JP2018145938A - Propeller fan and air conditioner - Google Patents

Propeller fan and air conditioner Download PDF

Info

Publication number
JP2018145938A
JP2018145938A JP2017043895A JP2017043895A JP2018145938A JP 2018145938 A JP2018145938 A JP 2018145938A JP 2017043895 A JP2017043895 A JP 2017043895A JP 2017043895 A JP2017043895 A JP 2017043895A JP 2018145938 A JP2018145938 A JP 2018145938A
Authority
JP
Japan
Prior art keywords
recess
cut
propeller fan
blade
concave portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017043895A
Other languages
Japanese (ja)
Inventor
裕明 栗原
Hiroaki Kurihara
裕明 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2017043895A priority Critical patent/JP2018145938A/en
Publication of JP2018145938A publication Critical patent/JP2018145938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a propeller fan capable of improving a blast efficiency by making a rational flow of an air flow at a blade surface while restricting occurrence of either a blade tip vortex or a rear flow vortex.SOLUTION: A downstream end part of said blade is provided with several recesses that are recessed at an upstream side, contours of said recesses are constituted at least by an inner peripheral side contour line and an outer peripheral side contour line as seen from a direction of a revolving shaft of said propeller fan. When a virtual line defined to have an equal distance from said inner peripheral side contour line and said outer peripheral contour line is defined as a reference line in a direction of the recess, a virtual line connecting an outer peripheral lower-most downstream end at the downstream end part of said blade with said revolving shaft is defined as a reference line in a radial direction, an angle formed by said recess part side of the reference line in said recess direction and said revolving shaft side of said reference line in a radial direction is defined as an angle in a recess direction and a vertical distance from a crossing point with the contour of said recess part to said reference line in the radial direction is defined as a recess depth, the deepest recess of said several recesses has a smaller angle in a recess direction than 90 degrees.SELECTED DRAWING: Figure 1

Description

本発明は、例えば空気調和装置に用いられるプロペラファンに関するものである。   The present invention relates to a propeller fan used in, for example, an air conditioner.

円筒状のハブの外周面に対して周方向に所定間隔ごとに取り付けられた複数枚の翼を備えた従来のプロペラファンには、前記翼の下流端部に上流側へ切り欠かれた凹部を有するものがある。   A conventional propeller fan having a plurality of blades attached to the outer peripheral surface of a cylindrical hub at predetermined intervals in the circumferential direction has a recess notched to the upstream side at the downstream end of the blade. There is something to have.

前記プロペラファンは回転軸を中心に回転して翼面で空気を押し出すが、その際に翼の表面の一方は空気を押し出すため圧力が上昇し、その裏面は圧力が低下した状態になる。翼の表面に沿って流れた空気は翼の外周端や翼の下流端に到達し翼面から離れると、圧力の高い面から低い面へと巻き込まれるような流れを形成して渦となる。翼の外周側で生じる渦は翼端渦と呼ばれ、翼の下流端で生じる渦は後流渦と呼ばれる。また翼の上流端で生じる入口剥離や翼の表面において生じる翼面乱れが翼の外周や翼の下流端に到達することで、より大きな渦や乱れが発生する。これらの渦や空気の流れの乱れはプロペラファンの送風効率を悪化させる要因となっていた。   The propeller fan rotates about the rotation axis to push out air on the blade surface. At this time, one of the blade surfaces pushes air, so that the pressure increases and the back surface of the blade is in a reduced pressure state. When the air flowing along the surface of the blade reaches the outer peripheral edge of the blade or the downstream end of the blade and leaves the blade surface, it forms a vortex by forming a flow that is engulfed from a high pressure surface to a low surface. The vortex generated on the outer peripheral side of the wing is called a tip vortex, and the vortex generated at the downstream end of the wing is called a wake vortex. Further, when the inlet separation that occurs at the upstream end of the blade and the blade surface disturbance that occurs on the surface of the blade reach the outer periphery of the blade or the downstream end of the blade, larger vortices and disturbance occur. These vortices and turbulence in the air flow have been factors that deteriorate the blowing efficiency of the propeller fan.

このような翼端渦や後流渦に起因する課題を解決するために、プロペラファンの下流端部に同一形状の凹部を複数連続させて設けているものがある。これらの複数の凹部により翼の圧力面に沿って流れる空気と負圧面に沿って流れる空気の合流が徐々に行われるようして、下流端部で発生する後流渦を低減する事が行われている(例えば、特許文献1参照)。   In order to solve the problems caused by the blade tip vortex and the wake vortex, there are some in which a plurality of concave portions having the same shape are continuously provided at the downstream end portion of the propeller fan. These multiple recesses gradually reduce the wake vortex generated at the downstream end so that the air flowing along the pressure surface of the blade and the air flowing along the negative pressure surface are gradually merged. (For example, refer to Patent Document 1).

しかしながら、特許文献1に記載のプロペラファンであれば翼面流れの乱れや下流端部において発生する後流渦を低減できるが、翼の外周端において発生する翼端渦を抑制できないという技術課題がある。加えて、翼面上における空気の流れはプロペラファンの半径によって大きく異なっており、流速だけでなく流れの方向も場所によって異なる。このため、同一形状の凹部を連続させて半径方向に並べて設ける構成では、前記凹部がある半径位置では効果があっても別の異なる半径位置では悪影響を及ぼすことがあり、全体として大きく効率が改善しないという技術課題もある。   However, the propeller fan described in Patent Document 1 can reduce the turbulence of the blade surface flow and the wake vortex generated at the downstream end, but the technical problem that the blade tip vortex generated at the outer peripheral end of the blade cannot be suppressed. is there. In addition, the air flow on the blade surface greatly varies depending on the radius of the propeller fan, and not only the flow velocity but also the flow direction varies depending on the location. For this reason, in the configuration in which the concave portions having the same shape are continuously arranged in the radial direction, even if the concave portion is effective at one radial position, it may have an adverse effect at another different radial position, and the efficiency is greatly improved as a whole. There is also a technical problem of not.

また、特許文献2では翼の下流端部に円弧状や台形状の凹部を1つ設けたプロペラファンが提案されている。   Patent Document 2 proposes a propeller fan in which one arcuate or trapezoidal concave portion is provided at the downstream end of the blade.

しかしながら、円弧状や台形状といった単純な形状の凹部を1つ設けるだけでは翼全体における空気流の乱れを十分に抑制する効果は得られにくい。また、単一の凹部で抑制効果を得るには例えば翼の下流端部全体に凹部を大きく形成する必要があるが、部分的には翼の外周側で発生する翼端渦や下流端部で発生する後流渦を抑制できたとしても、副次的に翼面全体の流れが変化してしまい、新たな乱れが発生してしまうという問題がある。   However, it is difficult to obtain an effect of sufficiently suppressing the turbulence of the airflow in the entire blade by providing only one concave portion having a simple shape such as an arc shape or a trapezoidal shape. In order to obtain a suppression effect with a single recess, for example, it is necessary to form a large recess on the entire downstream end of the blade. Even if the generated wake vortex can be suppressed, there is a problem that the flow of the entire blade surface changes secondary and a new turbulence occurs.

さらに、特許文献3ではプロペラファンの下流端部において2か所以上に湾曲線により形成された凹部を設けておき、内周側の凹部よりも外周側にある凹部の上流側への切込深さを大きくすることが提案されている。このように複数の凹部をそれぞれ下流端部における半径方向の位置に応じた大きさにすることで、空気流の乱れをより抑制することができる。特に外周側に設けられた凹部は後流渦だけでなく翼端渦の抑制にも効果を発揮できるので、外周側の凹部を大きくすることで渦による空気流の乱れをさらに抑制することができる。しかしながら、凹部が形成されると翼表面の空気がプロペラファンの半径方向に引き寄せられてしまう副次的な影響もあるため、翼面上の空気は凹部へと引き寄せられることになる。このため、外周側の凹部の切込深さを大きくすると、翼面上の空気の流れは翼の外周側へと向かう流れとなってしまい、翼の内周側、特にハブの近傍は空気が流れにくくなってしまう。このように翼面全体に空気流が均一に流れにくくなることにより、やはり新たな渦が発生したり、回転軸の下流方向から空気の逆流が発生したりすることで乱れが生じ、効率が低下するという問題がある。   Furthermore, in patent document 3, the recessed part formed in the curved line is provided in two or more places in the downstream end part of the propeller fan, and the depth of cut to the upstream side of the recessed part located on the outer peripheral side rather than the recessed part on the inner peripheral side It has been proposed to increase the size. As described above, the turbulence of the air flow can be further suppressed by setting the sizes of the plurality of concave portions according to the radial positions at the downstream end portions. In particular, the concave portion provided on the outer peripheral side can exert an effect not only on the wake vortex but also on the suppression of the blade tip vortex, so that the turbulence of the air flow due to the vortex can be further suppressed by increasing the concave portion on the outer peripheral side. . However, since the air on the blade surface is attracted in the radial direction of the propeller fan when the recessed portion is formed, the air on the blade surface is attracted to the recessed portion. For this reason, if the depth of cut of the concave portion on the outer peripheral side is increased, the air flow on the blade surface becomes a flow toward the outer peripheral side of the blade, and air flows on the inner peripheral side of the blade, particularly in the vicinity of the hub. It becomes difficult to flow. In this way, it becomes difficult for the air flow to flow uniformly over the entire blade surface, so that a new vortex is generated or a back flow of air occurs from the downstream direction of the rotating shaft, resulting in turbulence and reduced efficiency. There is a problem of doing.

特許第3448136号公報Japanese Patent No. 3448136 特開2002−257088号公報Japanese Patent Laid-Open No. 2002-257088 特許2016−166600号公報Japanese Patent No. 2016-166600

そこで、本発明は上述したような問題を鑑みてなされたものであり、翼端渦や後流渦の発生を抑制しつつ、翼面における空気流の流れを理想的なものにして送風効率を向上させることができるプロペラファンを提供することを目的とする。   Therefore, the present invention has been made in view of the above-described problems, and suppresses the generation of blade tip vortices and wake vortices, while making the air flow on the blade surface ideal and improving the blowing efficiency. An object is to provide a propeller fan that can be improved.

すなわち、本発明に係るプロペラファンは、円筒状のハブの外周面に対して周方向に所定間隔ごとに取り付けられた複数枚の翼を備えたプロペラファンであって、前記翼の下流端部が、上流側へ切り欠かれた複数の凹部を備え、前記プロペラファンの回転軸方向から見た場合に、前記凹部の輪郭が内周側輪郭線と外周側輪郭線とから少なくとも構成されており、前記内周側輪郭線と前記外周側輪郭線とから等距離となるように定められる仮想線を切込方向基準線、前記翼の下流端部における外周端と前記回転軸とを結ぶ仮想線を半径方向基準線、前記切込方向基準線の前記凹部側と前記半径方向基準線の前記回転軸側とがなす角度である切込方向角度、前記凹部の輪郭との交点から前記半径方向基準線までの垂直距離を切込深さとしたとき、複数の前記凹部のうち切込深さが最も大きい凹部が、前記切込方向角度が90度よりも小さく構成されていることを特徴とする。   That is, the propeller fan according to the present invention is a propeller fan including a plurality of blades attached to the outer peripheral surface of the cylindrical hub at predetermined intervals in the circumferential direction, and the downstream end portion of the blade is A plurality of recesses cut away to the upstream side, and when viewed from the direction of the rotation axis of the propeller fan, the contour of the recess is at least composed of an inner peripheral contour line and an outer peripheral contour line, An imaginary line defined to be equidistant from the inner peripheral side contour line and the outer peripheral side contour line is a cutting direction reference line, and a virtual line that connects the outer peripheral end and the rotation axis at the downstream end of the wing. The radial reference line from the intersection of the radial reference line, the cut direction angle that is the angle formed by the concave side of the cut direction reference line and the rotational axis side of the radial reference line, and the contour of the concave portion When the vertical distance to the depth of cut is The largest recess cut depth of the concave portion of the number, the cutting direction angle, characterized in that it is made smaller than 90 degrees.

このようなものであれば、前記翼の下流端部に形成された複数の凹部によって下流端部における翼の圧力面に沿って流れる空気と翼の負圧面に沿って流れる空気の合流が徐々に行われるようになり、後流渦が低減される。また、外周側に設けられる凹部によって外周端において発生する翼端渦の発生も低減できる。さらに、複数の前記凹部のうち切込深さが最も大きい凹部が、前記切込込み角度が90°よりも小さく構成されているので、翼面における空気流は外周側へ向かって当該凹部へ引き寄せることができ、収束度の速い領域に空気を集めて送風効率を向上できる。また、最も大きい凹部以外の内周側にある凹部での空気流の引き寄せが行われるので、前記ハブの近傍にも空気流が流れるようにして翼面全体において空気の流れが均一に発生するようにできる。これらのことから、翼端渦や後流渦の発生を抑えつつ、凹部を形成することにより翼面に新たな渦が発生する等して効率が低下してしまうのを防ぐことができる。   In such a case, the merging of the air flowing along the pressure surface of the blade at the downstream end and the air flowing along the negative pressure surface of the blade is gradually caused by the plurality of concave portions formed in the downstream end of the blade. As a result, wake vortices are reduced. Moreover, generation | occurrence | production of the blade tip vortex which generate | occur | produces in an outer peripheral end can also be reduced by the recessed part provided in an outer peripheral side. Further, since the recess having the largest depth of cut among the plurality of recesses is configured to have a notch angle smaller than 90 °, the air flow on the blade surface is drawn toward the recess toward the outer peripheral side. In addition, air can be collected in an area where convergence is fast and air blowing efficiency can be improved. In addition, since the air flow is drawn in the concave portion on the inner peripheral side other than the largest concave portion, the air flow also flows in the vicinity of the hub so that the air flow is uniformly generated over the entire blade surface. Can be. From these facts, it is possible to prevent the efficiency from decreasing due to generation of a new vortex on the blade surface by forming the recess while suppressing the generation of the blade tip vortex and the wake vortex.

翼面においてハブの近傍にも空気が流れやすくして、送風効率を高められるようにするには、複数の前記凹部が、前記切込深さが最も大きく外周側に形成された外側主凹部と、前記外側主凹部よりも内周側に形成され、前記切込深さが2番目に大きい内側主凹部と、を含み、前記外側主凹部の切込方向角度をαout、前記内側主凹部の切込方向角度をαinとしたとき、αin>αoutとなるように構成されていればよい。 In order to make it easy for air to flow in the vicinity of the hub on the blade surface so as to increase the air blowing efficiency, a plurality of the concave portions are provided with an outer main concave portion having the largest depth of cut and formed on the outer peripheral side. An inner main recess that is formed on the inner circumferential side of the outer main recess and has the second largest cutting depth, and the angle of the outer main recess in the cutting direction is α out , What is necessary is just to be comprised so that it may be set to (alpha) in > (alpha) out when a cutting direction angle is set to (alpha) in .

前記外側主凹部と前記内側主凹部とが翼の外周側と内周側においてそれぞれ同じ程度の風量に対して作用するようにして、翼面全体で均一な流れを実現できるようにするには、前記回転軸から前記切込方向基準線と前記半径方向基準線との交点までの半径を切込位置半径とし、前記外側主凹部の切込位置半径をRout、前記内側主凹部の切込位置半径をRin、前記プロペラファンの面積中心径をRcとした場合、Rout>Rc>Rinとなるように構成されていればよい。 In order for the outer main concave portion and the inner main concave portion to act on the same amount of air flow on the outer peripheral side and inner peripheral side of the blade, respectively, so that a uniform flow can be realized over the entire blade surface, The radius from the rotation axis to the intersection of the cut direction reference line and the radial reference line is a cut position radius, the cut position radius of the outer main recess is R out , and the cut position of the inner main recess is When the radius is R in and the area center diameter of the propeller fan is R c , R out > R c> R in may be satisfied.

前記外側主凹部による翼端渦の抑制効果が十分に発揮されるようにするとともに、前記内側主凹部によりハブ近傍にも空気の流れが形成される効果が十分に発揮されるようにするには、前記内側主凹部による空気流前記外側主凹部が、複数の前記凹部のうち最も外周側に形成されており、前記内側主凹部が、複数の前記凹部のうち最も内周側に形成されていればよい。   In order to sufficiently exert the effect of suppressing the wing tip vortex by the outer main concave portion and to sufficiently exhibit the effect of forming an air flow in the vicinity of the hub by the inner main concave portion. Air flow by the inner main recess The outer main recess is formed on the outermost side of the plurality of recesses, and the inner main recess is formed on the innermost side of the plurality of recesses. That's fine.

前記翼の半径方向中央部における前記外側主凹部による外周側へ空気を引き付ける作用と、前記内側主凹部による内周側への空気を引き付ける作用を相殺させて、外周側に空気が偏り過ぎないようにして送風効率を向上させられるようにするには、前記外側主凹部の切込方向角度であるαoutと前記内側主凹部の切込方向角度であるαinがαin>90°>αoutを満たすように構成されていればよい。 The action of attracting air to the outer peripheral side by the outer main concave portion at the radially central portion of the wing and the action of attracting air to the inner peripheral side by the inner main concave portion are offset so that the air does not become excessively biased to the outer peripheral side. In order to improve the air blowing efficiency, α out which is the cut direction angle of the outer main concave portion and α in which is the cut direction angle of the inner main concave portion are α in > 90 °> α out. What is necessary is just to be comprised so that it may satisfy | fill.

翼面上の流れを引き寄せる効果が半径方向に単調に変化し、中間凹部同士が流れを引き寄せあうことによって生じる不安定流れを抑制するには、複数の前記凹部が、前記外側主凹部と前記内側主凹部との間に設けられた1又は複数の中間凹部をさらに備え、前記中間凹部は、前記切込位置半径が大きくなり外周側に位置するほど前記切込方向角度であるαmが小さくなるように構成されていればよい。   In order to suppress the unstable flow that occurs when the effect of attracting the flow on the blade surface changes monotonously in the radial direction and the intermediate recesses attract each other, a plurality of the recesses include the outer main recess and the inner One or more intermediate recesses provided between the main recess and the intermediate recess are further provided, and the intermediate recess has a larger cutting position radius and an αm that is the cutting direction angle becomes smaller as it is positioned on the outer peripheral side. It suffices to be configured.

送風効率を良くすることができる前記外側主凹部と前記内側主凹部の切込方向と形成されている半径方向位置の具体的な範囲としては、前記外側主凹部の切込方向角度をαout、前記外側主凹部の切込位置半径をRout、前記内側主凹部の切込方向角度をαin、前記内側主凹部の切込位置半径をRinと、前記翼の外周半径をR、前記ハブの半径をRhubとした時、90×(Rout−Rin)/(R―Rhub)>(αin−αout)>45×(Rout−Rin)/(R―Rhub)となるように構成されたものが挙げられる。 As a specific range of the radial direction position formed with the cutting direction of the outer main concave portion and the inner main concave portion capable of improving the blowing efficiency, the cutting direction angle of the outer main concave portion is α out , The outer main recessed portion has a cutting position radius R out , the inner main recessed portion has a cutting direction angle α in , the inner main recessed portion has a cutting position radius R in , the outer peripheral radius of the blade is R, and the hub when the radius was R hub of, 90 × (R out -R in ) / (R-R hub)> (α in -α out)> 45 × (R out -R in) / (R-R hub) The thing comprised so that may be mentioned.

また送風効率の最適化を実現できる数値範囲としては、前記外側主凹部の切込方向角度をαout、前記外側主凹部の切込深さLoutと、前記内側主凹部の切込方向角度をαin、前記内側主凹部の切込深さLinについて、90×(Lout−Lin)/Lout>(αin−αout)>45×(Lout−Lin)/Loutとなるように構成したものが挙げられる。 Further, as a numerical range in which optimization of the blowing efficiency can be realized, the cutting direction angle of the outer main recessed portion is α out , the cutting depth L out of the outer main recessed portion, and the cutting direction angle of the inner main recessed portion. With respect to α in and the cut depth L in of the inner main recess, 90 × (L out −L in ) / L out > (α in −α out )> 45 × (L out −L in ) / L out The thing comprised so that may be mentioned.

本発明に係るプロペラファンを備えた空気調和装置であれば、低騒音を実現しながら高い冷暖房効率を実現できる。   If it is an air conditioning apparatus provided with the propeller fan which concerns on this invention, high air-conditioning efficiency can be implement | achieved, implement | achieving low noise.

このように本発明に係るプロペラファンによれば、翼端渦や後流渦の発生を凹部により抑制しつつ、各凹部が持つ翼面の全体の流れを引き寄せる効果は相殺するように作用させ、ハブ付近にも空気が流れるようにして、送風の効率を高めることができる。   Thus, according to the propeller fan according to the present invention, while suppressing the generation of the blade tip vortex and the wake vortex by the concave portion, the effect of attracting the entire flow of the blade surface of each concave portion is caused to cancel, It is possible to increase the air blowing efficiency by allowing air to flow also in the vicinity of the hub.

本発明の一実施形態に係るプロペラファンを示す模式図。The schematic diagram which shows the propeller fan which concerns on one Embodiment of this invention. 同実施形態に係る翼の下流端部を拡大した模式的拡大図。The typical enlarged view which expanded the downstream end part of the wing | blade which concerns on the embodiment. 同実施形態に係る翼の下流端部における各凹部の切込方向角度を示した模式的拡大図。The typical enlarged view which showed the cutting direction angle of each recessed part in the downstream end part of the blade | wing which concerns on the same embodiment. 同実施形態に係る翼の下流端部における各凹部の切込位置半径を示した模式的拡大図。The typical enlarged view which showed the cutting position radius of each recessed part in the downstream end part of the wing | blade which concerns on the embodiment. 同実施形態において内側凹部が無い場合における翼面上の空気の流れを示す模式図。The schematic diagram which shows the flow of the air on a blade surface in case there is no inner side recessed part in the embodiment. 同実施形態における翼面上の空気の流れを示す模式図。The schematic diagram which shows the flow of the air on the blade surface in the same embodiment. 同実施形態における切込方向角度及び切込位置半径なるパラメータと送風効率との間の関係について示す模式的グラフ。The typical graph shown about the relationship between the parameter which is a cutting direction angle in the same embodiment, a cutting position radius, and ventilation efficiency. 同実施形態における切込方向角度及び切込深さからなるパラメータと送風効率との間の関係について示す模式的グラフ。The typical graph shown about the relationship between the parameter which consists of a cutting direction angle and the cutting depth in the same embodiment, and ventilation efficiency. 本発明の別の実施形態に係るプロペラファンを示す模式図。The schematic diagram which shows the propeller fan which concerns on another embodiment of this invention.

本発明の一実施形態に係るプロペラファン100について各図を参照しながら説明する。   A propeller fan 100 according to an embodiment of the present invention will be described with reference to the drawings.

本実施形態のプロペラファン100は、例えば空気調和器の室外機において熱交換器に対して空気を送風するために用いられるものである。   The propeller fan 100 of this embodiment is used, for example, in order to blow air to a heat exchanger in an outdoor unit of an air conditioner.

図1に示すように前記プロペラファン100は、円筒状のハブ1と、前記ハブ1の外側周面に対して周方向に所定間隔ごとに設けられた3つの翼2とを備えたものである。   As shown in FIG. 1, the propeller fan 100 includes a cylindrical hub 1 and three blades 2 provided at predetermined intervals in the circumferential direction with respect to the outer peripheral surface of the hub 1. .

前記翼2は、下流端部において上流側へ切り欠かれた複数の凹部を備えたものである。図1に示されるように前記凹部は、翼2の外周側に設けられた最も大きい外側主凹部3と、翼2の内周側に設けられた2番目に大きい内側主凹部4と、前記外側主凹部3と前記内側主凹部4の間に設けられた複数の中間凹部5とを具備している。前記外側主凹部3、前記内側主凹部4、前記中間凹部5は、前記プロペラファン100の回転軸C方向から見て、上流側に頂点を有する概略三角形状の切り欠きとして形成してある。すなわち、前記凹部の輪郭は内周側輪郭線と外周側輪郭線の2本の直線で規定されている。以下では各凹部の形状、位置、大きさ、向きを規定するために図1乃至4に示される切込方向基準線、半径方向基準線、切込方向角度、切込深さを定義し、各凹部の特徴を前述したパラメータに基づいて説明する。   The blade 2 is provided with a plurality of recesses cut out to the upstream side at the downstream end. As shown in FIG. 1, the concave portion includes the largest outer main concave portion 3 provided on the outer peripheral side of the wing 2, the second largest inner main concave portion 4 provided on the inner peripheral side of the wing 2, and the outer side. A plurality of intermediate recesses 5 provided between the main recess 3 and the inner main recess 4 are provided. The outer main concave portion 3, the inner main concave portion 4, and the intermediate concave portion 5 are formed as substantially triangular cutouts having apexes on the upstream side when viewed from the rotation axis C direction of the propeller fan 100. That is, the contour of the concave portion is defined by two straight lines, that is, an inner peripheral contour line and an outer peripheral contour line. In the following, in order to define the shape, position, size, and orientation of each recess, the cutting direction reference line, the radial reference line, the cutting direction angle, and the cutting depth shown in FIGS. The feature of the recess will be described based on the parameters described above.

前記切込方向基準線は、前記内周側輪郭と前記外周側輪郭線とから等距離となるように定められる仮想線である。本実施形態では各凹部は概略三角形状であるので、各凹部の上流側の頂点を通る角の二等分線に相当する。   The cutting direction reference line is an imaginary line determined so as to be equidistant from the inner peripheral contour and the outer peripheral contour. In the present embodiment, each concave portion has a substantially triangular shape, and therefore corresponds to a bisector of an angle passing through the apex on the upstream side of each concave portion.

前記半径方向基準線は、前記翼2の下流端部における外周最下流端と前記回転軸Cとを結ぶ仮想線である。この半径方向基準線に対して前記回転軸Cを中心とする±5°内の扇形領域内に前記翼2の下流端部において前記凹部が形成されていない後流端が形成されるようにしてある。   The radial reference line is an imaginary line that connects the outermost downstream end of the downstream end of the blade 2 and the rotation axis C. A wake end in which the concave portion is not formed at the downstream end portion of the blade 2 is formed in a sector region within ± 5 ° centering on the rotation axis C with respect to the radial reference line. is there.

前記切込方向角度は、前記切込方向基準線の前記凹部側と前記半径方向基準線の前記回転軸C側とがなす角度である。本実施形態では前記切込方向基準線と前記半径方向基準線との交点を原点として前記半径方向基準線から反時計回りを正として角度を定義している。   The cut direction angle is an angle formed by the concave side of the cut direction reference line and the rotation axis C side of the radial reference line. In the present embodiment, the angle is defined with the counterclockwise rotation from the radial reference line as positive with the intersection of the cut direction reference line and the radial reference line as the origin.

前記切込深さは、前記凹部の輪郭との交点から前記半径方向基準線までの垂直距離である。本実施形態では各凹部は概略三角形状に形成されているので概略高さ寸法でも近似することができる。   The depth of cut is a vertical distance from the intersection with the contour of the recess to the radial reference line. In the present embodiment, each concave portion is formed in a substantially triangular shape, so that it can be approximated by a general height dimension.

次に各凹部の詳細、さらに各凹部間の関係について詳述する。   Next, details of each recess and the relationship between the recesses will be described in detail.

前記外側主凹部3は、翼2の下流端部において最も外周側に配置してあるとともに切込深さが最も深く形成してある。図2乃至図4に示されるように前記外側主凹部3はその切込方向が翼2において内周側を向くようにその切込方向角度であるαoutが90°よりも小さくαout≒70度に設定してある。 The outer main concave portion 3 is disposed at the outermost peripheral side at the downstream end portion of the blade 2 and has the deepest cut depth. 2 to the outer main recess 3 is smaller alpha out ≒ 70 than its cut direction angle to face the inner peripheral side is alpha out is 90 ° the cutting direction in the blade 2, as shown in FIG. 4 It is set to degrees.

前記内側主凹部4は、翼2の下流端部において最も内周側に配置してあるとともにその切込深さが2番目に深くなるように構成してある。前記内側主凹部4はその切込方向が翼2において外周側を向くように切込方向角度であるαinが90°よりも大きくαin≒105度に設定してある。すなわち、αin>αoutの関係が満たされるように前記外側主凹部3及び前記内側主凹部4の切込方向角度は設定してある。 The inner main concave portion 4 is arranged on the innermost peripheral side at the downstream end portion of the blade 2 and is configured such that the cut depth is the second deepest. The inner main recess 4 is set at larger alpha in ≒ 105 degrees than alpha in a cutting direction angle to face the outer peripheral side thereof cut direction in blade 2 is 90 °. That is, the cutting direction angles of the outer main recess 3 and the inner main recess 4 are set so that the relationship of α in > α out is satisfied.

前記中間凹部5は、前記外側主凹部3と前記内側主凹部4との間に設けてある3つの凹部であり、前記内側主凹部4よりも小さく形成してある。各中間凹部5の切込方向角度を内周側から順番にαm1、αm2、αm3とした場合、αin>αm1>αm2>αm3>αoutとなるようにしてあり、外周側に配置してある中間凹部5ほど切込方向角度が小さくなる。本実施形態では前記外側主凹部3の切込方向角度のみが鋭角なるように構成してあり、αin>αm1>αm2>αm3>90>αoutの関係が保たれる。 The intermediate recess 5 is three recesses provided between the outer main recess 3 and the inner main recess 4, and is formed smaller than the inner main recess 4. When the cutting direction angle of each intermediate recess 5 is set to α m1 , α m2 , and α m3 in order from the inner peripheral side, α in > α m1 > α m2 > α m3 > α out and the outer periphery The angle in the cutting direction becomes smaller as the intermediate concave portion 5 is arranged on the side. In this embodiment, only the cut direction angle of the outer main concave portion 3 is configured to be an acute angle, and the relationship of α in > α m1 > α m2 > α m3 >90> α out is maintained.

前記内側主凹部4と3つの中間凹部5はそれぞれプロペラファン100の面積中心径Rcよりも内周側に配置してある。一方、前記外側主凹部3はその大部分がプロペラファン100の面積中心径Rcよりも外側に配置されるようにしてある。なお、プロペラファン100の面積中心径Rcは、πRc^2=(πR^2−πRhub^2)/2で定義されており、空気の軸方向の流速が一定と考えたとき、面積中心径Rcの内側の風量と外側の風量が同じになる。この定義によって翼外周半径Rとハブ半径Rhubの平均で計算される単純な平均半径に対しRc>(R+Rhub)/2の関係となる。 The inner main recess 4 and the three intermediate recesses 5 are arranged on the inner peripheral side of the area center diameter Rc of the propeller fan 100, respectively. On the other hand, most of the outer main recess 3 is arranged outside the area center diameter Rc of the propeller fan 100. The area center diameter Rc of the propeller fan 100 is defined by πRc ^ 2 = (πR ^ 2-πR hub ^ 2) / 2, and when the air velocity in the axial direction is considered to be constant, the area center diameter The air volume inside Rc and the air volume outside are the same. With this definition, a relationship of Rc> (R + R hub ) / 2 is established with respect to a simple average radius calculated by the average of the blade outer radius R and the hub radius R hub .

前記外側主凹部3の切込位置半径Routと、前記内側主凹部4の切込位置半径Rinと、翼外周半径Rとハブ半径Rhubとした場合、図3に示されるように前記外側主凹部3と前記内側主凹部4との半径方向の位置関係は、90×(Rout−Rin)/(R―Rhub)>(αin−αout)>45×(Rout−Rin)/(R―Rhub)を満足するように設定してある。本実施形態では(Rout−Rin)/(R―Rhub) ≒0.56であるので、90×(Rout−Rin)/(R―Rhub)≒50.4度であり、45×(Rout−Rin)/(R―Rhub)≒25.2度となり、上記の条件を満たす。 A cutting location radius R out of the outer main recess 3, the cutting-in position the radius R in the inner main recess 4, when the outer circumferential blade radius R and the hub radius R hub, the outer as shown in FIG. 3 The radial positional relationship between the main recess 3 and the inner main recess 4 is 90 × (R out −R in ) / (R−R hub )> (α in −α out )> 45 × (R out −R in ) / (R−R hub ). In this embodiment, (R out −R in ) / (R−R hub ) ≈0.56, so 90 × (R out −R in ) / (R−R hub ) ≈50.4 degrees, 45 × (R out −R in ) / (R−R hub ) ≈25.2 degrees, which satisfies the above condition.

また前記外側主凹部3の切込深さLoutと、前記内側主凹部4の切込深さLinとした場合、図4に示すように前記外側主凹部3と前記内側主凹部4との間の関係は90×(Lout−Lin)/Lout>(αin−αout)>45×(Lout−Lin)/Loutを満足するように構成してある。本実施形態では(Lout−Lin)/Lin ≒0.75であり、90×(Lout−Lin)/Lin ≒67.5度であり、45×(Lout−Lin)/Lin ≒33.8度であるので上記の条件を満たす。 Also the cutting depth L out of the outer main recess 3, when a cutting depth L in the inner main recess 4, and the outer main recess 3 as shown in FIG. 4 and the inner main recess 4 The relationship between them is configured to satisfy 90 × (L out −L in ) / L out > (α in −α out )> 45 × (L out −L in ) / L out . In this embodiment, (L out −L in ) / L in ≈0.75, 90 × (L out −L in ) / L in ≈67.5 degrees, and 45 × (L out −L in ) Since / L in ≈33.8 °, the above condition is satisfied.

このように構成された本実施形態の効果について説明する。   The effect of this embodiment configured as above will be described.

本実施形態のプロペラファン100は、翼2の下流端部に前記外側主凹部3、前記中間凹部5、前記内側主凹部4が形成されているので、翼2の下流端における翼2の圧力面に沿って流れる空気と負圧面に沿って流れる空気の合流が徐々に行われるようになり、翼2の下流端において発生する後流渦を低減することができる。   In the propeller fan 100 of the present embodiment, the outer main concave portion 3, the intermediate concave portion 5, and the inner main concave portion 4 are formed at the downstream end portion of the blade 2, so that the pressure surface of the blade 2 at the downstream end of the blade 2. The air flowing along the negative pressure surface and the air flowing along the negative pressure surface are gradually merged, and the wake vortex generated at the downstream end of the blade 2 can be reduced.

また、前記外側主凹部3は、後端渦だけでなく翼2の外周端において発生する翼端渦を抑制する効果が得られる。前記外側主凹部3を形成する外周側輪郭線においては、翼端渦と逆向きの渦を形成するような流れとなり、翼端渦と相殺して渦を減衰させることができる。また前記外周側輪郭線において発生する逆向きの渦は翼端渦を翼負圧面に引き寄せ、翼端渦が翼面から剥離することを防ぐ効果も得られる。   Further, the outer main concave portion 3 has an effect of suppressing not only the rear end vortex but also the blade tip vortex generated at the outer peripheral end of the blade 2. In the outer peripheral side contour line forming the outer main concave portion 3, the flow forms a vortex in the direction opposite to the blade tip vortex, and the vortex can be attenuated by canceling out the blade tip vortex. Further, the reverse vortex generated in the outer peripheral contour line attracts the blade tip vortex to the blade suction surface, and the effect of preventing the blade tip vortex from being separated from the blade surface is also obtained.

さらに凹部は本来であれば翼面があり、圧力が加わる領域が切り欠かれた形状であるため、翼面のその他の箇所に比べて相対的に空気が流れやすくなる。このため、翼面上の流れは凹部に対して引き寄せられる効果が発生する。この流れの引き寄せ効果は、切込深さが深く、切込位置半径が大きい、すなわち、外周側にある凹部ほど効果は大きくなり、切込方向角度によって凹部の内周側と外周側のどちら側の空気をより引き寄せるのかが左右される。より具体的には切込方向角度が90度以上の場合は内周側に引き寄せる傾向を持ち、切込方向角度が90度以下の場合は外周側に引き寄せる効果を有する。   Furthermore, since the concave portion originally has a blade surface and has a shape in which a region to which pressure is applied is cut out, air can flow relatively more easily than other portions of the blade surface. For this reason, the flow on the blade surface is attracted to the recess. The effect of drawing this flow is deeper in the depth of cut and the radius of the cut position is larger, that is, the effect is greater in the concave portion on the outer peripheral side, and either the inner peripheral side or the outer peripheral side of the concave portion depending on the cut direction angle. It depends on whether to draw more air. More specifically, when the cutting direction angle is 90 degrees or more, it has a tendency to pull toward the inner peripheral side, and when the cutting direction angle is 90 degrees or less, it has an effect of pulling toward the outer peripheral side.

このため、前記外側主凹部3は主に翼端渦を抑制する目的で形成されるため、翼端渦が剥離する恐れのある地点まで含むように上流側まで伸びており、切込深さの深い形状にしてある。また、前記外側主凹部3の切込方向角度αoutは、90度よりも小さく構成してあるので、前記外側主凹部3の外周側に空気を引き寄せる効果を発揮する。したがって、翼面の中で周速度が速く、最も効率良く送風を行える領域である外周側に空気を流すことができる。 For this reason, the outer main concave portion 3 is formed mainly for the purpose of suppressing the blade tip vortex, and therefore extends to the upstream side so as to include a point where the blade tip vortex may be separated. It has a deep shape. Moreover, since the cut direction angle α out of the outer main recess 3 is configured to be smaller than 90 degrees, the effect of attracting air to the outer peripheral side of the outer main recess 3 is exhibited. Therefore, air can flow on the outer peripheral side, which is the region where the peripheral speed is fast and the air can be blown most efficiently on the blade surface.

ところで、図5に示されるように前記内周側凹部を設けていない場合には、翼面上の空気流れは前記外側主凹部3のみに引き寄せられ、より外周側へと向かう流れとなってしまう。この結果、図5に示されるように翼面においてハブ1近傍は空気が流れにくい領域が新たに生じる。この結果新たな渦が発生したり、回転軸Cの下流方向から空気の逆流が発生したりすることで乱れが生じ得る。   By the way, as shown in FIG. 5, when the inner peripheral recess is not provided, the air flow on the blade surface is attracted only to the outer main recess 3 and becomes a flow toward the outer periphery. . As a result, as shown in FIG. 5, a region where air hardly flows is newly generated near the hub 1 on the blade surface. As a result, turbulence may occur due to the generation of new vortices or the occurrence of a backflow of air from the downstream direction of the rotation axis C.

一方、本実施形態では最も切込深さが大きい前記外側主凹部3が最も外周側に配置されており、切込深さが2番目に大きい前記内側主凹部4が最も内周側に配置されており、前記外側主凹部3の切込方向角度αoutと前記内周側主凹部の切込方向角度αinはαin>αoutの関係を保つように構成されている。このように前記外側主凹部3だけでなく、前記内側主凹部4が形成されているので、図6に示されるように前記外側主凹部3における内側輪郭線が空気流れを引き寄せる効果を前記内側主凹部4が空気流れを引き寄せる効果により相殺でき、ハブの近傍へも空気流れを流れるようにできる。 On the other hand, in the present embodiment, the outer main concave portion 3 having the largest cutting depth is disposed on the outermost periphery side, and the inner main concave portion 4 having the second largest cutting depth is disposed on the innermost peripheral side. and which, cutting direction angle alpha in the inner circumferential side main recess and cutting direction angle alpha out of the outer main recess 3 is configured to maintain the relation of α in> α out. Since not only the outer main recess 3 but also the inner main recess 4 are formed in this way, the inner contour line in the outer main recess 3 has the effect of attracting the air flow as shown in FIG. The recess 4 can be offset by the effect of attracting the air flow, and the air flow can also flow in the vicinity of the hub.

また外側主凹部3は切込方向角度αoutが90度以下で翼2表面の空気の流れを外周側に引っ張り、内側主凹部4は切込方向角度αinが90度以上であるため翼2表面の空気の流れを内周側に引っ張っており、外側主凹部3と内側主凹部4の間の領域では空気が逆方向の力を受けることになる。このため領域では空気の流れが不安定になりやすい。 The outer main recessed portion 3 has a cutting direction angle α out of 90 degrees or less and pulls the air flow on the surface of the blade 2 to the outer peripheral side, and the inner main recessed portion 4 has a cutting direction angle α in of 90 degrees or more. The air flow on the surface is pulled toward the inner peripheral side, and air receives a force in the opposite direction in the region between the outer main recess 3 and the inner main recess 4. For this reason, the air flow tends to become unstable in the region.

すなわち、図6のように中間凹部5を形成しない場合には、外側主凹部3と内側主凹部4の間で空気流れの引き寄せられる方向が適宜変化する可能性がある。このため翼面上の流れのバランスが崩れると一時的に一方の凹部に流れが大きく引き寄せられ、それが元の中間状態に戻ろうとし、今度はもう一方の凹部に大きく引き寄せられる現象が発生することがある。本実施形態では、前記外側主凹部3と前記内側主凹部4との間に複数の中間凹部5が設けられているので、前記外側主凹部3と前記内側主凹部4との間で空気流れのバランスが崩れたとしても中間凹部5に引き寄せられることで翼面上の流れが外周側又は内周側の一方に大きく引き寄せられる現象を防ぐことができる。より具体的には前記内側主凹部4と前記外側主凹部3の間に設けられた中間凹部5について、切込位置半径が大きくなり外周側に位置するほど切込方向角度αが小さくなる構成とすることにより、前記外側主凹部3と前記内側主凹部4との間の領域における空気の流れの不安定さを低減することができる。 That is, when the intermediate recess 5 is not formed as shown in FIG. 6, the direction in which the air flow is attracted may be appropriately changed between the outer main recess 3 and the inner main recess 4. For this reason, when the balance of the flow on the wing surface is lost, the flow is temporarily attracted to one of the recesses, and it tries to return to the original intermediate state, which in turn causes a phenomenon of being greatly attracted to the other recess. Sometimes. In the present embodiment, since a plurality of intermediate recesses 5 are provided between the outer main recess 3 and the inner main recess 4, air flow between the outer main recess 3 and the inner main recess 4 is prevented. Even if the balance is lost, it is possible to prevent a phenomenon in which the flow on the blade surface is greatly attracted to one of the outer peripheral side and the inner peripheral side by being attracted to the intermediate recess 5. More specifically, the intermediate recess 5 provided between the inner main recess 4 and the outer main recess 3 is configured such that the cut direction angle α m decreases as the cut position radius increases and is positioned on the outer peripheral side. By doing so, the instability of air flow in the region between the outer main recess 3 and the inner main recess 4 can be reduced.

加えて、前記外側主凹部3と前記内側主凹部4が翼面上の流れを引き寄せる効果は、切込深さと切込位置半径により変化する。   In addition, the effect of the outer main recess 3 and the inner main recess 4 attracting the flow on the blade surface varies depending on the cutting depth and the cutting position radius.

込位置半径については、外側主凹部3の切込方向角度αoutと切込位置半径Routと、内周主凹部の切込方向角度αinと切込位置半径Rinと、翼外周半径Rとハブ半径Rhubについて90×(Rout−Rin)/(R―Rhub)>(αin−αout)>45×(Rout−Rin)/(R―Rhub)とすることで高い効率を得ることができる。図7は、横軸を(αin−αout)/{(Rout−Rin)/(R―Rhub)}とし縦軸を送風効率の改善効果を示したシミュレーション結果のグラフである。 Regarding the insertion position radius, the cutting direction angle α out and the cutting position radius R out of the outer main recess 3, the cutting direction angle α in and the cutting position radius R in of the inner peripheral main recess, and the blade outer radius R 90 × (R out -R in) / (R-R hub)> (α in -α out)> 45 × (R out -R in) / (R-R hub) to be about a hub radius R hub High efficiency can be obtained. FIG. 7 is a graph of a simulation result in which the horizontal axis is (α in −α out ) / {(R out −R in ) / (R−R hub )}, and the vertical axis is an effect of improving the air blowing efficiency.

切込深さについては、外側主凹部3の切込方向角度αoutと切込深さLoutと、内周主凹部の切込方向角度αinと切込深さLinについて、90×(Lout−Lin)/Lout>(αin−αout)>45×(Lout−Lin)/Loutとすることで高い効率を得ることができる。図8は、横軸を(αin−αout)/{(Lout−Lin)/Lout}とし縦軸を送風効率の改善効果を示したグラフである。 As for the depth of cut, 90 × (cutting direction angle α out and cutting depth L out of the outer main recessed portion 3 and cutting direction angle α in and cutting depth L in of the inner peripheral main recessed portion are 90 × ( High efficiency can be obtained by setting L out −L in ) / L out > (α in −α out )> 45 × (L out −L in ) / L out . FIG. 8 is a graph in which the horizontal axis is (α in −α out ) / {(L out −L in ) / L out } and the vertical axis is an effect of improving the air blowing efficiency.

図7、図8ともに45度と90度付近に変曲点をもっている。これは外側主凹部3と内側主凹部4の切込方向角度の差を変化させていった時に、流れが徐々に変化していく現象だけでなく、一方に流れが寄ったり、非常に不安定な状況になり乱れが大きく増加したりするといった遷移現象が生じるためである。   Both FIG. 7 and FIG. 8 have inflection points near 45 degrees and 90 degrees. This is not only a phenomenon in which the flow gradually changes when the difference in the cutting direction angle between the outer main concave portion 3 and the inner main concave portion 4 is changed, but the flow is deviated to one side or very unstable. This is because a transition phenomenon occurs in which the turbulence is greatly increased due to the situation.

本実施の形態では、90×(Rout−Rin)/(R―Rhub)>(αin−αout)>45×(Rout−Rin)/(R―Rhub)と90×(Lout−Lin)/Lout>(αin−αout)>45×(Lout−Lin)/Loutの両方が同時に満足されており、送風効率が高い構成となっている。 In this embodiment, 90 × (R out −R in ) / (R−R hub )> (α in −α out )> 45 × (R out −R in ) / (R−R hub ) and 90 × Both (L out −L in ) / L out > (α in −α out )> 45 × (L out −L in ) / L out are satisfied at the same time, and the air blowing efficiency is high.

次に本発明の別の実施形態に係るプロペラファン100について図9を参照しながら説明する。   Next, a propeller fan 100 according to another embodiment of the present invention will be described with reference to FIG.

前記実施形態と比較するとこの実施形態のプロペラファン100は、回転軸C方向から見た場合において外側主凹部3の形状は三角形状ではなく台形状に形成されている点と、内側主凹部4が内周側から2番目の位置に形成されている点、切込深さが内側主凹部4のほうが外側主凹部3よりも深くなっている点が異なっている。   Compared with the above embodiment, the propeller fan 100 of this embodiment has a point that the shape of the outer main recess 3 is not a triangle but a trapezoid when viewed from the direction of the rotation axis C, and the inner main recess 4 is The difference is that it is formed at the second position from the inner peripheral side, and the depth of cut is deeper in the inner main recess 4 than in the outer main recess 3.

図9に示されるように前記外側主凹部3の切込方向基準線は内側輪郭線と外側輪郭線から等距離の位置となるように引かれた仮想線となる。言い換えると前記仮想線は台形の上底の中点と下底の中点をそれぞれ通る直線ともいうことができる。また、前記外側主凹部3の切込深さは前記実施形態と同様に定義されるが、上底の中点から下底に下ろされた垂線であるとも言える。   As shown in FIG. 9, the cutting direction reference line of the outer main recess 3 is a virtual line drawn so as to be equidistant from the inner contour line and the outer contour line. In other words, the virtual line can also be said to be a straight line passing through the midpoint of the upper base and the midpoint of the lower base of the trapezoid. Further, the depth of cut of the outer main concave portion 3 is defined in the same manner as in the above embodiment, but it can be said that it is a perpendicular drawn from the midpoint of the upper base to the lower base.

この実施形態においても台形状の外側主凹部3の切込方向角度をαout、三角形状の内側主凹部4の切込方向角度をαinとした場合に、αin>αoutの関係が満たされるように前記外側主凹部3及び前記内側主凹部4の切込方向角度は設定してある。 Also in this embodiment, when the cutting direction angle of the trapezoidal outer main concave portion 3 is α out and the cutting direction angle of the triangular inner main concave portion 4 is α in , the relationship of α in > α out is satisfied. As described above, the cutting direction angles of the outer main recess 3 and the inner main recess 4 are set.

この実施形態でも前記実施形態とほぼ同様の効果が得られ、送風効率を向上させられる。また、台形状や三角形状の凹部についてその位置や数、配置を変化させることで、プロペラファン100の動作条件や入口や出口の障害物などによる翼面の流れの影響に応じて後端渦の抑制効果を変化させて適切なものにできる。   Also in this embodiment, substantially the same effect as in the previous embodiment can be obtained, and the air blowing efficiency can be improved. Further, by changing the position, number, and arrangement of the trapezoidal or triangular recesses, the trailing edge vortex can be changed according to the operating conditions of the propeller fan 100 or the influence of the flow of the blade surface due to obstacles at the entrance and exit. It can be made appropriate by changing the suppression effect.

その他の実施形態について説明する。   Other embodiments will be described.

凹部の数については適宜設定することができる。例えば翼において下流端部に外側主凹部だけを設けておき、その切込方向角度が90°よりも小さくなるように構成したものであってもよい。   About the number of recessed parts, it can set suitably. For example, the blade may be configured such that only the outer main concave portion is provided at the downstream end portion of the blade and the cut direction angle is smaller than 90 °.

また、外側主凹部と内側主凹部との間における切込位置半径、切込深さの関係は、各実施形態に示したものに限られない。例えば90×(Rout−Rin)/(R―Rhub)>(αin−αout)>45×(Rout−Rin)/(R―Rhub)、又は、90×(Lout−Lin)/Lout>(αin−αout)>45×(Lout−Lin)/Loutのいずれか一方のみを満たすように複数の凹部を形成してもよい。 Further, the relationship between the cutting position radius and the cutting depth between the outer main concave portion and the inner main concave portion is not limited to that shown in each embodiment. For example, 90 × (R out −R in ) / (R−R hub )> (α in −α out )> 45 × (R out −R in ) / (R−R hub ), or 90 × (L out A plurality of concave portions may be formed so as to satisfy only one of −L in ) / L out > (α in −α out )> 45 × (L out −L in ) / L out .

凹部の輪郭線は直線で形成されるものに限られず、曲線で形成されるものであってもよい。この場合、切込方向基準線は曲線で定義され得るが、半径方向基準線との交点における切込方向基準線の接線等を定義することで切込方向角度を定義できる。このようなパラメータを用いて複数の凹部の大きさや位置関係を前記実施形態で示したような関係を満たすようにしてもよい。   The contour line of the recess is not limited to a straight line, but may be a curved line. In this case, the cutting direction reference line can be defined by a curve, but the cutting direction angle can be defined by defining a tangent or the like of the cutting direction reference line at the intersection with the radial direction reference line. Using such parameters, the sizes and positional relationships of the plurality of recesses may satisfy the relationship as shown in the embodiment.

本発明に係るプロペラファンは空気調和装置だけでなくその他の装置に用いても構わない。   The propeller fan according to the present invention may be used not only in the air conditioner but also in other devices.

その他、本発明の趣旨に反しない限りにおいて様々な実施形態の組み合わせや変形を行っても構わない。   In addition, various combinations and modifications of the embodiments may be performed without departing from the spirit of the present invention.

100・・・プロペラファン
1 ・・・ハブ
2 ・・・翼
3 ・・・外側主凹部
4 ・・・内側主凹部
5 ・・・中間凹部
DESCRIPTION OF SYMBOLS 100 ... Propeller fan 1 ... Hub 2 ... Blade 3 ... Outer main recessed part 4 ... Inner main recessed part 5 ... Intermediate recessed part

Claims (9)

円筒状のハブの外周面に対して周方向に所定間隔ごとに取り付けられた複数枚の翼を備えたプロペラファンであって、
前記翼の下流端部が、上流側へ切り欠かれた複数の凹部を備え、
前記プロペラファンの回転軸方向から見た場合に、前記凹部の輪郭が内周側輪郭線と外周側輪郭線とから少なくとも構成されており、
前記内周側輪郭線と前記外周側輪郭線とから等距離となるように定められる仮想線を切込方向基準線、前記翼の下流端部における外周最下流端と前記回転軸とを結ぶ仮想線を半径方向基準線、前記切込方向基準線の前記凹部側と前記半径方向基準線の前記回転軸側とがなす角度である切込方向角度、前記凹部の輪郭との交点から前記半径方向基準線までの垂直距離を切込深さとしたとき、
複数の前記凹部のうち切込深さが最も大きい凹部が、前記切込方向角度が90度よりも小さく構成されていることを特徴とするプロペラファン。
A propeller fan comprising a plurality of blades attached at predetermined intervals in the circumferential direction to the outer peripheral surface of a cylindrical hub,
The downstream end of the wing includes a plurality of recesses cut away to the upstream side,
When viewed from the direction of the rotation axis of the propeller fan, the contour of the recess is at least composed of an inner peripheral contour and an outer peripheral contour,
An imaginary line defined to be equidistant from the inner peripheral contour line and the outer peripheral contour line is a cutting direction reference line, and an imaginary line connecting the outermost downstream end at the downstream end portion of the blade and the rotation axis. A radial reference line, a cut direction angle that is an angle formed by the concave side of the cut direction reference line and the rotation axis side of the radial reference line, and a radial direction from an intersection of the contour of the concave portion When the vertical distance to the reference line is the depth of cut,
A propeller fan characterized in that a recess having the largest depth of cut among the plurality of recesses is configured such that the angle in the cut direction is smaller than 90 degrees.
複数の前記凹部が、
前記切込深さが最も大きく外周側に形成された外側主凹部と、前記外側主凹部よりも内周側に形成され、前記切込深さが2番目に大きい内側主凹部と、を含み、
前記外側主凹部の切込方向角度をαout、前記内側主凹部の切込方向角度をαinとしたとき、αin>αoutとなるように構成されている請求項1記載のプロペラファン。
A plurality of the recesses,
An outer main concave portion having the largest depth of cut formed on the outer peripheral side, an inner main concave portion formed on the inner peripheral side of the outer main concave portion and having the second largest depth of cut,
The out the cutting direction angle of the outer main recess alpha, when the cutting direction angle of the inner main recess and alpha in, propeller fan alpha in> alpha out to become so Configured claim 1.
前記回転軸から前記切込方向基準線と前記半径方向基準線との交点までの半径を切込位置半径とし、前記外側主凹部の切込位置半径をRout、前記内側主凹部の切込位置半径をRin、前記プロペラファンの面積中心径をRcとした場合、
out>Rc>Rinとなるように構成されている請求項2記載のプロペラファン。
The radius from the rotation axis to the intersection of the cut direction reference line and the radial reference line is a cut position radius, the cut position radius of the outer main recess is R out , and the cut position of the inner main recess is When the radius is R in and the area center diameter of the propeller fan is Rc,
The propeller fan according to claim 2, wherein R out >Rc> R in .
前記外側主凹部が、複数の前記凹部のうち最も外周側に形成されており、
前記内側主凹部が、複数の前記凹部のうち最も内周側に形成されている請求項2又は3記載のプロペラファン。
The outer main concave portion is formed on the outermost peripheral side among the plurality of concave portions,
The propeller fan according to claim 2 or 3, wherein the inner main concave portion is formed on the innermost peripheral side among the plurality of concave portions.
前記外側主凹部の切込方向角度であるαoutと前記内側主凹部の切込方向角度であるαinがαin>90°>αoutを満たすように構成されている請求項2乃至4いずれかに記載のプロペラファン。 5. Any one of claims 2 to 4, wherein α out which is a cutting direction angle of the outer main recessed portion and α in which is a cutting direction angle of the inner main recessed portion satisfy α in > 90 °> α out. The propeller fan described in Crab. 複数の前記凹部が、
前記外側主凹部と前記内側主凹部との間に設けられた1又は複数の中間凹部をさらに備え、
前記中間凹部は、前記切込位置半径が大きくなり外周側に位置するほど前記切込方向角度であるαmが小さくなるように構成されている請求項2乃至5いずれかに記載のプロペラファン。
A plurality of the recesses,
One or more intermediate recesses provided between the outer main recess and the inner main recess,
The propeller fan according to any one of claims 2 to 5, wherein the intermediate recess is configured such that αm, which is the angle in the cutting direction, decreases as the cutting position radius increases and is positioned on the outer peripheral side.
前記外側主凹部の切込方向角度をαout、前記外側主凹部の切込位置半径をRout、前記内側主凹部の切込方向角度をαin、前記内側主凹部の切込位置半径をRinと、前記翼の外周半径をR、前記ハブの半径をRhubとした時、
90×(Rout−Rin)/(R―Rhub)>(αin−αout)>45×(Rout−Rin)/(R―Rhub)となるように構成された請求項2乃至6いずれかに記載のプロペラファン。
The cut direction angle of the outer main recess is α out , the cut position radius of the outer main recess is R out , the cut direction angle of the inner main recess is α in , and the cut position radius of the inner main recess is R in , when the outer radius of the wing is R and the radius of the hub is R hub ,
Claims configured to satisfy 90 × (R out −R in ) / (R−R hub )> (α in −α out )> 45 × (R out −R in ) / (R−R hub ) The propeller fan according to any one of 2 to 6.
前記外側主凹部の切込方向角度をαout、前記外側主凹部の切込深さLoutと、前記内側主凹部の切込方向角度をαin、前記内側主凹部の切込深さLinについて、90×(Lout−Lin)/Lout>(αin−αout)>45×(Lout−Lin)/Loutとなる構成された請求項2乃至7いずれかに記載のプロペラファン。 The cut direction angle of the outer main recess is α out , the cut depth L out of the outer main recess, the cut direction angle of the inner main recess is α in , and the cut depth L in of the inner main recess. 8 is configured so that 90 × (L out −L in ) / L out > (α in −α out )> 45 × (L out −L in ) / L out . Propeller fan. 請求項1乃至8いずれかに記載のプロペラファンを備えた空気調和装置。   An air conditioner comprising the propeller fan according to any one of claims 1 to 8.
JP2017043895A 2017-03-08 2017-03-08 Propeller fan and air conditioner Pending JP2018145938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017043895A JP2018145938A (en) 2017-03-08 2017-03-08 Propeller fan and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017043895A JP2018145938A (en) 2017-03-08 2017-03-08 Propeller fan and air conditioner

Publications (1)

Publication Number Publication Date
JP2018145938A true JP2018145938A (en) 2018-09-20

Family

ID=63591036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017043895A Pending JP2018145938A (en) 2017-03-08 2017-03-08 Propeller fan and air conditioner

Country Status (1)

Country Link
JP (1) JP2018145938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114165478A (en) * 2021-11-04 2022-03-11 华中科技大学 Bionic axial flow fan blade and modification method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114165478A (en) * 2021-11-04 2022-03-11 华中科技大学 Bionic axial flow fan blade and modification method thereof

Similar Documents

Publication Publication Date Title
KR102317338B1 (en) Blower and outdoor unit of air conditioner having the same
EP2711558B1 (en) Propeller fan
JP5059071B2 (en) Blower
JP6129431B1 (en) Blower and air conditioner equipped with this blower
JP5430754B2 (en) Axial blower
JP2007292053A (en) Multi-blade fan
JP6066691B2 (en) Propeller fan and air conditioner using the propeller fan
JP2007113474A (en) Blower
JPWO2019069374A1 (en) Propeller fan and axial blower
JP5425192B2 (en) Propeller fan
JP4818310B2 (en) Axial blower
KR20080019521A (en) Propeller fan
JP2008223741A (en) Centrifugal blower
JP2008223760A (en) Impeller for blower
JP6739656B2 (en) Impeller, blower, and air conditioner
KR20140039976A (en) Propeller fan
JP2018145938A (en) Propeller fan and air conditioner
JPH08240197A (en) Axial-flow fan
WO2016181463A1 (en) Axial-flow blower
JP6049180B2 (en) Propeller fan and air conditioner using the propeller fan
JP2009127541A (en) Centrifugal fan
JP2010242597A (en) Axial blower and air conditioner
WO2016121144A1 (en) Propeller fan, blower, and outdoor unit of refrigeration cycle device
JP2000009083A (en) Impeller
JP2010275986A (en) Fan and axial flow blower