JP2018146098A - Manufacturing method of heat insulating material - Google Patents

Manufacturing method of heat insulating material Download PDF

Info

Publication number
JP2018146098A
JP2018146098A JP2017045052A JP2017045052A JP2018146098A JP 2018146098 A JP2018146098 A JP 2018146098A JP 2017045052 A JP2017045052 A JP 2017045052A JP 2017045052 A JP2017045052 A JP 2017045052A JP 2018146098 A JP2018146098 A JP 2018146098A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
manufacturing
mass
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017045052A
Other languages
Japanese (ja)
Inventor
伸広 篠原
Nobuhiro Shinohara
伸広 篠原
徳克 萱場
Norikatsu Kayaba
徳克 萱場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2017045052A priority Critical patent/JP2018146098A/en
Publication of JP2018146098A publication Critical patent/JP2018146098A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a heat insulating material capable of easily manufacturing a heat insulating material of high strength even through its weight is reduced, in a short time while securing sufficient heat insulation performance.SOLUTION: In a manufacturing method of a heat insulating material, a molding including fumed silica having a specific surface area of 50-400 m/g, reinforcement fiber having an average length of 0.3-20 mm and an average diameter of 0.3-20 μm, calcium hydroxide powder of an average particle grain size of 30 μm or less, and one or more kinds of binding agent selected from inorganic sol and aluminium lactate having an average grain size of 0.05 μm or less and solid content of 1-30 mass %, is heated to obtain the heat insulating material having 50% or less of a cumulative total pore volume of cumulative pore volume of pores of a pore diameter of 0.1 μm or less, and 10% or less of a cumulative total pore volume of cumulative pore volume of pores of a pore diameter of 10 μm or more.SELECTED DRAWING: Figure 1

Description

本発明は、断熱材の製造方法に関する。   The present invention relates to a method for manufacturing a heat insulating material.

住宅、ビル、車輛、保温保冷容器、冷蔵庫、給湯器等においては、断熱によってエネルギー消費を低減するために断熱材が使用される。断熱材としては、例えば、シリカ微粒子および補強繊維を含む断熱材が知られている。断熱材には、取り扱い性向上のために軽量化が求められる。しかし、断熱材を軽量化すると強度が低下するため、施工現場での加工性が悪くなり、また粉落ちが激しくなる等の問題が生じる。   In a house, a building, a vehicle, a thermal insulation container, a refrigerator, a water heater, etc., a heat insulating material is used to reduce energy consumption by heat insulation. As the heat insulating material, for example, a heat insulating material containing silica fine particles and reinforcing fibers is known. Insulation materials are required to be lighter in order to improve handling. However, since the strength is reduced when the heat insulating material is reduced in weight, there are problems such as poor workability at the construction site and intense powder falling.

そこで、高い強度を有する断熱材の製造方法として、シリカ微粒子、シリカ系補強繊維および水酸化カルシウムを含む断熱材原料を成形した後、80℃、相対湿度90%の環境下で24時間養生して断熱材を得る方法が提案されている(特許文献1)。   Therefore, as a method for producing a heat-insulating material having high strength, a heat-insulating material containing silica fine particles, silica-based reinforcing fibers and calcium hydroxide is molded, and then cured under an environment of 80 ° C. and 90% relative humidity for 24 hours. A method for obtaining a heat insulating material has been proposed (Patent Document 1).

特開2011−85216号公報JP 2011-85216 A

しかし、特許文献1の製造方法は、高温高湿度の環境で養生するための複雑な設備が必要であり、プロセスコストが上昇するうえ、製造に長時間を要するため生産性が低くなりやすい。   However, the manufacturing method of Patent Document 1 requires complex equipment for curing in a high-temperature and high-humidity environment, which increases process costs and requires a long time for manufacturing, and thus tends to reduce productivity.

本発明は、充分な断熱性能を確保しつつ、軽量化しても高い強度を有する断熱材を簡便かつ低コストに短時間で製造できる断熱材の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the heat insulating material which can manufacture the heat insulating material which has high intensity | strength easily and low cost in a short time, ensuring sufficient heat insulation performance, even if it reduces in weight.

本発明は、以下の構成を有する。
[1]複数の細孔を有する断熱材の製造方法であって、ヒュームドシリカと、補強繊維と、水酸化カルシウム粉末と、無機系ゾルおよび乳酸アルミニウムからなる群から選ばれる少なくとも1種からなるつなぎ剤とを含む成形体を加熱して、
孔径が0.1μm以下である細孔の累積細孔容積が累積総細孔容積の50%以下であり、かつ孔径が10μm以上の細孔の累積細孔容積が累積総細孔容積の10%以下である断熱材を得る、断熱材の製造方法。
[2]前記断熱材中の累積総細孔容積が1〜4cm/gである、[1]に記載の断熱材の製造方法。
[3]前記ヒュームドシリカの比表面積が50〜400m/gである、[1]または[2]に記載の断熱材の製造方法。
[4]前記補強繊維の平均長さが0.3〜20mmであり、平均直径が0.3〜20μmである、[1]〜[3]のいずれかに記載の断熱材の製造方法。
[5]前記水酸化カルシウム粉末の平均粒径が30μm以下である、[1]〜[4]のいずれかに記載の断熱材の製造方法。
[6]前記つなぎ剤の粒径が0.05μm以下である、[1]〜[5]のいずれかに記載の断熱材の製造方法。
[7]前記つなぎ剤の固形分量の合計が、前記つなぎ剤の総質量に対して、1〜30質量%である、[1]〜[6]のいずれかに記載の断熱材の製造方法。
[8]前記成形体における前記ヒュームドシリカおよび前記補強繊維の合計質量に対する、前記水酸化カルシウム粉末および前記つなぎ剤の固形分の合計質量の質量比が0.05〜0.15である、[1]〜[7]のいずれかに記載の断熱材の製造方法。
[9]前記成形体における前記水酸化カルシウム粉末と前記つなぎ剤の固形分の合計との質量比が2:10〜10:2である、[1]〜[8]のいずれかに記載の断熱材の製造方法。
[10]前記無機系ゾルがアルミナゾルまたはシリカゾルから選ばれる1種以上である、[1]〜[9]のいずれかに記載の断熱材の製造方法。
[11]前記成形体における前記ヒュームドシリカ、および前記補強繊維の合計質量を100質量%としたとき、前記ヒュームドシリカの割合が50〜99質量%であり、前記補強繊維の割合が1〜30質量%である、[1]〜[10]のいずれかに記載の断熱材の製造方法。
[12]前記成形体の加熱温度が60〜500℃である、[1]〜[11]のいずれかに記載の断熱材の製造方法。
[13]前記成形体の加熱時間が0.2〜10時間である、[1]〜[12]のいずれかに記載の断熱材の製造方法。
[14]前記成形体の成形方法がプレス法である、[1]〜[13]のいずれかに記載の断熱材の製造方法。
[15]前記断熱材の密度が0.15〜0.5g/cmである、[1]〜[14]のいずれかに記載の断熱材の製造方法。
The present invention has the following configuration.
[1] A method for producing a heat insulating material having a plurality of pores, comprising at least one selected from the group consisting of fumed silica, reinforcing fibers, calcium hydroxide powder, inorganic sol and aluminum lactate. Heat the molded body containing the binder,
The cumulative pore volume of pores having a pore diameter of 0.1 μm or less is 50% or less of the cumulative total pore volume, and the cumulative pore volume of pores having a pore diameter of 10 μm or more is 10% of the cumulative total pore volume. The manufacturing method of the heat insulating material which obtains the heat insulating material which is the following.
[2] The method for producing a heat insulating material according to [1], wherein a cumulative total pore volume in the heat insulating material is 1 to 4 cm 3 / g.
[3] The method for producing a heat insulating material according to [1] or [2], wherein the fumed silica has a specific surface area of 50 to 400 m 2 / g.
[4] The method for manufacturing a heat insulating material according to any one of [1] to [3], wherein the reinforcing fiber has an average length of 0.3 to 20 mm and an average diameter of 0.3 to 20 μm.
[5] The method for producing a heat insulating material according to any one of [1] to [4], wherein the calcium hydroxide powder has an average particle size of 30 μm or less.
[6] The method for producing a heat insulating material according to any one of [1] to [5], wherein a particle diameter of the binder is 0.05 μm or less.
[7] The method for producing a heat insulating material according to any one of [1] to [6], wherein the total solid content of the binder is 1 to 30% by mass with respect to the total mass of the binder.
[8] The mass ratio of the total mass of the calcium hydroxide powder and the solid content of the binder to the total mass of the fumed silica and the reinforcing fiber in the molded body is 0.05 to 0.15. The manufacturing method of the heat insulating material in any one of [1]-[7].
[9] The heat insulation according to any one of [1] to [8], in which a mass ratio of the calcium hydroxide powder and the total solid content of the binder in the molded body is 2:10 to 10: 2. A method of manufacturing the material.
[10] The method for producing a heat insulating material according to any one of [1] to [9], wherein the inorganic sol is at least one selected from alumina sol or silica sol.
[11] When the total mass of the fumed silica and the reinforcing fibers in the molded body is 100 mass%, the ratio of the fumed silica is 50 to 99 mass%, and the ratio of the reinforcing fibers is 1 to 1. The manufacturing method of the heat insulating material in any one of [1]-[10] which is 30 mass%.
[12] The method for manufacturing a heat insulating material according to any one of [1] to [11], wherein the heating temperature of the molded body is 60 to 500 ° C.
[13] The method for manufacturing a heat insulating material according to any one of [1] to [12], wherein the heating time of the molded body is 0.2 to 10 hours.
[14] The method for manufacturing a heat insulating material according to any one of [1] to [13], wherein the forming method of the formed body is a press method.
[15] The method for producing a heat insulating material according to any one of [1] to [14], wherein the heat insulating material has a density of 0.15 to 0.5 g / cm 3 .

本発明の断熱材の製造方法によれば、充分な断熱性能を確保しつつ、軽量化しても高い強度を有する断熱材を簡便かつ低コストに短時間で製造できる。   According to the method for manufacturing a heat insulating material of the present invention, it is possible to manufacture a heat insulating material having high strength easily and at low cost in a short time while ensuring sufficient heat insulating performance and reducing the weight.

例13の27AlNMR測定の結果を示した図である。FIG. 14 shows the results of 27 AlNMR measurement in Example 13.

本発明の断熱材の製造方法は、複数の細孔を有する断熱材の製造方法である。本発明の断熱材の製造方法では、ヒュームドシリカと、補強繊維と、水酸化カルシウム粉末と、無機系ゾルおよび乳酸アルミニウムからなる群から選ばれる少なくとも1種からなるつなぎ剤とを含む成形体を加熱して断熱材を得る。本発明の製造方法では、孔径が0.1μm以下である細孔の累積細孔容積が累積細孔容積の50%以下であり、かつ細孔の孔径が10μm以上の細孔の累積細孔容積が累積細孔容積の10%以下である断熱材が得られる。   The method for manufacturing a heat insulating material of the present invention is a method for manufacturing a heat insulating material having a plurality of pores. In the method for producing a heat insulating material of the present invention, a molded article containing fumed silica, reinforcing fibers, calcium hydroxide powder, and a binder composed of at least one selected from the group consisting of an inorganic sol and aluminum lactate. Heat to obtain insulation. In the production method of the present invention, the cumulative pore volume of pores having a pore diameter of 0.1 μm or less is 50% or less of the cumulative pore volume, and the cumulative pore volume of pores having a pore diameter of 10 μm or more. Is obtained that has a cumulative pore volume of 10% or less.

ヒュームドシリカは極めて微細な粉末であるため、粒の大きさを表す指標としては通常比表面積が用いられる。
ヒュームドシリカの比表面積は、50〜400m/gが好ましく、100〜350m/gがより好ましく、200〜300m/gが特に好ましい。ヒュームドシリカの比表面積が前記範囲の下限値以上であれば、優れた断熱性能が得られやすい。ヒュームドシリカの比表面積が前記範囲の上限値以下であれば、ヒュームドシリカの取扱いが容易である。比表面積は、窒素吸着法(BET法)により測定される。
Since fumed silica is an extremely fine powder, a specific surface area is usually used as an index representing the particle size.
The specific surface area of the fumed silica is preferably 50 to 400 m 2 / g, more preferably 100~350m 2 / g, 200~300m 2 / g is particularly preferred. If the specific surface area of fumed silica is not less than the lower limit of the above range, excellent heat insulating performance can be easily obtained. If the specific surface area of fumed silica is not more than the upper limit of the above range, it is easy to handle fumed silica. The specific surface area is measured by a nitrogen adsorption method (BET method).

補強繊維としては、断熱材に通常使用される繊維を使用することができ、例えば、樹脂繊維、無機繊維が挙げられる。なかでも、断熱性能の低下を抑制しやすく、耐熱性に優れる点から、無機繊維が好ましい。補強繊維としては、1種を単独で使用してもよく、2種以上を併用してもよい。   As the reinforcing fiber, a fiber that is usually used for a heat insulating material can be used, and examples thereof include a resin fiber and an inorganic fiber. Especially, an inorganic fiber is preferable from the point which is easy to suppress the fall of heat insulation performance and is excellent in heat resistance. As a reinforcing fiber, 1 type may be used independently and 2 or more types may be used together.

無機繊維としては、例えば、アルミナ繊維、ムライト繊維、シリカ繊維、シリカアルミナ繊維、ジルコニア繊維、ケイ酸アルカリ土類金属塩繊維、グラスウール、グラスファイバー、ロックウール、スラグウール、炭化ケイ素繊維、カーボン繊維、シリカアルミナマグネシア繊維、シリカアルミナジルコニア繊維、シリカマグネシアカルシア繊維、バサルト繊維等が挙げられる。
無機繊維は、断熱材の製造時や施工時等における人体への悪影響を低減する点から、生体溶解性繊維であることが好ましい。なお、生体溶解性繊維とは、生体内で溶解する非晶質の無機繊維を意味する。生体溶解性繊維としては、例えば、ケイ酸アルカリ土類金属塩繊維が挙げられる。
Examples of inorganic fibers include alumina fibers, mullite fibers, silica fibers, silica alumina fibers, zirconia fibers, alkaline earth metal silicate fibers, glass wool, glass fibers, rock wool, slag wool, silicon carbide fibers, carbon fibers, Examples thereof include silica alumina magnesia fiber, silica alumina zirconia fiber, silica magnesia calcia fiber, and basalt fiber.
The inorganic fiber is preferably a biosoluble fiber from the viewpoint of reducing adverse effects on the human body during the production or construction of the heat insulating material. The biosoluble fiber means an amorphous inorganic fiber that dissolves in a living body. Examples of the biosoluble fiber include alkaline earth silicate metal salt fibers.

有機繊維としては、例えば、アラミド繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリオレフィン繊維等が挙げられる。   Examples of organic fibers include aramid fibers, polyethylene fibers, polypropylene fibers, polyolefin fibers, and the like.

補強繊維の平均長さは、0.3〜20mmが好ましく、0.5〜10mmがより好ましく、1〜5mmがさらに好ましい。補強繊維の平均長さが前記範囲の下限値以上であれば、高い強度を有する断熱材が得られやすい。補強繊維の平均長さが前記範囲の上限値以下であれば、成形性に優れる。
なお、補強繊維の平均長さは、任意に選択した1本の補強繊維について測定した長さの平均値である。
The average length of the reinforcing fibers is preferably 0.3 to 20 mm, more preferably 0.5 to 10 mm, and further preferably 1 to 5 mm. When the average length of the reinforcing fibers is equal to or greater than the lower limit of the above range, a heat insulating material having high strength is easily obtained. If the average length of the reinforcing fibers is not more than the upper limit of the above range, the moldability is excellent.
The average length of the reinforcing fibers is an average value of the lengths measured for one arbitrarily selected reinforcing fiber.

補強繊維の平均直径は、0.3〜20μmが好ましく、0.5〜15μmがより好ましく、1〜10μmがさらに好ましい。補強繊維の平均直径が前記範囲の下限値以上であれば、高い強度を有する断熱材が得られやすい。補強繊維の平均直径が前記範囲の上限値以下であれば、成形性に優れる。
なお、補強繊維の平均直径は、任意に選択した10本の補強繊維について測定した直径の平均値である。
The average diameter of the reinforcing fibers is preferably 0.3 to 20 μm, more preferably 0.5 to 15 μm, and further preferably 1 to 10 μm. When the average diameter of the reinforcing fibers is equal to or greater than the lower limit of the above range, a heat insulating material having high strength is easily obtained. If the average diameter of the reinforcing fiber is not more than the upper limit of the above range, the moldability is excellent.
In addition, the average diameter of a reinforcing fiber is an average value of the diameter measured about ten arbitrarily selected reinforcing fibers.

水酸化カルシウム粉末の平均粒径は、30μm以下が好ましく、20μm以下がより好ましく、10μm以下がさらに好ましい。水酸化カルシウム粉末の平均粒径が前記範囲の上限値以下であれば、欠陥となりにくいため、高い強度を有する断熱材が得られやすい。水酸化カルシウム粉末の平均粒径の下限値は特に限定されないが、1μm以上であれば入手し易く、使い易い。   The average particle size of the calcium hydroxide powder is preferably 30 μm or less, more preferably 20 μm or less, and even more preferably 10 μm or less. If the average particle diameter of the calcium hydroxide powder is less than or equal to the upper limit of the above range, defects are unlikely to occur, and a heat insulating material having high strength is easily obtained. The lower limit of the average particle diameter of the calcium hydroxide powder is not particularly limited, but it is easy to obtain and use if it is 1 μm or more.

無機系ゾルおよび乳酸アルミニウムからなる群から選ばれる少なくとも1種からなるつなぎ剤(以下、つなぎ剤と記す)の粒径は、0.05μm以下が好ましく、0.03μm以下がより好ましく、0.02μm以下がさらに好ましい。つなぎ剤の粒径が前記範囲の上限値以下であれば、強度の高い断熱材が得られやすい。つなぎ剤の粒径の下限値は特に限定されないが、0.0001μm以上であれば入手し易く、使い易い。つなぎ剤が2種以上からなる場合の粒径の上限値はもっとも粒径の大きいつなぎ剤の粒径の値である。   The particle size of the binder composed of at least one selected from the group consisting of inorganic sol and aluminum lactate (hereinafter referred to as binder) is preferably 0.05 μm or less, more preferably 0.03 μm or less, and 0.02 μm. The following is more preferable. If the particle size of the binder is not more than the upper limit of the above range, a heat insulating material with high strength can be easily obtained. The lower limit of the particle size of the binder is not particularly limited, but it is easy to obtain and use if it is 0.0001 μm or more. The upper limit of the particle size when the binder is composed of two or more types is the value of the particle size of the binder having the largest particle size.

つなぎ剤の固形分量は、つなぎ剤の総質量に対して、1〜30質量%が好ましく、3〜25質量%がより好ましく、5〜20質量%がさらに好ましい。つなぎ剤の固形分量が前記範囲の下限値以上であれば、原料を混合する際に水分量が多くなりすぎてヒュームドシリカの塊が形成されることが抑制されやすい。そのため、ヒュームドシリカが均一に分散されやすく、優れた断熱性能が得られやすい。つなぎ剤が2種以上の場合のつなぎ剤の固形分量は、各つなぎ剤の固形分の合計量を、つなぎ剤の総質量で除して求める。つなぎ剤の固形分量が前記範囲の上限値以下であれば、充分な水分量が確保されることで水酸化カルシウム粉末とつなぎ剤の反応が進行しやすく、強度の高い断熱材が得られやすい。   The solid content of the binder is preferably 1 to 30% by mass, more preferably 3 to 25% by mass, and still more preferably 5 to 20% by mass with respect to the total mass of the binder. If the solid content of the binder is equal to or greater than the lower limit of the above range, it is easy to suppress the formation of fumed silica lump due to excessive water content when the raw materials are mixed. Therefore, fumed silica is easily dispersed uniformly, and excellent heat insulation performance is easily obtained. The solid content of the binder when two or more binders are used is obtained by dividing the total solid content of each binder by the total mass of the binder. If the solid content of the binder is equal to or less than the upper limit of the above range, a sufficient amount of water is ensured, whereby the reaction between the calcium hydroxide powder and the binder is likely to proceed, and a high-strength heat insulating material is easily obtained.

無機系ゾルとしては、表面に親水基を有するコロイドが挙げられる。このようなコロイドとしてシリカ、アルミナ、セリア、チタニア、マグネシア、イットリア、およびジルコニア等の各種酸化物が挙げられる。なかでもシリカおよびアルミナのコロイドであるシリカゾルおよびアルミナゾルが好ましい。
乳酸アルミニウムとしては、乳酸アルミニウム正塩(Al(OCOCH(OH)CH)や塩基性乳酸アルミニウム(Al(OH)(OCOCH(OH)CH、Al(OH)(OCOCH(OH)CH))およびこれらの水和物等が挙げられる。塩基性乳酸アルミニウムは予め水溶液として用いることが好ましい。
Examples of the inorganic sol include colloids having a hydrophilic group on the surface. Examples of such colloids include various oxides such as silica, alumina, ceria, titania, magnesia, yttria, and zirconia. Of these, silica sol and alumina sol, which are colloids of silica and alumina, are preferred.
As aluminum lactate, aluminum lactate normal salt (Al (OCOCH (OH) CH 3 ) 3 ), basic aluminum lactate (Al (OH) (OCOCH (OH) CH 3 ) 2 , Al (OH) 2 (OCOCH (OH) ) CH 3 )) and hydrates thereof. It is preferable to use basic aluminum lactate as an aqueous solution in advance.

なお、塩基性乳酸アルミニウムは加熱により乳酸が脱離しアルミナとなることが知られているが、前記のアルミナゾルの割合は、原料を混合する時点での割合である。   In addition, although it is known that basic aluminum lactate is desorbed by heating to become alumina, the ratio of the alumina sol is the ratio at the time of mixing the raw materials.

本発明では、成形体中のヒュームドシリカおよび補強繊維の合計質量を100質量%としたとき、ヒュームドシリカの割合が50〜99質量%であり、補強繊維の割合が1〜50質量%であることが好ましい。ヒュームドシリカおよび補強繊維の割合が前記範囲内であれば、優れた断熱性能を有する断熱材が得られやすい。   In the present invention, when the total mass of fumed silica and reinforcing fibers in the molded body is 100% by mass, the ratio of fumed silica is 50 to 99% by mass, and the ratio of reinforcing fibers is 1 to 50% by mass. Preferably there is. When the ratio of fumed silica and reinforcing fibers is within the above range, a heat insulating material having excellent heat insulating performance is easily obtained.

成形体中のヒュームドシリカの割合は、ヒュームドシリカおよび補強繊維の合計質量100質量%に対して、50〜99質量%が好ましく、55〜90質量%がより好ましく、60〜85質量%がさらに好ましい。
成形体中の補強繊維の割合は、ヒュームドシリカおよび補強繊維の合計質量100質量%に対して、1〜50質量%が好ましく、3〜25質量%がより好ましく、5〜20質量%がさらに好ましい。
The proportion of fumed silica in the molded body is preferably 50 to 99% by mass, more preferably 55 to 90% by mass, and 60 to 85% by mass with respect to 100% by mass of the total mass of fumed silica and reinforcing fibers. Further preferred.
The proportion of the reinforcing fibers in the molded body is preferably 1 to 50% by mass, more preferably 3 to 25% by mass, and further 5 to 20% by mass with respect to 100% by mass of the total mass of fumed silica and reinforcing fibers. preferable.

成形体中に輻射抑制剤を含むと、優れた高温断熱性を有する断熱材が得られやすいため、輻射抑制剤を含むことが好ましい。
輻射抑制剤としては、例えば、金属粒子(アルミニウム粒子、銀粒子、金粒子等)、無機粒子(グラファイト、カーボンブラック、炭化ケイ素、酸化チタン、酸化スズ、酸化鉄、チタン酸カリウム等)等が挙げられる。輻射抑制剤としては、1種を単独で使用してもよく、2種以上を併用してもよい。
When a radiation inhibitor is included in the molded body, it is preferable to include a radiation inhibitor because a heat insulating material having excellent high-temperature heat insulating properties can be easily obtained.
Examples of the radiation inhibitor include metal particles (aluminum particles, silver particles, gold particles, etc.), inorganic particles (graphite, carbon black, silicon carbide, titanium oxide, tin oxide, iron oxide, potassium titanate, etc.). It is done. As a radiation inhibitor, 1 type may be used independently and 2 or more types may be used together.

成形体中に輻射抑制剤を含ませる場合、成形体中のヒュームドシリカ、補強繊維および輻射抑制剤の合計量を100質量%としたとき、ヒュームドシリカの割合が50〜95質量%であり、補強繊維の割合が1〜30質量%であり、輻射抑制剤の割合が3〜30質量%であることが好ましい。   When the radiation inhibitor is included in the molded body, the ratio of fumed silica is 50 to 95 mass% when the total amount of fumed silica, reinforcing fiber and radiation inhibitor in the molded body is 100 mass%. The ratio of the reinforcing fibers is preferably 1 to 30% by mass, and the ratio of the radiation inhibitor is preferably 3 to 30% by mass.

成形体中のヒュームドシリカ(質量:W)、および補強繊維(質量:W)の合計質量に対する、水酸化カルシウム粉末(質量:W)およびつなぎ剤の固形分(質量:W)の合計質量の質量比(W+W)/(W+W)は、0.05〜0.15が好ましい。質量比(W+W)/(W+W)が前記範囲の下限値以上であれば、強度の高い断熱材が得られやすい。質量比(W+W)/(W+W)が前記範囲の上限値以下であれば、優れた断熱性能を有する断熱材が得られやすい。ただし、W、W、W、Wは0であってはならない。 Solid content (mass: W E ) of calcium hydroxide powder (mass: W D ) and binder relative to the total mass of fumed silica (mass: W A ) and reinforcing fibers (mass: W B ) in the molded body The mass ratio (W D + W E ) / (W A + W B ) of the total mass is preferably 0.05 to 0.15. When the mass ratio (W D + W E ) / (W A + W B ) is equal to or higher than the lower limit of the above range, a heat insulating material having high strength is easily obtained. When the weight ratio (W D + W E) / (W A + W B) is more than the upper limit of the range, it is easy to obtain the heat insulating material having an excellent heat insulation performance. However, W A, W B, W D, W E must not be 0.

成形体中の水酸化カルシウム粉末とつなぎ剤の固形分との質量比W:Wは、2:10〜10:2が好ましく、3:10〜10:3がより好ましく、4:10〜10:4がさらに好ましい。質量比W:Wが前記範囲内であれば、強度の高い断熱材が得られやすい。 Weight ratio W D of the solid content of the calcium powder and connecting agent hydroxide in the compact: W E is 2: 10 to 10: 2 is preferred, 3: 10 to 10: 3, more preferably, 4: 10 10: 4 is more preferable. Weight ratio W D: if W E is within the above range, the heat insulating material is easily obtained with high strength.

成形体を得る方法は、特に限定されず、例えば、ヒュームドシリカと、補強繊維と、輻射抑制剤と、水酸化カルシウム粉末と、つなぎ剤とを含む混合原料を金型に投入し、加圧して成形するプレス法、鋳込み成形法および押出成形法等が挙げられる。
成形体の成形方法がプレス法であると、プレス圧力を制御することで断熱材の累積細孔容積を調節しやすい。成形圧力は成形体の密度を見ながら調節すればよい。
各原料を混合する方法は、特に限定されず、例えば、ブレンダー等を用いて撹拌する方法が挙げられる。ヒュームドシリカ、補強繊維、輻射抑制剤、水酸化カルシウム粉末およびつなぎ剤の混合順序は、特に限定されない。
The method for obtaining the molded body is not particularly limited. For example, a mixed raw material containing fumed silica, reinforcing fibers, radiation inhibitor, calcium hydroxide powder, and a binder is put into a mold and pressed. And a pressing method, a casting method and an extrusion method.
When the molding method of the molded body is a pressing method, it is easy to adjust the cumulative pore volume of the heat insulating material by controlling the pressing pressure. The molding pressure may be adjusted while looking at the density of the molded body.
The method of mixing each raw material is not particularly limited, and examples thereof include a method of stirring using a blender or the like. The mixing order of fumed silica, reinforcing fiber, radiation inhibitor, calcium hydroxide powder and binder is not particularly limited.

成形体の形状は、用途に応じて適宜設定すればよく、例えば、板状等が挙げられる。成形体の寸法は、用途に応じて適宜設定すればよい。   What is necessary is just to set the shape of a molded object suitably according to a use, for example, plate shape etc. are mentioned. What is necessary is just to set the dimension of a molded object suitably according to a use.

本発明の製造方法では、ヒュームドシリカと、補強繊維と、輻射抑制剤と、水酸化カルシウム粉末と、つなぎ剤とを含む成形体を加熱して断熱材を得る。成形体を加熱することで、水酸化カルシウム粉末とつなぎ剤とが反応し、その反応生成物がバインダーとして機能することで強度の高い断熱材が得られると考えられる。
具体的には、つなぎ剤としてアルミナゾルを例に説明すると、加熱により、成形体中で水酸化カルシウム粉末から生じるカルシウムイオンと、アルミナゾルから生じるアルミン酸とが下式で示すように反応し、生成したアルミン酸カルシウム水和物(3CaO・Al・6HO)がバインダーとして機能すると考えられる。
また、成形体を加熱することで、水酸化カルシウム粉末とアルミナゾルとが反応しつつ、成形体中の水分が除去されて乾燥される。
In the production method of the present invention, a heat insulating material is obtained by heating a molded body containing fumed silica, reinforcing fibers, a radiation inhibitor, calcium hydroxide powder, and a binder. By heating the compact, it is considered that the calcium hydroxide powder and the binder react, and the reaction product functions as a binder to obtain a heat insulating material with high strength.
Specifically, when an alumina sol is described as an example of the binder, the calcium ion generated from the calcium hydroxide powder and the aluminate generated from the alumina sol react with each other as shown in the following formula. It is considered that calcium aluminate hydrate (3CaO · Al 2 O 3 · 6H 2 O) functions as a binder.
Further, by heating the molded body, moisture in the molded body is removed and dried while the calcium hydroxide powder and the alumina sol react.

Figure 2018146098
Figure 2018146098

また、つなぎ剤が他の無機系ゾルまたは乳酸アルミニウムの場合にも同様に、水酸化カルシウムと、つなぎ剤とが反応して水和物を生成しバインダーとして機能すると考えられる。   Similarly, when the binder is other inorganic sol or aluminum lactate, it is considered that calcium hydroxide and the binder react to form a hydrate and function as a binder.

成形体を加熱する方法は、特に限定されず、例えば、電気炉等が挙げられる。
成形体の加熱温度は、60〜500℃が好ましく、80〜400℃がより好ましく、100〜300℃がさらに好ましい。加熱温度が前記範囲の下限値以上であれば、水酸化カルシウム粉末とアルミナゾルとの反応が充分に進行しやすく、強度の高い断熱材が得られやすい。加熱温度が前記範囲の上限値以下であれば、成形体の加熱に複雑な装置を使用する必要がなく、より簡便に実施できる。
The method for heating the molded body is not particularly limited, and examples thereof include an electric furnace.
The heating temperature of the molded body is preferably 60 to 500 ° C, more preferably 80 to 400 ° C, and further preferably 100 to 300 ° C. When the heating temperature is at least the lower limit of the above range, the reaction between the calcium hydroxide powder and the alumina sol is likely to proceed sufficiently, and a high-strength heat insulating material is likely to be obtained. If heating temperature is below the upper limit of the said range, it is not necessary to use a complicated apparatus for heating a molded object, and it can implement more simply.

成形体の加熱時間は、0.2〜10時間が好ましく、0.5〜8時間がより好ましく、1〜5時間がさらに好ましい。加熱時間が前記範囲の下限値以上であれば、水酸化カルシウム粉末とアルミナゾルとの反応が充分に進行しやすく、強度の高い断熱材が得られやすい。加熱時間が前記範囲の上限値以下であれば、高い生産性で断熱材を製造できる。   The heating time of the molded body is preferably 0.2 to 10 hours, more preferably 0.5 to 8 hours, and further preferably 1 to 5 hours. When the heating time is at least the lower limit of the above range, the reaction between the calcium hydroxide powder and the alumina sol is likely to proceed sufficiently, and a heat-insulating material having high strength can be easily obtained. When the heating time is not more than the upper limit of the above range, the heat insulating material can be produced with high productivity.

本発明の製造方法で得られる断熱材は細孔を有する。得られる断熱材中の累積総細孔容積は、1〜4cm/gであることが好ましく、2〜3.8cm/gであることがより好ましい。累積総細孔容積が前記下限値以上であると、断熱性能が良好であり、前記上限値以下であると密度を低くしても強度が保たれやすい。 The heat insulating material obtained by the production method of the present invention has pores. Cumulative total pore volume in the resulting heat insulating material is preferably 1 to 4 cm 3 / g, and more preferably 2~3.8cm 3 / g. When the cumulative total pore volume is not less than the lower limit, the heat insulating performance is good, and when it is not more than the upper limit, the strength is easily maintained even if the density is lowered.

また、本発明の製造方法で得られる断熱材においては、孔径が0.1μm以下である細孔の累積細孔容積が断熱材中の累積総細孔容積の50%以下であり、かつ孔径が10μm以上の細孔の累積細孔容積が断熱材中の累積総細孔容積の10%以下である。
孔径が0.1μm以下である細孔の累積細孔容積は、断熱材中の累積総細孔容積の40%以下が好ましく、孔径が10μm以上の細孔の累積細孔容積が断熱材中の累積総細孔容積の5%以下であることが好ましい。
孔径が0.1μm以下である細孔の累積細孔容積の割合が前記上限値より大きいと、断熱材の密度が高くなりやすく、固体の伝熱による熱伝導度の影響を受けやすくなり断熱性が悪くなりやすい。また孔径が10μm以上の細孔の累積細孔容積の割合が前記下限値よりも大きいと、断熱材のハンドリング性が悪く壊れやすくなる。
In the heat insulating material obtained by the production method of the present invention, the cumulative pore volume of pores having a pore diameter of 0.1 μm or less is 50% or less of the cumulative total pore volume in the heat insulating material, and the pore diameter is The cumulative pore volume of pores of 10 μm or more is 10% or less of the cumulative total pore volume in the heat insulating material.
The cumulative pore volume of pores having a pore diameter of 0.1 μm or less is preferably 40% or less of the cumulative total pore volume in the heat insulating material, and the cumulative pore volume of pores having a pore diameter of 10 μm or more is in the heat insulating material. It is preferably 5% or less of the cumulative total pore volume.
If the ratio of the cumulative pore volume of pores having a pore size of 0.1 μm or less is larger than the above upper limit value, the density of the heat insulating material tends to increase, and the heat conductivity due to the heat conductivity due to the heat transfer of the solid tends to increase. Tends to get worse. On the other hand, when the ratio of the cumulative pore volume of pores having a pore diameter of 10 μm or more is larger than the lower limit value, the handling property of the heat insulating material is poor and it is easily broken.

細孔の孔径を制御するため、成形体に気孔付与材を配合してもよい。気孔付与材は、加熱処理することによって焼失して気孔を形成することができ、一定粒度を有するものであり、セラミック多孔質体の製造に使われるものを使うことができる。例えばポリメタクリル酸メチル等の樹脂粉末、セルロース、パルプ、鋸屑等を用いることができる。   In order to control the pore diameter of the pores, a pore-imparting material may be added to the molded body. The pore-imparting material can be burned down by heat treatment to form pores, has a certain particle size, and can be used for the production of a ceramic porous body. For example, resin powder such as polymethyl methacrylate, cellulose, pulp, sawdust and the like can be used.

本発明の製造方法で製造する断熱材の密度は、0.15〜0.5g/cmが好ましく、0.2〜0.4g/cmがより好ましく、0.25〜0.35g/cmがさらに好ましい。成形体の密度が前記範囲の下限値以上であれば、充分な強度が得られやすい。成形体の密度が前記範囲の上限値以下であれば、優れた断熱性能が得られやすく、また軽量である。
断熱材の密度は、例えば、成形時のプレス圧力を制御することにより調節できる。
Density of insulation material to be produced by the production method of the present invention is preferably 0.15~0.5g / cm 3, more preferably 0.2~0.4g / cm 3, 0.25~0.35g / cm 3 is more preferable. If the density of the molded body is not less than the lower limit of the above range, sufficient strength can be easily obtained. When the density of the molded body is equal to or less than the upper limit of the above range, excellent heat insulating performance can be easily obtained and the weight is light.
The density of the heat insulating material can be adjusted, for example, by controlling the pressing pressure during molding.

断熱材を800℃で1時間加熱したときの収縮率は、3%以下が好ましく、2%以下がより好ましく、1.5%以下がさらに好ましい。断熱材の前記収縮率が前記上限値以下であれば、優れた耐熱性を有している。
なお、断熱材の前記収縮率は、加熱前後の断熱材の体積から算出できる。断熱材の前記収縮率は、組成の調整により調節できる。
The shrinkage when the heat insulating material is heated at 800 ° C. for 1 hour is preferably 3% or less, more preferably 2% or less, and further preferably 1.5% or less. If the said shrinkage | contraction rate of a heat insulating material is below the said upper limit, it has the outstanding heat resistance.
The shrinkage rate of the heat insulating material can be calculated from the volume of the heat insulating material before and after heating. The shrinkage rate of the heat insulating material can be adjusted by adjusting the composition.

以上説明したように、本発明の断熱材の製造方法においては、補強繊維と、水酸化カルシウム粉末と、つなぎ剤とを含む成形体を加熱して断熱材を得る。そのため、優れた断熱性能を確保しつつ、高い強度を有する断熱材が得られる。これは、例えばつなぎ剤としてアルミナゾルを例に説明すると、加熱時に水酸化カルシウム粉末から生じるカルシウムイオンとアルミナゾルから生じるアルミン酸とが反応して生成したアルミン酸カルシウム水和物がバインダーとして機能するためであると考えられる。
また、本発明の断熱材の製造方法は、特許文献1のような従来の製造方法に比べて、湿度条件を制御する必要がないために複雑な装置を必要とせず、簡便で低コストある。また、長時間の養生を必要とせず、短時間で断熱材を製造できる。
As described above, in the method for producing a heat insulating material of the present invention, a heat insulating material is obtained by heating a molded body containing reinforcing fibers, calcium hydroxide powder, and a binder. Therefore, a heat insulating material having high strength can be obtained while ensuring excellent heat insulating performance. This is because, for example, alumina sol is used as a binder as an example, because calcium aluminate hydrate produced by the reaction of calcium ions generated from calcium hydroxide powder with aluminate during heating functions as a binder. It is believed that there is.
In addition, the method for manufacturing a heat insulating material according to the present invention does not require a complicated apparatus because it does not need to control humidity conditions as compared with a conventional manufacturing method such as Patent Document 1, and is simple and low-cost. Moreover, a heat insulating material can be manufactured in a short time without requiring a long-term curing.

本発明により得られた断熱材の用途は、特に限定されず、例えば、住宅およびビルの壁・屋根・床・配管、太陽光・熱設備などの住設分野、恒温槽、湯沸かし器、温水タンク、炊飯器、冷蔵庫、冷凍庫、保冷庫・保冷タンク、自動販売機、クーラーボックス、保冷カバー、防寒服などの保温・保冷分野、ノートパソコン、液晶プロジェクター、コピー機、バッテリー、燃料電池などの電気・電子機器、半導体製造装置などの産業機器分野、自動車、バス、トラック、保冷車、列車、貨物車、船舶など移動体分野に適用が可能である。   The use of the heat insulating material obtained by the present invention is not particularly limited. For example, residential and building walls / roof / floor / piping, solar / heat facilities, etc., constant temperature bath, water heater, hot water tank, Rice cookers, refrigerators, freezers, cold storage / cooling tanks, vending machines, cooler boxes, cold covers, thermal insulation such as winter clothes, electricity / electronics such as laptop computers, LCD projectors, photocopiers, batteries, fuel cells The present invention can be applied to industrial equipment fields such as equipment and semiconductor manufacturing equipment, and mobile fields such as automobiles, buses, trucks, cold cars, trains, freight cars, and ships.

以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。例1〜5、10、11は実施例であり、例6〜9は比較例であり、例12は実験例である。
[密度]
各例の断熱材の寸法と質量を測定し、断熱材の密度(g/cm)を算出した。なお、密度は、8つの断熱材の密度の平均値として求めた。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by the following description. Examples 1 to 5, 10, and 11 are examples, examples 6 to 9 are comparative examples, and example 12 is an experimental example.
[density]
The dimension and mass of the heat insulating material of each example were measured, and the density (g / cm 3 ) of the heat insulating material was calculated. In addition, the density was calculated | required as an average value of the density of eight heat insulating materials.

[曲げ強度]
各例の断熱材について、島津製作所製オートグラフを用いて、スパン30mmの3点曲げにより曲げ強度(kPa)を測定した。なお、曲げ強度の計算に際しては、応力−ひずみ曲線の最大荷重の値を採用した。また、曲げ強度は、8つの断熱材の密度の平均値として求めた。
[Bending strength]
About the heat insulating material of each example, bending strength (kPa) was measured by 3 point | piece bending of the span 30mm using the Shimadzu Corporation autograph. In calculating the bending strength, the maximum load value of the stress-strain curve was adopted. Moreover, bending strength was calculated | required as an average value of the density of eight heat insulating materials.

[熱伝導率]
各例の断熱材について、熱伝導率測定装置を用いて、高温部を30℃、低温部を20℃とした熱流計法により熱伝導率を測定した。
[Thermal conductivity]
About the heat insulating material of each example, the heat conductivity was measured by the heat flow meter method which made the high temperature part 30 degreeC and the low temperature part 20 degreeC using the heat conductivity measuring apparatus.

27AlNMR測定]
27AlNMR測定は、JEOL社製NMR装置(ECA600)を用いて、27AlMASNMR法により行った。
[ 27 AlNMR measurement]
The 27 AlNMR measurement was performed by 27 AlMAS NMR method using an NMR apparatus (ECA600) manufactured by JEOL.

[累積細孔容積]
断熱材の累積細孔容積は、水銀圧ポロシメーターにより測定した。得られた全細孔についての累積細孔容積を累積総細孔容積とし、孔径0.1μm以下の細孔の累積細孔容積と、孔径10μm以上の細孔の累積細孔容積をそれぞれ算出してそれらの割合を求めた。
[Cumulative pore volume]
The cumulative pore volume of the heat insulating material was measured with a mercury pressure porosimeter. The cumulative pore volume of all the obtained pores is defined as the cumulative total pore volume, and the cumulative pore volume of pores having a pore diameter of 0.1 μm or less and the cumulative pore volume of pores having a pore diameter of 10 μm or more are respectively calculated. The ratio was calculated.

[原料]
本実施例で使用した原料を以下に示す。
A−1:ヒュームドシリカ(キャボット社製、CAB−O−SIL(登録商標) H−300、比表面積:300m/g)、
B−1:生体溶解性繊維(新日本サーマルセラミックス社製、スーパーウール、長さ:数μm〜数10mm、平均直径:3μm)、
C−1:炭化ケイ素粉末(屋久島電工社製、GC−4000F、平均粒径:2.5μm)、
D−1:水酸化カルシウム粉末(宇部マテリアルズ社製、CH−2N、平均粒径:5.7μm)、
E−1:アルミナゾル(多木化学社製、バイラール(登録商標)Al−ML15、一次粒子径:≦5nm、固形分量:15質量%)、
E−2:塩基性乳酸アルミニウム(多木化学社製、タキセラム(登録商標)M−160L、一次粒子径:≦1nm、固形分量:8.7質量%)、
X−1:水酸化アルミニウム粉末(和光純薬工業社製、試薬水酸化アルミニウム粉末)。
[例1〜9]
表1に示す組成で各原料をブレンダーで混合し、金型を用いたプレス法により、密度が0.25g/cm前後となるようにプレス圧を調節して、寸法が縦20mm×横40mm×厚さ5mmの成形体を8個作製した。得られた成形体を200℃で2時間加熱して断熱材を得た。
例1で得た断熱材の累積総細孔容積は3.6cm/gであり、累積総細孔容積に対する孔径0.1μm以下の細孔の累積細孔容積の割合は24.7%であり、累積総細孔容積に対する孔径10μm以上の細孔の累積細孔容積の割合は5.8%であった。
[material]
The raw materials used in this example are shown below.
A-1: Fumed silica (manufactured by Cabot, CAB-O-SIL (registered trademark) H-300, specific surface area: 300 m 2 / g),
B-1: Biosoluble fiber (manufactured by New Nippon Thermal Ceramics, super wool, length: several μm to several tens of mm, average diameter: 3 μm),
C-1: Silicon carbide powder (manufactured by Yakushima Electric Works, GC-4000F, average particle size: 2.5 μm),
D-1: Calcium hydroxide powder (manufactured by Ube Materials, CH-2N, average particle size: 5.7 μm),
E-1: Alumina sol (manufactured by Taki Chemical Co., Ltd., Viral (registered trademark) Al-ML15, primary particle size: ≦ 5 nm, solid content: 15% by mass),
E-2: Basic aluminum lactate (manufactured by Taki Chemical Co., Ltd., Taxelum (registered trademark) M-160L, primary particle size: ≦ 1 nm, solid content: 8.7% by mass),
X-1: Aluminum hydroxide powder (manufactured by Wako Pure Chemical Industries, reagent aluminum hydroxide powder).
[Examples 1 to 9]
Each raw material is mixed with a blender with the composition shown in Table 1, and the pressing pressure is adjusted by a pressing method using a mold so that the density is about 0.25 g / cm 3 , and the dimensions are 20 mm long × 40 mm wide. X Eight molded articles having a thickness of 5 mm were produced. The obtained molded body was heated at 200 ° C. for 2 hours to obtain a heat insulating material.
The cumulative total pore volume of the heat insulating material obtained in Example 1 is 3.6 cm 3 / g, and the ratio of the cumulative pore volume of pores having a pore diameter of 0.1 μm or less to the cumulative total pore volume is 24.7%. The ratio of the cumulative pore volume of pores having a pore diameter of 10 μm or more to the cumulative total pore volume was 5.8%.

各例における断熱材の密度と曲げ強度の測定結果を表1に示す。なお、表1のアルミナゾルの欄の括弧内の数値は固形分量である。また、Wはヒュームドシリカの使用量(g)、Wは補強繊維の使用量(g)、Wは輻射抑制剤の使用量(g)、Wは水酸化カルシウム粉末の使用量(g)、Wはつなぎ剤の使用量(固形分量)(g)である。 Table 1 shows the measurement results of the density and bending strength of the heat insulating material in each example. The numerical value in parentheses in the column of alumina sol in Table 1 is the solid content. The amount of W A fumed silica (g), W B is the amount of the reinforcing fibers (g), the amount of W C is radiant inhibitor (g), W D is the amount of calcium hydroxide powder (g), W E is the amount of the connecting agent (solid content) (g).

Figure 2018146098
Figure 2018146098

表1に示すように、本発明の製造方法で製造した例1〜5の断熱材は、曲げ強度が高かった。
一方、水酸化カルシウム粉末を用いていない例6、7、つなぎ剤を用いていない例8、つなぎ剤の代わりに水酸化アルミニウム粉末を用いた例9の断熱材は、いずれも曲げ強度が低く、強度が劣っていた。
As shown in Table 1, the heat insulating materials of Examples 1 to 5 manufactured by the manufacturing method of the present invention had high bending strength.
On the other hand, the heat insulating materials of Examples 6 and 7 not using calcium hydroxide powder, Example 8 not using a binder, and Example 9 using aluminum hydroxide powder instead of the binder are all low in bending strength, The strength was inferior.

[例10、11]
表1に示す組成で各原料をブレンダーで混合し、金型を用いたプレス法により、密度が0.28〜0.29g/cm程度となるようにプレス圧を調節して、寸法が縦125mm×横125mm×厚さ10mmの成形体を8個作製した。得られた成形体を200℃で2時間加熱して断熱材を得た。
なお、例10の各原料の配合比は例1の配合比と同じであり、例11の各原料の配合比は例3の配合比と同じである。
例10で得た断熱材の累積総細孔容積は3.0cm/gであり、累積総細孔容積に対する孔径0.1μm以下の細孔の累積細孔容積の割合は31.6%であり、累積総細孔容積に対する孔径10μm以上の細孔の累積細孔容積の割合は7.5%であった。
[Examples 10 and 11]
Each raw material is mixed with a blender with the composition shown in Table 1, and the pressing pressure is adjusted by a pressing method using a mold so that the density is about 0.28 to 0.29 g / cm 3 , and the dimensions are vertical. Eight molded bodies of 125 mm × width 125 mm × thickness 10 mm were produced. The obtained molded body was heated at 200 ° C. for 2 hours to obtain a heat insulating material.
The mixing ratio of each raw material in Example 10 is the same as the mixing ratio in Example 1, and the mixing ratio of each raw material in Example 11 is the same as the mixing ratio in Example 3.
The cumulative total pore volume of the heat insulating material obtained in Example 10 is 3.0 cm 3 / g, and the ratio of the cumulative pore volume of pores having a pore diameter of 0.1 μm or less to the cumulative total pore volume is 31.6%. Yes, the ratio of the cumulative pore volume of pores having a pore diameter of 10 μm or more to the cumulative total pore volume was 7.5%.

各例における断熱材の密度と熱伝導率の測定結果を表2に示す。なお、表1のアルミナゾルまたは塩基性乳酸アルミニウムの欄の括弧内の数値は固形分量である。また、W〜Wは表1と同じである。 Table 2 shows the measurement results of the heat insulating material density and thermal conductivity in each example. The numerical values in parentheses in the column of alumina sol or basic aluminum lactate in Table 1 are solid contents. In addition, W A ~W E is the same as in Table 1.

Figure 2018146098
Figure 2018146098

表2に示すように、本発明の製造方法で製造した例10、11の断熱材は、熱伝導率が小さく、断熱性能に優れていた。   As shown in Table 2, the heat insulating materials of Examples 10 and 11 manufactured by the manufacturing method of the present invention had low thermal conductivity and excellent heat insulating performance.

[例12]
ヒュームドシリカ(A−1)9.6g、補強繊維(B−1)1.2g、輻射抑制剤(C−1)1.2g、およびアルミナゾル(E−1)4g(固形分0.6g)をブレンダーで混合し、金型を用いたプレス法により、密度が0.25g/cm程度となるようにプレス圧を調節して成形体を作製した。次いで、成形体を200℃で2時間加熱して断熱材を得た。該断熱材から小片を切り出して試料−1を作製した。
さらに水酸化カルシウム粉末(D−1)の0.6gを添加した以外は、試料−1と同様にして試料−2を作製した。
アルミナゾル(E−1)を試料−3とした。
各試料について27AlNMR測定を行った。結果を図1に示す。
[Example 12]
9.6 g of fumed silica (A-1), 1.2 g of reinforcing fiber (B-1), 1.2 g of radiation inhibitor (C-1), and 4 g of alumina sol (E-1) (solid content 0.6 g) Were mixed with a blender, and a compact was produced by adjusting the pressing pressure so that the density was about 0.25 g / cm 3 by a pressing method using a mold. Next, the molded body was heated at 200 ° C. for 2 hours to obtain a heat insulating material. A small piece was cut out from the heat insulating material to prepare Sample-1.
Further, Sample-2 was produced in the same manner as Sample-1, except that 0.6 g of calcium hydroxide powder (D-1) was added.
Alumina sol (E-1) was designated as Sample-3.
27 AlNMR measurements were performed on each sample. The results are shown in FIG.

図1に示すように、試料−3のスペクトルにおいては、60〜70ppm付近に4配位のAl由来のピークaが確認され、また0〜−30ppm付近にブロードなピークbが確認された。ヒュームドシリカ(A−1)、補強繊維(B−1)、輻射抑制剤(C−1)およびアルミナゾル(E−1)を含む、試料−1のスペクトルにおいては、アルミナゾル由来のピークaおよびピークbがいずれも確認された。一方、さらに水酸化カルシウム粉末(D−1)を添加した試料−2のスペクトルにおいては、アルミナゾル由来のピークaおよびピークbが消失した。これにより、加熱によって水酸化カルシウム粉末とアルミナゾルが反応していることが確認された。   As shown in FIG. 1, in the spectrum of Sample-3, a 4-coordinate Al-derived peak a was confirmed in the vicinity of 60 to 70 ppm, and a broad peak b was confirmed in the vicinity of 0 to −30 ppm. In the spectrum of Sample-1 containing fumed silica (A-1), reinforcing fiber (B-1), radiation inhibitor (C-1) and alumina sol (E-1), peak a and peak derived from alumina sol Both b were confirmed. On the other hand, in the spectrum of Sample-2 to which calcium hydroxide powder (D-1) was further added, peak a and peak b derived from alumina sol disappeared. Thereby, it was confirmed that calcium hydroxide powder and alumina sol were reacted by heating.

Claims (15)

複数の細孔を有する断熱材の製造方法であって、
ヒュームドシリカと、補強繊維と、水酸化カルシウム粉末と、無機系ゾルおよび乳酸アルミニウムからなる群から選ばれる少なくとも1種からなるつなぎ剤とを含む成形体を加熱して、
孔径が0.1μm以下である細孔の累積細孔容積が累積総細孔容積の50%以下であり、かつ孔径が10μm以上の細孔の累積細孔容積が累積総細孔容積の10%以下である断熱材を得る、断熱材の製造方法。
A method for producing a heat insulating material having a plurality of pores,
Heating a molded body containing fumed silica, reinforcing fibers, calcium hydroxide powder, and a binder composed of at least one selected from the group consisting of inorganic sols and aluminum lactate,
The cumulative pore volume of pores having a pore diameter of 0.1 μm or less is 50% or less of the cumulative total pore volume, and the cumulative pore volume of pores having a pore diameter of 10 μm or more is 10% of the cumulative total pore volume. The manufacturing method of the heat insulating material which obtains the heat insulating material which is the following.
前記断熱材中の累積総細孔容積が1〜4cm/gである、請求項1に記載の断熱材の製造方法。 The manufacturing method of the heat insulating material of Claim 1 whose cumulative total pore volume in the said heat insulating material is 1-4 cm < 3 > / g. 前記ヒュームドシリカの比表面積が50〜400m/gである、請求項1または2に記載の断熱材の製造方法。 The manufacturing method of the heat insulating material of Claim 1 or 2 whose specific surface area of the said fumed silica is 50-400 m < 2 > / g. 前記補強繊維の平均長さが0.3〜20mmであり、平均直径が0.3〜20μmである、請求項1〜3のいずれか一項に記載の断熱材の製造方法。   The manufacturing method of the heat insulating material as described in any one of Claims 1-3 whose average length of the said reinforcement fiber is 0.3-20 mm, and whose average diameter is 0.3-20 micrometers. 前記水酸化カルシウム粉末の平均粒径が30μm以下である、請求項1〜4のいずれか一項に記載の断熱材の製造方法。   The manufacturing method of the heat insulating material as described in any one of Claims 1-4 whose average particle diameter of the said calcium hydroxide powder is 30 micrometers or less. 前記つなぎ剤の粒径が0.05μm以下である、請求項1〜5のいずれか一項に記載の断熱材の製造方法。   The manufacturing method of the heat insulating material as described in any one of Claims 1-5 whose particle size of the said binder is 0.05 micrometer or less. 前記つなぎ剤の固形分量の合計が、前記つなぎ剤の総質量に対して、1〜30質量%である、請求項1〜6のいずれか一項に記載の断熱材の製造方法。   The manufacturing method of the heat insulating material as described in any one of Claims 1-6 whose sum total of the solid content of the said binder is 1-30 mass% with respect to the total mass of the said binder. 前記ヒュームドシリカおよび前記補強繊維の合計質量に対する、前記水酸化カルシウム粉末および前記つなぎ剤の固形分の合計質量の質量比が0.05〜0.15である、請求項1〜7のいずれか一項に記載の断熱材の製造方法。   The mass ratio of the total mass of the solid content of the calcium hydroxide powder and the binder to the total mass of the fumed silica and the reinforcing fiber is 0.05 to 0.15. The manufacturing method of the heat insulating material of one term. 前記成形体における前記水酸化カルシウム粉末と前記つなぎ剤の固形分の合計との質量比が2:10〜10:2である、請求項1〜8のいずれか一項に記載の断熱材の製造方法。   The manufacturing method of the heat insulating material as described in any one of Claims 1-8 whose mass ratio of the said calcium hydroxide powder in the said molded object and the sum total of the solid content of the said binder is 2: 10-10: 2. Method. 前記無機系ゾルがアルミナゾルまたはシリカゾルから選ばれる1種以上である、請求項1〜9のいずれか一項に記載の断熱材の製造方法。   The manufacturing method of the heat insulating material as described in any one of Claims 1-9 whose said inorganic type sol is 1 or more types chosen from an alumina sol or a silica sol. 前記成形体における前記ヒュームドシリカ、および前記補強繊維の合計質量を100質量%としたとき、前記ヒュームドシリカの割合が50〜99質量%であり、前記補強繊維の割合が1〜30質量%である、請求項1〜10のいずれか一項に記載の断熱材の製造方法。   When the total mass of the fumed silica and the reinforcing fiber in the molded body is 100% by mass, the ratio of the fumed silica is 50 to 99% by mass, and the ratio of the reinforcing fiber is 1 to 30% by mass. The manufacturing method of the heat insulating material as described in any one of Claims 1-10 which is these. 前記成形体の加熱温度が60〜500℃である、請求項1〜11のいずれか一項に記載の断熱材の製造方法。   The manufacturing method of the heat insulating material as described in any one of Claims 1-11 whose heating temperature of the said molded object is 60-500 degreeC. 前記成形体の加熱時間が0.2〜10時間である、請求項1〜12のいずれか一項に記載の断熱材の製造方法。   The manufacturing method of the heat insulating material as described in any one of Claims 1-12 whose heating time of the said molded object is 0.2 to 10 hours. 前記成形体の成形方法がプレス法である、請求項1〜13のいずれか一項に記載の断熱材の製造方法。   The manufacturing method of the heat insulating material as described in any one of Claims 1-13 whose molding method of the said molded object is a press method. 前記断熱材の密度が0.15〜0.5g/cmである、請求項1〜14のいずれか一項に記載の断熱材の製造方法。 The manufacturing method of the heat insulating material as described in any one of Claims 1-14 whose density of the said heat insulating material is 0.15-0.5 g / cm < 3 >.
JP2017045052A 2017-03-09 2017-03-09 Manufacturing method of heat insulating material Pending JP2018146098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017045052A JP2018146098A (en) 2017-03-09 2017-03-09 Manufacturing method of heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017045052A JP2018146098A (en) 2017-03-09 2017-03-09 Manufacturing method of heat insulating material

Publications (1)

Publication Number Publication Date
JP2018146098A true JP2018146098A (en) 2018-09-20

Family

ID=63591940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017045052A Pending JP2018146098A (en) 2017-03-09 2017-03-09 Manufacturing method of heat insulating material

Country Status (1)

Country Link
JP (1) JP2018146098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020200901A (en) * 2019-06-11 2020-12-17 オゾンセーブ株式会社 Heat insulation material and manufacturing method of heat insulation material
JP2021034278A (en) * 2019-08-27 2021-03-01 イビデン株式会社 Heat insulation sheet for battery pack and battery pack
JP7048834B1 (en) 2019-08-27 2022-04-05 イビデン株式会社 Manufacturing method of heat insulating sheet for assembled battery and manufacturing method of assembled battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020200901A (en) * 2019-06-11 2020-12-17 オゾンセーブ株式会社 Heat insulation material and manufacturing method of heat insulation material
JP2021034278A (en) * 2019-08-27 2021-03-01 イビデン株式会社 Heat insulation sheet for battery pack and battery pack
WO2021039844A1 (en) * 2019-08-27 2021-03-04 イビデン株式会社 Heat insulation sheet for assembled batteries and assembled battery
CN112714978A (en) * 2019-08-27 2021-04-27 揖斐电株式会社 Heat insulating sheet for battery pack and battery pack
KR20210111903A (en) * 2019-08-27 2021-09-13 이비덴 가부시키가이샤 Heat insulation sheet for assembled batteries and assembled battery
JP7032360B2 (en) 2019-08-27 2022-03-08 イビデン株式会社 Insulation sheet for assembled battery and assembled battery
JP7048834B1 (en) 2019-08-27 2022-04-05 イビデン株式会社 Manufacturing method of heat insulating sheet for assembled battery and manufacturing method of assembled battery
JP2022059622A (en) * 2019-08-27 2022-04-13 イビデン株式会社 Manufacturing method of heat insulating sheet for assembled battery and manufacturing method of assembled battery
KR102466341B1 (en) * 2019-08-27 2022-11-14 이비덴 가부시키가이샤 Heat insulation sheet for assembled batteries and assembled battery
EP4336085A3 (en) * 2019-08-27 2024-06-19 IBIDEN Co., Ltd. Heat-insulating sheet for battery pack, and battery pack

Similar Documents

Publication Publication Date Title
US20190300447A1 (en) High-temperature Resistant Lightweight Thermal Insulation Material with Dual-pore Structure and Preparation Method Thereof
CN102701700B (en) SiO2 aerogel/inorganic cotton compound thermal insulation felt and preparation method thereof
JP4860005B1 (en) Insulating material and manufacturing method thereof
CN103204692B (en) Novel lightweight mullite brick and fabrication method thereof
JP2018146098A (en) Manufacturing method of heat insulating material
Ma et al. Low-temperature synthesis of highly porous whisker-structured mullite ceramic from kaolin
CN106415107A (en) Vacuum heat-insulating material
CN105110813A (en) Preparation method for porous aluminum titanate ceramic
CN104986994B (en) A kind of preparation method of block zirconium carbon aerogel composite
CN105541313A (en) Nano heat-insulating material and preparation method of nano heat-insulating board
CN108774072B (en) Rigid heat insulation tile and preparation method thereof
Shmuradko et al. Composition, structure, and property formation of heat insulation fire-and heat-reflecting materials based on vermiculite for industrial power generation
Lao et al. Effect of silica on in-situ synthesis of nano-SiC whiskers in porous Al2O3-SiC composite ceramics for solar thermal storage by aluminium-assisted carbothermal reduction
CN113716940A (en) Novel heat storage brick and preparation method thereof
WO2014091665A1 (en) Insulation material and method of manufacturing same
Peng et al. High-efficiency energy-saving buildings utilizing potassium tungsten bronze heat-insulating glass and polyethylene glycol/expanded energy storage blanket
JP5871685B2 (en) Calcium silicate molded body and method for producing the same
CN107954700A (en) Corrosion-resistant corundum refractory brick and preparation method thereof
JP2018080094A (en) Thermal insulation material
Alves et al. Microstructural characterization and mechanical properties on Al2O3–TiO2 materials obtained by uniaxial pressing and extrusion
Huang et al. Thermodynamic properties of aluminum titanate‐mullite composite ceramics containing heat stabilizer
CN114716978A (en) Hierarchical pore structure carrier composite phase change energy storage material and preparation method thereof
CN106495736A (en) A kind of low body density high-strength degree light silicious brick and preparation method thereof
Kang et al. A novel approach to fabricate porous magnesia materials with excellent properties via pore-forming agent
CN202687971U (en) Fire-resistant hollow brick

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170310