JP2018143978A - Method of manufacturing gold composite material - Google Patents

Method of manufacturing gold composite material Download PDF

Info

Publication number
JP2018143978A
JP2018143978A JP2017042768A JP2017042768A JP2018143978A JP 2018143978 A JP2018143978 A JP 2018143978A JP 2017042768 A JP2017042768 A JP 2017042768A JP 2017042768 A JP2017042768 A JP 2017042768A JP 2018143978 A JP2018143978 A JP 2018143978A
Authority
JP
Japan
Prior art keywords
gold
composite material
carrier
atom
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017042768A
Other languages
Japanese (ja)
Other versions
JP6872781B2 (en
Inventor
春田 正毅
Masaki Haruta
正毅 春田
玉青 石田
Tamao Ishida
玉青 石田
スオン ディエン ルーン
Xuan Dien Luong
スオン ディエン ルーン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2017042768A priority Critical patent/JP6872781B2/en
Publication of JP2018143978A publication Critical patent/JP2018143978A/en
Application granted granted Critical
Publication of JP6872781B2 publication Critical patent/JP6872781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a gold composite material capable of providing the gold composite material useful as a catalyst having high catalytic activity by carrying gold nanoparticles stably even to any carriers such as acidic metal oxide.SOLUTION: There is provided a method of manufacturing a gold composite material in which gold fine particles are fastened on a surface of a carrier, having a mixing process for manufacturing a mixture containing a gold precursor and the carrier and a burning process for burning the mixture, in which the gold precursor is a complex compound having a gold atom and a ligand coordinated to the gold atom, coordinated atom coordinated to the gold atom in the ligand is oxygen, carbon, nitrogen, phosphorus and sulfur.SELECTED DRAWING: None

Description

本発明は、従来の金ナノ粒子触媒よりも触媒活性が高い金複合材料を得ることができる、金複合材料の製造方法に関する。   The present invention relates to a method for producing a gold composite material capable of obtaining a gold composite material having higher catalytic activity than a conventional gold nanoparticle catalyst.

金を好ましくは直径10nm以下の超微粒子(ナノ粒子)として種々の金属酸化物担体上に分散・固定することにより、高い触媒活性が発現されることは知られている。
金属酸化物に金微粒子を分散・固定化する方法としては、従来、共沈法、析出沈殿法等、種々の方法が知られているが、これらの方法は、水などの溶媒を用いることが必要とされる上、金前駆体濃度を低く設定する必要があり、金前駆体を担体に固定化した後に大量の水で洗浄する必要がある。そのため、触媒調製後には多量の廃水が発生する。
そこで特許文献1には、金−アミノ酸錯体を金前駆体とする含浸法であって、少量の水で金粒子を担持でき、廃水量を低減できる方法が提案されている。しかし、含浸法では予め担体の細孔容積を求め、細孔容積に応じた金前駆体水溶液を調製する必要があり、小さな金ナノ粒子を担持するには実際上、担体は多孔質である必要がある。また、溶媒を使わない調製法としては、アークプラズマを用いた蒸着法が知られているが、設備が高額になり、一度に多くの触媒を作ることも難しいという問題がある。
そこで、担体の材質に関係なく、短時間且つ簡便にナノオーダーの金微粒子あるいは金クラスターを担体上に担持する方法として、昇華性の金前駆体(ジメチル金アセチルアセトナート錯体、ジメチル金トリフルオロアセチルアセトナート錯体、クロロトリメチルホスフィン金錯体、メチル(トリメチルホスフィン)金錯体など)と無機または有機担体(高分子、無機酸化物、活性炭、多孔性金属錯体など)とを室温下常圧で機械的摩擦を加えながら固相混合した後還元処理することにより、担体表面に金微粒子を分散・固定する方法が提案されている(特許文献2)。
It is known that high catalytic activity is expressed by dispersing and fixing gold on various metal oxide supports, preferably as ultrafine particles (nanoparticles) having a diameter of 10 nm or less.
Conventionally, various methods such as coprecipitation method and precipitation method are known as methods for dispersing and immobilizing gold fine particles in metal oxides. These methods use a solvent such as water. In addition to this, the gold precursor concentration needs to be set low, and the gold precursor needs to be washed with a large amount of water after being immobilized on the carrier. Therefore, a large amount of waste water is generated after catalyst preparation.
Therefore, Patent Document 1 proposes an impregnation method using a gold-amino acid complex as a gold precursor, which can support gold particles with a small amount of water and reduce the amount of waste water. However, in the impregnation method, it is necessary to obtain the pore volume of the support in advance and prepare an aqueous gold precursor solution corresponding to the pore volume. In order to support small gold nanoparticles, the support must actually be porous. There is. Moreover, as a preparation method that does not use a solvent, a vapor deposition method using arc plasma is known, but there is a problem that the equipment becomes expensive and it is difficult to make many catalysts at a time.
Therefore, sublimable gold precursors (dimethylgold acetylacetonate complex, dimethylgold trifluoroacetyl, dimethylgold trifluoroacetyl) can be used as a method for supporting nano-order gold fine particles or gold clusters on a support in a short time and easily regardless of the material of the support. Mechanical friction between acetonate complex, chlorotrimethylphosphine gold complex, methyl (trimethylphosphine) gold complex) and inorganic or organic carrier (polymer, inorganic oxide, activated carbon, porous metal complex, etc.) at room temperature and normal pressure A method has been proposed in which gold fine particles are dispersed and fixed on the surface of a carrier by performing solid-phase mixing while adding phosphine and then performing a reduction treatment (Patent Document 2).

特開2016-163881号公報JP 2016-163881 A 特開2008−259993号公報JP 2008-259993 A

しかしながら、上述の提案にかかる方法では、昇華性有機金錯体は非常に分解しやすく、酸化チタン等、担体の種類によっては摩擦混合する間に金錯体が分解して一部が0価の金に還元されてしまい、その後の還元処理の段階で先に生成した0価の金により還元が進んで凝集しやすくなる欠点がある。また、酸性の金属酸化物等いかなる担体に対しても金ナノ粒子を良好に担持させて、高い触媒活性を発揮する金触媒を得ることはできない場合があった。
したがって本発明の目的は、酸性の金属酸化物などいかなる担体に対しても安定して金ナノ粒子を担持させて、高い触媒活性を有する触媒として有用な金複合材料を得ることができる金複合材料の製造方法を提供することにある。
However, in the method according to the above proposal, the sublimable organic gold complex is very easily decomposed, and depending on the type of carrier, such as titanium oxide, the gold complex is decomposed during frictional mixing, and a part of the gold complex becomes zero-valent gold. There is a disadvantage that the reduction proceeds and the agglomeration easily occurs due to the zero-valent gold generated earlier in the subsequent reduction treatment stage. In addition, there are cases where it is not possible to obtain a gold catalyst exhibiting high catalytic activity by favorably supporting gold nanoparticles on any carrier such as an acidic metal oxide.
Accordingly, an object of the present invention is to provide a gold composite material that can stably support gold nanoparticles on any carrier such as an acidic metal oxide and can obtain a gold composite material useful as a catalyst having high catalytic activity. It is in providing the manufacturing method of.

本発明者らは、上記課題を解消すべく鋭意検討した結果、金前駆体と担体とを混合するに際して、金前駆体が特定の構造を有する錯体化合物であると上記目的を達成し得ることを知見し、本発明を完成するに至った。
本発明は、上記知見に基づいてなされたものであり、以下の各発明を提供するものである。
1.担体の表面に金微粒子が固着されてなる金複合材料の製造方法であって、
金前駆体と担体とを含む混合物を製造する混合工程と、
上記混合物を焼成する焼成工程とを具備し、
上記金前駆体が、金原子と該金原子に配位する配位子とを有する錯体化合物であり、該配位子における金原子と配位する配位原子が、酸素、炭素、窒素、リン又は硫黄である
ことを特徴とする金複合材料の製造方法。
2.上記混合工程が、固相で行われることを特徴とする請求項1記載の金複合材料の製造方法。
3.上記配位原子が、酸素、炭素又は窒素であることを特徴とする請求項1又は2記載の金複合材料の製造方法。
4.上記配位原子の少なくとも一つが、ベンゼン環の炭素原子又はカルベン炭素の炭素原子を含むことを特徴とする請求項3記載の金複合材料の製造方法。
As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved when the gold precursor is a complex compound having a specific structure when the gold precursor and the carrier are mixed. As a result, the present invention has been completed.
The present invention has been made based on the above findings, and provides the following inventions.
1. A method for producing a gold composite material in which gold fine particles are fixed to the surface of a carrier,
A mixing step for producing a mixture comprising a gold precursor and a support;
A firing step of firing the mixture,
The gold precursor is a complex compound having a gold atom and a ligand coordinated to the gold atom, and the coordinate atom coordinated to the gold atom in the ligand is oxygen, carbon, nitrogen, phosphorus Or the manufacturing method of the gold | metal | money composite material characterized by being sulfur.
2. The method for producing a gold composite material according to claim 1, wherein the mixing step is performed in a solid phase.
3. The method for producing a gold composite material according to claim 1, wherein the coordination atom is oxygen, carbon, or nitrogen.
4). 4. The method for producing a gold composite material according to claim 3, wherein at least one of the coordination atoms includes a carbon atom of a benzene ring or a carbon atom of a carbene carbon.

本発明の金複合材料の製造方法によれば、酸性の金属酸化物などいかなる担体に対しても安定して金ナノ粒子を担持させて、高い触媒活性を有する触媒として有用な金複合材料を得ることができる。詳細には、安定性の高い金錯体を用いて溶媒を使わずに固体状態で混合、焼成することにより金微粒子を固定化することができ、従来の析出沈殿法などでは金ナノ粒子を担持しにくいシリカ等の酸性担体にも利用できる。   According to the method for producing a gold composite material of the present invention, a gold composite material useful as a catalyst having high catalytic activity is obtained by stably supporting gold nanoparticles on any support such as an acidic metal oxide. be able to. Specifically, gold fine particles can be immobilized by mixing and firing in a solid state without using a solvent using a highly stable gold complex, and gold nanoparticles are supported by conventional precipitation and precipitation methods. It can also be used for acidic carriers such as difficult silica.

図1は、図1(a)~(c)はそれぞれ実施例1〜4で得られた金複合材料のX線回折データを示すチャートであり、(a)は担体として二酸化ケイ素(SiO)を用いた系、(b)は担体として酸化アルミ(Al)を用いた系、(c)は担体として二酸化チタン(TiO)を用いた系を示す。FIG. 1 is a chart showing X-ray diffraction data of the gold composite materials obtained in Examples 1 to 4 respectively, and FIG. 1 (a) is a chart showing silicon dioxide (SiO 2 ) as a carrier. (B) shows a system using aluminum oxide (Al 2 O 3 ) as a carrier, and (c) shows a system using titanium dioxide (TiO 2 ) as a carrier. 図2は、実施例1で得られた各金複合材料のHAADF−STEM写真(図面代用写真)と粒度分布グラフとを表形式で示す図である。FIG. 2 is a table showing a HAADF-STEM photograph (drawing substitute photograph) and a particle size distribution graph of each gold composite material obtained in Example 1. 図3は、実施例2で得られた各金複合材料のHAADF−STEM写真(図面代用写真)と粒度分布グラフとを表形式で示す図である。FIG. 3 is a diagram showing in tabular form a HAADF-STEM photograph (drawing substitute photograph) and a particle size distribution graph of each gold composite material obtained in Example 2. 図4は、実施例3で得られた各金複合材料のHAADF−STEM写真(図面代用写真)と粒度分布グラフとを表形式で示す図である。FIG. 4 is a table showing a HAADF-STEM photograph (drawing substitute photograph) and a particle size distribution graph of each gold composite material obtained in Example 3 in a table format. 図5は、実施例4で得られた各金複合材料のHAADF−STEM写真(図面代用写真)と粒度分布グラフとを表形式で示す図である。FIG. 5 is a table showing a HAADF-STEM photograph (drawing substitute photograph) and a particle size distribution graph of each gold composite material obtained in Example 4 in a table format. 図6は、実施例2で得られた金複合材料のCO酸化触媒特性を示すチャートである。FIG. 6 is a chart showing the CO oxidation catalyst characteristics of the gold composite material obtained in Example 2. 図7は、実施例4で得られた金複合材料のCO酸化触媒特性を示すチャートである。FIG. 7 is a chart showing CO oxidation catalyst characteristics of the gold composite material obtained in Example 4. 図8は、実施例5で得られた金複合材料のCO酸化触媒特性を示すチャートである。FIG. 8 is a chart showing the CO oxidation catalyst characteristics of the gold composite material obtained in Example 5. 図9は、実施例2で得られた金複合材料(担体二酸化ケイ素)及び実施例6で得られた金複合材料のCO酸化触媒特性を示すチャートである。FIG. 9 is a chart showing CO oxidation catalyst characteristics of the gold composite material (support silicon dioxide) obtained in Example 2 and the gold composite material obtained in Example 6. 図10は、実施例7で得られた洗浄後の金複合材料の酸化触媒特性を示すものであり、(a)はチャート、(b)は洗浄前の金複合材料(実施例2、担体:二酸化ケイ素)のHAADF−STEM写真、(c)は洗浄後の金複合材料のHAADF−STEM写真である。FIG. 10 shows the oxidation catalyst characteristics of the gold composite material after washing obtained in Example 7, (a) is a chart, (b) is the gold composite material before washing (Example 2, carrier: HAADF-STEM photograph of (silicon dioxide), (c) is a HAADF-STEM photograph of the gold composite material after washing. 図11は、実施例1、3(担体:酸化アルミ)と、比較対象の金複合材料(担体:酸化アルミ)とのCO酸化触媒特性を対比して示すチャートである。FIG. 11 is a chart showing the CO oxidation catalyst characteristics of Examples 1 and 3 (carrier: aluminum oxide) and the gold composite material (carrier: aluminum oxide) to be compared with each other.

以下、本発明について詳細に説明するが、本発明はこれらに何ら制限されるものではない。
本発明の金複合材料の製造方法は、金前駆体と担体とを含む混合物を製造する混合工程と、上記混合物を焼成する焼成工程とを具備する。
以下、詳細に説明する。
<金複合材料>
まず、本発明の金複合材料の製造方法により得られる上記金複合材料について説明する。
本発明の製造方法により得られる金複合材料は、担体の表面に金微粒子が固着されてなる金複合材料である。
Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
The method for producing a gold composite material of the present invention includes a mixing step for producing a mixture containing a gold precursor and a carrier, and a firing step for firing the mixture.
Details will be described below.
<Gold composite material>
First, the said gold composite material obtained by the manufacturing method of the gold composite material of this invention is demonstrated.
The gold composite material obtained by the production method of the present invention is a gold composite material in which gold fine particles are fixed to the surface of a carrier.

(担体)
本発明において用いられる担体は、従来触媒、センサーなどの分野で金属などを担持するための担体として知られた材料であればよく、特に限定されない。このような担体としては、高分子、多孔性金属錯体、炭素系物質、金属酸化物、金属硫化物、金属、金属水酸化物、金属炭酸塩、有機結晶などが挙げられる。以下に、これらの材料について具体的に説明する。
(Carrier)
The carrier used in the present invention is not particularly limited as long as it is a material conventionally known as a carrier for carrying a metal or the like in the field of a catalyst, a sensor or the like. Examples of such carriers include polymers, porous metal complexes, carbon-based materials, metal oxides, metal sulfides, metals, metal hydroxides, metal carbonates, and organic crystals. Below, these materials are demonstrated concretely.

本発明において担体材料として用いられる高分子としては、従来公知の高分子材料であればよく特に限定されない。高分子材料の例としては、ビニル系高分子、例えば、ポリスチレン(PS)などのスチレン系樹脂、ポリメタクリル酸メチル(PMMA)などの(メタ)アクリル樹脂、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリロニトリル(PAN)、ポリビニルアルコール(PVA)、ポリビニルブチラールなどのアセタール樹脂、ポリ酢酸ビニル(PVAc)、ポリアクリルアミド(PAA)、ポリビニルエーテル系樹脂など;ジエン系樹脂、例えばポリブタジエン(PBd)、ポリイソプレン(PIP)など;縮合系樹脂、例えばナイロン6、ナイロン66などのポリアミド樹脂、ポリエチレンテレフタレート(PET)、ポリラクトンなどのポリエステル樹脂、ポリカーボネート(PC)、ポリオキシメチレン(POM)などのポリエーテル樹脂;硬化型樹脂、例えばポリウレタン樹脂、アルキッド樹脂、フェノール樹脂、ポリアニリン(PANI)など;エポキシ樹脂;シリコーン樹脂;セルロース系樹脂などの天然または半合成樹脂;その他、キシレン樹脂、フラン樹脂、テルペン樹脂、石油樹脂、ケトン樹脂、ポリ環状チオエーテルなどの硫黄系樹脂などが挙げられる。これらの樹脂は多孔性であってもなくてもよく、また前処理がなされていても、なされていなくてもよい。さらには、樹脂担体上に既に他の金属などが担持されているものであってもよい。   The polymer used as the carrier material in the present invention is not particularly limited as long as it is a conventionally known polymer material. Examples of polymer materials include vinyl polymers, for example, styrene resins such as polystyrene (PS), (meth) acrylic resins such as polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), and polyvinylidene chloride. (PVDC), polyethylene (PE), polypropylene (PP), polyacrylonitrile (PAN), polyvinyl alcohol (PVA), acetal resins such as polyvinyl butyral, polyvinyl acetate (PVAc), polyacrylamide (PAA), polyvinyl ether resins Diene resins such as polybutadiene (PBd) and polyisoprene (PIP); condensation resins such as polyamide resins such as nylon 6 and nylon 66, polyester resins such as polyethylene terephthalate (PET) and polylactone, Polyether resins such as carbonate (PC) and polyoxymethylene (POM); curable resins such as polyurethane resins, alkyd resins, phenol resins, polyaniline (PANI), etc .; epoxy resins; silicone resins; Semi-synthetic resins; other examples include xylene resins, furan resins, terpene resins, petroleum resins, ketone resins, and sulfur resins such as polycyclic thioethers. These resins may or may not be porous, and may or may not be pretreated. Further, another metal or the like already supported on the resin carrier may be used.

多孔性金属錯体としては、例えば[Cu2(pzdc)2(pyz)]n、[Cu2(pzdc)2(bpy)]、[Cu2(pzdc)2(dpe)]n、[Cu2(pzdc)2(pia)]n、[Cu2(bpdc)2(TED)]n(式中、「pzdc」はピラジン−2,3−ジカルボキシレートを、「pyz」はピラジンを、「bpy」は4,4’−ビピリジンを、「dpe」は1,2−ジ(ピリジル)エチレンを、「pia」はN−(4−ピリジル)イソニコチンアミドを、「bpdc」は4,4’−ビフェニルジカルボキシレートを、「TED」はトリエチレンジアミンを表す。)などの多孔性銅錯体、例えば、[Zn4O(bdc)3(「bdc」はベンゼンジカルボキシレートとその誘導体を表す。)などの多孔性亜鉛錯体、例えば[Ni2(bpy)(NO34(「bpy」は4,4’−ビピリジンを表す。)などの多孔性ニッケル錯体、例えば[Co(1,3,5−Hbtc)(py)2・1.5py)](「Hbtc」はベンゼントリカルボン酸を、「py」はピリジンを表す。)などの多孔性コバルト錯体、多孔性クロム錯体、多孔性銀錯体などの周知あるいは公知多孔性金属錯体が挙げられる。これら多孔性金属錯体は前処理されていてもよく、また既に他の金属などの微粒子が担持されているものであってもよい。 Examples of porous metal complexes include [Cu 2 (pzdc) 2 (pyz)] n , [Cu 2 (pzdc) 2 (bpy)] n , [Cu 2 (pzdc) 2 (dpe)] n , [Cu 2 (Pzdc) 2 (pia)] n , [Cu 2 (bpdc) 2 (TED)] n (where “pzdc” is pyrazine-2,3-dicarboxylate, “pyz” is pyrazine, “bpy” "4,4'-bipyridine," dpe "1,2-di (pyridyl) ethylene," pia "N- (4-pyridyl) isonicotinamide," bpdc "4,4'- Biphenyl dicarboxylate, “TED” represents triethylenediamine)), for example, [Zn 4 O (bdc) 3 ] n (“bdc” represents benzene dicarboxylate and its derivatives. Porosity) Lead complexes, for example [Ni 2 (bpy) (NO 3) 4] n ( "bpy" represents a 4,4'-bipyridine.) Porous nickel complex such as, for example, [Co (1,3,5-Hbtc ) (Py) 2 · 1.5py)] n (“Hbtc” represents benzenetricarboxylic acid, “py” represents pyridine), and other well-known porous cobalt complexes, porous chromium complexes, porous silver complexes, etc. Or a well-known porous metal complex is mentioned. These porous metal complexes may be pretreated or may already carry fine particles such as other metals.

炭素系物質としては、例えば活性炭、炭素 繊維、カーボンブラック、黒鉛やナノポーラスカーボン、フラーレン、カーボンナノチューブ、カーボンナノホーン等のナノ構造を有する炭素系材料などが挙げられる。なお、活性炭は塩基前処理がされているものでも、されていないものでもよい。活性炭としては、例えば関西熱化学製MSP−2000などが挙げられる。これら炭素系担体は比表面積が小さくても大きくてもよいが、比表面積(BET法)が通常200m2/g以上、特に500m2/g以上であることが好ましい。これら炭素系物質についても既に他の金属などの微粒子が担持されているものであってもよい。 Examples of the carbon-based material include carbon-based materials having nanostructures such as activated carbon, carbon fiber, carbon black, graphite, nanoporous carbon, fullerene, carbon nanotube, and carbon nanohorn. The activated carbon may or may not be subjected to base pretreatment. Examples of the activated carbon include MSP-2000 manufactured by Kansai Thermal Chemical. These carbon-based carriers may have a small or large specific surface area, but the specific surface area (BET method) is usually 200 m 2 / g or more, and particularly preferably 500 m 2 / g or more. These carbon-based substances may also be already loaded with fine particles such as other metals.

無機酸化物としては、例えば、酸化亜鉛、酸化鉄、酸化銅、酸化ランタン、酸化チタン、酸化コバルト、酸化ジルコニウム、酸化マグネシウム、酸化ベリリウム、酸化ニッケル、酸化クロム、酸化スカンジウム、酸化カドミウム、酸化インジウム、酸化スズ、酸化マンガン、酸化バナジウム、酸化セリウム、酸化アルミニウム、酸化ケイ素などの単一金属の金属酸化物;亜鉛、鉄、銅、ランタン、チタン、コバルト、ジルコニウム、マグネシウム、ベリリウム、ニッケル、クロム、スカンジウム、カドミウム、インジウム、スズ、マンガン、バナジウム、セリウム、アルミニウム、ケイ素などからなる群から選ばれる2種以上の金属の複合酸化物、ゼオライト(例えば、ZSM−5等)、メソポーラスシリケート(例えば、MCM−41等)、粘土、珪藻土、軽石等の天然鉱物等を用いることができる。これらは、必要に応じて混合して用いることも可能である。これらの中で好ましいものとしては、シリカ、アルミナ、チタニア、ジルコニア、マグネシア等の金属酸化物、シリカ・アルミナ、チタニア・シリカ、シリカ・マグネシア等の複合金属酸化物である。   Examples of the inorganic oxide include zinc oxide, iron oxide, copper oxide, lanthanum oxide, titanium oxide, cobalt oxide, zirconium oxide, magnesium oxide, beryllium oxide, nickel oxide, chromium oxide, scandium oxide, cadmium oxide, indium oxide, Single metal metal oxides such as tin oxide, manganese oxide, vanadium oxide, cerium oxide, aluminum oxide, silicon oxide; zinc, iron, copper, lanthanum, titanium, cobalt, zirconium, magnesium, beryllium, nickel, chromium, scandium , Cadmium, indium, tin, manganese, vanadium, cerium, aluminum, silicon, etc., a composite oxide of two or more metals selected from the group consisting of zeolite (for example, ZSM-5), mesoporous silicate (for example, MCM- 41 etc.) It can be used clay, diatomaceous earth, natural minerals such as pumice or the like. These can be mixed and used as necessary. Among these, metal oxides such as silica, alumina, titania, zirconia, and magnesia, and composite metal oxides such as silica / alumina, titania / silica, and silica / magnesia are preferable.

これら無機酸化物は、多孔性であってもなくてもよいが、多孔性のものが好ましく、比表面積(BET法)が通常50m2/g以上、特に100m2/g以上であることがより好ましい。また、無機酸化物は前処理されていても、されていなくてもよい。例えば好ましく用いられるシリカ、アルミナなど無機酸化物は、水素還元後焼成されていても、されていなくてもよい。 These inorganic oxides may or may not be porous, but are preferably porous and have a specific surface area (BET method) of usually 50 m 2 / g or more, particularly 100 m 2 / g or more. preferable. Moreover, the inorganic oxide may or may not be pretreated. For example, inorganic oxides such as silica and alumina that are preferably used may or may not be fired after hydrogen reduction.

さらに金属硫化物としては、モリブデン、タングステン、鉄、ニッケル、コバルト、白金、バナジウム、クロム、マンガン、アルミニウム等の硫化物を用いることができる。この中でも、特に硫化モリブデン、硫化タングステン、硫化鉄、硫化ニッケル、硫化コバルト等が好ましい。金属硫化物についても前処理などについては、無機酸化物と同様である。   Furthermore, sulfides such as molybdenum, tungsten, iron, nickel, cobalt, platinum, vanadium, chromium, manganese, and aluminum can be used as the metal sulfide. Among these, molybdenum sulfide, tungsten sulfide, iron sulfide, nickel sulfide, cobalt sulfide and the like are particularly preferable. Regarding the metal sulfide, the pretreatment and the like are the same as those of the inorganic oxide.

これら以外にも、ステンレススチール、鉄、銅、アルミニウムなどの金属微粉末、アルミニウム、ニッケル、コバルトなどの金属水酸化物やアルミニウム、コバルト、ニッケルなどの金属炭酸塩なども挙げられる。これらは前処理されていても、されていなくてもよいし、また他の金属微粒子が担持されたものでもよい。   In addition to these, metal fine powders such as stainless steel, iron, copper, and aluminum, metal hydroxides such as aluminum, nickel, and cobalt, and metal carbonates such as aluminum, cobalt, and nickel are also included. These may or may not be pretreated, or may carry other metal fine particles.

上記のとおり、本発明で用いられる担体は、活性化などの前処理がされていても、されていなくてもよく、また既に他の金属などの微粒子などが担持されているものであってもよい。また、担体の形状は、金前駆体と好ましくは固相混合できる形状であればよく、また使用する用途に応じ任意の形状でよく、特に限定されないが、通常粉体、顆粒、ペレット、繊維状物などの形状のものが用いられる。また、担体の形態も、稠密体、多孔体、発泡体、中空体、積層体など任意の形態であってよい。担体の大きさは、通常5nm〜1μm程度であることが好ましく、より好ましくは5nm〜0.1mm程度である。担体は、金前駆体と混合される前に、必要であれば加温または加熱下に真空乾燥などの減圧処理を行い、水などの揮発性物質を除去しておいても良い。   As described above, the carrier used in the present invention may or may not be subjected to pretreatment such as activation, or may already carry fine particles such as other metals. Good. The shape of the carrier may be any shape that can be solid-phase mixed with the gold precursor, and may be any shape depending on the application to be used, and is not particularly limited, but is usually a powder, granule, pellet, or fiber. The thing of shapes, such as a thing, is used. The form of the carrier may be any form such as a dense body, a porous body, a foamed body, a hollow body, and a laminated body. The size of the carrier is usually preferably about 5 nm to 1 μm, more preferably about 5 nm to 0.1 mm. Before the carrier is mixed with the gold precursor, if necessary, the carrier may be subjected to reduced pressure treatment such as vacuum drying under heating or heating to remove volatile substances such as water.

また、本発明においては、上記担体として酸性の固体酸化物やヘテロポリ酸を用いることもできる。
ここで、「酸性」であるとは、本明細書においては、等電点のpHが5以下であることを意味する。
上記の酸性の固体酸化物およびヘテロポリ酸としては、具体的には以下の化合物を挙げることができる。
ポリオキソメタレート(具体的にはたとえばケイタングステン酸,ケイモリブデン酸,リンタングステン酸,リンモリブデン酸,もしくはこれら化合物の水素原子がセシウムなどの金属カチオンで置換されたもの、モリブデン酸アンモニウム,タングステン酸アンモニウム等)、酸化ニオブ、酸化タングステン、酸化タンタル、酸化モリブデン、酸化バナジウム、二酸化ケイ素等。
上記担体の形状は特に制限されないが、複雑な3次元構造を有しているのが好ましく、特に酸化ニオブ、ポリオキソメタレート、酸化タングステン、酸化タンタル、酸化モリブデン、酸化バナジウム においては、MO4四面体、MO5正方錘、MO6六面体またはMO5三方両錘からなる基本単位において、脱水縮合反応により酸素原子が基本単位間を架橋し、頂点、稜または面を介して結合してなる3次元構造体であるのが好ましい。本発明においては、このような酸性担体の大きさは上述のとおりであるが、比表面積は、20〜500m/gであるのが好ましく、100〜300m/gであるのがさらに好ましく、150〜300m/gであるのが最も好ましい。粒径は、5〜1000nmであるのが好ましく、5〜500nmであるのがさらに好ましい。
In the present invention, an acidic solid oxide or heteropolyacid can also be used as the carrier.
Here, “acidic” means that the pH of the isoelectric point is 5 or less in the present specification.
Specific examples of the acidic solid oxide and heteropolyacid include the following compounds.
Polyoxometalates (specifically, for example, silicotungstic acid, silicomolybdic acid, phosphotungstic acid, phosphomolybdic acid, or those in which the hydrogen atom of these compounds is substituted with a metal cation such as cesium, ammonium molybdate, tungstic acid Ammonium), niobium oxide, tungsten oxide, tantalum oxide, molybdenum oxide, vanadium oxide, silicon dioxide and the like.
The shape of the carrier is not particularly limited, but preferably has a complicated three-dimensional structure. Particularly in niobium oxide, polyoxometalate, tungsten oxide, tantalum oxide, molybdenum oxide, and vanadium oxide, MO 4 tetrahedral Three-dimensional structure in which oxygen atoms are bridged between basic units by a dehydration condensation reaction and bonded via vertices, ridges, or faces in a basic unit consisting of a body, MO 5 square pyramid, MO 6 hexahedron, or MO 5 trigonal bipyramid A structure is preferred. In the present invention, the size of such acidic carriers are as described above, the specific surface area is preferably from 20 to 500 m 2 / g, more preferably from 100 to 300 m 2 / g, Most preferably, it is 150-300 m < 2 > / g. The particle size is preferably 5 to 1000 nm, and more preferably 5 to 500 nm.

<金微粒子>
本発明における金微粒子は、上記担体上に担持された、いわゆる金ナノ粒子又は金クラスター粒子であり、その粒径が、10nm以下であるのが好ましく、0.5〜5nmであるのがさらに好ましい。なお、上記の粒径は、担持される金微粒子の全てが上述の粒径を有するという意味ではなく、上記の好ましい範囲の粒径を有する金微粒子を担持していれば良いという意味である。
本発明の金複合材料における上記金微粒子の含有量は、種々設計可能であるり、用途に応じて任意に設定できる。たとえば、金複合材料全体中 0.01〜75重量%であるのが好ましく、0.01〜60重量%がさらに好ましく、0.1 〜 50重量%であるのが最も好ましい。
<Gold fine particles>
The gold fine particles in the present invention are so-called gold nanoparticles or gold cluster particles supported on the carrier, and the particle size is preferably 10 nm or less, more preferably 0.5 to 5 nm. . The above particle size does not mean that all of the supported gold fine particles have the above-mentioned particle size, but means that the gold fine particles having a particle size in the above preferred range may be supported.
The content of the gold fine particles in the gold composite material of the present invention can be variously designed and can be arbitrarily set according to the application. For example, the total amount of the gold composite material is preferably 0.01 to 75% by weight, more preferably 0.01 to 60% by weight, and most preferably 0.1 to 50% by weight.

<混合工程>
上記混合工程は、金前駆体と担体とを含む混合物を製造する工程である。
(金前駆体)
上記金前駆体は、金原子と該金原子に配位する配位子とを有する錯体化合物であり、該配位子における金原子と配位する配位原子が、酸素、炭素、窒素、リン又は硫黄であり、好ましくは酸素、炭素又は窒素である。さらに具体的に説明すると、金に配位している原子の少なくとも一つ以上が炭素原子であるのが好ましく、この炭素原子はベンゼン環(芳香環)又はカルベン炭素の炭素原子であるのが好ましい。また、配位子が酸素とベンゼン環(芳香環)又はカルベン炭素の炭素原子とを含むのも好ましい。
たとえば具体的には、以下の各化合物を挙げることができる。
酸素と複素環の窒素と炭素が金に配位している化合物
酸素とベンゼン環(芳香環)の炭素が金に配位している化合物
酸素とカルベン炭素の炭素原子が金に配位している化合物
カルベン炭素の炭素原子が金に配位している化合物等。
有機金属化合物は、狭義では金属とシアノ基(CN)を除く炭素原子が直接結合した金属―炭素結合を含む錯体と定義されるが、近年ではリンや硫黄などが配位したものも広義の有機金属化合物に含まれると解されている。そこで、本明細書においては、炭素、リンまたは硫黄と金との結合を含むもの、更には酢酸金をも有機金化合物として定義し、金前駆体として、上述のように金原子と配位する配位原子が、酸素、炭素、窒素、リン又は硫黄である錯体化合物として規定するものである。
上記金前駆体としては、具体的には下記一般式で表される化合物等を挙げることができる。

(式中、R、Rはそれぞれ、水素原子、メチル基、エチル基、プロピル基、イソプロピル基等のアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アシル基、アルコキシカルボニル基、アミノ基、ニトロ基、カルバモイル基、フェニル基等のアリール基、ピリジル基等のヘテロアリール基、スルホ基、スルホニル基、トシル基、メシル基、ホルミル基、シアノ基、ヒドロキシ基、スルファニル基、ハロゲンを示す。 R、Rは同じでも違っていても良く、芳香環上に上記官能基が複数置換していても良い。
また、Xは、アルコキシカルボニル基、アルキニル基、OH基、アリール基を示す。)
上記一般式で表される化合物としては、具体的には以下の化合物などが挙げられる。

また、以下の化合物も挙げられる。

NHC(N-heterocyclic carbene)配位子を持つ金錯体も挙げることができ、例えば下記一般式で表される化合物が挙げられる。なお、以下の一般式の説明においては「〜は〜を示す」の文言を「=」で省略して示す。また、「基」の文言は省略する。また、Prはプロピル基を、iPrはイソプロピル基を、Phはフェニル基を、Meはメチル基を、Acはアセチル基を、Buはブチル基を、Etはエチル基を、Arはアリール基をそれぞれ示す。


上述の化合物の他、硫黄を配位子として持つ金錯体としては、特開2016−163881号公報に挙げられている化合物(金―チオリンゴ酸錯体、金―システイン錯体)等が挙げられ、この他金―β―アラニン錯体、金―トリアセテート錯体等が挙げられる。また、WO2006−080515、特開2010−37244号公報に記載されている、置換エチニル金―含窒素ヘテロ環カルベン錯体も挙げることができる。
<Mixing process>
The mixing step is a step of producing a mixture including a gold precursor and a carrier.
(Gold precursor)
The gold precursor is a complex compound having a gold atom and a ligand coordinated to the gold atom, and the coordinate atom coordinated to the gold atom in the ligand is oxygen, carbon, nitrogen, phosphorus Or sulfur, preferably oxygen, carbon or nitrogen. More specifically, at least one atom coordinated to gold is preferably a carbon atom, and this carbon atom is preferably a carbon atom of a benzene ring (aromatic ring) or a carbene carbon. . It is also preferred that the ligand contains oxygen and a carbon atom of a benzene ring (aromatic ring) or carbene carbon.
For example, the following compounds can be specifically mentioned.
A compound in which oxygen and heterocyclic nitrogen and carbon are coordinated to gold A compound in which oxygen and benzene (aromatic) carbon are coordinated to gold The oxygen and carbene carbon atoms are coordinated to gold Compound A compound in which the carbon atom of the carbene carbon is coordinated to gold.
Organometallic compounds, in a narrow sense metal and a cyano group - metal carbon atoms directly bonded excluding (CN) - but is defined as the complex comprising carbon bond, broad others such as phosphorus and sulfur is coordinated in recent years It is understood that it is contained in organometallic compounds. Therefore, in the present specification, those containing a bond of carbon, phosphorus or sulfur and gold, and further gold acetate is also defined as an organic gold compound and coordinated with a gold atom as described above as a gold precursor. It is defined as a complex compound in which the coordination atom is oxygen, carbon, nitrogen, phosphorus or sulfur.
Specific examples of the gold precursor include compounds represented by the following general formula.

(Wherein R 1 and R 2 are each a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, an alkenyl group, an alkynyl group, an aralkyl group, an alkoxy group, an acyl group, an alkoxycarbonyl group, Amino group, nitro group, carbamoyl group, aryl group such as phenyl group, heteroaryl group such as pyridyl group, sulfo group, sulfonyl group, tosyl group, mesyl group, formyl group, cyano group, hydroxy group, sulfanyl group, halogen R 1 and R 2 may be the same or different, and a plurality of the above functional groups may be substituted on the aromatic ring.
X represents an alkoxycarbonyl group, an alkynyl group, an OH group, or an aryl group. )
Specific examples of the compound represented by the above general formula include the following compounds.

Moreover, the following compounds are also mentioned.

A gold complex having an NHC (N-heterocyclic carbene) ligand can also be exemplified, and examples thereof include compounds represented by the following general formula. In the following description of the general formula, the word “to indicate” is abbreviated as “=”. Also, the term “base” is omitted. Also, Pr is a propyl group, iPr is an isopropyl group, Ph is a phenyl group, Me is a methyl group, Ac is an acetyl group, Bu is a butyl group, Et is an ethyl group, and Ar is an aryl group. Show.


In addition to the above compounds, examples of the gold complex having sulfur as a ligand include compounds (gold-thiomalic acid complex, gold-cysteine complex) and the like described in JP-A-2006-163881. Examples thereof include gold-β-alanine complex and gold-triacetate complex. Moreover, the substituted ethynyl gold-nitrogen-containing heterocyclic carbene complex described in WO2006-080515 and JP2010-37244A can also be mentioned.

上記混合工程は、固相で行われるのが好ましい。具体的には、上記金前駆体と上記担体とをメノウ乳鉢や自動乳鉢、ボールミル等の粉砕装置に投入して磨砕混合を行うことにより行うことができる。この際、上記金前駆体と上記担体との配合割合は、得られる金複合材料中にどの程度の金微粒子を含有させるかに応じて種々設定可能である。たとえば上記担体100重量部に対して上記金前駆体中の金重量が0.01〜200重量部となるように上記金前駆体を配合するのが好ましく、0.1〜100重量部となるように配合するのがさらに好ましい。また、磨砕混合時間は5分間〜1時間とするのが好ましい。 The mixing step is preferably performed in a solid phase. Specifically, the gold precursor and the carrier can be added to a pulverizer such as an agate mortar, an automatic mortar, or a ball mill and mixed by grinding. In this case, the blending ratio of the gold precursor and the carrier can be variously set according to how much gold fine particles are contained in the obtained gold composite material. For example, the gold precursor is preferably blended so that the gold weight in the gold precursor is 0.01 to 200 parts by weight with respect to 100 parts by weight of the carrier, and is 0.1 to 100 parts by weight. It is more preferable to blend in The grinding mixing time is preferably 5 minutes to 1 hour.

(カリウム含有化合物)
また、本発明においては、混合工程において、上述した上記金前駆体と上記担体とに加えてさらにナトリウム含有化合物やカリウム含有化合物等の固体塩基を混合するのが好ましい。
ここで用いられるカリウム含有化合物としては、カリウムt−ブトキシド(KOtBu)、炭酸カリウム(KCO)などを挙げることができる。また、これらの固体塩基の添加量は、上記金前駆体1モルに対して 1〜100モルとするのが好ましく、 5〜 30モルとするのがさらに好ましい。
また、上記固体塩基の添加は、上記金前駆体と上記担体とを混合する際に添加して混合しても(以下、この方法を共混合法という)、金前駆体と上記担体とを混合した後添加してさらに混合しても(以下、この方法を第2混合法という)、さらにはまず固体塩基と上記担体とを混合した後上記金前駆体と混合しても(以下、この方法を担体混合法という)よい。いずれの混合法においても混合は上述の金前駆体と担体との混合と同条件で行うことができる。これらの中でも特に第2混合法が得られる金複合材料を触媒として用いた場合の触媒活性に優れるので好ましい。
(Potassium-containing compound)
Moreover, in this invention, it is preferable to mix solid bases, such as a sodium containing compound and a potassium containing compound, in addition to the said gold precursor mentioned above and the said support | carrier in a mixing process.
Examples of the potassium-containing compound used here include potassium t-butoxide (KOtBu) and potassium carbonate (K 2 CO 3 ). Moreover, it is preferable to set it as 1-100 mol with respect to 1 mol of said gold precursors, and, as for the addition amount of these solid bases, it is more preferable to set it as 5-30 mol.
Further, the addition of the solid base may be performed by adding and mixing the gold precursor and the carrier (hereinafter, this method is referred to as a co-mixing method) or mixing the gold precursor and the carrier. Then, it may be added and further mixed (hereinafter, this method will be referred to as the second mixing method), or may be first mixed with the solid precursor and the carrier and then mixed with the gold precursor (hereinafter, this method). (Referred to as a carrier mixing method). In any mixing method, the mixing can be performed under the same conditions as the mixing of the gold precursor and the carrier. Among these, the gold composite material obtained by the second mixing method is particularly preferable because of its excellent catalytic activity when used as a catalyst.

<焼成工程>
本工程は、上記混合工程で得られた混合物を焼成する工程である。
焼成は、空気の存在下200〜400℃で0.5〜5時間焼成することで実施できる。なお、水素雰囲気や不活性ガス雰囲気下での焼成も可能である。
また、本発明においては、上述の各工程の他に本発明の趣旨を逸脱しない範囲で他の工程を設けることも可能である。たとえば焼成後の触媒粒子を洗浄又は化学的処理を行う後処理工程などを行うことができる。
(洗浄工程)
洗浄工程は、焼成後の金複合材料を、酸性水溶液に浸漬して0.1〜5時間撹拌混合することにより行うことができる。この際用いることができる酸性水溶液としては、塩酸水溶液などを用いることができ、pHは 5〜 7とするのが好ましい。具体的には、例えば、500 mgの金複合材料を、水10 mLに分散させ、1N塩酸水溶液でpH6〜7に調整し攪拌することで洗浄を行うことができる。酸性水溶液は上記の範囲内のpHであれば特に塩酸には限定されず、硝酸、硫酸などを用いた酸性水溶液を用いることもできる。
<Baking process>
This step is a step of firing the mixture obtained in the mixing step.
Baking can be performed by baking at 200 to 400 ° C. for 0.5 to 5 hours in the presence of air. Note that firing in a hydrogen atmosphere or an inert gas atmosphere is also possible.
In the present invention, in addition to the above steps, other steps can be provided without departing from the spirit of the present invention. For example, a post-treatment step of washing or chemical treatment of the calcined catalyst particles can be performed.
(Washing process)
The washing step can be performed by immersing the fired gold composite material in an acidic aqueous solution and stirring and mixing for 0.1 to 5 hours. As the acidic aqueous solution that can be used at this time, a hydrochloric acid aqueous solution or the like can be used, and the pH is preferably 5 to 7. Specifically, for example, 500 mg of a gold composite material can be dispersed in 10 mL of water, adjusted to pH 6 to 7 with a 1N hydrochloric acid aqueous solution, and then washed. The acidic aqueous solution is not particularly limited to hydrochloric acid as long as the pH is within the above range, and an acidic aqueous solution using nitric acid, sulfuric acid, or the like can also be used.

上記の本発明の製造方法により、得られる金複合材料は、上記担体に平均粒径10nm以下の金ナノ粒子あるいは金クラスターが形成される。なお、平均粒径は、球状粒子の場合は直径、楕円形粒子の場合は、長径であり、例えば透過型電子顕微鏡(TEM)観察から、粒子径分布を作り、平均値を求めたものである。もしくはX線回折により38度のAu(111)のピークの半値幅よりシェラー式を用いて結晶子径を計算することで平均粒子径を算出した。   The gold composite material obtained by the production method of the present invention forms gold nanoparticles or gold clusters having an average particle size of 10 nm or less on the carrier. The average particle diameter is a diameter in the case of a spherical particle, and a long diameter in the case of an elliptical particle. For example, a particle diameter distribution is created from observation with a transmission electron microscope (TEM), and an average value is obtained. . Alternatively, the average particle size was calculated by calculating the crystallite size using the Scherrer equation from the half-value width of the 38 ° Au (111) peak by X-ray diffraction.

また、上記金複合材料における金の担持量は、使用する用途に応じて任意であり、たとえば、金複合材料全体中 0.01〜75重量%であるのが好ましく、0.01〜60重量%がさらに好ましく、0.1 〜 50重量%であるのが最も好ましい。また、例えば通常の化学反応における触媒として用いる場合には0.01〜30重量%であることが好ましく、0.01〜10重量%であることがより好ましく、更に好ましくは0.1〜5重量%である。また、燃料電池等の電極触媒として用いる場合には30〜75重量%とするのが好ましく、40〜60重量%とするのがさらに好ましい。上記金複合材料を通常の化学反応用の触媒として用いる場合、金の担持量が0.01重量%より少ないと触媒として用いた場合に、触媒単位重量あたりの活性が低下するので好ましくなく、また金の担持量を30重量%より多くしても、金を上記の範囲内で担持させた場合と比較して、触媒の活性の更なる向上が望めず、金が無駄になるので好ましくない。   The amount of gold supported in the gold composite material is arbitrary depending on the application to be used. For example, the gold composite material is preferably 0.01 to 75% by weight, and 0.01 to 60% by weight. Is more preferred, with 0.1 to 50% by weight being most preferred. For example, when used as a catalyst in a normal chemical reaction, it is preferably 0.01 to 30% by weight, more preferably 0.01 to 10% by weight, still more preferably 0.1 to 5% by weight. %. Moreover, when using as electrode catalysts, such as a fuel cell, it is preferable to set it as 30 to 75 weight%, and it is more preferable to set it as 40 to 60 weight%. When the above gold composite material is used as a catalyst for a normal chemical reaction, if the amount of supported gold is less than 0.01% by weight, the activity per unit weight of the catalyst is lowered when used as a catalyst. Even if the amount of gold supported is more than 30% by weight, it is not preferable because no further improvement in the activity of the catalyst can be expected compared to the case where gold is supported within the above range, and gold is wasted.

上記金複合材料は、低温CO酸化、アルコールの酸化、プロピレンの気相一段エポキシ化、エポキシドやアミンのカルボニル化、低温水性ガスシフト反応、酸素と水素からの直接過酸化水素合成、炭化水素類の部分酸化、NOxの還元、水添触媒などの従来公知の金ナノ粒子あるいは金クラスターが有用であるとして知られた種々の触媒やその他、センサー素子などとして優れた特性を有する。特に、グルコースをグルコン酸に酸化する際の酸化触媒として極めて優れた特性を有している。従来グルコースの酸化触媒としてCeO2、TiO2、活性炭、Rossi活性炭(M.Commotti,C.D.Pina,R.Matarrese,M.Rossi,A.Siani,Appl.Catal.A:General 2005,291,204−209参照)などが優れたものとして知られているが、上記金複合材料はこれら従来のものに比べ更に触媒活性が高い。また、COの酸化触媒としても優れた特性を有していることから、例えば、室内や自動車車内における空調装置(空気清浄機、エアコン、分煙機等)の空気浄化フィルター;火災防毒マスクのフィルター;化学工場等で用いられる原料ガスからのCO除去フィルター;自動車、バイク等の排ガスからのCO除去フィルター;燃料電池の燃料改質による水素製造プロセスにおけるCO除去フィルター等に好適である。さらに、エタノール、フェネチルアルコールなどのアルコール類の酸化触媒としても有用である。   The above gold composite materials are low temperature CO oxidation, alcohol oxidation, propylene gas phase one-step epoxidation, epoxide and amine carbonylation, low temperature water gas shift reaction, direct hydrogen peroxide synthesis from oxygen and hydrogen, hydrocarbons part Conventionally known gold nanoparticles or gold clusters such as oxidation, NOx reduction, hydrogenation catalyst, etc. have various characteristics known as useful, and other excellent sensor elements. In particular, it has extremely excellent characteristics as an oxidation catalyst for oxidizing glucose to gluconic acid. Conventional oxidation catalysts for glucose include CeO2, TiO2, activated carbon, Rossi activated carbon (M. Commotti, CD Pina, R. Matarrese, M. Rossi, A. Siani, Appl. Catal. A: General 2005, 291 and 204- 209) is known as an excellent material, but the gold composite material has higher catalytic activity than these conventional materials. In addition, since it has excellent characteristics as an oxidation catalyst for CO, for example, air purification filters for air conditioners (air purifiers, air conditioners, smoke separators, etc.) indoors and in automobiles; filters for fire gas masks CO removal filter from raw material gas used in chemical factories, etc .; CO removal filter from exhaust gas of automobile, motorcycle, etc .; CO removal filter in hydrogen production process by fuel reforming of fuel cell, etc. Furthermore, it is also useful as an oxidation catalyst for alcohols such as ethanol and phenethyl alcohol.

また、上記金複合材料は、金の粒子径の違い、担持量、担体の材質などの違いにより、薄いあるいは濃いなどの違いを含め、黄色、緑色、青色、ピンク色、茶色、紫色、灰色などの種々の色に着色した微粉体として得られる。このため、本発明において、製造条件を適宜設定することにより、所望の色をした着色剤を調製することができる。得られた粒子は、耐久性に優れ、また化粧品、塗料、印刷インキ等各種製品の着色剤として優れた特性を有しており、各種用途の着色剤として好適に用いられる。   In addition, the above gold composite materials include yellow, green, blue, pink, brown, purple, gray, etc., including differences such as light or dark due to differences in gold particle size, loading amount, carrier material, etc. Are obtained as fine powders colored in various colors. Therefore, in the present invention, a colorant having a desired color can be prepared by appropriately setting manufacturing conditions. The obtained particles are excellent in durability and have excellent properties as colorants for various products such as cosmetics, paints and printing inks, and are suitably used as colorants for various applications.

以下、本発明について実施例及び比較例を示してさらに具体的に説明するが本発明はこれらに何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not restrict | limited to these at all.

〔実施例1〕(カリウム含有化合物の添加なし、二酸化ケイ素、酸化アルミ、酸化チタン、2a)
二酸化ケイ素(富士シリシア(株)製商品名「Q―10」(粒子径60 μm)、SiO) 0.5gと上記2aで表される金前駆体15.4mgとを、メノウ乳鉢に投入し、20分間粉砕混合し、混合物を得た。
得られた混合物を300℃で2時間、空気中で焼成を行い、担体が二酸化ケイ素である金複合材料を得た。
また、担体を二酸化ケイ素から酸化アルミ(住友化学(株)製商品名「AKP―G015」、Al)0.5gとした以外は、同様にして担体が酸化アルミである金複合材料を得た。
また、担体を二酸化ケイ素から二酸化チタン(チタン工業(株)製商品名「PC―101」、TiO2)0.5gとした以外は、同様にして担体が二酸化チタンである金複合材料を得た。
[Example 1] (No addition of potassium-containing compound, silicon dioxide, aluminum oxide, titanium oxide, 2a)
0.5 g of silicon dioxide (trade name “Q-10” manufactured by Fuji Silysia Co., Ltd. (particle diameter 60 μm), SiO 2 ) and 15.4 mg of the gold precursor represented by 2a above were put into an agate mortar. The mixture was pulverized and mixed for 20 minutes to obtain a mixture.
The obtained mixture was baked in air at 300 ° C. for 2 hours to obtain a gold composite material in which the carrier was silicon dioxide.
Further, a gold composite material in which the carrier is aluminum oxide is similarly used except that the carrier is changed from silicon dioxide to aluminum oxide (trade name “AKP-G015”, Al 2 O 3 manufactured by Sumitomo Chemical Co., Ltd.) 0.5 g. Obtained.
Further, a gold composite material in which the carrier is titanium dioxide was obtained in the same manner except that the carrier was changed from silicon dioxide to titanium dioxide (trade name “PC-101”, TiO 2 manufactured by Titanium Industry Co., Ltd.) 0.5 g. .

〔実施例2〕(固体塩基の添加あり、第2混合法、二酸化ケイ素、酸化アルミ、二酸化チタン、2a)
二酸化ケイ素と上記2aで表される金前駆体との粉砕混合時間を10分間とし、得られた混合物とカリウム含有化合物としてカリウム t-ブトキシド(KOtBu)29.3mgとを、二酸化ケイ素と上記2aで表される金前駆体との混合と同様にして10分間粉砕混合して、混合物を得た以外は、実施例1と同様にして担体が二酸化ケイ素である金複合材料を得た。
また、同様にして酸化アルミ、二酸化チタンについてもカリウム t-ブトキシドとの混合を行った以外は実施例1と同様にして担体が酸化アルミの金複合材料と担体が二酸化チタンである金複合材料とを得た。
[Example 2] (Addition of solid base, second mixing method, silicon dioxide, aluminum oxide, titanium dioxide, 2a)
The pulverization and mixing time of silicon dioxide and the gold precursor represented by 2a was 10 minutes, and 29.3 mg of potassium tert-butoxide (KOtBu) was obtained as the potassium-containing compound and the obtained mixture. A gold composite material in which the carrier was silicon dioxide was obtained in the same manner as in Example 1 except that the mixture was obtained by pulverizing and mixing for 10 minutes in the same manner as the mixing with the gold precursor represented.
Further, similarly to Example 1, except that aluminum oxide and titanium dioxide were mixed with potassium t-butoxide, a gold composite material in which the carrier was aluminum oxide and a gold composite material in which the carrier was titanium dioxide were used. Got.

〔実施例3〕(カリウム含有化合物の添加なし、二酸化ケイ素、酸化アルミ、酸化チタン、2b)
金複合材料として、上記2bで表される化合物を用いた以外は実施例1と同様にしてそれぞれ担体が二酸化ケイ素、酸化アルミ、二酸化チタンである3種の金複合材料を得た。
[Example 3] (No addition of potassium-containing compound, silicon dioxide, aluminum oxide, titanium oxide, 2b)
Three types of gold composite materials were obtained in the same manner as in Example 1 except that the compound represented by 2b was used as the gold composite material, in which the carriers were silicon dioxide, aluminum oxide, and titanium dioxide, respectively.

〔実施例4〕(カリウム含有化合物の添加あり、第2混合法、二酸化ケイ素、酸化アルミ、酸化チタン、2b)
金複合材料として、上記2bで表される化合物を用いた以外は実施例2と同様にしてそれぞれ担体が二酸化ケイ素、酸化アルミ、二酸化チタンである3種の金複合材料を得た。
[Example 4] (with addition of potassium-containing compound, second mixing method, silicon dioxide, aluminum oxide, titanium oxide, 2b)
As the gold composite material, three types of gold composite materials were obtained in the same manner as in Example 2 except that the compound represented by 2b was used, and the carriers were silicon dioxide, aluminum oxide, and titanium dioxide, respectively.

〔実施例5〕(他のカリウム含有化合物の添加、二酸化ケイ素、2a)
固体塩基として、炭酸カリウム、水酸化カリウムをそれぞれ用いた以外は実施例2と同様にして担体が二酸化ケイ素である金複合材料を得た。
[Example 5] (Addition of other potassium-containing compounds, silicon dioxide, 2a)
A gold composite material in which the carrier was silicon dioxide was obtained in the same manner as in Example 2 except that potassium carbonate and potassium hydroxide were used as the solid base.

〔実施例6〕(カリウム含有化合物の添加あり、3方法対比、酸化ケイ素、2a)
固体塩基の混合方法として、第2混合法を、上記共混合法、及び上記担体混合法とした以外は、それぞれ実施例2と同様にして、担体が二酸化ケイ素である2種の金複合材料を得た。
[Example 6] (with addition of potassium-containing compound, 3 methods, silicon oxide, 2a)
As a mixing method of the solid base, two kinds of gold composite materials in which the carrier is silicon dioxide are obtained in the same manner as in Example 2 except that the second mixing method is the co-mixing method and the carrier mixing method. Obtained.

〔実施例7〕(カリウム含有化合物の添加あり、洗浄工程、二酸化ケイ素、2a)
実施例2で得られた担体が二酸化ケイ素である金複合材料0.5gを水10mLに分散させ、1N塩酸水溶液でpHを6〜7に調整して攪拌するか、もしくは水に分散させて攪拌することで洗浄を行った。その後、水で4回洗浄、乾燥し、金複合材料をそれぞれ得た。
[Example 7] (with addition of potassium-containing compound, washing step, silicon dioxide, 2a)
0.5 g of the gold composite material in which the carrier obtained in Example 2 is silicon dioxide is dispersed in 10 mL of water and the pH is adjusted to 6 to 7 with a 1N hydrochloric acid aqueous solution, or the mixture is dispersed in water and stirred. It was washed by doing. Then, it wash | cleaned and dried 4 times with water, and obtained the gold | metal composite material, respectively.

〔試験例〕
各実施例で得られた金複合材料について、X線回折を行った。
その結果を図1に示す。なお、図1において、AuTFAは上記2aの化合物を金前駆体として用いた金複合材料を、AuTFA−Kは上記2aの化合物を金前駆体として用い且つカリウム t-ブトキシドを用いた金複合材料を、AuBOは上記2bの化合物を金前駆体として用いた金複合材料を、AuBO−Kは上記2bの化合物を金前駆体として用い且つカリウム t-ブトキシドを用いた金複合材料を、それぞれ示す。図1aに示す結果から明らかなように、SiO担体では38°と44°に金に由来するピークが観測され、SiOに金微粒子が定着されている。図1bと1cでは、AlとTiOの各担体のピークに隠れて金に由来するピークは観測されなかった。このことは非常に小さな金微粒子が固定化されていることを示唆している。そこで、X線回折では金粒子径を算出できない場合には高角散乱環状暗視野走査透過型電子顕微鏡(HAADF−STEM)を用いて金平均粒子径を求めた。
その結果をそれぞれ図2〜5にそれぞれ示す。なお、TEMとしては日本電子(JEOL)(株)製、商品名「JEM―3200FS」を用い、常法に従い測定を行った。また粒度分布は、オープンソースである画像処理ソフト商品名「Image−j」を用い、金粒子の長軸方向の長さを計測することにより測定した。もしくはX線回折としては、(株)リガク製商品名「MiniFlex600」を用いて常法に従い、測定を行った。金粒子径は38度のAu(111)の回折ピークの半値幅よりシェラー式を用いて算出した。これらの結果から、平均直径10nm以下の金微粒子が担持された金複合材料が得られていることがわかる。
また、実施例2及び実施例4で得られた金複合材料についてCOの酸化反応を以下の条件で行い、その際のCOからCOへの転化率を測定した。その結果を図6及び7にそれぞれ示す。
条件:実施例で得られた各金複合材料を0.15g載置した内径10 mmのU字型ガラスセル中に投入し、固定床流通型反応装置を用いて250℃で疑似空気 (50 mL/min)を1時間流通させて前処理を行ったのち、1%COを含有する空気を各温度で流通させ(空間速度20,000 mL gcat―1―1)、一定温度で3回ガスクロマトグラフィーで分析を行い定常状態に達したことを確認してから、CO濃度を測定した。これを各温度で行い、温度に対するCOの転化率曲線を得た。表にはCO転化率が50%になる温度をT1/2として示す。T1/2が低いと触媒活性が高いと言える。CO酸化は最高200℃ないし250℃まで行い、これら最高温度でも転化率が50%を超えないものはT1/2をn.d.と表記した。
次に、実施例5で得られた、カリウム含有化合物を変えて得られた各金複合材料について上記のCO酸化反応を行った。その結果を図8に示す。図8に示すように、カリウム t-ブトキシドを用いて得られた金複合材料が高い触媒活性を示した。
また、実施例6で得られた各金複合材料について上記のCO酸化反応を行った。その結果を図9に、実施例2で得られた金複合材料(担体が二酸化ケイ素のもの)と共に示す。その結果から第2混合法が最も高い触媒活性を示したことがわかる。
また、実施例7で得られた金複合材料について上記のCO酸化反応を行った。その結果を図10に示す。図10(a)に示す結果から明らかなように、水のみで洗浄した場合、洗浄前とほぼ同じ触媒活性を示した。塩酸水溶液で洗浄すると低温での触媒活性は水のみの洗浄のときより向上した。洗浄前の金複合材料と塩酸水溶液による洗浄後のHAADF−STEM写真を(b)及び(c)にそれぞれ示すが、大きな違いは見られなかった。
そして、本発明の製造方法の効果を確認するために、下記2d,2eを用いて実施例1と同様にして担体が酸化アルミの金複合材料を作成し、それらの触媒化活性を実施例1及び3で得られた金複合材料(担体:酸化アルミ)と比較した。その結果を図11に示す。図11に示すように、本発明の製造方法により得られた金複合材料は高い触媒活性を示している。

〔実施例8〕
金前駆体トリス(トリフェニルホスフィン金)オキソニウム テトラフルオロボーレート(シグマアルドリッチ製、略記「Au(PPhOBF」)38mgと酸化アルミニウム(「AKP―G015」)504mgとをメノウ乳鉢で20分間磨砕混合後、300℃で2時間空気焼成を行った。HAADF−STEMから求めた平均金粒子径は4.1±3.9 nmであった。
〔実施例9〕
金前駆体
[1,3-Bis(2,6-diisopropylphenyl)imadozol-2-ylidene][bis(trifluoromethanesulfonyl)imide]gold(I) (シグマアルドリッチ製、略記「IPrAuNTf」)26mgと酸化アルミニウム(「AKP―G015」)600mgとをメノウ乳鉢で20分間磨砕混合後、300℃で2時間空気焼成を行った。HAADF−STEMから求めた平均金粒子径は1.4±0.4 nmであった。
〔実施例10〕
金前駆体[1,3-Bis(2,6-diisopropylphenyl)imadozol-2-ylidene]gold(I) hydroxide(略記「IPrAuOH」) 19mgと二酸化ケイ素(富士シリシア製商品名「Q−10」、平均粒子径60μm)601mgとをメノウ乳鉢で20分間磨砕混合後、300℃で2時間空気焼成を行った。HAADF−STEMから求めた平均金粒子径は7.0 nmであった。
〔実施例11〕
(特開2016−163881号公報に記載の方法に従って金―チオリンゴ酸錯体を得た。得られた金―チオリンゴ酸錯体12mgと酸化アルミニウム(「AKP―G015」)604mgとをメノウ乳鉢で20分間磨砕混合後、300℃で2時間空気焼成を行った。HAADF−STEMから求めた平均金粒子径は4.7±5.1 nmであった。
〔実施例12〕
特開2016−163881号公報に記載の方法に金―システイン錯体を得た。得られた金―システイン錯体12mgと酸化アルミニウム(AKP-G015)603mgとをメノウ乳鉢で20分間磨砕混合後、300℃で2時間空気焼成を行った。HAADF−STEMから求めた平均金粒子径は5.0±3.5 nmであった。
〔実施例13〕
金前駆体[1,3-Bis(2,6-diisopropylphenyl)imadozol-2-ylidene]gold(I) hydroxide 195mgとケッチェンブラック(ライオン製)150mgとをメノウ乳鉢で20分間磨砕混合後、300℃で4時間空気焼成を行ったものについてHAADF-STEMから平均金粒子径を求めたところ、6.8±2.6 nmであった。
〔実施例14〕
特開2016−163881号公報に記載の方法に金―β―アラニン錯体を得た。得られた−金―β―アラニン錯体12mgと酸化アルミニウム(「AKP―G015」)500mgとをメノウ乳鉢で20分間磨砕混合後、300℃で2時間空気焼成を行った。HAADF-STEMから求めた平均金粒子径は3.9±4.1 nmであった。
〔実施例15〕
金前駆体[1,3-Bis(2,6-diisopropylphenyl)imadozol-2-ylidene] (2-oxopropyl) gold(I) (略記「IPrAu(CHCOCH)」28mgと二酸化ケイ素(富士シリシア製商品名「Q−10」、平均粒子径60μm)851mgとをメノウ乳鉢で20分間磨砕混合後、300℃で2時間空気焼成を行った。HAADF-STEMから求めた平均金粒子径は5.2±2.6 nmであった。
〔実施例16〕
金前駆体[1,3-Bis(2,6-diisopropylphenyl)imadozol-2-ylidene]gold(I) (2-oxopropyl) 28mgと二酸化チタン(日本アエロジル製商品名「P−25」)849mgとをメノウ乳鉢で20分間磨砕混合後、300℃で2時間空気焼成を行った。HAADF-STEMから求めた平均金粒子径は9.3±2.6 nmであった。
〔実施例17〕
担体に酸化アルミニウム(AKP-G015)を用いた他は、実施例16と同様にして金触媒を調製した。HAADF-STEMから求めた平均金粒子径は1.3±0.4 nmであった。
〔実施例18〕
金前駆体[1,3-Bis(2,6-diisopropylphenyl)imadozol-2-ylidene]gold(I) hydroxide15.6mgと酸化アルミニウム(AKP−G015)500mgとをメノウ乳鉢で20分間磨砕混合後、300℃で2時間空気焼成を行った。HAADF-STEMから求めた平均金粒子径は1.4±0.3 nmであった。
〔実施例19〕
金前駆体 Gold(III) triacetate 10mgと酸化アルミニウム(AKP-G015)500mgとをメノウ乳鉢で20分間磨砕混合後、300℃で2時間空気焼成を行った。HAADF-STEMから求めた平均金粒子径は2.5±1.4 nmであった。
以上の実施例の結果を表1に示す。


[Test example]
The gold composite material obtained in each example was subjected to X-ray diffraction.
The result is shown in FIG. In FIG. 1, AuTFA is a gold composite material using the compound 2a as a gold precursor, and AuTFA-K is a gold composite material using the compound 2a as a gold precursor and using potassium t-butoxide. AuBO represents a gold composite material using the compound 2b as a gold precursor, and AuBO-K represents a gold composite material using the compound 2b as a gold precursor and using potassium t-butoxide. As is apparent from the results shown in FIG. 1a, peaks derived from gold are observed at 38 ° and 44 ° in the SiO 2 carrier, and gold fine particles are fixed on SiO 2 . In FIGS. 1b and 1c, no peaks derived from gold were observed behind the peaks of the Al 2 O 3 and TiO 2 carriers. This suggests that very small gold particles are immobilized. Therefore, when the gold particle diameter could not be calculated by X-ray diffraction, the gold average particle diameter was determined using a high angle scattering annular dark field scanning transmission electron microscope (HAADF-STEM).
The results are shown in FIGS. The measurement was performed according to a conventional method using a trade name “JEM-3200FS” manufactured by JEOL Ltd. as a TEM. The particle size distribution was measured by measuring the length of gold particles in the major axis direction using an image processing software product name “Image-j” which is an open source. Or as X-ray diffraction, it measured according to the conventional method using Rigaku Co., Ltd. brand name "MiniFlex600". The gold particle diameter was calculated from the half-value width of the diffraction peak of 38 ° Au (111) using the Scherrer equation. From these results, it can be seen that a gold composite material carrying gold fine particles having an average diameter of 10 nm or less is obtained.
Moreover, the oxidation reaction of CO was performed on the gold composite materials obtained in Example 2 and Example 4 under the following conditions, and the conversion rate from CO to CO 2 was measured. The results are shown in FIGS. 6 and 7, respectively.
Conditions: Each gold composite material obtained in the example was put into a U-shaped glass cell having an inner diameter of 10 mm on which 0.15 g was placed, and simulated air (50 mL) at 250 ° C. using a fixed bed flow type reactor. / Min) for 1 hour, pretreatment was performed, and air containing 1% CO was circulated at each temperature (space velocity 20,000 mL gcat -1 h -1 ), and gas was supplied three times at a constant temperature. The concentration of CO was measured after confirming that the steady state was reached by analysis by chromatography. This was performed at each temperature to obtain a CO conversion curve with respect to temperature. The table shows the temperature at which the CO conversion is 50% as T1 / 2 . When T 1/2 is low, it can be said that the catalytic activity is high. The CO oxidation was performed at a maximum of 200 ° C. to 250 ° C., and those having a conversion rate not exceeding 50% at these maximum temperatures were expressed as T 1/2 as nd.
Next, the above CO oxidation reaction was performed on each gold composite material obtained by changing the potassium-containing compound obtained in Example 5. The result is shown in FIG. As shown in FIG. 8, the gold composite material obtained by using potassium t-butoxide showed high catalytic activity.
Moreover, said CO oxidation reaction was performed about each gold | metal composite material obtained in Example 6. FIG. The results are shown in FIG. 9 together with the gold composite material obtained in Example 2 (with the carrier being silicon dioxide). From the results, it can be seen that the second mixing method showed the highest catalytic activity.
Further, the above-described CO oxidation reaction was performed on the gold composite material obtained in Example 7. The result is shown in FIG. As is apparent from the results shown in FIG. 10 (a), when washed with only water, the catalytic activity was almost the same as before washing. When washed with an aqueous hydrochloric acid solution, the catalytic activity at low temperature was improved compared with washing with water alone. Although the HAADF-STEM photograph after washing | cleaning by the gold | metal composite material before washing | cleaning and hydrochloric acid aqueous solution is shown to (b) and (c), respectively, the big difference was not seen.
In order to confirm the effect of the production method of the present invention, the following 2d and 2e were used in the same manner as in Example 1 to prepare a gold composite material in which the carrier was aluminum oxide. 3 and the gold composite material obtained in 3 (carrier: aluminum oxide). The result is shown in FIG. As shown in FIG. 11, the gold composite material obtained by the production method of the present invention exhibits high catalytic activity.

Example 8
Gold precursor tris (triphenylphosphine gold) oxonium tetrafluoroborate (manufactured by Sigma-Aldrich, abbreviation “Au 3 (PPh 3 ) 3 OBF 4 ”) 38 mg and aluminum oxide (“AKP-G015”) 504 mg in an agate mortar 20 After grinding and mixing for minutes, air baking was performed at 300 ° C. for 2 hours. The average gold particle diameter determined from HAADF-STEM was 4.1 ± 3.9 nm.
Example 9
Gold precursor
[1,3-Bis (2,6-diisopropylphenyl) imadozol-2-ylidene] [bis (trifluoromethanesulfonyl) imide] gold (I) (Sigma Aldrich, abbreviated “IPrAuNTf 2 ”) 26 mg and aluminum oxide (“AKP-G015 “) 600 mg was ground and mixed in an agate mortar for 20 minutes, and then air-baked at 300 ° C. for 2 hours. The average gold particle size determined from HAADF-STEM was 1.4 ± 0.4 nm.
Example 10
Gold precursor [1,3-Bis (2,6-diisopropylphenyl) imadozol-2-ylidene] gold (I) hydroxide (abbreviation “IPrAuOH”) 19 mg and silicon dioxide (trade name “Q-10” manufactured by Fuji Silysia), average After pulverizing and mixing for 20 minutes in an agate mortar, 601 mg (particle diameter 60 μm) was performed, followed by air baking at 300 ° C. for 2 hours. The average gold particle diameter determined from HAADF-STEM was 7.0 nm.
Example 11
(A gold-thiomalate complex was obtained according to the method described in JP-A-2006-163881. The obtained gold-thiomalate complex 12 mg and aluminum oxide (“AKP-G015”) 604 mg were polished in an agate mortar for 20 minutes. After crushing and mixing, air calcination was performed for 2 hours at 300 ° C. The average gold particle size determined from HAADF-STEM was 4.7 ± 5.1 nm.
Example 12
A gold-cysteine complex was obtained by the method described in JP-A-2006-163881. The obtained gold-cysteine complex 12 mg and aluminum oxide (AKP-G015) 603 mg were ground and mixed in an agate mortar for 20 minutes, and then air-baked at 300 ° C. for 2 hours. The average gold particle size determined from HAADF-STEM was 5.0 ± 3.5 nm.
Example 13
Gold precursor [1,3-Bis (2,6-diisopropylphenyl) imadozol-2-ylidene] gold (I) hydroxide 195 mg and Ketjen black (made by Lion) 150 mg were ground and mixed in an agate mortar for 20 minutes, then 300 When the average gold particle size was determined from HAADF-STEM for air calcination at 4 ° C. for 4 hours, it was 6.8 ± 2.6 nm.
Example 14
A gold-β-alanine complex was obtained by the method described in JP-A-2006-163881. The obtained -gold-β-alanine complex (12 mg) and aluminum oxide (“AKP-G015”) (500 mg) were ground and mixed in an agate mortar for 20 minutes, and then air baked at 300 ° C. for 2 hours. The average gold particle size determined from HAADF-STEM was 3.9 ± 4.1 nm.
Example 15
Gold precursor [1,3-Bis (2,6-diisopropylphenyl) imadozol-2-ylidene] (2-oxopropyl) gold (I) (abbreviation “IPrAu (CH 2 COCH 3 )”) and silicon dioxide (manufactured by Fuji Silysia) The product name “Q-10” (average particle size 60 μm) 851 mg was ground and mixed in an agate mortar for 20 minutes, and then air-baked for 2 hours at 300 ° C. The average gold particle size determined from HAADF-STEM was 5. It was 2 ± 2.6 nm.
Example 16
Gold precursor [1,3-Bis (2,6-diisopropylphenyl) imadozol-2-ylidene] gold (I) (2-oxopropyl) 28 mg and titanium dioxide (trade name “P-25” manufactured by Nippon Aerosil Co., Ltd.) 849 mg After grinding and mixing in an agate mortar for 20 minutes, air baking was performed at 300 ° C. for 2 hours. The average gold particle size determined from HAADF-STEM was 9.3 ± 2.6 nm.
Example 17
A gold catalyst was prepared in the same manner as in Example 16 except that aluminum oxide (AKP-G015) was used as the support. The average gold particle size determined from HAADF-STEM was 1.3 ± 0.4 nm.
Example 18
After the gold precursor [1,3-Bis (2,6-diisopropylphenyl) imadozol-2-ylidene] gold (I) hydroxide 15.6 mg and aluminum oxide (AKP-G015) 500 mg were ground and mixed in an agate mortar for 20 minutes, Air baking was performed at 300 ° C. for 2 hours. The average gold particle size determined from HAADF-STEM was 1.4 ± 0.3 nm.
Example 19
Gold precursor Gold (III) triacetate 10 mg and aluminum oxide (AKP-G015) 500 mg were ground and mixed in an agate mortar for 20 minutes, and then air baked at 300 ° C. for 2 hours. The average gold particle size determined from HAADF-STEM was 2.5 ± 1.4 nm.
The results of the above examples are shown in Table 1.


Claims (4)

担体の表面に金微粒子が固着されてなる金複合材料の製造方法であって、
金前駆体と担体とを含む混合物を製造する混合工程と、
上記混合物を焼成する焼成工程とを具備し、
上記金前駆体が、金原子と該金原子に配位する配位子とを有する錯体化合物であり、該配位子における金原子と配位する配位原子が、酸素、炭素、窒素、リン又は硫黄である
ことを特徴とする金複合材料の製造方法。
A method for producing a gold composite material in which gold fine particles are fixed to the surface of a carrier,
A mixing step for producing a mixture comprising a gold precursor and a support;
A firing step of firing the mixture,
The gold precursor is a complex compound having a gold atom and a ligand coordinated to the gold atom, and the coordinate atom coordinated to the gold atom in the ligand is oxygen, carbon, nitrogen, phosphorus Or the manufacturing method of the gold | metal | money composite material characterized by being sulfur.
上記混合工程が、固相で行われることを特徴とする請求項1記載の金複合材料の製造方法。
The method for producing a gold composite material according to claim 1, wherein the mixing step is performed in a solid phase.
上記配位原子が、酸素、炭素又は窒素であることを特徴とする請求項1又は2記載の金複合材料の製造方法。
The method for producing a gold composite material according to claim 1, wherein the coordination atom is oxygen, carbon, or nitrogen.
上記配位原子の少なくとも一つが、ベンゼン環の炭素原子又はカルベン炭素の炭素原子を含むことを特徴とする請求項3記載の金複合材料の製造方法。


4. The method for producing a gold composite material according to claim 3, wherein at least one of the coordination atoms includes a carbon atom of a benzene ring or a carbon atom of a carbene carbon.


JP2017042768A 2017-03-07 2017-03-07 Manufacturing method of gold composite material Active JP6872781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017042768A JP6872781B2 (en) 2017-03-07 2017-03-07 Manufacturing method of gold composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017042768A JP6872781B2 (en) 2017-03-07 2017-03-07 Manufacturing method of gold composite material

Publications (2)

Publication Number Publication Date
JP2018143978A true JP2018143978A (en) 2018-09-20
JP6872781B2 JP6872781B2 (en) 2021-05-19

Family

ID=63589213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017042768A Active JP6872781B2 (en) 2017-03-07 2017-03-07 Manufacturing method of gold composite material

Country Status (1)

Country Link
JP (1) JP6872781B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190071775A1 (en) * 2017-01-26 2019-03-07 Asm Ip Holding B.V. Vapor deposition of thin films comprising gold

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236998A (en) * 2012-05-14 2013-11-28 Dainippon Printing Co Ltd Carbon monoxide removal catalyst, carbon monoxide removing filter, and method of manufacturing carbon monoxide removal catalyst
JP2014169237A (en) * 2013-03-01 2014-09-18 National Institute Of Advanced Industrial & Technology Dendrimer bound nitrogen-containing heterocyclic carbene-gold complex

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236998A (en) * 2012-05-14 2013-11-28 Dainippon Printing Co Ltd Carbon monoxide removal catalyst, carbon monoxide removing filter, and method of manufacturing carbon monoxide removal catalyst
JP2014169237A (en) * 2013-03-01 2014-09-18 National Institute Of Advanced Industrial & Technology Dendrimer bound nitrogen-containing heterocyclic carbene-gold complex

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190071775A1 (en) * 2017-01-26 2019-03-07 Asm Ip Holding B.V. Vapor deposition of thin films comprising gold
US11047046B2 (en) * 2017-01-26 2021-06-29 Asm Ip Holding B.V. Vapor deposition of thin films comprising gold
US11499227B2 (en) 2017-01-26 2022-11-15 Asm Ip Holding B.V. Vapor deposition of thin films comprising gold

Also Published As

Publication number Publication date
JP6872781B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
JP4970120B2 (en) Method for dispersing and fixing gold fine particles on a carrier
Wang et al. Au@ Cu (II)-MOF: Highly efficient bifunctional heterogeneous catalyst for successive oxidation–condensation reactions
JP5737699B2 (en) Catalyst using PdRu solid solution type alloy fine particles
Parmeggiani et al. A step forward towards sustainable aerobic alcohol oxidation: new and revised catalysts based on transition metals on solid supports
Ungureanu et al. Composition-dependent morphostructural properties of Ni–Cu oxide nanoparticles confined within the channels of ordered mesoporous SBA-15 silica
Campelo et al. Sustainable preparation of supported metal nanoparticles and their applications in catalysis
Burton et al. Facile, surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts
JP5920750B2 (en) Gold catalyst for ethanol oxidation and method for producing acetaldehyde and acetic acid using the same
JP5715726B2 (en) Ruthenium fine particles having substantially face-centered cubic structure and method for producing the same
Ma et al. Tetragonal β-In2S3: Partial ordering of In3+ vacancy and visible-light photocatalytic activities in both water and nitrate reduction
CN109939693B (en) CoMn2O4Bimetallic oxide catalyst, preparation method and application
JP5543150B2 (en) Selective hydrogenation catalyst for aromatic nitro compounds, process for producing and regenerating the same, and process for selective hydrogenation of aromatic nitrated compounds using the same
Palacio et al. Bimetallic AuCu nanoparticles supported on CeO 2 as selective catalysts for glycerol conversion to lactic acid in aqueous basic medium
JP2010017649A (en) Highly active catalyst and its preparing method
US8962512B1 (en) Synthesis of PD particles by alcohols-assisted photoreduction for use in supported catalysts
Zheng et al. High efficient and stable thiol-modified dendritic mesoporous silica nanospheres supported gold catalysts for gas-phase selective oxidation of benzyl alcohol with ultra-long lifetime
Lima Oliveira et al. Cerium Oxide Nanoparticles Confined in Doped Mesoporous Carbons: A Strategy to Produce Catalysts for Imine Synthesis
JP6872781B2 (en) Manufacturing method of gold composite material
JPWO2006006277A1 (en) Catalyst and process for producing cycloolefin
CN111545239B (en) Solid catalyst for glycerol oxidation and preparation method thereof
Zhao et al. Ultralow loading cobalt-based nanocatalyst for benign and efficient aerobic oxidation of allylic alcohols and biobased olefins
Mohammed et al. Mesoporous titania–ceria mixed oxide (MTCMO): a highly efficient and reusable heterogeneous nanocatalyst for one-pot synthesis of β-phosphonomalonates via a cascade Knoevenagel–phospha-Michael addition reaction
JP2018522722A (en) Heterogeneous catalyst for acrylic acid production and method for producing acrylic acid using the same
Xie et al. Ceria Nanoparticles on Modified MXene for Aerobic Oxidation of 4-Methoxybenzyl Alcohol
JP5605696B2 (en) Nitrile synthesis catalyst composition and method for producing nitrile using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210413

R150 Certificate of patent or registration of utility model

Ref document number: 6872781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250