JP2018146519A - Sample preparation method - Google Patents

Sample preparation method Download PDF

Info

Publication number
JP2018146519A
JP2018146519A JP2017044318A JP2017044318A JP2018146519A JP 2018146519 A JP2018146519 A JP 2018146519A JP 2017044318 A JP2017044318 A JP 2017044318A JP 2017044318 A JP2017044318 A JP 2017044318A JP 2018146519 A JP2018146519 A JP 2018146519A
Authority
JP
Japan
Prior art keywords
sample
washing
water
organic solvent
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017044318A
Other languages
Japanese (ja)
Inventor
吉田 昌史
Masashi Yoshida
昌史 吉田
一臣 漁師
Kazuomi Ryoshi
一臣 漁師
元彬 猿渡
Motoaki Saruwatari
元彬 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017044318A priority Critical patent/JP2018146519A/en
Publication of JP2018146519A publication Critical patent/JP2018146519A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sample preparation method enabling observation with SEM simply and accurately, without generating coagulation of particles.SOLUTION: A preparation method for a sample to be observed by a scanning electron microscope comprises: a filtration step S1 of filtrating a sample contained in solvent with a filter paper; a washing step S2 of washing the sample filtrated in the filtration step S1 with water; an organic washing step S3 of washing the sample washed in the washing step S2 with water-soluble organic solvent; and a dry step S4 of drying the sample washed in the organic washing step S3 for less than 5 minutes at 120°C or less, wherein in the filtration step S1, a film thickness of the sample accumulated on the filter paper is controlled so as to be equal to or more than 1 mm.SELECTED DRAWING: Figure 1

Description

本発明は、走査型電子顕微鏡によって観察する試料の調製方法に関する。   The present invention relates to a method for preparing a sample to be observed with a scanning electron microscope.

近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有し、小型で軽量な非水系電解質二次電池の開発が強く望まれている。この様な要求を満たす二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極、正極、電解液などで構成され、負極及び正極の活物質として、リチウムを脱離・挿入することが可能な材料が用いられている。   In recent years, with the widespread use of portable electronic devices such as mobile phones and notebook computers, development of non-aqueous electrolyte secondary batteries having high energy density, small size and light weight is strongly desired. As a secondary battery satisfying such requirements, there is a lithium ion secondary battery. A lithium ion secondary battery includes a negative electrode, a positive electrode, an electrolytic solution, and the like, and a material capable of detaching and inserting lithium is used as an active material of the negative electrode and the positive electrode.

リチウムイオン二次電池について、これまで、正極材料として提案されているものには、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)をはじめ、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)や、マンガンを用いたリチウムマンガン複合酸化物(LiMn)のほか、リチウムニッケルマンガン複合酸化物(LiNi0.5Mn0.5)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)などの種類が挙げられる。 Lithium ion secondary batteries that have been proposed as positive electrode materials so far include lithium nickel composite oxide (LiCoO 2 ) that is relatively easy to synthesize and nickel that is cheaper than cobalt. In addition to complex oxide (LiNiO 2 ), lithium manganese complex oxide using manganese (LiMn 2 O 4 ), lithium nickel manganese complex oxide (LiNi 0.5 Mn 0.5 O 2 ), lithium nickel cobalt manganese Examples include complex oxides (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ).

一般的には、いずれの正極材料も、中和晶析法(以降、晶析とも称する)により前駆体である遷移金属複合水酸化物(以降、前駆体とも称する)を製造し、この前駆体をリチウム化合物と混合・焼成することで、リチウム遷移金属複合酸化物を得る方法が知られている。故に、正極材料の性能を向上させるためには、その基となる前駆体を適度な粒径かつ粒度分布となるように製造しなければならない。   In general, any positive electrode material produces a transition metal composite hydroxide (hereinafter also referred to as a precursor) as a precursor by a neutralization crystallization method (hereinafter also referred to as crystallization). There is known a method of obtaining a lithium transition metal composite oxide by mixing and baking with a lithium compound. Therefore, in order to improve the performance of the positive electrode material, it is necessary to manufacture the precursor as a base so as to have an appropriate particle size and particle size distribution.

この前駆体は、均質な組成で効率良く生産が可能な晶析法によって得られる。通常、工業的に前駆体を晶析法によって作製する場合は、連続晶析法が多く用いられる。この方法は、組成の等しい前駆体を大量かつ簡便に作製できる方法である。しかし、この連続晶析法では、得られた生成物の粒度分布が比較的幅広い正規分布になり易く、必ずしも適度な粒径かつ粒度分布の粒子を得ることが出来ないなどの問題がある。   This precursor is obtained by a crystallization method that can be efficiently produced with a homogeneous composition. Usually, when a precursor is produced industrially by a crystallization method, a continuous crystallization method is often used. This method is a method capable of easily producing a large amount of precursors having the same composition. However, this continuous crystallization method has a problem that the particle size distribution of the obtained product tends to be a relatively wide normal distribution, and particles having an appropriate particle size and particle size distribution cannot always be obtained.

上記の問題を解決すべく、特許文献1では、従来の連続晶析法のように、核生成反応と粒子成長反応とが同じ槽内において同じ時期に進行するのではなく、主として核生成反応(核生成工程)が生じる時間と、主として粒子成長反応(粒子成長工程)が生じる時間とを明確に分離して、小粒径で粒径均一性の高いニッケルコバルトマンガン複合水酸化物粒子を得る製造方法等が記載されている。   In order to solve the above problem, in Patent Document 1, the nucleation reaction and the particle growth reaction do not proceed at the same time in the same tank as in the conventional continuous crystallization method, but mainly the nucleation reaction ( Production to obtain nickel cobalt manganese composite hydroxide particles with small particle size and high particle size uniformity by clearly separating the time when the nucleation step) occurs and the time when the particle growth reaction (particle growth step) mainly occurs The method etc. are described.

さらに、特許文献2には、リチウムニッケルマンガン複合酸化物の原料となる複合水酸化物として、Mn/Ni比の異なる多層構造を有する複合水酸化物粒子を用いることで、活物質としてのアルカリ度を低減し、粒径均一性が高いリチウムニッケルマンガン複合酸化物粒子を得る製造方法等が記載されている。複合水酸化物粒子の粒径均一性を得るためには、バッチ方式の種晶法を用いることが最適であり、バッチ方式の種晶法による製造方法について記載されている。   Furthermore, in Patent Document 2, the alkalinity as an active material is obtained by using composite hydroxide particles having a multilayer structure with different Mn / Ni ratios as a composite hydroxide that is a raw material of the lithium nickel manganese composite oxide. And a production method for obtaining lithium nickel manganese composite oxide particles having high particle size uniformity. In order to obtain the particle size uniformity of the composite hydroxide particles, it is optimal to use a batch-type seed crystal method, and a production method based on the batch-type seed crystal method is described.

ここで、前駆体における核生成工程や生成した核を成長させる粒子成長工程は、条件制御が難しいため、晶析途中の粒子形態を確認することは、リチウム遷移金属複合酸化物の物性を制御する上で特に重要となる。また、粒子形態を確認するために行われる様々な評価方法の中でも、走査型電子顕微鏡(以降、SEMとも称する)により試料を直接観察する方法は、粒子の表面や断面の形態を知る上で有効である。   Here, since the nucleation step in the precursor and the particle growth step for growing the generated nuclei are difficult to control conditions, confirming the particle morphology during crystallization controls the physical properties of the lithium transition metal composite oxide. Especially important above. Among various evaluation methods used to confirm the particle morphology, the method of directly observing a sample with a scanning electron microscope (hereinafter also referred to as SEM) is effective for knowing the morphology of the particle surface and cross section. It is.

特開2011−116580JP2011-116580A 特開2012−256435JP2012-256435A

ところが、晶析途中における前駆体のように、試料が小粒径である場合には、表面活性が高く、試料乾燥時に凝集を起こし易いため、乾燥処理が必要なSEMでの観察を行うことは、非常に難しい。それ故に、小粒径の粒子形態をSEMによって確実に捉えることができる試料の調製方法の開発が望まれていた。   However, when the sample has a small particle size, such as a precursor in the middle of crystallization, the surface activity is high, and the sample tends to agglomerate when the sample is dried. ,very difficult. Therefore, there has been a demand for the development of a sample preparation method that can reliably capture the particle form of a small particle size by SEM.

そこで本発明は、上述した従来の実情を鑑みて提案するものであり、晶析途中における小粒径で活性の高い試料などに対しても、粒子同士の凝集を起こさず、簡便かつ高精度でSEMでの観察することができる試料の調製方法を提供することを目的とする。   Therefore, the present invention is proposed in view of the above-described conventional situation, and does not cause aggregation of particles even in a small particle size and high activity sample in the middle of crystallization, and is simple and highly accurate. It is an object to provide a method for preparing a sample that can be observed with an SEM.

本発明の一態様は、走査型電子顕微鏡によって観察する試料の調製方法であって、溶媒中に含まれる試料を濾紙で濾過する濾過工程と、前記濾過工程にて濾過した前記試料を水洗する水洗工程と、前記水洗工程にて水洗した前記試料を水溶性の有機溶媒で有機洗浄する有機洗浄工程と、前記有機洗浄工程にて有機洗浄した前記試料を120℃以下かつ5分未満で乾燥する乾燥工程とを有し、前記濾過工程にて前記濾紙上に体積させる前記試料の層厚が1mm以上に制御することを特徴とする。   One embodiment of the present invention is a method for preparing a sample to be observed with a scanning electron microscope, the filtration step of filtering a sample contained in a solvent with a filter paper, and the water washing of the sample filtered in the filtration step An organic washing step of organically washing the sample washed in the water washing step with a water-soluble organic solvent, and drying for drying the sample washed organically in the organic washing step in 120 ° C. or less and less than 5 minutes And the layer thickness of the sample to be volumed on the filter paper in the filtration step is controlled to be 1 mm or more.

このようにすれば、晶析途中における小粒径で活性の高い試料などに対しても、粒子同士の凝集を起こさず、簡便かつ高精度でSEMでの観察が可能となる。   In this way, even a sample having a small particle size and high activity in the middle of crystallization does not cause aggregation of particles, and can be observed with an SEM simply and with high accuracy.

このとき、本発明の一態様では、前記試料は、遷移金属複合水酸化物としても良い。   At this time, in one embodiment of the present invention, the sample may be a transition metal composite hydroxide.

このようにすれば、遷移金属複合水酸化物の小粒径の活性の高い試料などに対しても、晶析途中における小粒径で活性の高い試料などに対しても、粒子同士の凝集を起こさず、簡便かつ高精度でSEMでの観察が可能となる。   In this way, the particles of the transition metal composite hydroxide can be agglomerated with each other both in the small particle size highly active sample and in the small particle size high activity sample in the middle of crystallization. Observation with an SEM is possible with ease and high accuracy without causing it.

このとき、本発明の一態様では、前記試料の粒子は、メジアン径D50が4μm以下としても良い。   At this time, in one embodiment of the present invention, the particles of the sample may have a median diameter D50 of 4 μm or less.

このようにすれば、メジアン径D50が4μm以下の小径の試料に対しても、粒子同士の凝集を起こさず、簡便かつ高精度でSEMでの観察することができる。   In this way, even a sample having a median diameter D50 of 4 μm or less can be observed with an SEM simply and with high precision without causing aggregation of particles.

このとき、本発明の一態様では、前記水溶性の有機溶媒の沸点は、80℃以下としても良い。   At this time, in one embodiment of the present invention, the water-soluble organic solvent may have a boiling point of 80 ° C. or lower.

このようにすれば、乾燥工程での有機溶媒の除去が短時間となり、さらに粒子同士の凝集を防止できる。   If it does in this way, removal of the organic solvent in a drying process will become a short time, and also aggregation of particles can be prevented.

このとき、本発明の一態様では、前記水溶性の有機溶媒の添加量は前記試料の乾燥重量に対して10倍以上としてもよい。   At this time, in one embodiment of the present invention, the addition amount of the water-soluble organic solvent may be 10 times or more with respect to the dry weight of the sample.

このようにすれば、水分を十分に除去でき、粒子同士の凝集を防止できる。   If it does in this way, a water | moisture content can fully be removed and aggregation of particle | grains can be prevented.

このとき、本発明の一態様では、前記試料は、前記乾燥工程において、大気圧下又は減圧下で乾燥されることとしてもよい。   At this time, in one embodiment of the present invention, the sample may be dried under atmospheric pressure or reduced pressure in the drying step.

このようにすれば、乾燥工程での有機溶媒の除去が短時間となり、さらに粒子同士の凝集を防止できる。   If it does in this way, removal of the organic solvent in a drying process will become a short time, and also aggregation of particles can be prevented.

本発明によれば、晶析途中における小粒径で活性の高い試料などに対しても、粒子同士の凝集を起こさず、簡便かつ高精度でSEMでの観察が可能となる。   According to the present invention, a small particle size and high activity sample in the middle of crystallization can be easily and highly accurately observed with an SEM without causing aggregation of particles.

図1は、本発明の一実施形態に係る試料調製方法の概略を示す工程図である。FIG. 1 is a process diagram showing an outline of a sample preparation method according to an embodiment of the present invention. 図2は、実施例1において得られた試料をSEMで観察した画像を示す図である。FIG. 2 is a diagram showing an image obtained by observing the sample obtained in Example 1 with an SEM. 図3は、比較例1において得られた試料をSEMで観察した画像を示す図である。FIG. 3 is a diagram showing an image obtained by observing the sample obtained in Comparative Example 1 with an SEM. 図4は、比較例2において得られた試料をSEMで観察した画像を示す図である。FIG. 4 is a diagram showing an image obtained by observing the sample obtained in Comparative Example 2 with an SEM.

以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本発明の要旨を逸脱しない範囲で変更が可能である。また、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail. In addition, this embodiment described below does not unduly limit the content of the present invention described in the claims, and can be modified without departing from the gist of the present invention. In addition, all the configurations described in the present embodiment are not necessarily indispensable as means for solving the present invention.

以下、図面を使用しながら本発明の一実施形態に係る試料調製方法を説明する。図1は、本発明の一実施形態に係る試料調製方法の概略を示す工程図である。本発明の一実施形態に係る試料調製方法は、図1に示すように、濾過工程S1、水洗工程S2、有機洗浄工程S3、及び乾燥工程S4を有する。上述した工程を経て観察試料を調製することによって、晶析途中における小粒径で活性の高い試料などに対しても、粒子同士の凝集を起こさず、簡便かつ高精度でSEMでの観察が可能となる。本発明の一実施形態に係る試料調製方法について、下記の順に詳細に説明する。
1、濾過工程S1
2、水洗工程S2
3、有機洗浄工程S3
4、乾燥工程S4
Hereinafter, a sample preparation method according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a process diagram showing an outline of a sample preparation method according to an embodiment of the present invention. As shown in FIG. 1, the sample preparation method according to an embodiment of the present invention includes a filtration step S1, a water washing step S2, an organic washing step S3, and a drying step S4. By preparing an observation sample through the above-mentioned steps, it is possible to observe with a simple and high-precision SEM without causing aggregation of particles even with a small particle size and high activity sample during crystallization. It becomes. A sample preparation method according to an embodiment of the present invention will be described in detail in the following order.
1. Filtration step S1
2, water washing process S2
3. Organic cleaning process S3
4. Drying step S4

<1、濾過工程S1>
まず、本発明の一実施形態に係る試料調製方法における濾過工程S1を説明する。濾過工程S1では、試料が含まれるスラリー状の中和晶析液を、吸引濾過器のロート部へ注ぎ込み、吸引濾過を行う。この際、濾紙上に堆積させる試料の層厚を1mm以上となるように処理する。なお、試料の層厚を1mm以上とする理由は、濾過の過程における乾燥凝集を防ぐためである。さらに好ましくは、2mm以上である。
<1, Filtration step S1>
First, the filtration step S1 in the sample preparation method according to an embodiment of the present invention will be described. In the filtration step S1, the slurry-like neutralized crystallization liquid containing the sample is poured into the funnel portion of the suction filter and suction filtration is performed. At this time, the layer thickness of the sample deposited on the filter paper is processed to be 1 mm or more. The reason why the layer thickness of the sample is 1 mm or more is to prevent dry aggregation in the filtration process. More preferably, it is 2 mm or more.

試料の層厚を1mm以上とする方法として例えば、ロートに線などの印を設け、目視で確認しながら濾過し、堆積させる試料の層厚を制御する。また、印をつけた棒等でロートに対し垂直にし、目視で確認しながら濾過し、堆積させる試料の層厚を制御する。   As a method for setting the layer thickness of the sample to 1 mm or more, for example, a mark such as a line is provided on the funnel, the sample is filtered while visually confirmed, and the layer thickness of the sample to be deposited is controlled. In addition, the layer thickness of the sample to be deposited is controlled by making it perpendicular to the funnel with a marked bar or the like, filtering while visually checking.

このとき、吸引濾過器の流量は20〜40L/minが好ましい。上記の範囲とすれば、濾過時の吸引によっても、後述する有機溶媒を揮発させ乾燥工程での加熱乾燥時間を短くすることができる。ここで吸引濾過の流量が40L/minより多くなると、吸引による吸気により、乾燥凝集を生じる可能性がある。一方、20L/min未満となると、後述する乾燥工程での乾燥不足による乾燥不良を招く可能性がある。また、それだけ吸引に時間がかかり、調製効率が下がる場合がある。   At this time, the flow rate of the suction filter is preferably 20 to 40 L / min. If it is said range, the organic solvent mentioned later can be volatilized also by attraction | suction at the time of filtration, and the heat drying time in a drying process can be shortened. Here, when the flow rate of the suction filtration is more than 40 L / min, there is a possibility that dry agglomeration may occur due to suction by suction. On the other hand, when it is less than 20 L / min, there is a possibility of causing poor drying due to insufficient drying in the drying step described later. In addition, it takes time for the suction, and the preparation efficiency may decrease.

また、試料としては、特に限定されないが、リチウム二次電池の中でも高い電圧が得られる、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)をはじめ、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)や、マンガンを用いたリチウムマンガン複合酸化物(LiMn)のほか、リチウムニッケルマンガン複合酸化物(LiNi0.5Mn0.5)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)などの種類が挙げられる。 As the sample is not particularly limited, a higher voltage among the lithium secondary battery is obtained, the synthesis is relatively easy lithium cobalt composite oxide (LiCoO 2) First, using an inexpensive nickel than cobalt Lithium nickel composite oxide (LiNiO 2 ), lithium manganese composite oxide using manganese (LiMn 2 O 4 ), lithium nickel manganese composite oxide (LiNi 0.5 Mn 0.5 O 2 ), lithium nickel Examples include cobalt manganese complex oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ).

さらに晶析によって得られる上記物質の、核生成工程や核成長工程における前駆体である遷移金属複合水酸化物が挙げられる。特に上記前駆体は、粒径が小さいので、表面活性が高く凝集を生じさせ易い。そこで本発明の一実施形態に係る試料調製方法によれば、凝集を生じさせることなく、簡便かつ高精度でSEMでの観察が可能となる。また、簡便かつ高精度でSEMでの観察が可能となることで、調製試料、特に上記の前駆体を適度な粒径かつ粒度分布となるように製造することができ、正極材料の性能を向上させることができる。さらに、上記の前駆体の段階で簡便かつ高精度でSEMでの観察ができれば、正極活物質が製造される複数の製造工程の上流工程で、粒子の調製が可能となり、最終的な粒径の調製が容易となり、さらなる正極材料の性能向上が可能となる。   Furthermore, the transition metal composite hydroxide which is a precursor in the nucleation process and the nucleus growth process of the said substance obtained by crystallization is mentioned. In particular, since the precursor has a small particle size, it has a high surface activity and tends to cause aggregation. Therefore, according to the sample preparation method according to an embodiment of the present invention, observation with an SEM can be performed easily and with high accuracy without causing aggregation. In addition, since it is possible to observe with a SEM simply and with high accuracy, it is possible to manufacture prepared samples, particularly the above-mentioned precursors, with an appropriate particle size and particle size distribution, thereby improving the performance of the positive electrode material. Can be made. Furthermore, if observation with an SEM can be performed easily and with high accuracy at the above-mentioned precursor stage, particles can be prepared in the upstream process of a plurality of manufacturing processes in which the positive electrode active material is manufactured. Preparation becomes easy and the performance of the positive electrode material can be further improved.

また、上記試料の粒子は、メジアン径D50(体積基準の累積粒度分布において、その累積が50%となる粒子径がD50)が4μm以下であれば、特に本発明の一実施形態に係る試料調製方法の効果が顕著になる。すなわち、本発明の一実施形態に係る試料調製方法により、メジアン径D50が4μm以下の特に粒子同士の凝集が生じ易い粒子を、簡便かつ高精度でSEMでの観察が可能となる。   In addition, the sample particles may have a median diameter D50 (particulate particle size distribution of 50% in the volume-based cumulative particle size distribution is D50) of 4 μm or less, particularly for sample preparation according to an embodiment of the present invention. The effect of the method becomes remarkable. In other words, the sample preparation method according to an embodiment of the present invention makes it possible to easily and highly accurately observe particles having a median diameter D50 of 4 μm or less, in particular, particles that tend to aggregate with each other with high accuracy.

<2、水洗工程S2>
次に水洗工程S2について説明する。水洗工程S2では、分離した試料に純水を添加し、中和により高塩濃度となった濾液の付着分や不純物を十分に洗浄する。水洗量の目安は、純水を添加したときにpHがほぼ中性(pH=5〜8)になる量が好ましい。特に限定されるものではないが、上記中和晶析液量に対して50倍量以上であれば十分である。
<2, water washing process S2>
Next, the water washing step S2 will be described. In the water washing step S2, pure water is added to the separated sample, and the adhering matter and impurities of the filtrate that has become a high salt concentration by neutralization are sufficiently washed. The standard for the amount of washing is preferably such that the pH becomes almost neutral (pH = 5 to 8) when pure water is added. Although not particularly limited, it is sufficient if the amount is 50 times or more the amount of the neutralized crystallization solution.

<3、有機洗浄工程S3>
次に有機洗浄工程S3について説明する。有機洗浄工程S3では、水溶性の有機溶媒を、試料に添加し洗浄する。ここで、試料の洗浄を行う上で、有機溶媒が試料を溶解することは許されないため、通常はSEM観察試料の調製に有機溶媒は用いられない。しかし、本発明の一実施形態に係る試料調製方法では、対象とする試料が遷移金属複合水酸化物であり、有機溶媒に溶解する虞が無いことから使用することとした。これは、試料の付着水を除去するとともに、上記試料は有機溶媒中に溶解せず、上記試料と有機溶媒とで親和性が低いので、上記試料を有機溶媒中に分散でき、後述する乾燥工程S4で乾燥させることで、粒子同士の凝集を防止することができるためである。
<3, organic cleaning step S3>
Next, the organic cleaning step S3 will be described. In the organic washing step S3, a water-soluble organic solvent is added to the sample and washed. Here, since the organic solvent is not allowed to dissolve the sample when cleaning the sample, the organic solvent is not usually used for the preparation of the SEM observation sample. However, in the sample preparation method according to one embodiment of the present invention, the target sample is a transition metal composite hydroxide and is used because there is no possibility of dissolving in an organic solvent. This removes water adhering to the sample, and the sample does not dissolve in the organic solvent, and since the affinity between the sample and the organic solvent is low, the sample can be dispersed in the organic solvent. This is because the particles can be prevented from aggregating by drying in S4.

使用する有機溶媒の種類は、水溶性であればよく、単一溶媒でも混合溶媒でも構わない。また、沸点120℃以下が好ましい。120℃より沸点が高くなると、後述する乾燥工程S4での乾燥時間が長くなり、試料の変質や凝集を生じる可能性が高くなるためである。また、さらに好ましくは、80℃以下である。80℃以下とすることで、乾燥時間がさらに短くなり、試料の変質や凝集を生じる可能性がさらに低くなる。   The kind of the organic solvent to be used may be water-soluble, and may be a single solvent or a mixed solvent. Moreover, a boiling point of 120 ° C. or lower is preferable. This is because if the boiling point is higher than 120 ° C., the drying time in the drying step S4, which will be described later, becomes longer, and there is a higher possibility that the sample will be altered or aggregated. More preferably, it is 80 degrees C or less. By setting the temperature to 80 ° C. or lower, the drying time is further shortened, and the possibility that the sample is altered or aggregated is further reduced.

水溶性の有機溶媒としては、具体的には、エチレングリコール、無水酢酸等が挙げられ、沸点120℃以下の有機溶媒としては、酢酸、プロパノール、イソプロピルアルコール、イソブチルアルコール、ブタノール、ピリジン、ジオキサン等が挙げられる。また、沸点80℃以下の有機溶媒としては、具体的には、メタノール、エタノール、アセトン、テトラヒドロフラン、エチルメチルケトン等が挙げられる。なお、この具体例に挙げた化合物に限定されるものではない。   Specific examples of the water-soluble organic solvent include ethylene glycol and acetic anhydride. Examples of the organic solvent having a boiling point of 120 ° C. or lower include acetic acid, propanol, isopropyl alcohol, isobutyl alcohol, butanol, pyridine, dioxane and the like. Can be mentioned. Specific examples of the organic solvent having a boiling point of 80 ° C. or lower include methanol, ethanol, acetone, tetrahydrofuran, and ethyl methyl ketone. The compounds are not limited to the compounds listed in this specific example.

有機溶媒の添加量についても、特に限定されるものではないが、余裕を持って試料の付着水を完全除去し試料を分散させるためには、試料の乾燥重量に対して10倍の重量以上を添加するのが好ましく、更には、試料の乾燥重量に対して20倍の重量以上を添加するのがより好ましい。また、添加量の上限は、コストなどを加味すると試料の乾燥重量に対して50倍の重量以下とするのがよい。   The amount of the organic solvent added is not particularly limited, but in order to completely remove the water adhering to the sample and disperse the sample with a margin, the weight of the organic solvent should be at least 10 times the dry weight of the sample. It is preferable to add, and it is more preferable to add 20 times the weight or more of the dry weight of the sample. In addition, the upper limit of the addition amount is preferably 50 times or less the dry weight of the sample in consideration of cost and the like.

<4、乾燥工程S4>
次に乾燥工程S4について説明する。乾燥工程S4では、試料に付着した有機溶媒を、速やかに除去するために乾燥する。乾燥温度は、試料の変質や粒子の凝集を考慮するならば、120℃以下に設定するのが好ましい。また、乾燥時間についても、5分未満に設定するのが好ましく、更には、3分以下に設定するのがより好ましい。
<4, drying step S4>
Next, the drying step S4 will be described. In the drying step S4, the organic solvent adhering to the sample is dried to quickly remove it. The drying temperature is preferably set to 120 ° C. or less in consideration of sample alteration and particle aggregation. Also, the drying time is preferably set to less than 5 minutes, and more preferably set to 3 minutes or less.

また、乾燥工程S4において、大気圧下又は減圧下で乾燥されることが好ましい。このようにすれば、乾燥工程S4での有機溶媒の除去が短時間となり、さらに粒子同士の凝集を防止でき、効率的な試料の調製が図れる。   Moreover, in drying process S4, it is preferable to dry under atmospheric pressure or pressure reduction. By doing so, the removal of the organic solvent in the drying step S4 becomes a short time, and further, aggregation of particles can be prevented, and an efficient sample can be prepared.

本発明の一実施形態に係る試料調製方法では、水溶性有機溶媒による有機洗浄工程を有し、その有機溶媒が粒子に付着した付着水を除去し、有機溶媒を短時間で揮発することができるので、有機溶媒を使用しない場合の乾燥時間よりも、非常に短時間で済む。よって、効率良く試料を観察することができる。   The sample preparation method according to an embodiment of the present invention includes an organic washing step using a water-soluble organic solvent, and the organic solvent can remove adhering water adhering to the particles and volatilize the organic solvent in a short time. Therefore, it is much shorter than the drying time when no organic solvent is used. Therefore, the sample can be observed efficiently.

次に、本発明の一実施形態に係る試料調製方法について、実施例により詳しく説明する。なお、本発明は、これらの実施例に限定されるものではない。   Next, a sample preparation method according to an embodiment of the present invention will be described in detail with reference to examples. The present invention is not limited to these examples.

なお、実施例及び比較例に用いた試料の粒度分布測定を行い、レーザー回折・散乱方式の粒度分布装置であるマイクロトラック3300(日機装株式会社製)により、メジアン径D50が3.7μmであることを確認した。   In addition, the particle size distribution measurement of the sample used for the Example and the comparative example is performed, and the median diameter D50 is 3.7 μm by Microtrac 3300 (made by Nikkiso Co., Ltd.) which is a laser diffraction / scattering particle size distribution device. It was confirmed.

(実施例1)
試料が含まれるスラリー状の中和晶析液を、吸引濾過器のロートへ注ぎ込み、濾紙上に堆積する試料の層厚が2mmとなるように濾過を行った。次に、純水を添加して試料を水洗した後、試料の乾燥重量(約5g)に対して20倍のエタノール(100g)を添加し、堆積層中の水分を完全に除去した。その後、試料を大気圧下かつ120℃及び3分の条件で乾燥し、SEMの観察試料とした。そして得られた試料をSEMで観察した画像を図2に示した。
Example 1
The slurry-like neutralized crystallization liquid containing the sample was poured into a funnel of a suction filter, and filtered so that the layer thickness of the sample deposited on the filter paper was 2 mm. Next, after adding pure water and washing the sample with water, 20 times ethanol (100 g) was added to the dry weight (about 5 g) of the sample to completely remove moisture in the deposited layer. Thereafter, the sample was dried under atmospheric pressure at 120 ° C. for 3 minutes to obtain an SEM observation sample. And the image which observed the obtained sample with SEM was shown in FIG.

(比較例1)
試料が含まれるスラリー状の中和晶析液を、吸引濾過器のロートへ注ぎ込み、濾紙上に堆積する試料の層厚が、実施例より薄い0.5mmとなるように濾過を行った。次に、純水を添加して試料を水洗した後、試料の乾燥重量(約2g)に対して20倍のエタノール(40g)を添加し、堆積層中の水分を完全に除去した。その後、試料を大気圧下かつ120℃及び5分の条件で乾燥し、SEMの観察試料とした。そして得られた試料をSEMで観察した画像を図3に示した。
(Comparative Example 1)
The slurry-like neutralized crystallization liquid containing the sample was poured into a funnel of a suction filter, and filtration was performed so that the layer thickness of the sample deposited on the filter paper was 0.5 mm, which was thinner than that of the example. Next, after adding pure water and washing the sample with water, 20 times ethanol (40 g) was added to the dry weight (about 2 g) of the sample to completely remove moisture in the deposited layer. Thereafter, the sample was dried under atmospheric pressure at 120 ° C. for 5 minutes to obtain an SEM observation sample. And the image which observed the obtained sample with SEM was shown in FIG.

(比較例2)
試料が含まれるスラリー状の中和晶析液を、吸引濾過器のロートへ注ぎ込み、濾紙上に堆積する試料の層厚が、実施例1と同様の2mmとなるように濾過を行った。次に、純水を添加して試料を水洗した後、試料の乾燥重量(約5g)に対して20倍のエタノール(100g)を添加し、堆積層中の水分を完全に除去した。その後、試料を大気圧下かつ120℃及び実施例よりも長い10分の条件で乾燥し、SEMの観察試料とした。そして得られた試料をSEMで観察した画像を図4に示した。
(Comparative Example 2)
The slurry-like neutralized crystallization liquid containing the sample was poured into a funnel of a suction filter, and filtration was performed so that the layer thickness of the sample deposited on the filter paper was 2 mm as in Example 1. Next, after adding pure water and washing the sample with water, 20 times ethanol (100 g) was added to the dry weight (about 5 g) of the sample to completely remove moisture in the deposited layer. Thereafter, the sample was dried under atmospheric pressure at 120 ° C. and for 10 minutes longer than the examples, and used as an SEM observation sample. And the image which observed the obtained sample with SEM was shown in FIG.

実施例1では、図2の観察倍率1000倍及び30000倍の画像が示すように、粒子の集合体としての形状や粒子個々の表面状態について、詳細かつ鮮明な情報を得ることが出来た。   In Example 1, detailed and clear information could be obtained about the shape as an aggregate of particles and the surface condition of each particle, as shown by the images at 1000 and 30000 times in FIG.

一方、実施例1よりも層厚を薄くした比較例1では、図3の観察倍率1000倍の画像が示すように、粒子の凝集・堆積による多層化が起こり、粒子形状を確認することが出来なかった。   On the other hand, in Comparative Example 1 in which the layer thickness is thinner than that in Example 1, as shown in the image with an observation magnification of 1000 times in FIG. 3, multilayering occurs due to particle aggregation and deposition, and the particle shape can be confirmed. There wasn't.

また、実施例よりも乾燥時間を長くした比較例2では、図4に示すように、粒子が顕著に凝集し多層化する様子は見られなかったものの、凝集自体は進んでおり、粒子本来の表面状態を確実に捉えることは出来なかった。   Further, in Comparative Example 2 in which the drying time was longer than that of the example, as shown in FIG. 4, although the particles were not noticeably aggregated and multilayered, the aggregation itself was progressing, and the original particle The surface condition could not be captured reliably.

以上より、本発明の一実施形態に係る試料調製方法によれば、晶析途中における小粒径で活性の高い試料などに対しても、粒子同士の凝集を起こさず、簡便かつ高精度でSEMでの観察が可能となった。さらには、上記の観察が可能となることで、さらなる正極材料の性能向上が可能となる。   As described above, according to the sample preparation method according to an embodiment of the present invention, even in a small particle size and high activity sample in the middle of crystallization, aggregation of particles does not occur, and the SEM is simple and highly accurate. Observing with is possible. Furthermore, since the above observation becomes possible, the performance of the positive electrode material can be further improved.

なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。   Although the embodiments and examples of the present invention have been described in detail as described above, it will be understood by those skilled in the art that many modifications can be made without departing from the novel matters and effects of the present invention. It will be easy to understand. Therefore, all such modifications are included in the scope of the present invention.

例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また試料調製方法の構成、動作も本発明の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。   For example, a term described with a different term having a broader meaning or the same meaning at least once in the specification or the drawings can be replaced with the different term in any part of the specification or the drawings. The configuration and operation of the sample preparation method are not limited to those described in the embodiments and examples of the present invention, and various modifications can be made.

S1 濾過工程、S2 水洗工程、S3 有機洗浄工程、S4 乾燥工程   S1 filtration step, S2 water washing step, S3 organic washing step, S4 drying step

Claims (6)

走査型電子顕微鏡によって観察する試料の調製方法であって、
溶媒中に含まれる試料を濾紙で濾過する濾過工程と、
前記濾過工程にて濾過した前記試料を水洗する水洗工程と、
前記水洗工程にて水洗した前記試料を水溶性の有機溶媒で有機洗浄する有機洗浄工程と、
前記有機洗浄工程にて有機洗浄した前記試料を120℃以下かつ5分未満で乾燥する乾燥工程を有し、
前記濾過工程にて前記濾紙上に体積させる前記試料の層厚が1mm以上に制御することを特徴とする試料調製方法。
A method for preparing a sample to be observed by a scanning electron microscope,
A filtration step of filtering the sample contained in the solvent with a filter paper;
A water washing step of washing the sample filtered in the filtration step;
An organic washing step of washing the sample washed in the washing step with a water-soluble organic solvent;
A drying step of drying the sample that has been organically washed in the organic washing step in 120 ° C. or less and less than 5 minutes;
The sample preparation method, wherein a layer thickness of the sample to be volumed on the filter paper in the filtration step is controlled to 1 mm or more.
前記試料は、遷移金属複合水酸化物であることを特徴とする請求項1に記載の試料調製方法。   The sample preparation method according to claim 1, wherein the sample is a transition metal composite hydroxide. 前記試料の粒子は、メジアン径D50が4μm以下であることを特徴とする請求項1又は2に記載の試料調製方法。   The sample preparation method according to claim 1, wherein the particles of the sample have a median diameter D50 of 4 μm or less. 前記水溶性の有機溶媒の沸点は、80℃以下であることを特徴とする請求項1〜3の何れか1項に記載の試料調製方法。   The sample preparation method according to claim 1, wherein the water-soluble organic solvent has a boiling point of 80 ° C. or less. 前記水溶性の有機溶媒の添加量は前記試料の乾燥重量に対して10倍以上であることを特徴とする請求項1〜4の何れか1項に記載の試料調製方法。   The sample preparation method according to any one of claims 1 to 4, wherein the addition amount of the water-soluble organic solvent is 10 times or more with respect to the dry weight of the sample. 前記試料は、前記乾燥工程において、大気圧下又は減圧下で乾燥されることを特徴とする請求項1〜5の何れか1項に記載の試料調製方法。   The sample preparation method according to any one of claims 1 to 5, wherein the sample is dried under atmospheric pressure or reduced pressure in the drying step.
JP2017044318A 2017-03-08 2017-03-08 Sample preparation method Pending JP2018146519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017044318A JP2018146519A (en) 2017-03-08 2017-03-08 Sample preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017044318A JP2018146519A (en) 2017-03-08 2017-03-08 Sample preparation method

Publications (1)

Publication Number Publication Date
JP2018146519A true JP2018146519A (en) 2018-09-20

Family

ID=63592049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017044318A Pending JP2018146519A (en) 2017-03-08 2017-03-08 Sample preparation method

Country Status (1)

Country Link
JP (1) JP2018146519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916942A (en) * 2019-04-18 2019-06-21 攀钢集团攀枝花钢铁研究院有限公司 The electron microscope characterizing method of collecting agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916942A (en) * 2019-04-18 2019-06-21 攀钢集团攀枝花钢铁研究院有限公司 The electron microscope characterizing method of collecting agent
CN109916942B (en) * 2019-04-18 2021-09-21 攀钢集团攀枝花钢铁研究院有限公司 Electron microscopy characterization method of collecting agent

Similar Documents

Publication Publication Date Title
US11440811B2 (en) Ternary precursor particles and method for manufacturing the same
KR101644258B1 (en) Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery
KR101665270B1 (en) Nickel composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and methods for producing these
JP6428105B2 (en) Nickel cobalt manganese compound and method for producing the same
TWI570196B (en) Silver-clad copper powder
JP6189649B2 (en) Positive electrode active material powder and production method thereof
CN106531983B (en) The manufacturing method of active material composite granule
JP4620378B2 (en) Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide
JPWO2012137533A1 (en) Positive electrode active material precursor particles and method for producing the same, and method for producing positive electrode active material particles for a lithium secondary battery
JP2014005188A (en) Cuprous oxide powder and method of producing the same
CN114702081B (en) Preparation method and application of magnesium-titanium co-doped cobalt carbonate
TW201210944A (en) Silver particles and a process for making them
CN108264096B (en) Preparation method of high-density small-particle nickel-cobalt-manganese hydroxide
JP2006219323A (en) Lithium-manganese-nickel-aluminum complex oxide and its production method
WO2017213112A1 (en) Lithium compound, production method for lithium compound, and production method for positive electrode active material for use in non-aqueous secondary battery
JP2018146519A (en) Sample preparation method
CN113258054A (en) Modified ternary positive electrode material precursor of lithium ion battery and preparation method of modified ternary positive electrode material precursor
JP2007284715A (en) Method for producing nickel nanoparticle, and nickel nanoparticle
WO2024060557A1 (en) Aluminum-doped cobalt carbonate and preparation method therefor
US9666857B2 (en) Low-temperature continuous process to derive size-controlled lithium ion anodes and cathodes
JP2018104724A (en) Production method of silver-coated copper powder
JP4102322B2 (en) Method for producing metal oxide using hydroxide
EP2894700A1 (en) Process for producing composite material of metal oxide with conductive carbon
JP2017206751A (en) Manufacturing method of nickel powder
CN114530592B (en) Ternary cathode material and preparation method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170328

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171010