JP2018147700A - Method of manufacturing fuel battery cell - Google Patents

Method of manufacturing fuel battery cell Download PDF

Info

Publication number
JP2018147700A
JP2018147700A JP2017041215A JP2017041215A JP2018147700A JP 2018147700 A JP2018147700 A JP 2018147700A JP 2017041215 A JP2017041215 A JP 2017041215A JP 2017041215 A JP2017041215 A JP 2017041215A JP 2018147700 A JP2018147700 A JP 2018147700A
Authority
JP
Japan
Prior art keywords
fuel cell
resin
metal layer
layer
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017041215A
Other languages
Japanese (ja)
Other versions
JP7064113B2 (en
Inventor
秀之 石黒
Hideyuki Ishiguro
秀之 石黒
猛 吉川
Takeshi Yoshikawa
猛 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2017041215A priority Critical patent/JP7064113B2/en
Publication of JP2018147700A publication Critical patent/JP2018147700A/en
Application granted granted Critical
Publication of JP7064113B2 publication Critical patent/JP7064113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a fuel battery cell capable of being bonded for a short time and having good adhesive strength.SOLUTION: A method of manufacturing a fuel battery cell includes a process of bonding a deposited layer and a laminate comprising a metal layer and a thermoplastic hot melt adhesive layer laminated in order. The process includes a step of heating a metal layer by electromagnetic induction heating, and the thermoplastic hot melt adhesive contains a resin with an acid value of 1-200 mgKOH/g.SELECTED DRAWING: Figure 1

Description

本発明は、燃料電池用セルの製造方法に関する。 The present invention relates to a method for manufacturing a fuel cell.

燃料電池は、水素を電気化学的に酸化するときに発生する水の生成ギブスエネルギーを電気エネルギーとして取り出す装置である。   A fuel cell is a device that takes out the Gibbs energy of water generated when electrochemically oxidizing hydrogen as electric energy.

この種の燃料電池は、一般に、燃料電池用セルを複数積層してスタックとし、実用に供される。燃料電池用セルは、通常、電解質の一方面に燃料ガスを供給するアノード電極、他方面に酸化剤ガスを供給するカソード電極を接合した電解質電極接合体を、ガス流路、冷媒液流路などが形成された一対のセパレータにより挟持してなる。   This type of fuel cell is generally put into practical use by stacking a plurality of fuel cell cells into a stack. A fuel cell generally includes an electrolyte electrode assembly in which an anode electrode for supplying fuel gas to one side of an electrolyte and a cathode electrode for supplying oxidant gas to the other side are joined to a gas channel, a refrigerant liquid channel, etc. Is sandwiched between a pair of separators.

このような構造を有する燃料電池では、燃料ガスと酸化剤ガスとの混合、各ガスまたは冷媒の漏れなどを防止する必要がある。そのため、セパレータと電解質間、セパレータ間など、気密性、液密性が要求される部位には、接着性シール部材が設けられていることが多い。   In a fuel cell having such a structure, it is necessary to prevent mixing of fuel gas and oxidant gas, leakage of each gas or refrigerant, and the like. For this reason, adhesive seal members are often provided at sites where airtightness and liquid tightness are required, such as between separators and electrolytes, and between separators.

例えば、燃料電池の製造方法としては、金属層、被着層との接合部に使用する接着剤としては、エポキシ系などの熱硬化性主成分とする接着剤(特許文献1,2)を用いる方法が発明されている。
エポキシ系接着剤は、硬化させる必要があり、硬化が完了するまで時間を要したことと、硬化の際に、不純物などの影響により硬化不良を起こすことがあり、作業環境など、取扱いに極めて注意する必要があった。
そこで、特許文献3には、接着剤としてオレフィン系の熱可塑性樹脂を含む熱可塑性ホットメルト接着剤を用いて、金属層を加熱して接着している。しかしながら、接着力が弱いなどの問題があった。
特許文献4には、接合面を一体ホットプレスなどにより直接高分子膜とガスセパレータを癒着させて接着させることが考案されているが加熱温度を高く上げる為には時間がかかるなどの問題が発生した。
特許文献5には、電磁誘導加熱方式により部材であるセパレータを加熱することにより熱硬化性接着剤を硬化させて接着させる方法が考案された。しかしながら、エポキシ接着剤は短時間では接着せず、十分な接着強度を得る為には時間がかかった。
For example, as a method for manufacturing a fuel cell, an adhesive having a thermosetting main component such as an epoxy type (Patent Documents 1 and 2) is used as an adhesive used in a joint portion between a metal layer and an adhesion layer. A method has been invented.
Epoxy adhesives need to be cured, and it took time to complete the curing, and when curing, it may cause curing failure due to the influence of impurities, etc. There was a need to do.
Therefore, Patent Document 3 uses a thermoplastic hot melt adhesive containing an olefin-based thermoplastic resin as an adhesive to heat and bond the metal layer. However, there are problems such as weak adhesive strength.
In Patent Document 4, it is devised that the polymer film and the gas separator are directly bonded and bonded to each other by an integrated hot press or the like, but there is a problem that it takes time to raise the heating temperature. did.
Patent Document 5 devised a method of curing and bonding a thermosetting adhesive by heating a separator as a member by an electromagnetic induction heating method. However, the epoxy adhesive did not adhere in a short time, and it took time to obtain sufficient adhesive strength.

特開平7−249417号公報JP-A-7-249417 特開2010−177009号公報JP 2010-177909 A 特開2007−188718号公報JP 2007-188718 A 特開平6−119928号公報Japanese Patent Application Laid-Open No. 6-119928 特開2006−302741号公報JP 2006-302741 A

上記課題に鑑み、本発明の目的は、短時間で接着可能であり、かつ耐熱性が良好な燃料電池用セルを得ることである。 In view of the above problems, an object of the present invention is to obtain a fuel cell that can be bonded in a short time and has good heat resistance.

本発明者らは、鋭利研究を重ねた結果、課題を解決する燃料電池用セル及び燃料電池用セルの製造方法を見出した。 As a result of intensive research, the present inventors have found a fuel cell and a method for manufacturing the fuel cell that solve the problem.

すなわち、本発明は、金属層、熱可塑性ホットメルト接着剤層の順で積層されてなる積層体と、被着層とを、接着させる工程を含有する燃料電池用セルの製造方法であって、前記工程が電磁誘導加熱により金属層を加熱する工程を含み、かつ前記熱可塑性ホットメルト接着剤が、酸価1〜200mgKOH/gの樹脂を含むことを特徴とする燃料電池用セルの製造方法に関する。 That is, the present invention is a method for producing a fuel cell comprising a step of adhering a laminate formed by laminating a metal layer and a thermoplastic hot melt adhesive layer in this order, and an adherent layer, The method includes a step of heating a metal layer by electromagnetic induction heating, and the thermoplastic hot melt adhesive includes a resin having an acid value of 1 to 200 mgKOH / g. .

また本発明は、金属層が、セパレータ、またはガスケットであり、被着層が、シール材であることを特徴とする前記燃料電池用セルの製造方法に関する。 The present invention also relates to the method for producing a fuel cell, wherein the metal layer is a separator or a gasket, and the deposition layer is a sealing material.

また本発明は、金属層が、セパレータであり、被着層がガスケット、またはシール材であることを特徴とする前記燃料電池用セルの製造方法に関する。 The present invention also relates to the method for producing a fuel cell, wherein the metal layer is a separator and the deposition layer is a gasket or a sealing material.

また本発明は、樹脂が、エチレンと(メタ)アクリル酸との共重合体、および/またはポリオレフィンを含むことを特徴とする前記燃料電池用セルの製造方法に関する。 The present invention also relates to the method for producing a cell for a fuel cell, wherein the resin contains a copolymer of ethylene and (meth) acrylic acid and / or a polyolefin.

また本発明は、樹脂が、酸変性スチレン系芳香族炭化水素と、共役ジエンブロックとの共重合体、または、その水添物を含むことを特徴とする前記燃料電池用セルの製造方法に関する。 The present invention also relates to the method for producing a fuel cell, wherein the resin contains a copolymer of an acid-modified styrene aromatic hydrocarbon and a conjugated diene block, or a hydrogenated product thereof.

また本発明は、樹脂の融点が、70〜250℃であることを特徴とする前記燃料電池用セルの製造方法に関する。 The present invention also relates to the method for producing a fuel cell, wherein the resin has a melting point of 70 to 250 ° C.

また本発明は、熱可塑性ホットメルト接着剤が、25℃のキシレンに可溶の成分を含むがその含量が5重量%未満であることを特徴とする前記燃料電池用セルの製造方法に関する。 The present invention also relates to the method for producing a fuel cell, wherein the thermoplastic hot melt adhesive contains a component soluble in xylene at 25 ° C., but its content is less than 5% by weight.

また本発明は、被着層が金属層であることを特徴とする前記燃料電池用セルの製造方法に関する。 The present invention also relates to the method for producing a fuel cell, wherein the deposition layer is a metal layer.

また本発明は、電磁誘導加熱により金属層を加熱する工程に要する時間が5秒以内であることを特徴とする前記燃料電池用セルの製造方法に関する。 In addition, the present invention relates to the method for manufacturing a fuel cell, wherein the time required for the step of heating the metal layer by electromagnetic induction heating is within 5 seconds.

また本発明は、前記燃料電池用セルの製造方法を用いることを特徴とする燃料電池の製造方法に関する。 The present invention also relates to a method for manufacturing a fuel cell, characterized by using the method for manufacturing a fuel cell.

上記のように本発明に係る燃料電池用セルの製造方法によれば、燃料電池用セルの接着を短時間で行い、かつ耐熱性があり、良好な接着を行うことが出来る。 As described above, according to the method for manufacturing a fuel cell according to the present invention, the fuel cell can be bonded in a short time, has heat resistance, and can be bonded well.

本発明の燃料電池の代表的な実施態様を示す。1 shows a representative embodiment of the fuel cell of the present invention. 本発明の燃料電池の代表的な実施態様を示す。1 shows a representative embodiment of the fuel cell of the present invention.

以下、本発明の燃料電池用セルの製造方法について説明する。 Hereinafter, the manufacturing method of the cell for fuel cells of this invention is demonstrated.

[燃料電池の構造]
本発明の燃料電池用セルの構造について、詳細に説明する。図1は、燃料電池用セル1の断面図を示す。燃料電池用セル1は、発電体18とセパレータ11からなる。発電体18は電解質膜71、アノード層41、カソード層42、ガス拡散層31,32からなり、セパレータ11は、接着剤層12で接着したシール材13,金属層16及び冷却液流路14からなる。
[Fuel cell structure]
The structure of the fuel cell of the present invention will be described in detail. FIG. 1 shows a cross-sectional view of a fuel cell 1. The fuel cell 1 includes a power generator 18 and a separator 11. The power generator 18 includes an electrolyte membrane 71, an anode layer 41, a cathode layer 42, and gas diffusion layers 31 and 32, and the separator 11 includes a seal material 13, a metal layer 16, and a coolant flow path 14 bonded by an adhesive layer 12. Become.

電解質膜71は、アノード層41で発生した水素イオンをカソード層42まで移動させる機能を有している。電解質膜71の材料には、化学的に安定であるフッ素樹脂樹脂、例えばパーフルオロカーボン酸(ナフィヨン)樹脂膜が使用される。 The electrolyte membrane 71 has a function of moving hydrogen ions generated in the anode layer 41 to the cathode layer 42. As the material of the electrolyte membrane 71, a chemically stable fluororesin resin, for example, a perfluorocarbon acid (Nafyon) resin membrane is used.

アノード層41、カソード層42は、アノード極側での水素の酸化反応や、カソード極側での酸素の還元反応を促進する機能を有している。触媒は、反応させる電極面積をより大きくするため、一般的に粒子状にして、触媒の担体に付着させて使用される。触媒には、水素の酸化反応や酸素の還元反応について、より小さい活性化過電圧を有する白金族元素である白金等が使用される。触媒の担体としては、カーボン材料、例えば、カーボンブラック等が使用される。   The anode layer 41 and the cathode layer 42 have a function of promoting a hydrogen oxidation reaction on the anode electrode side and an oxygen reduction reaction on the cathode electrode side. In order to increase the electrode area to be reacted, the catalyst is generally used in the form of particles and attached to the catalyst support. As the catalyst, platinum, which is a platinum group element having a smaller activation overvoltage, is used for the oxidation reaction of hydrogen and the reduction reaction of oxygen. As the catalyst carrier, a carbon material such as carbon black is used.

ガス拡散層31,32は、燃料ガスである水素ガスなどと、酸化剤ガスである空気などとをアノード層41,カソード層42に拡散させる機能や、電子を移動させる機能などを有している。そして、ガス拡散層31,32には、電導性を有する材料であるカーボン繊維織布、カーボン紙などが使用される。 The gas diffusion layers 31 and 32 have a function of diffusing hydrogen gas as a fuel gas and air as an oxidant gas into the anode layer 41 and the cathode layer 42 and a function of moving electrons. . For the gas diffusion layers 31 and 32, carbon fiber woven fabric, carbon paper, or the like, which is a conductive material, is used.

[セパレータ]
本発明のセパレータ11とは、発電体18に積層され、隣接する燃料電池用セルにおける燃料ガスと酸化剤ガスとを分離する機能を有している。セパレータ11は、電気伝導材料で凸凹状に形成された金属層16及び金属層15と接着して形成されている。電気伝導層を凸凹状にすることにより、燃料ガスまたは酸化ガスが流れるガス流路17、19と、エチレングリコールなどが含有される冷却液LLC(long−Life−Coolant)が使用され、流れる冷却液流路14とが、形成される。
[Separator]
The separator 11 of the present invention is stacked on the power generator 18 and has a function of separating the fuel gas and the oxidant gas in the adjacent fuel cell. The separator 11 is formed by adhering to the metal layer 16 and the metal layer 15 that are formed in an uneven shape with an electrically conductive material. By making the electrically conductive layer uneven, a gas flow path 17, 19 through which the fuel gas or oxidizing gas flows and a cooling liquid LLC (long-life-coolant) containing ethylene glycol or the like is used. A flow path 14 is formed.

[金属層]
本発明の金属層としては、セパレータやガスケットなどが挙げられる。セパレータである場合は、導電体で耐酸性のあるチタン(Ti)、チタン合金、金(Au)、白金(Pt)、SUS316及びSUS304のステンレス鋼などが挙げられる。
ガスケットである場合には、チタン(Ti)、チタン合金、金(Au)、白金(Pt)などから選択された材料で板状に成形されている。
金属層の厚さは、好ましくは10〜500μm、さらに好ましくは50〜300μmである。金属層の厚さが10μm未満であると金属層の疲労などで冷却水が漏れたり、500μm以上であるとセルの重量が重くなり、現実的でない。
[Metal layer]
Examples of the metal layer of the present invention include a separator and a gasket. In the case of the separator, there are titanium (Ti), titanium alloy, gold (Au), platinum (Pt), stainless steel of SUS316 and SUS304, which are acid conductors and are acid resistant.
In the case of a gasket, it is formed into a plate shape with a material selected from titanium (Ti), titanium alloy, gold (Au), platinum (Pt), and the like.
The thickness of the metal layer is preferably 10 to 500 μm, more preferably 50 to 300 μm. If the thickness of the metal layer is less than 10 μm, cooling water leaks due to fatigue of the metal layer, and if it is 500 μm or more, the weight of the cell increases, which is not practical.

[被着層]
本発明の被着層としては、シール材やガスケットなどが挙げられる。シール材である場合には、ゴム系材料あるいはゴム状弾性を有する合成樹脂系材料で、成分の溶出性がなく、燃料電池内部の使用環境で所要の耐性を有するものであれば特に制限はない。例えばFKM(フッ素ゴム)、VMQ(シリコーンゴム)、EPDM(エチレンプロピレンゴム)などである。
ガスケットである場合には、チタン(Ti)、チタン合金、金(Au)、白金(Pt)などなどから選択された材料で板状に成形されている。
被着層の厚さは、好ましくは10〜500μm、さらに好ましくは50〜300μmである。被着層の厚さが10μm未満であると疲労などで冷却水が漏れたり、500μm以上であるとセルの重量が重くなったり、燃料電池が厚くなり現実的でない。
[Deposition layer]
Examples of the adhesion layer of the present invention include a sealing material and a gasket. In the case of a sealing material, there is no particular limitation as long as it is a rubber-based material or a synthetic resin-based material having rubber-like elasticity and has no elution of components and has a required resistance in the use environment inside the fuel cell. . For example, FKM (fluorine rubber), VMQ (silicone rubber), EPDM (ethylene propylene rubber) and the like.
In the case of a gasket, it is formed into a plate shape with a material selected from titanium (Ti), titanium alloy, gold (Au), platinum (Pt), and the like.
The thickness of the adherent layer is preferably 10 to 500 μm, more preferably 50 to 300 μm. When the thickness of the adherend layer is less than 10 μm, cooling water leaks due to fatigue or the like, and when it is 500 μm or more, the weight of the cell becomes heavy or the fuel cell becomes thick, which is not realistic.

[熱可塑性ホットメルト接着剤層]
本発明の熱可塑性ホットメルト接着剤層を形成する熱可塑性ホットメルト接着剤は、加熱すると溶融状態になり、冷却により固まり被着層と接着する。
(酸価が1〜200mgKOH/gの樹脂)
熱可塑性ホットメルト接着剤は、酸価が1〜200mgKOH/gの樹脂を含有することを特徴とする。
本発明の酸価とは、遊離脂肪酸1gを中和するのに必要な水酸化カリウムのmg数である。
本発明の熱可塑性ホットメルト接着剤に含有される樹脂の酸価は、1〜200mgKOH/gであることが特徴であり、さらに好ましくは酸価が1〜160mgKOH/gである。樹脂の酸価が1mgKOH/g未満であると金属との接着力が弱く使用できず、酸価が200mgKOH/gよりも大きい場合樹脂が脆くなり、接着しても簡単な衝撃で割れてしまい接着力が大きく低下してしまう。
熱可塑性ホットメルト接着剤に含まれる樹脂とは、酸変性オレフィン、(メタ)アクリル酸共重合体、酸変性スチレン系芳香族炭化水素と、スチレン−ブチレン−スチレンブロックポリマー(SBS),スチレン−エチレン・プロピレン−スチレンブロックポリマー(SEPS),スチレン−イソプレン−スチレンブロックポリマー(SIS),スチレン−ブチレン・ブタジエン−スチレンブロックポリマー(SBBS)等の共役ジエンブロックとの共重合体の酸変性物または、その水添物、ロジン系樹脂などが挙げられる。
[Thermoplastic hot melt adhesive layer]
The thermoplastic hot-melt adhesive forming the thermoplastic hot-melt adhesive layer of the present invention is in a molten state when heated, and solidifies by cooling and adheres to the adherent layer.
(Resin having an acid value of 1 to 200 mgKOH / g)
The thermoplastic hot melt adhesive contains a resin having an acid value of 1 to 200 mgKOH / g.
The acid value of the present invention is the number of mg of potassium hydroxide necessary to neutralize 1 g of free fatty acid.
The acid value of the resin contained in the thermoplastic hot melt adhesive of the present invention is characterized by 1 to 200 mgKOH / g, and more preferably 1 to 160 mgKOH / g. If the acid value of the resin is less than 1 mgKOH / g, the adhesive strength with the metal is weak and cannot be used. If the acid value is greater than 200 mgKOH / g, the resin becomes brittle and even if bonded, it will break with a simple impact. The power is greatly reduced.
Resins contained in thermoplastic hot melt adhesives include acid-modified olefins, (meth) acrylic acid copolymers, acid-modified styrene aromatic hydrocarbons, styrene-butylene-styrene block polymers (SBS), and styrene-ethylene. -Acid-modified products of copolymers with conjugated diene blocks such as propylene-styrene block polymer (SEPS), styrene-isoprene-styrene block polymer (SIS), styrene-butylene-butadiene-styrene block polymer (SBBS), or the like Examples thereof include hydrogenated products and rosin resins.

(酸価が1〜200mgKOH/gの樹脂の融点)
本発明の融点とは、JIS K 7121における示差走査熱量測定(DSC:熱流束)に準拠する。
発明の熱可塑性ホットメルト接着剤に含有される酸価が1〜200mgKOH/gの樹脂の融点は70〜250℃が好ましく、さらに好ましくは、130〜250℃である。樹脂の融点が70℃未満であると耐熱性がなく、高温時剥離し、250℃より高いと低温で接着強度が低下し低温で剥離することがある。
(Melting point of resin having an acid value of 1 to 200 mgKOH / g)
The melting point of the present invention is based on differential scanning calorimetry (DSC: heat flux) in JIS K7121.
The melting point of the resin having an acid value of 1 to 200 mgKOH / g contained in the thermoplastic hot melt adhesive of the invention is preferably 70 to 250 ° C, more preferably 130 to 250 ° C. If the melting point of the resin is less than 70 ° C., the resin does not have heat resistance and peels at a high temperature.

(酸価が1〜200mgKOH/gの樹脂の25℃のキシレンに可溶の成分)
酸価が1〜200mgKOH/gの樹脂は、25℃のキシレンに可溶の成分を含むがその含量が5重量%未満であることが好ましい。さらに好ましくは2重量%未満である。25℃のキシレンに可溶の成分を含むがその含量が5重量%以上であると酸価が1〜200mgKOH/gの樹脂の融点が70℃以上であっても70℃未満で軟化する成分が含まれる為高温で接着力が低下して剥離することがある。酸価が1〜200mgKOH/gの樹脂に25℃のキシレンに可溶の成分を含まないことが良いのであるが、25℃のキシレンに可溶の成分を含んでいても、その含有量が5重量%未満の場合には、強固に接着される。5重量%以上含有している場合は、接着力が低下する。
(A component having an acid value of 1 to 200 mgKOH / g and soluble in xylene at 25 ° C.)
The resin having an acid value of 1 to 200 mgKOH / g contains a component soluble in xylene at 25 ° C., but its content is preferably less than 5% by weight. More preferably, it is less than 2% by weight. A component that is soluble in xylene at 25 ° C. but whose content is 5% by weight or more is a component that softens at less than 70 ° C. even if the melting point of the resin having an acid value of 1 to 200 mg KOH / g is 70 ° C. or higher. Since it is contained, the adhesive strength may decrease at a high temperature and peel off. It is preferable that the resin having an acid value of 1 to 200 mgKOH / g does not contain a component soluble in xylene at 25 ° C. However, even if it contains a component soluble in xylene at 25 ° C., the content is 5 When it is less than% by weight, it is firmly bonded. When it contains 5 weight% or more, adhesive force falls.

(その他の樹脂)
本発明の熱可塑性ホットメルト接着剤は、上記酸価が1〜200mgKOH/gの樹脂以外にその他の樹脂を併用することできる。熱可塑性ホットメルト接着剤は、熱可塑性ポリマー、粘着付与剤、ワックスなど単独または混合することによって得られる。熱可塑性ポリマーは、ABS、ポリアミド、ポリエステル、ポリウレタン、アクリル、ポリカーボネート、ポリスチレン、ポリエチレン、ポリプロピレン、ポリ−1−ブテン、ポリイソブチレン、ポリメチルペンテン、プロピレン−エチレン共重合体、エチレン−プロピレン−ジエン共重合体、エチレン/ブテン−1共重合体、エチレン/オクテン共重合体などのポリオレフィン、シクロペンタジエンとエチレン及び/又はプロピレンとの共重合体などの環状ポリオレフィン、エチレン/酢酸ビニル共重合体(EVA)、エチレン/アクリル酸エチル共重合体(EEA)、イソブチレン/無水マレイン酸共重合体などの極性基が導入されたポリオレフィン、無水マレイン酸変性ポリプロピレン、マレイン酸変性ポリプロピレン、アクリル酸変性ポリプロピレン、スチレン系エラストマーなどが挙げられる。粘着付与剤としては、特に限定されないがフェノール樹脂、変性フェノール樹脂、テルペンフェノール樹脂、キシレンフェノール樹脂、シクロペンタジエン−フェノール樹脂、キシレン樹脂、脂肪族系、脂環族系、芳香族系等の石油樹脂、水素添加された脂肪族系、脂環族系、芳香族系等の石油樹脂、フェノール−変性石油樹脂、ロジンエステル樹脂、水素添加されたロジンエステル樹脂、低分子量ポリスチレン系樹脂、テルペン樹脂、水素添加されたテルペン樹脂などの粘着付与樹脂などが挙げられる。ワックスとは、カルナバワックス、キャンデリアワックス、モンタンワックス、パラフィンワックス、マイクロワックス、フィッシャートロプシュワックス、ポリエチレンワックス、ポリプロピレンワックス、これらのワックスの酸化物、エチレンーアクリル酸共重合体、エチレンーメタクリル酸共重合体などが挙げられる。
(Other resins)
The thermoplastic hot melt adhesive of the present invention can be used in combination with other resins in addition to the resin having an acid value of 1 to 200 mgKOH / g. A thermoplastic hot melt adhesive can be obtained by using a thermoplastic polymer, a tackifier, a wax or the like alone or in combination. The thermoplastic polymer is ABS, polyamide, polyester, polyurethane, acrylic, polycarbonate, polystyrene, polyethylene, polypropylene, poly-1-butene, polyisobutylene, polymethylpentene, propylene-ethylene copolymer, ethylene-propylene-diene copolymer. Polymer, polyolefin such as ethylene / butene-1 copolymer, ethylene / octene copolymer, cyclic polyolefin such as copolymer of cyclopentadiene and ethylene and / or propylene, ethylene / vinyl acetate copolymer (EVA), Polyolefins introduced with polar groups such as ethylene / ethyl acrylate copolymer (EEA), isobutylene / maleic anhydride copolymer, maleic anhydride modified polypropylene, maleic acid modified polypropylene, acrylic acid modified Polypropylene, styrene elastomers. Although it does not specifically limit as tackifier, Petroleum resin of phenol resin, modified phenol resin, terpene phenol resin, xylene phenol resin, cyclopentadiene-phenol resin, xylene resin, aliphatic, alicyclic, aromatic , Hydrogenated aliphatic, alicyclic and aromatic petroleum resins, phenol-modified petroleum resins, rosin ester resins, hydrogenated rosin ester resins, low molecular weight polystyrene resins, terpene resins, hydrogen Examples include tackifier resins such as added terpene resins. The waxes are carnauba wax, canderia wax, montan wax, paraffin wax, microwax, Fischer-Tropsch wax, polyethylene wax, polypropylene wax, oxides of these waxes, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer. A polymer etc. are mentioned.

(添加剤)
本発明の熱可塑性ホットメルト接着剤には、添加剤として、必要により各種のものが使用可能である。例えば、ブロッキング防止剤、無機フィラー、酸化防止剤、充填剤、難燃剤、可塑剤、帯電防止剤、光安定剤、紫外線吸収剤や重金属不活性化剤などである。
(Additive)
Various types of additives can be used as necessary for the thermoplastic hot melt adhesive of the present invention. For example, anti-blocking agents, inorganic fillers, antioxidants, fillers, flame retardants, plasticizers, antistatic agents, light stabilizers, ultraviolet absorbers, heavy metal deactivators and the like.

無機フィラーとしては、金属、金属酸化物及び金属水酸化物など粒子、繊維状などが挙げられる。具体的には、ガラス繊維、炭素繊維、珪酸カルシウム、チタン酸カルシウム、ホウ酸アルミニウム繊維、フレーク状ガラス、タルク、カオリン、マイカ、ハイドロタルサイト、炭酸カルシウム、炭酸亜鉛、酸化亜鉛、リン酸一水素カルシウム、ワラストナイト、シリカ、ゼオライト、アルミナ、ベーマイト、水酸化アルミニウム、酸化チタン、酸化ケイ素、酸化マグネシウム、珪酸カルシウム、アルミナ珪酸ナトリウム、珪酸マグネシウム、カーボンナノチーブ、グラファイト、銅、銀、アルミニウム、ニッケル、鉄、フッ化カルシウム、雲母、モンモリナイト、アパタイトなどが挙げられる。
酸化防止剤としては、高分子量ヒンダード多価フェノール、トリアジン誘導体、高分子量ヒンダード・フェノール、ジアルキル・フェノール・スルフィド、2,2−メチレン−ビス−(4−メチル−6−第三−ブチルフェノール)、4,4−メチレン−ビス−(2,6−ジ−第三−ブチルフェノール)、2,6−ジ−第三−ブチルフェノール−p−クレゾール、2,5−ジ−第三−ブチルヒドロキノン、2,2,4−トリメチル−1,2−ジヒドロキノン、2,2,4−トリメチル−1,2−ジヒドロキノン、ジブチル・ジチオカルバミン酸ニッケル、1−オキシ−3−メチル−4−イソプロピルベンゼン、4,4−ブチリデンビス−(3−メチル−6−第三−ブチルフェノール)、2−メルカプトベンゾイミダゾールなどが挙げられる。
Examples of the inorganic filler include particles such as metals, metal oxides, and metal hydroxides, and fibrous shapes. Specifically, glass fiber, carbon fiber, calcium silicate, calcium titanate, aluminum borate fiber, flaky glass, talc, kaolin, mica, hydrotalcite, calcium carbonate, zinc carbonate, zinc oxide, monohydrogen phosphate Calcium, Wollastonite, Silica, Zeolite, Alumina, Boehmite, Aluminum hydroxide, Titanium oxide, Silicon oxide, Magnesium oxide, Calcium silicate, Sodium alumina silicate, Magnesium silicate, Carbon nanotube, Graphite, Copper, Silver, Aluminum, Nickel , Iron, calcium fluoride, mica, montmorillonite, apatite and the like.
Antioxidants include high molecular weight hindered polyhydric phenols, triazine derivatives, high molecular weight hindered phenols, dialkyl phenol sulfides, 2,2-methylene-bis- (4-methyl-6-tert-butylphenol), 4 , 4-methylene-bis- (2,6-di-tert-butylphenol), 2,6-di-tert-butylphenol-p-cresol, 2,5-di-tert-butylhydroquinone, 2,2 , 4-trimethyl-1,2-dihydroquinone, 2,2,4-trimethyl-1,2-dihydroquinone, nickel dibutyl dithiocarbamate, 1-oxy-3-methyl-4-isopropylbenzene, 4,4- Examples include butylidenebis- (3-methyl-6-tert-butylphenol) and 2-mercaptobenzimidazole.

充填剤としては、湿式シリカ、水酸化アルミニウム、酸化アルミニウム、酸化マグネシウム、モンモリロナイト、マイカ、スメクタイト、有機化モンモリロナイト、有機化マイカ、有機化スメクタイト等が挙げられる。 Examples of the filler include wet silica, aluminum hydroxide, aluminum oxide, magnesium oxide, montmorillonite, mica, smectite, organic montmorillonite, organic mica, and organic smectite.

難燃剤としては、燐含有化合物系難燃剤、ハロゲン含有化合物系難燃剤、スルホン酸金属塩系難燃剤、珪素含有化合物系難燃剤等が挙げられる。
可塑剤としては、フタル酸エステル系可塑剤、ポリエステル系可塑剤、脂肪族二塩基酸エステル系可塑剤、脂肪族一塩基酸エステル系可塑剤、リン酸エステル系可塑剤、クエン酸エステル系可塑剤、エポキシ系可塑剤、トリメリット酸エステル系可塑剤、テトラヒドロフタル酸エステル系可塑剤、グリコール系可塑剤、及びビスフェノールAアルキレンオキサイド誘導体などが挙げられる。
帯電防止剤としては、プラスチックの帯電防止剤として汎用されているものでよく、具体的には、非イオン界面活性剤(例えば、多価アルコールの脂肪酸エステル、アルキルアミンのエチレンオキサイド付加物、及びアルキルアミンのエチレンオキサイド付加物の脂肪酸エステルなど)、陰イオン界面活性剤(例えば、アルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩など)、陽イオン界面活性剤(例えば、脂肪族アミン塩、4級アンモニウム塩など)、両性界面活性剤(例えばイミダゾリン型、ベタイン型など)が挙げられる。
Examples of the flame retardant include a phosphorus-containing compound flame retardant, a halogen-containing compound flame retardant, a sulfonic acid metal salt flame retardant, and a silicon-containing compound flame retardant.
Plasticizers include phthalate plasticizers, polyester plasticizers, aliphatic dibasic ester plasticizers, aliphatic monobasic ester plasticizers, phosphate ester plasticizers, and citrate ester plasticizers. , Epoxy plasticizers, trimellitic acid ester plasticizers, tetrahydrophthalic acid ester plasticizers, glycol plasticizers, and bisphenol A alkylene oxide derivatives.
The antistatic agent may be one that is widely used as an antistatic agent for plastics, and specifically includes nonionic surfactants (for example, fatty acid esters of polyhydric alcohols, ethylene oxide adducts of alkylamines, and alkyls). Fatty acid esters of amine ethylene oxide adducts), anionic surfactants (eg, alkylbenzene sulfonates, higher alcohol sulfates, etc.), cationic surfactants (eg, aliphatic amine salts, quaternary ammonium salts) And amphoteric surfactants (for example, imidazoline type, betaine type, etc.).

光安定剤としては、ヒンダードアミン系化合物及びベンゾエイト系化合物などが挙げられる。
紫外線吸収剤としては、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤などが挙げられる。
重金属不活性化剤としては、サリチル酸誘導体、ヒドラジド誘導体又はシュウ酸アミド誘導体などが挙げられる。
Examples of the light stabilizer include hindered amine compounds and benzoate compounds.
Examples of the ultraviolet absorber include benzophenone ultraviolet absorbers, triazine ultraviolet absorbers, and benzotriazole ultraviolet absorbers.
Examples of heavy metal deactivators include salicylic acid derivatives, hydrazide derivatives, or oxalic acid amide derivatives.

上記添加剤は、1種を単独で、又は必要に応じて任意の比率で2種以上混合して用いることができる。 The said additive can be used individually by 1 type or in mixture of 2 or more types by arbitrary ratios as needed.

[電磁誘導加熱]
本発明の電磁誘導加熱とは、電磁誘導加熱装置のコイルに高周波の交流電流を流すことにより交流磁界を発生させて、磁界中の導電物質の内部に渦電流を発生させて、この渦電流に基づくジュール熱で導電物質を発熱させる加熱方法である。コイルに流す交流の周波数を高くする程磁界の変化が速くなり、それに基づく渦電流が大きくなって、加熱時間を短くすることが出来る。コイルは、例えばソレノイド型コイルであり、必ずしも円筒形である必要はなく、内部に鉄心、フェライトなどの磁性体を備えても良い。
加熱方法としては、加熱する金属層または、被着層の上又は下にコイルに電流を印加して加熱しても、コイル内にセパレータを入れてコイルに電流を印加して加熱しても良い。
[Electromagnetic induction heating]
In the electromagnetic induction heating of the present invention, an alternating magnetic field is generated by flowing a high-frequency alternating current through a coil of an electromagnetic induction heating device, and an eddy current is generated inside a conductive material in the magnetic field. This is a heating method in which the conductive material is heated by Joule heat. The higher the frequency of the alternating current flowing through the coil, the faster the change in the magnetic field, the greater the eddy current based on that, and the shorter the heating time. The coil is, for example, a solenoid type coil and does not necessarily have a cylindrical shape, and may be provided with a magnetic body such as an iron core or ferrite.
As a heating method, heating may be performed by applying a current to the coil on or below the metal layer to be heated or an adhesion layer, or applying a current to the coil by inserting a separator in the coil. .

[セルの製造方法]
本発明の燃料電池用セルの製造方法は、金属層16及び/またはガスケット15に熱可塑性ホットメルト接着剤を付着させ、被着層13で挟み込む。例えば、ディスペンサーの塗布又は予め熱可塑性ホットメルト接着剤をフィルムにして、被着層15と金属層13を挟み込んでも貼り合せても良い。次に電磁誘導加熱装置により加熱可能な程度に、金属層16の上から5秒以内より好ましくは3秒以内電磁誘導加熱装置のコイルに電流を流し、金属層16及び/またはガスケット15を加熱させ熱可塑性ホットメルト接着剤を溶融させる。電磁誘導加熱装置の電流が切れて加熱が終了しても、金属層16及びガスケット15が冷えるまで待機する。
[Cell manufacturing method]
In the method for producing a fuel cell according to the present invention, a thermoplastic hot melt adhesive is attached to the metal layer 16 and / or the gasket 15 and sandwiched between the adherend layers 13. For example, a coating of a dispenser or a thermoplastic hot melt adhesive may be used as a film in advance, and the adhesion layer 15 and the metal layer 13 may be sandwiched or bonded. Next, an electric current is applied to the coil of the electromagnetic induction heating device within 5 seconds, preferably within 3 seconds from the top of the metal layer 16 to the extent that it can be heated by the electromagnetic induction heating device, and the metal layer 16 and / or the gasket 15 is heated. The thermoplastic hot melt adhesive is melted. Even if the current of the electromagnetic induction heating device is cut off and the heating is finished, the process waits until the metal layer 16 and the gasket 15 are cooled.

以下に、本発明を実施例に基づいて説明するが、本発明はこれによって限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited thereto.

<酸価が1〜200mgKOH/gの樹脂Aの合成例>
重量平均分子量(以下Mwと略す)10,000のポリプロピレン100部に無水マレイン酸20部及びキシレン375部を窒素吹き込み口、温度計、攪拌機を備えた1リットルも3口フラスコに仕込み、窒素還流下130℃に昇温後、0.1部の過酸化ベンゾイルを40部のキシレンに溶解し、90分間滴下する。滴下後130℃で4時間反応させた後、60分間室温まで冷却する。得られた懸濁液をろ過し、キシレンを除去した後メチルエチルケトンで洗浄を2〜3回繰り返し、メチルエチルケトン中に無水マレイン酸及び無水マレイン酸単独反応物が液体クロマトグラフィーによって殆ど認められなくなるまで洗浄を続ける。得られた無水マレイン酸変性プロピレン樹脂のパウダーを風乾して得た。
<酸価が1〜200mgKOHの樹脂B〜Gの合成例>
Mwがそれぞれ7,000、20,000、50,000、100,000、200,000及び300,000であるポリプロピレンを用いて、<酸価が1〜200mgKOH/gの樹脂Aの合成例>と同様の方法で、原料のポリプロピレンのMwが、7,000、20,000、50,000、100,000、200,000及び300,000である無水マレイン酸変性プロピレン樹脂(樹脂B〜G)をえた。
<Synthesis example of resin A having an acid value of 1 to 200 mgKOH / g>
To 100 parts of polypropylene having a weight average molecular weight (hereinafter abbreviated as Mw), 20 parts of maleic anhydride and 375 parts of xylene were charged into a three-necked flask equipped with a nitrogen blowing port, a thermometer, and a stirrer. After raising the temperature to 130 ° C., 0.1 part of benzoyl peroxide is dissolved in 40 parts of xylene and added dropwise for 90 minutes. After dropping, the mixture is reacted at 130 ° C. for 4 hours, and then cooled to room temperature for 60 minutes. The obtained suspension was filtered, xylene was removed, and washing with methyl ethyl ketone was repeated 2-3 times. to continue. The obtained maleic anhydride-modified propylene resin powder was obtained by air drying.
<Synthesis example of resins B to G having an acid value of 1 to 200 mgKOH>
Using polypropylenes having Mw of 7,000, 20,000, 50,000, 100,000, 200,000, and 300,000, <Synthesis example of resin A having an acid value of 1 to 200 mgKOH / g> and In the same manner, maleic anhydride-modified propylene resins (resins B to G) whose Mw of the raw material polypropylene is 7,000, 20,000, 50,000, 100,000, 200,000 and 300,000 are obtained. Yeah.

<酸価が1〜200mgKOHの樹脂H>
エチレン−アクリル酸共重合体であるダウ・ケミカル社製プリマコール5980Iを用いた。
<酸価が1〜200mgKOHの樹脂I>
酸変性スチレン系芳香族炭化水素と、共役ジエンブロックとの共重合体の水添物が、旭化成社製タフテックM1953(スチレン含有量40重量%、酸価10mgKOH/g)を用いた。
<酸価が1〜200mgKOHの樹脂J>
酸変性スチレン系芳香族炭化水素と、共役ジエンブロックとの共重合体が、クレイトン・ポリマー社製クレイトンFG1901X(スチレン含有量28重量%、無水マレイン酸付加量2.0重量%、酸価22mgKOH/g)を用いた。
<樹脂K>
ポリプロピレンである日本ポリエチレン社製ノバテックLD LC600Aを用いた。酸価:1mgKOH/g未満。
<樹脂L>
スチレン−アクリル酸樹脂である星光PMC社製VS−1047を用いた。酸価:240mgKOH/g。
<Resin H having an acid value of 1 to 200 mgKOH>
Primacor 5980I manufactured by Dow Chemical Co., which is an ethylene-acrylic acid copolymer, was used.
<Resin I having an acid value of 1 to 200 mgKOH>
As a hydrogenated product of a copolymer of an acid-modified styrene-based aromatic hydrocarbon and a conjugated diene block, Tuftec M1953 (styrene content 40% by weight, acid value 10 mgKOH / g) manufactured by Asahi Kasei Corporation was used.
<Resin J having an acid value of 1 to 200 mgKOH>
A copolymer of an acid-modified styrenic aromatic hydrocarbon and a conjugated diene block is a clayton FG1901X (styrene content 28% by weight, maleic anhydride addition amount 2.0% by weight, acid value 22 mgKOH / g) was used.
<Resin K>
Novatec LD LC600A manufactured by Nippon Polyethylene Co., Ltd., which is polypropylene, was used. Acid value: less than 1 mg KOH / g.
<Resin L>
A styrene-acrylic acid resin VS-1047 manufactured by Seiko PMC was used. Acid value: 240 mg KOH / g.

<熱可塑性ホットメルト接着剤樹脂(1)、(2),(4)〜(7)の製造方法>
本発明の熱可塑性樹脂は、上記樹脂を酸価が1未満及び/又は200mg以上の樹脂とポリプロピレンA(日本ポリプロ社製FL02A)を混合して、押し出し機によりブレンドして、製造した。
<熱可塑性ホットメルト接着剤(3)、(8)〜(10)>
熱可塑性ホットメルト接着剤(3)及び(8)〜(10)は、樹脂B,H,I,Jをそのまま使用した。
<The manufacturing method of thermoplastic hot-melt-adhesive resin (1), (2), (4)-(7)>
The thermoplastic resin of the present invention was produced by mixing the above resin with a resin having an acid value of less than 1 and / or 200 mg or more and polypropylene A (FL02A manufactured by Nippon Polypro Co., Ltd.) and blending with an extruder.
<Thermoplastic hot melt adhesive (3), (8) to (10)>
As the thermoplastic hot melt adhesives (3) and (8) to (10), the resins B, H, I and J were used as they were.

<25℃のキシレンに可溶の成分の測定方法>
酸価が1〜200mgKOH/gの樹脂中の25℃のキシレンに可溶の成分は以下の方法で算出した。樹脂ペレット又はパウダーを約50重量倍のキシレンを用いて130℃にて3時間加熱して溶解した後、25℃で一晩放冷して晶析物を析出させた。晶析物をろ過して、ろ液を回収し、濃縮乾固した。さらに、80℃にて一晩減圧乾燥して残留溶媒を除去し、25℃のキシレンに可溶の成分を得た。樹脂ペレットと25℃のキシレンに可溶の成分の重量から、25℃のキシレンに可溶の成分の重量%を算出した。
樹脂H,I,Jは、トルエンに可能である為測定が出来なかった。
<Method for measuring components soluble in xylene at 25 ° C.>
A component soluble in xylene at 25 ° C. in a resin having an acid value of 1 to 200 mg KOH / g was calculated by the following method. The resin pellet or powder was dissolved by heating at 130 ° C. for 3 hours using xylene at a weight of about 50 times, and then allowed to cool overnight at 25 ° C. to precipitate a crystallized product. The crystallized product was filtered, and the filtrate was collected and concentrated to dryness. Furthermore, it dried under reduced pressure at 80 degreeC overnight, the residual solvent was removed, and the component soluble in 25 degreeC xylene was obtained. From the weight of the resin pellet and the component soluble in xylene at 25 ° C., the weight percentage of the component soluble in xylene at 25 ° C. was calculated.
Resins H, I, and J could not be measured because they could be toluene.

<製膜方法>
押出しラミネーターを用いて、表2に示す熱可塑性ホットメルト接着剤を、離型処理したPETフィルム(厚み:25μm)に、膜厚を変えて積層し、巻取部で巻取り、熱可塑性接着層を作製した。
以下に加工条件を示した。
押出しラミネーター:ムサシノキカイ製400M/MテストEXTラミネーター
ダイ直下樹脂温度:140〜240℃(樹脂のMFR等により適宜調整した)
加工速度:30m/分
Tダイ幅:400mm
冷却ロール表面温度:20℃
<Film forming method>
Using an extruded laminator, the thermoplastic hot melt adhesive shown in Table 2 is laminated on a release-treated PET film (thickness: 25 μm) with a different film thickness, wound at a winding portion, and a thermoplastic adhesive layer. Was made.
The processing conditions are shown below.
Extrusion laminator: 400M / M test EXT laminator die directly under Musashinokikai Resin temperature: 140-240 ° C. (adjusted appropriately by MFR of resin, etc.)
Processing speed: 30m / min T die width: 400mm
Cooling roll surface temperature: 20 ° C

<接着構造物の製造方法>
本発明のセルの製造方法の性能を評価するため、下記の製造方法により接着構造物を作成し、評価を行った。用いた熱可塑性ホットメルト接着剤の組成および評価結果を表1および表2に示す。
(セパレータ(金属層)/ガスケット)
セパレータ層(チタン板)、熱可塑性ホットメルト接着剤層、ガスケットに用いられるチタン板を積層し、入力電圧:100V、消費電力:550Wの電磁誘導加熱装置により1〜5秒加熱し、熱可塑性ホットメルト接着剤を軟化させ、加熱を終了することにより、電磁誘導加熱装置で圧着させて熱可塑性ホットメルト接着剤を冷却・固化させ、接着構造物が得られる。
(セパレータ(金属層)/シール材)
セパレータ層(チタン板)、熱可塑性ホットメルト接着剤層、シール材に用いられるEPDMを積層し、入力電圧:100V、消費電力:550Wの電磁誘導加熱装置により1〜5秒加熱し、熱可塑性ホットメルト接着剤を軟化させ、加熱を終了することにより、電磁誘導加熱装置で圧着させて熱可塑性ホットメルト接着剤を冷却・固化させ、接着構造物が得られる。
(ガスケット/シール材)
ガスケット(チタン板)、熱可塑性ホットメルト接着剤層、シール材に用いられるEPDMを積層し、入力電圧:100V、消費電力:550Wの電磁誘導加熱装置により1〜5秒加熱し、熱可塑性ホットメルト接着剤を軟化させ、加熱を終了することにより、電磁誘導加熱装置で圧着させて熱可塑性ホットメルト接着剤を冷却・固化させ、接着構造物が得られる。
<Method for producing bonded structure>
In order to evaluate the performance of the manufacturing method of the cell of the present invention, an adhesion structure was prepared by the following manufacturing method and evaluated. Tables 1 and 2 show the compositions and evaluation results of the thermoplastic hot melt adhesives used.
(Separator (metal layer) / gasket)
A separator layer (titanium plate), a thermoplastic hot melt adhesive layer, and a titanium plate used for a gasket are laminated, and heated for 1 to 5 seconds by an electromagnetic induction heating device with an input voltage of 100 V and a power consumption of 550 W, and thermoplastic hot When the melt adhesive is softened and the heating is completed, the thermoplastic hot melt adhesive is cooled and solidified by an electromagnetic induction heating device to obtain an adhesive structure.
(Separator (metal layer) / sealing material)
A separator layer (titanium plate), a thermoplastic hot melt adhesive layer, and EPDM used as a sealing material are laminated, and heated for 1 to 5 seconds by an electromagnetic induction heating device with an input voltage of 100 V and power consumption of 550 W. When the melt adhesive is softened and the heating is completed, the thermoplastic hot melt adhesive is cooled and solidified by an electromagnetic induction heating device to obtain an adhesive structure.
(Gasket / sealing material)
Laminated gasket (titanium plate), thermoplastic hot melt adhesive layer, EPDM used for sealing material, heated by electromagnetic induction heating device with input voltage: 100V, power consumption: 550W, thermoplastic hot melt By softening the adhesive and finishing the heating, the adhesive is compressed by an electromagnetic induction heating device to cool and solidify the thermoplastic hot melt adhesive, thereby obtaining an adhesive structure.

<接着力>
接着構造物を、引張試験機を用いて、T剥離強度を測定した。測定条件は、下記の通りである。
・サンプル巾:10mm
・測定温度:23℃、80℃
・引張速度:10mm/min
評価結果は、100N/10mm以上:◎、80N/10mm以上を〇、20N/10mm未満:△、80N/10mm未満を×とした。
<温水後接着力>
接着構造物を80℃の温水に96時間を浸漬した後接着構造物を、引張試験機を用いて、T剥離強度を測定した。測定条件は、下記の通りである。
・サンプル巾:10mm
・測定温度:23℃
・引張速度:10mm/min
評価結果は、100N/10mm以上:◎、80N/10mm以上:〇、20N/10mm未満:△、20N/10mm未満:×とした。〇及び◎を合格とした。
<Adhesive strength>
The adhesive structure was measured for T peel strength using a tensile tester. The measurement conditions are as follows.
・ Sample width: 10mm
・ Measurement temperature: 23 ℃, 80 ℃
・ Tensile speed: 10 mm / min
The evaluation results are 100 N / 10 mm or more: ◎, 80 N / 10 mm or more is ◯, less than 20 N / 10 mm: Δ, and less than 80 N / 10 mm is x.
<Adhesive strength after warm water>
After immersing the bonded structure in warm water at 80 ° C. for 96 hours, the T peel strength of the bonded structure was measured using a tensile tester. The measurement conditions are as follows.
・ Sample width: 10mm
・ Measurement temperature: 23 ℃
・ Tensile speed: 10 mm / min
The evaluation results were set to 100 N / 10 mm or more: A, 80 N / 10 mm or more: Yes, less than 20 N / 10 mm: Δ, less than 20 N / 10 mm: x. 〇 and ◎ were accepted.

[比較例1,2]
比較例1に酸価1mgKOH/gのポリプロピレン樹脂(熱可塑性ホットメルト接着剤(11))、比較例2に酸価240mgKOH/gのスチレン−アクリル酸樹脂(熱可塑性ホットメルト接着剤(12))を用いて、評価した結果示す。いずれの比較例も接着力が低かった。
[Comparative Examples 1 and 2]
Comparative Example 1 has an acid value of 1 mg KOH / g polypropylene resin (thermoplastic hot melt adhesive (11)), and Comparative Example 2 has an acid value of 240 mg KOH / g styrene-acrylic acid resin (thermoplastic hot melt adhesive (12)). The evaluation results are shown using. All comparative examples had low adhesive strength.

[比較例3]
比較例3には、熱可塑性ホットメルト接着剤(1)を用いて、ヒートシール(250℃)でサンプルを作製し、評価した。接着力は接着力が低かった。
[Comparative Example 3]
In Comparative Example 3, a sample was prepared and evaluated by heat sealing (250 ° C.) using the thermoplastic hot melt adhesive (1). The adhesive strength was low.

[比較例4]
比較例4には、接着剤として熱硬化性接着剤(1)を用いて、電磁誘導加熱装置により加熱硬化させ、評価した。接着力は接着力が低かった。
熱硬化性接着剤(1)は、下記の主剤100重量部及び硬化剤52.5重量部を混合して得た。
主剤:オルソクレゾールノボラック型エポキシ樹脂(日本化薬株式会社製 EOCN-102S(エポキシ当量200、軟化点65℃))
硬化剤:フェノール樹脂(フェノールノボラック樹脂、住友ベークライト(株)製PR-53195(水酸基当量105、軟化点80℃))
[Comparative Example 4]
In Comparative Example 4, the thermosetting adhesive (1) was used as an adhesive and was cured by heating with an electromagnetic induction heating device and evaluated. The adhesive strength was low.
The thermosetting adhesive (1) was obtained by mixing 100 parts by weight of the following main agent and 52.5 parts by weight of the curing agent.
Main agent: Orthocresol novolak type epoxy resin (EOCN-102S (epoxy equivalent 200, softening point 65 ° C.) manufactured by Nippon Kayaku Co., Ltd.)
Curing agent: phenol resin (phenol novolac resin, PR-53195 (Hydroxyl equivalent 105, softening point 80 ° C.) manufactured by Sumitomo Bakelite Co., Ltd.)

なお、表2中、EPDMは、エチレンプロピレンゴムの略であり、EPDMを用いた場合には、接着強度試験を行うために、厚みを10mmとした。
また、表2中のチタンはセパレータおよびガスケットを想定しており、EPDMはシール材を想定している。
In Table 2, EPDM is an abbreviation for ethylene propylene rubber. When EPDM is used, the thickness was set to 10 mm in order to perform an adhesive strength test.
Further, titanium in Table 2 assumes a separator and a gasket, and EPDM assumes a sealing material.

表2で示されるとおり、本発明の燃料電池用セルの製造方法を用いることで、セパレータとガスケットとの接着を想定したチタンどうしの接着、およびセパレータやガスケットとシール材との接着を想定したチタンとEPDMとの接着、いずれにおいても、短時間で接着し、接着強度(常温及び80℃)、温水後接着強度が良好であり、燃料電池用セルおよびそれを用いた燃料電池の製造方法に有用である。 As shown in Table 2, by using the fuel cell production method of the present invention, titanium that assumes adhesion between the separator and the gasket, and titanium that assumes adhesion between the separator and the gasket and the sealing material. In both cases, the adhesion between EPDM and EPDM is fast, and the adhesive strength (room temperature and 80 ° C) and the adhesive strength after warm water are good, useful for fuel cell and fuel cell manufacturing method using the same. It is.

1 燃料電池用セル、11 セパレータ、12 熱可塑性ホットメルト接着剤層、
13 シール層、14 冷却液流路、15 ガスケット、16 金属層、
17,19ガス流路、18 発電体、41 アノード層、
42 カソード層、31,32 ガス拡散層、71 電解質膜
DESCRIPTION OF SYMBOLS 1 Cell for fuel cells, 11 Separator, 12 Thermoplastic hot melt adhesive layer,
13 Seal layer, 14 Coolant flow path, 15 Gasket, 16 Metal layer,
17, 19 gas flow path, 18 power generator, 41 anode layer,
42 cathode layer, 31, 32 gas diffusion layer, 71 electrolyte membrane

Claims (10)

金属層、熱可塑性ホットメルト接着剤層の順で積層されてなる積層体と、被着層とを、接着させる工程を含有する燃料電池用セルの製造方法であって、前記工程が電磁誘導加熱により金属層を加熱する工程を含み、かつ前記熱可塑性ホットメルト接着剤が、酸価1〜200mgKOH/gの樹脂を含むことを特徴とする燃料電池用セルの製造方法。 A method for producing a cell for a fuel cell, comprising a step of adhering a laminate formed by laminating a metal layer and a thermoplastic hot melt adhesive layer in this order, and an adherent layer, the step comprising electromagnetic induction heating And a process for heating the metal layer, and the thermoplastic hot melt adhesive contains a resin having an acid value of 1 to 200 mgKOH / g. 金属層が、セパレータ、またはガスケットであり、被着層が、シール材であることを特徴とする請求項1に記載の燃料電池用セルの製造方法。 2. The method for producing a fuel cell according to claim 1, wherein the metal layer is a separator or a gasket, and the deposition layer is a sealing material. 金属層が、セパレータであり、被着層がガスケット、またはシール材であることを特徴とする請求項1に記載の燃料電池用セルの製造方法。 2. The method for producing a fuel cell according to claim 1, wherein the metal layer is a separator and the deposition layer is a gasket or a sealing material. 樹脂が、エチレンと(メタ)アクリル酸との共重合体、および/またはポリオレフィンを含むことを特徴とする請求項1〜3のいずれか1項に記載の燃料電池用セルの製造方法。 The method for producing a fuel cell according to any one of claims 1 to 3, wherein the resin contains a copolymer of ethylene and (meth) acrylic acid and / or a polyolefin. 樹脂が、酸変性スチレン系芳香族炭化水素と、共役ジエンブロックとの共重合体、または、その水添物を含むことを特徴とする請求項1〜4のいずれか1項に記載の燃料電池用セルの製造方法。 The fuel cell according to any one of claims 1 to 4, wherein the resin contains a copolymer of an acid-modified styrene-based aromatic hydrocarbon and a conjugated diene block, or a hydrogenated product thereof. Cell manufacturing method. 樹脂の融点が、70〜250℃であることを特徴とする請求項1〜5いずれか1項に記載の燃料電池用セルの製造方法。 The melting point of resin is 70-250 degreeC, The manufacturing method of the cell for fuel cells of any one of Claims 1-5 characterized by the above-mentioned. 熱可塑性ホットメルト接着剤が、25℃のキシレンに可溶の成分を含むがその含量が5重量%未満であることを特徴とする請求項1〜6いずれか1項に記載の燃料電池用セルの製造方法。 7. The fuel cell according to claim 1, wherein the thermoplastic hot-melt adhesive contains a component soluble in xylene at 25 ° C., but the content thereof is less than 5% by weight. Manufacturing method. 被着層が金属層であることを特徴とする請求項1〜7いずれか1項に記載の燃料電池用セルの製造方法。 The method for producing a fuel cell according to any one of claims 1 to 7, wherein the deposition layer is a metal layer. 電磁誘導加熱により金属層を加熱する工程に要する時間が5秒以内であることを特徴とする請求項1〜8いずれか1項に記載の燃料電池用セルの製造方法。 The method for producing a fuel cell according to any one of claims 1 to 8, wherein the time required for the step of heating the metal layer by electromagnetic induction heating is within 5 seconds. 請求項1〜9いずれか1項に記載の燃料電池用セルの製造方法を用いることを特徴とする燃料電池の製造方法。 A method for producing a fuel cell, wherein the method for producing a fuel cell according to any one of claims 1 to 9 is used.
JP2017041215A 2017-03-06 2017-03-06 How to manufacture fuel cell cells Active JP7064113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017041215A JP7064113B2 (en) 2017-03-06 2017-03-06 How to manufacture fuel cell cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017041215A JP7064113B2 (en) 2017-03-06 2017-03-06 How to manufacture fuel cell cells

Publications (2)

Publication Number Publication Date
JP2018147700A true JP2018147700A (en) 2018-09-20
JP7064113B2 JP7064113B2 (en) 2022-05-10

Family

ID=63592388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017041215A Active JP7064113B2 (en) 2017-03-06 2017-03-06 How to manufacture fuel cell cells

Country Status (1)

Country Link
JP (1) JP7064113B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021060000A1 (en) * 2019-09-26 2021-04-01
WO2021059998A1 (en) * 2019-09-26 2021-04-01 東洋紡フイルムソリューション株式会社 Multilayer body
JP2021054881A (en) * 2019-09-26 2021-04-08 東亞合成株式会社 Adhesive composition, and adhesion method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09188859A (en) * 1996-01-08 1997-07-22 Fujipura Seiko Co Ltd 1h resin heater provided with adhesive generating heat by high-frequency induction
JP2004197012A (en) * 2002-12-20 2004-07-15 Saiden Chemical Industry Co Ltd Polyamide resin based hot melt adhesive composition for electromagnetic induction heating
JP2007188718A (en) * 2006-01-12 2007-07-26 Tokai Rubber Ind Ltd Adhesive seal member and fuel cell using it
JP2010040451A (en) * 2008-08-07 2010-02-18 Tokai Rubber Ind Ltd Frame member and fuel cell separator using the same
JP2013187036A (en) * 2012-03-08 2013-09-19 Toyota Motor Corp Device and method for manufacturing member for fuel cell
JP2014053118A (en) * 2012-09-06 2014-03-20 Toyota Motor Corp Fuel cell and manufacturing method of the same
JP2015092437A (en) * 2013-11-08 2015-05-14 東洋インキScホールディングス株式会社 Composition for fuel battery electrode formation, and fuel battery arranged by use thereof
WO2015178432A1 (en) * 2014-05-21 2015-11-26 日産自動車株式会社 Fuel cell manufacturing method and fuel cell manufacturing device
JP2015225732A (en) * 2014-05-26 2015-12-14 日産自動車株式会社 Manufacturing device and manufacturing method for membrane electrode assembly with resin frame

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09188859A (en) * 1996-01-08 1997-07-22 Fujipura Seiko Co Ltd 1h resin heater provided with adhesive generating heat by high-frequency induction
JP2004197012A (en) * 2002-12-20 2004-07-15 Saiden Chemical Industry Co Ltd Polyamide resin based hot melt adhesive composition for electromagnetic induction heating
JP2007188718A (en) * 2006-01-12 2007-07-26 Tokai Rubber Ind Ltd Adhesive seal member and fuel cell using it
JP2010040451A (en) * 2008-08-07 2010-02-18 Tokai Rubber Ind Ltd Frame member and fuel cell separator using the same
JP2013187036A (en) * 2012-03-08 2013-09-19 Toyota Motor Corp Device and method for manufacturing member for fuel cell
JP2014053118A (en) * 2012-09-06 2014-03-20 Toyota Motor Corp Fuel cell and manufacturing method of the same
JP2015092437A (en) * 2013-11-08 2015-05-14 東洋インキScホールディングス株式会社 Composition for fuel battery electrode formation, and fuel battery arranged by use thereof
WO2015178432A1 (en) * 2014-05-21 2015-11-26 日産自動車株式会社 Fuel cell manufacturing method and fuel cell manufacturing device
JP2015225732A (en) * 2014-05-26 2015-12-14 日産自動車株式会社 Manufacturing device and manufacturing method for membrane electrode assembly with resin frame

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021060000A1 (en) * 2019-09-26 2021-04-01
WO2021059998A1 (en) * 2019-09-26 2021-04-01 東洋紡フイルムソリューション株式会社 Multilayer body
WO2021060000A1 (en) * 2019-09-26 2021-04-01 東洋紡フイルムソリューション株式会社 Assembly for fuel cell, and laminate
JP2021054880A (en) * 2019-09-26 2021-04-08 東洋紡フイルムソリューション株式会社 Laminate
JP2021054881A (en) * 2019-09-26 2021-04-08 東亞合成株式会社 Adhesive composition, and adhesion method
KR20220049543A (en) * 2019-09-26 2022-04-21 도요보 가부시키가이샤 Assembly and laminate for fuel cell
CN114450152A (en) * 2019-09-26 2022-05-06 东洋纺株式会社 Laminated body
JP7254670B2 (en) 2019-09-26 2023-04-10 東洋紡株式会社 laminate
CN114450152B (en) * 2019-09-26 2023-06-02 东洋纺株式会社 Laminate body
JP7360291B2 (en) 2019-09-26 2023-10-12 東亞合成株式会社 Adhesive composition and adhesion method
JP7404379B2 (en) 2019-09-26 2023-12-25 東洋紡株式会社 Fuel cell assembly and laminate
TWI830949B (en) * 2019-09-26 2024-02-01 日商東洋紡股份有限公司 Fuel cell assembly and laminate
KR102696762B1 (en) * 2019-09-26 2024-08-21 도요보 가부시키가이샤 Adhesives and laminates for fuel cells

Also Published As

Publication number Publication date
JP7064113B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
JP6143147B1 (en) Laminate adhesive, multilayer film, and secondary battery using the same
JP6765379B2 (en) Thermal conductivity adhesive
JP5875029B1 (en) Laminate adhesive, laminate using the same, and secondary battery
JP6055609B2 (en) Hot melt adhesive for power equipment
JP7064113B2 (en) How to manufacture fuel cell cells
JP5798404B2 (en) Adhesive tape for electrode plate protection
JP5558889B2 (en) Adhesive seal member
KR102258681B1 (en) Method for manufacturing fuel cell and fuel cell
JP5441271B2 (en) Nonaqueous battery laminate
JP5285548B2 (en) Hot melt adhesive for power equipment
KR20150105200A (en) Insulating film for sealing tab and electrochemical device
TW201333147A (en) Pressure-sensitive adhesive tape for battery, battery using the pressure-sensitive adhesive tape and process for manufacturing a battery
WO2020067221A1 (en) Adherend separation method and joining method
JP5375013B2 (en) Electrical parts, non-aqueous electrolyte batteries, and lead wires and enclosures used for them
JP2016096135A (en) Method for manufacturing flow path member for fuel cell
JP6770583B2 (en) Adhesive tape for batteries
JP2017016826A (en) Secondary battery
JP2018133145A (en) Method for manufacturing fuel cell separator
KR101946293B1 (en) Sealing film for secondary battary lead tab of high reliablity pouch with excellent barriber property
JPWO2018074090A1 (en) Non-aqueous electrolyte battery lead wire and non-aqueous electrolyte battery including the same
KR20200003559A (en) Lead tab film for secondary battery and secondary battery comprising the same
JPWO2019111592A1 (en) Lead wire for non-aqueous electrolyte battery and non-aqueous electrolyte battery including it
JP2012057041A (en) Self-adhesive sheet and method for producing the same
JP2014208729A (en) Laminated sealant film for sealing tab lead composed of modified polyolefin-based resin film and thermoplastic resin film
JP7193682B1 (en) Electro-peeling adhesive sheet and peeling method for electro-peeling adhesive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220326

R151 Written notification of patent or utility model registration

Ref document number: 7064113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151