活性剤を含む水溶液に浸漬し、電圧等を測定する。測定用容器2内には、アース線が設けられている。   The measuring container 2 has a capacity of 50 L, and immerses the lithium ion battery LB in an aqueous solution containing industrial water, saline, or a surfactant, and measures voltage and the like. A ground wire is provided in the measurement container 2.

貯蔵用容器4は、容量が250Lで、測定用容器2に供給される工業用水、食塩水又は界面活性剤を含む水溶液が貯えられる。貯蔵用容器4は、配管3を介して測定用容器2に接続されている。貯蔵用容器4から測定用容器2への工業用水、食塩水又は界面活性剤を含む水溶液の供給は、配管3に設けられたエア駆動ポンプ5により行われる。エア駆動ポンプ5は、圧縮空気ボンベ7から配管6を通じて供給される圧縮空気を動力源として駆動する。   The storage container 4 has a capacity of 250 L, and stores industrial water, saline, or an aqueous solution containing a surfactant supplied to the measurement container 2. The storage container 4 is connected to the measurement container 2 via the pipe 3. Supply of the industrial water, the salt solution, or the aqueous solution containing the surfactant from the storage container 4 to the measurement container 2 is performed by an air driven pump 5 provided in the pipe 3. The air drive pump 5 is driven by using the compressed air supplied from the compressed air cylinder 7 through the pipe 6 as a power source.

廃液用容器9は、容量が250Lの容器であり、測定用容器2から排出される廃液を貯留する。廃液用容器9は、配管8を介して測定用容器2に接続されている。測定用容器2から廃液用容器9への廃液の移送は、配管8に設けられたポンプ10により行われる。ポンプ10は、交流電源11から供給される電気を動力源として駆動する。ポンプ10の駆動はスイッチ12によりオンオフ制御される。   The waste liquid container 9 is a container having a capacity of 250 L, and stores the waste liquid discharged from the measurement container 2. The waste liquid container 9 is connected to the measurement container 2 via the pipe 8. The transfer of the waste liquid from the measurement container 2 to the waste liquid container 9 is performed by a pump 10 provided in the pipe 8. The pump 10 is driven by using electricity supplied from the AC power supply 11 as a power source. The driving of the pump 10 is on / off controlled by a switch 12.

測定機13は、測定用容器2内のリチウムイオン電池LBの電圧を測定すると共に、測定容器2内の水温を測定する。測定機13により得られたデータは、表示装置(不図示)に表示されると共に、記憶装置(不図示)に記憶される。   The measuring device 13 measures the voltage of the lithium ion battery LB in the measurement container 2 and measures the water temperature in the measurement container 2. Data obtained by the measuring instrument 13 is displayed on a display device (not shown) and stored in a storage device (not shown).

カメラ14は、測定用容器2内の様子を外部から観察するカメラである。カメラ14により撮影された画像は、上述した表示装置に表示されると共に、記憶装置に記憶される。   The camera 14 is a camera for observing the inside of the measurement container 2 from the outside. An image photographed by the camera 14 is displayed on the display device described above and stored in a storage device.

上述した構成を有する実験装置1を用いた実験では、まず、測定用容器2内にリチウムイオン電池LBを配置すると共に、貯蔵用容器4に工業用水、食塩水又は界面活性剤を含む水溶液を貯留した。   In an experiment using the experimental apparatus 1 having the above-described configuration, first, the lithium ion battery LB is disposed in the measurement container 2 and an aqueous solution containing industrial water, saline, or a surfactant is stored in the storage container 4. did.

食塩水は、溶媒に工業用水、溶質に塩化ナトリウムを用い、濃度が1%のものと3%のものを調製した。   As the saline, industrial water was used as a solvent, sodium chloride was used as a solute, and 1% and 3% concentrations were prepared.

また、界面活性剤を含む水溶液として、溶媒に工業用水を用い、界面活性剤を含む市販の衣類用洗剤を希釈した水溶液を調製した。この衣類用洗剤には陰イオン性界面活性剤である直鎖アルキルベンゼンスルホン酸ナトリウムが22%含まれている。そして、この衣類用洗剤の濃度が3%と5%、すなわち界面活性剤の濃度が0.66%と1.1%の水溶液を調整した。   In addition, as an aqueous solution containing a surfactant, an industrial water was used as a solvent, and an aqueous solution was prepared by diluting a commercial clothing detergent containing a surfactant. This laundry detergent contains 22% sodium linear alkylbenzene sulfonate, an anionic surfactant. And the density | concentration of this washing | cleaning detergent was 3% and 5%, ie, the aqueous solution whose surfactant concentration is 0.66% and 1.1% was prepared.

電気伝導率は、工業用水が10mS/m、1%食塩水が1400mS/m、3%食塩水が5000mS/m、3%洗剤溶液が1000mS/m、5%洗剤溶液が1500mS/mとなった。   Electrical conductivity was 10 mS / m for industrial water, 1400 mS / m for 1% saline, 5000 mS / m for 3% saline, 1000 mS / m for 3% detergent solution, and 1500 mS / m for 5% detergent solution. .

次に、リチウムイオン電池LBに電圧接続用の配線の一端を接続し、他端を測定器13に接続した。また、貯蔵用容器4内に水温測定用の温度計を配置した。温度計も配線を介して測定器13に接続した。   Next, one end of the voltage connection wiring was connected to the lithium ion battery LB, and the other end was connected to the measuring instrument 13. In addition, a thermometer for water temperature measurement was disposed in the storage container 4. The thermometer was also connected to the measuring device 13 through wiring.

次に、エア駆動ポンプ5を駆動し、貯蔵用容器4から測定用容器2に、工業用水、1%食塩水、3%食塩水、3%洗剤溶液又は5%洗剤溶液を35L投入した。そして、リチウムイオン電池LBを各々の液体に浸漬させ、測定機13によって電圧と水温を測定すると共に、カメラ14によってリチウムイオン電池LBの様子を観察した。   Next, the air drive pump 5 was driven, and 35 L of industrial water, 1% saline, 3% saline, 3% detergent solution or 5% detergent solution was charged from the storage container 4 to the measuring container 2. Then, the lithium ion battery LB was immersed in each liquid, the voltage and the water temperature were measured by the measuring device 13, and the state of the lithium ion battery LB was observed by the camera 14.

浸漬終了後、ポンプ10を駆動し、測定用容器2内の液体を廃液用容器9へ排出して試験を終了した。試験の結果を図2及び図3に示す。   After the immersion, the pump 10 was driven, the liquid in the measurement container 2 was discharged to the waste liquid container 9, and the test was completed. The test results are shown in FIGS.

リチウムイオン電池LBを工業用水に浸漬した場合には、放電はほとんど行われず、電圧もほとんど低下しなかった。また、リチウムイオン電池LBからの気泡の発生や、工業用水からの湯気や煙の発生も見受けられなかった。   When the lithium ion battery LB was immersed in industrial water, the battery was hardly discharged and the voltage was hardly lowered. Moreover, generation | occurrence | production of the bubble from the lithium ion battery LB and generation | occurrence | production of the steam and smoke from industrial water were not seen.

一方、リチウムイオン電池LBを1%食塩水に浸漬した場合には、浸漬開始から10分程度で急激に電圧が低下し始め、80分程で1Vになった。このとき、1%食塩水内では気泡が発生し、湯気や煙の発生も確認された。   On the other hand, when the lithium ion battery LB was immersed in a 1% saline solution, the voltage began to drop rapidly in about 10 minutes from the start of immersion, and became 1 V in about 80 minutes. At this time, bubbles were generated in 1% saline solution, and generation of steam and smoke was also confirmed.

また、リチウムイオン電池LBを3%食塩水に浸漬した場合には、浸漬開始から30分程度で急激に電圧が低下し始め、50分程度で1Vになった。このとき、3%食塩水内では気泡が発生し、湯気や煙の発生も確認された。   In addition, when the lithium ion battery LB was immersed in 3% saline, the voltage started to decrease rapidly in about 30 minutes from the start of immersion, and became 1 V in about 50 minutes. At this time, bubbles were generated in 3% saline, and generation of steam and smoke was also confirmed.

そして、リチウムイオン電池LBを3%洗剤溶液に浸漬した場合には、浸漬開始から60分程度で急激に電圧が低下し始め、700分ほどで1Vになった。3%洗剤溶液内では気泡や湯気、煙の発生は確認されなかった。   When the lithium ion battery LB was immersed in a 3% detergent solution, the voltage began to drop rapidly in about 60 minutes from the start of immersion, and became 1 V in about 700 minutes. Generation of bubbles, steam and smoke was not confirmed in the 3% detergent solution.

また、リチウムイオン電池LBを5%洗剤溶液に浸漬した場合には、浸漬開始から50分程度で急激に電圧が低下し始め、400分程度で1Vになった。5%洗剤溶液内では気泡や湯気、煙の発生は確認されなかった。   In addition, when the lithium ion battery LB was immersed in a 5% detergent solution, the voltage started to drop sharply in about 50 minutes from the start of immersion, and became 1 V in about 400 minutes. Generation of bubbles, steam and smoke was not confirmed in the 5% detergent solution.

上述した実験結果から、リチウムイオン電池LBの放電処理を、洗剤溶液(界面活性剤を含む水溶液)を用いて行う場合には、食塩水を用いる場合と比較して、放電時の電圧の変化が穏やかであり、気泡や湯気、煙の発生がなく、安全に放電を行えることが判った。   From the experimental results described above, when the discharge treatment of the lithium ion battery LB is performed using a detergent solution (an aqueous solution containing a surfactant), the change in voltage at the time of discharge is smaller than when using a saline solution. It was found to be calm, free from bubbles, steam and smoke, and to discharge safely.

また、リチウムイオン電池LBの放電時、当初緩やかに低下していた電圧が急激に低下するようになるが、発明者による更なる研究により、この電圧の急低下が始まった後のリチウムイオン電池LBであれば焙焼時に爆発の危険がなくなることが判った。   In addition, when the lithium ion battery LB is discharged, the voltage that has been gradually decreased starts to decrease abruptly. However, further research by the inventor has revealed that the lithium ion battery LB after the sudden decrease in voltage has started. Then it was found that there was no risk of explosion during roasting.

上述したように、電圧の急低下が始まるのは、3%洗剤溶液(0.66%界面活性剤水溶液)の場合は浸漬開始から60分の時点であり、5%洗剤溶液(1.1%界面活性剤水溶液)の場合は浸漬開始から50分の時点である。従って、これらの時点以降であれば、焙焼に先立つリチウムイオン電池の放電は十分に行われたことになり、以後の焙焼を安全に行うことができる。   As described above, in the case of a 3% detergent solution (0.66% surfactant aqueous solution), the voltage starts to drop sharply at the point of 60 minutes from the start of immersion, and the 5% detergent solution (1.1% In the case of a surfactant aqueous solution), it is 50 minutes from the start of immersion. Therefore, if it is after these time points, the discharge of the lithium ion battery prior to roasting has been sufficiently performed, and the subsequent roasting can be performed safely.

1 実験装置
2 測定用容器
3 配管
4 貯蔵用容器
5 エア駆動ポンプ
6 配管
7 圧縮空気ボンベ
8 配管
9 廃液用容器
10 ポンプ
11 交流電源
12 スイッチ
13 測定機
14 カメラ
LB リチウムイオン電池
DESCRIPTION OF SYMBOLS 1 Experimental apparatus 2 Measuring container 3 Piping 4 Storage container 5 Air drive pump 6 Piping 7 Compressed air cylinder 8 Piping 9 Waste liquid container 10 Pump 11 AC power supply 12 Switch 13 Measuring machine 14 Camera LB Lithium ion battery

Claims (6)

リチウムイオン電池を、界面活性剤を含む水溶液に浸漬して放電させることを特徴とする廃リチウムイオン電池の放電方法。   A method for discharging a waste lithium ion battery, wherein the lithium ion battery is discharged by being immersed in an aqueous solution containing a surfactant. 前記水溶液の電気伝導率は、500ms/m以上5000ms/m以下であることを特徴とする請求項1に記載の廃リチウムイオン電池の放電方法。   The method for discharging a waste lithium ion battery according to claim 1, wherein the electrical conductivity of the aqueous solution is 500 ms / m or more and 5000 ms / m or less. 前記水溶液中の前記界面活性剤の濃度は、0.5%以上1.5%以下であることを特徴とする請求項1又は2に記載の廃リチウムイオン電池の放電方法。   The method for discharging a waste lithium ion battery according to claim 1 or 2, wherein the concentration of the surfactant in the aqueous solution is 0.5% or more and 1.5% or less. リチウムイオン電池を、界面活性剤を含む水溶液に浸漬して放電させる工程と、
放電後の前記リチウムイオン電池を焙焼する工程と、
焙焼後の前記リチウムイオン電池を粉砕して分級する工程とを備えることを特徴とする廃リチウムイオン電池の処理方法。
A step of immersing a lithium ion battery in an aqueous solution containing a surfactant and discharging;
Roasting the lithium ion battery after discharge;
And a step of pulverizing and classifying the lithium ion battery after roasting.
前記水溶液の電気伝導率は、500ms/m以上5000ms/m以下であることを特徴とする請求項4に記載の廃リチウムイオン電池の処理方法。   The method for treating a waste lithium ion battery according to claim 4, wherein the electrical conductivity of the aqueous solution is 500 ms / m or more and 5000 ms / m or less. 前記水溶液中の前記界面活性剤の濃度は、0.5%以上1.5%以下であることを特徴とする請求項4又は5に記載の廃リチウムイオン電池の処理方法。   The method for treating a waste lithium ion battery according to claim 4 or 5, wherein the concentration of the surfactant in the aqueous solution is 0.5% or more and 1.5% or less.
JP2017044526A 2017-03-09 2017-03-09 Discharging method and processing method of waste lithium-ion batteries Active JP6847716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017044526A JP6847716B2 (en) 2017-03-09 2017-03-09 Discharging method and processing method of waste lithium-ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017044526A JP6847716B2 (en) 2017-03-09 2017-03-09 Discharging method and processing method of waste lithium-ion batteries

Publications (2)

Publication Number Publication Date
JP2018147838A true JP2018147838A (en) 2018-09-20
JP6847716B2 JP6847716B2 (en) 2021-03-24

Family

ID=63591597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017044526A Active JP6847716B2 (en) 2017-03-09 2017-03-09 Discharging method and processing method of waste lithium-ion batteries

Country Status (1)

Country Link
JP (1) JP6847716B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980723A (en) * 2019-03-26 2019-07-05 乾泰技术(深汕特别合作区)有限公司 Lithium ion battery discharge equipment and method
JP2020054961A (en) * 2018-10-02 2020-04-09 Jx金属株式会社 Method for handling waste of lithium-ion battery
WO2022151975A1 (en) * 2021-01-13 2022-07-21 陈妹妹 Safe discharging method for waste lithium-ion battery
JP2023502147A (en) * 2019-12-31 2023-01-20 オメガ ハーベスド メトラーギカル,アイエヌシー Coke dust as static neutralizer for waste battery recycling and waste battery recycling method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195948A (en) * 2010-02-23 2011-10-06 Hitachi Ltd Metal recovery method and dialysis device
JP2016183080A (en) * 2015-03-26 2016-10-20 太平洋セメント株式会社 Solution for improving concrete structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195948A (en) * 2010-02-23 2011-10-06 Hitachi Ltd Metal recovery method and dialysis device
JP2016183080A (en) * 2015-03-26 2016-10-20 太平洋セメント株式会社 Solution for improving concrete structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020054961A (en) * 2018-10-02 2020-04-09 Jx金属株式会社 Method for handling waste of lithium-ion battery
CN109980723A (en) * 2019-03-26 2019-07-05 乾泰技术(深汕特别合作区)有限公司 Lithium ion battery discharge equipment and method
JP2023502147A (en) * 2019-12-31 2023-01-20 オメガ ハーベスド メトラーギカル,アイエヌシー Coke dust as static neutralizer for waste battery recycling and waste battery recycling method
JP7295596B2 (en) 2019-12-31 2023-06-21 オメガ ハーベスド メトラーギカル,アイエヌシー Coke dust as static neutralizer for waste battery recycling and waste battery recycling method
WO2022151975A1 (en) * 2021-01-13 2022-07-21 陈妹妹 Safe discharging method for waste lithium-ion battery
US11967687B2 (en) 2021-01-13 2024-04-23 Shenzhen Jiecheng nickel cobalt New Energy Technology Co., Ltd. Safe discharge method for waste lithium ion batteries

Also Published As

Publication number Publication date
JP6847716B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
JP6847716B2 (en) Discharging method and processing method of waste lithium-ion batteries
US11894530B2 (en) Methods and systems for scalable direct recycling of batteries
CN101154757B (en) Process for recovering carbon materials of battery cathode
CN103943911A (en) Method for comprehensively recycling waste lithium ion batteries
CN109004308A (en) Waste and old lithium ion battery charging method
CN107546437A (en) Lithium, nickel, cobalt, the method for manganese are reclaimed from waste and old lithium ion battery
CN107919507A (en) The method that LiFePO4 is recycled from waste lithium cell
CN105098280B (en) A kind of method that collector is reclaimed from waste and old lithium ion battery
Jafari et al. A facile chemical-free cathode powder separation method for lithium ion battery resource recovery
JPH08306394A (en) Processing method for used battery
CN106207287A (en) A kind of old lead-acid battery detection obturator
KR20110088356A (en) Method for separating aluminium foil and positive electrode active material
CN109659642B (en) Method for separating aluminum foil and positive active material in waste lithium ion battery positive plate
CN113904014B (en) Method for separating and recycling waste lithium battery pole piece materials
CN106207301A (en) The negative material of a kind of electrolytic recovery waste and old lithium ion battery and the method for Copper Foil
Liu et al. Simultaneous peeling of precious metals in cathode and anode of spent ternary batteries using electrolysis
CN207490068U (en) A kind of device for old and useless battery electric discharge
JP2012033345A (en) Battery pack
CN113258159A (en) Device and method for regenerating lithium ion battery electrode material
CN105355997A (en) Method for separating current collector from active material of lithium battery and application of method
CN113517485A (en) Power battery disassembling and recycling process and device
JP2012033344A (en) Processing method of battery pack
JP2005347162A (en) Discharge method of discarded battery
US20120067737A1 (en) Method and apparatus for forming particles and for recovering electrochemically reactive material
CN105489960A (en) Separation method for current collector and active material of lithium battery and application of separation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210303

R150 Certificate of patent or registration of utility model

Ref document number: 6847716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250