JP2018142672A - Semiconductor device and manufacturing method of the same - Google Patents

Semiconductor device and manufacturing method of the same Download PDF

Info

Publication number
JP2018142672A
JP2018142672A JP2017037505A JP2017037505A JP2018142672A JP 2018142672 A JP2018142672 A JP 2018142672A JP 2017037505 A JP2017037505 A JP 2017037505A JP 2017037505 A JP2017037505 A JP 2017037505A JP 2018142672 A JP2018142672 A JP 2018142672A
Authority
JP
Japan
Prior art keywords
semiconductor device
film
semiconductor film
semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017037505A
Other languages
Japanese (ja)
Other versions
JP6985711B2 (en
Inventor
薫 都甲
Kaoru Toko
薫 都甲
崇 末益
Takashi Suemasu
崇 末益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Priority to JP2017037505A priority Critical patent/JP6985711B2/en
Publication of JP2018142672A publication Critical patent/JP2018142672A/en
Priority to JP2021007370A priority patent/JP7360180B2/en
Application granted granted Critical
Publication of JP6985711B2 publication Critical patent/JP6985711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device which achieves a hole mobility higher than a conventional one when performing a device operation, and a manufacturing method of the device.SOLUTION: A semiconductor device 100 includes: a substrate 101; and a semiconductor film 102 formed on one surface 101a of the substrate. The semiconductor film 102 is a polycrystalline film formed by a crystal grain of which a mean particle is equal to 1 μm or more.SELECTED DRAWING: Figure 1

Description

本発明は、太陽電池、薄膜トランジスタ(ディスプレイ)、受光センサー等に用いる半導体装置と、その製造方法に関する。   The present invention relates to a semiconductor device used for a solar cell, a thin film transistor (display), a light receiving sensor, and the like, and a manufacturing method thereof.

絶縁体(SiO、ガラス、プラスティック)上に合成する半導体膜は、集積回路(LSI)の3次元化や、情報端末・太陽電池の高性能化・低価格化を実現するための主要な構成要素として、盛んに研究されている。 A semiconductor film synthesized on an insulator (SiO 2 , glass, plastic) is a main component for realizing three-dimensional integrated circuits (LSIs) and high-performance and low-cost information terminals and solar cells. It has been actively studied as an element.

Siは代表的な半導体であり、あらゆる電子デバイスに用いられている。また、Siと同じIV族半導体であるGeやSiGeは、既存の材料であるSiと親和性が高く、さらにSiより高いキャリア移動度および低い結晶化温度を有するため、次世代の半導体材料として期待されている。   Si is a typical semiconductor and is used in all electronic devices. In addition, Ge and SiGe, which are the same group IV semiconductors as Si, have high affinity with existing Si, and have higher carrier mobility and lower crystallization temperature than Si, so they are expected as next-generation semiconductor materials. Has been.

半導体膜を形成する場合、基材(基板)となるLSIチップやガラス、プラスティックへの影響を考慮すると、プロセス温度は低くする必要がある。半導体膜の形成方法としては、転写法、化学気相成長法(CVD法)、フラッシュランプアニール(FLA)、金属誘起成長法(MIC)、固相成長法等を用いることができる。転写法は、単結晶基板を薄膜上にカットし、絶縁体上に貼り合わせるものであるが、原材料となる単結晶基板が高価であること、プロセスが複雑であること、均一で大面積の転写が困難であることから、実用上の障壁が高いと考えられている(非特許文献1)。   In the case of forming a semiconductor film, it is necessary to lower the process temperature in consideration of the influence on an LSI chip, glass, or plastic that is a base material (substrate). As a method for forming the semiconductor film, a transfer method, a chemical vapor deposition method (CVD method), a flash lamp annealing (FLA), a metal induced growth method (MIC), a solid phase growth method, or the like can be used. In the transfer method, a single crystal substrate is cut onto a thin film and bonded onto an insulator. However, the single crystal substrate that is the raw material is expensive, the process is complicated, and the transfer is uniform and large in area. Therefore, it is considered that the practical barrier is high (Non-patent Document 1).

また、化学気相成長法は、絶縁体上に薄膜を合成する最も一般的な手法であるが、基板への成膜と結晶化を同時に行うものであり、合成される膜の構成粒子は小粒径(<1μm)となってしまう。そのため、形成された半導体膜中でのキャリアの移動度は極めて低い(非特許文献2)。   Chemical vapor deposition is the most common method for synthesizing a thin film on an insulator. However, the film is formed on a substrate and crystallized at the same time. The particle size will be <1 μm. Therefore, the mobility of carriers in the formed semiconductor film is extremely low (Non-Patent Document 2).

また、フラッシュランプアニールは、絶縁体上に非晶質の半導体膜を形成した後、ランプ加熱して結晶化を促す方法であり、基板への熱的なダメージは少ないが、この場合にも、合成された半導体膜中でのキャリアの移動度は低い。この方法において、半導体膜の材料としてGeを用いた場合、得られる正孔移動度が200cm/V・s程度であることが、これまでに報告されている(非特許文献3)。 In addition, flash lamp annealing is a method of forming an amorphous semiconductor film on an insulator and then heating the lamp to promote crystallization, and there is little thermal damage to the substrate. The mobility of carriers in the synthesized semiconductor film is low. In this method, when Ge is used as the material of the semiconductor film, it has been reported so far that the hole mobility obtained is about 200 cm 2 / V · s (Non-patent Document 3).

また、金属誘起成長法は、非晶質の半導体膜上に蒸着された触媒金属を核として、平面方向に結晶化を誘起させる方法である。この方法では、半導体膜の低温合成を可能とし、かつ、この半導体膜の構成粒子を50μm以上に大粒径化するものとする。半導体膜の材料としてGeを用いた場合に、最大で210cm/V・sの正孔移動度が得られることが、これまでに報告されている(非特許文献4)。 The metal-induced growth method is a method for inducing crystallization in a planar direction using a catalyst metal deposited on an amorphous semiconductor film as a nucleus. In this method, the semiconductor film can be synthesized at a low temperature, and the constituent particles of the semiconductor film are increased to 50 μm or more. It has been reported so far that a hole mobility of 210 cm 2 / V · s at the maximum can be obtained when Ge is used as the material of the semiconductor film (Non-patent Document 4).

また、固相成長法は、非晶質膜を電気炉で加熱して結晶化する非常に簡易な方法であり、構成粒子が比較的大粒径化した膜を得やすい。ただし、この方法でSi、Geを固相成長させる場合、通常は、それぞれ600℃以上、400℃以上の熱処理が必要となる。Geを用いた場合において、これまでに報告されている最高の正孔移動度は、140cm/V・sである(非特許文献5)。GeにSnを添加することで、320cm/V・sの正孔移動度が得られることも報告されており、これが、絶縁体上の低温合成薄膜の正孔移動度として、これまでに得られている中での最高値である(非特許文献6)。 The solid phase growth method is a very simple method of crystallizing an amorphous film by heating with an electric furnace, and it is easy to obtain a film in which constituent particles have a relatively large particle size. However, when solid phase growth of Si and Ge is performed by this method, heat treatment at 600 ° C. or higher and 400 ° C. or higher is usually required, respectively. In the case of using Ge, the highest hole mobility reported so far is 140 cm 2 / V · s (Non-patent Document 5). It has also been reported that hole mobility of 320 cm 2 / V · s can be obtained by adding Sn to Ge. This has been obtained as a hole mobility of a low-temperature synthetic thin film on an insulator so far. It is the highest value among these (Non-Patent Document 6).

G. Taraschi, A.J. Pitera, and E.A. Fitzgerald, Solid-State. Electronics. 48, 1297 (2004).G. Taraschi, A.J.Pitera, and E.A.Fitzgerald, Solid-State.Electronics. 48, 1297 (2004). T. Matsui, M. Kondo, K. Ogata, T. Ozawa, and M. Isomura, Appl. Phys. Lett. 89, 142115 (2006).T. Matsui, M. Kondo, K. Ogata, T. Ozawa, and M. Isomura, Appl. Phys. Lett. 89, 142115 (2006). K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, Appl. Phys. Express 7, 56501 (2014).K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, Appl. Phys. Express 7, 56501 (2014). K. Kasahara, Y. Nagatomi, K. Yamamoto, H. Higashi, M. Nakano, S. Yamada, D. Wang, H. Nakashima, and K. Hamaya, Appl. Phys. Lett. 107, 142102 (2015).K. Kasahara, Y. Nagatomi, K. Yamamoto, H. Higashi, M. Nakano, S. Yamada, D. Wang, H. Nakashima, and K. Hamaya, Appl. Phys. Lett. 107, 142102 (2015). K. Toko, I. Nakao, T. Sadoh, T. Noguchi, and M. Miyao, Solid-State. Electronics. 53, 1159 (2009).K. Toko, I. Nakao, T. Sadoh, T. Noguchi, and M. Miyao, Solid-State. Electronics. 53, 1159 (2009). T. Sadoh, Y. Kai, R. Matsumura, K. Moto, and M. Miyao, Appl. Phys. Lett. 109, 232106 (2016).T. Sadoh, Y. Kai, R. Matsumura, K. Moto, and M. Miyao, Appl. Phys. Lett. 109, 232106 (2016).

本発明は、かかる事情に鑑みてなされたものであり、基材にダメージを与える熱負荷を低減し、デバイス動作させたときに、従来よりも高いキャリア移動度や発電効率を実現する半導体装置と、その製造方法を提供することを目的としている。   The present invention has been made in view of such circumstances, and a semiconductor device that achieves higher carrier mobility and power generation efficiency than conventional devices when the device is operated by reducing the thermal load that damages the base material. It aims at providing the manufacturing method.

本発明は、上記課題を解決するため、以下の手段を提供する。
(1)本発明の一態様に係る半導体装置は、基材と、基材の一面に形成された半導体膜とを有し、前記半導体膜は、平均粒径が1μm以上の結晶粒子からなる多結晶膜である。
(2)(1)に記載の半導体装置は、前記半導体膜の厚さが、50nm以上であることが好ましい。
(3)(1)または(2)のいずれかに記載の半導体装置は、前記結晶粒子がGeからなることが好ましい。
(4)(1)または(2)のいずれかに記載の半導体装置は、前記結晶粒子がSiGeからなることが好ましい。
(5)(1)または(2)のいずれかに記載の半導体装置は、前記結晶粒子がSiからなることが好ましい。
(6)本発明の一態様に係る半導体装置の製造方法は、(1)〜(5)のいずれか一つに記載の半導体装置の製造方法であって、前記基材を加熱しながら、前記基材の一面に非晶質の半導体膜を形成する第一工程と、前記半導体膜を加熱して、前記半導体膜の固相成長を促す第二工程と、を有し、前記第一工程での加熱温度を、前記半導体膜に結晶核が発生する温度の50%以上100%未満となるように調整する。
(7)(6)に記載の半導体装置の製造方法は、前記第一工程での加熱温度を、前記半導体膜を構成する粒子の密度が、同じ材料の結晶における粒子の密度の98%以上102%未満となるように調整することが好ましい。
(8)(6)または(7)のいずれかに記載の半導体装置の製造方法は、前記第一工程での加熱温度を、100℃以上700℃以下とすることが好ましい。
(9)(6)〜(8)のいずれか一つに記載の半導体装置の製造方法は、前記第二工程での加熱温度を、350℃以上800℃以下とすることが好ましい。
The present invention provides the following means in order to solve the above problems.
(1) A semiconductor device according to one embodiment of the present invention includes a base material and a semiconductor film formed on one surface of the base material, and the semiconductor film includes a plurality of crystal grains having an average grain size of 1 μm or more. It is a crystal film.
(2) In the semiconductor device according to (1), the thickness of the semiconductor film is preferably 50 nm or more.
(3) In the semiconductor device according to any one of (1) and (2), the crystal particles are preferably made of Ge.
(4) In the semiconductor device according to any one of (1) and (2), the crystal particles are preferably made of SiGe.
(5) In the semiconductor device according to any one of (1) and (2), the crystal particles are preferably made of Si.
(6) A method for manufacturing a semiconductor device according to an aspect of the present invention is the method for manufacturing a semiconductor device according to any one of (1) to (5), wherein the substrate is heated while the substrate is heated. A first step of forming an amorphous semiconductor film on one surface of the substrate, and a second step of heating the semiconductor film to promote solid phase growth of the semiconductor film, The heating temperature is adjusted to 50% or more and less than 100% of the temperature at which crystal nuclei are generated in the semiconductor film.
(7) In the method for manufacturing a semiconductor device according to (6), the heating temperature in the first step is equal to or higher than 98% of the density of particles in a crystal of the same material as the density of particles constituting the semiconductor film. It is preferable to adjust so that it may be less than%.
(8) In the method for manufacturing a semiconductor device according to any one of (6) and (7), the heating temperature in the first step is preferably set to 100 ° C. or more and 700 ° C. or less.
(9) In the method for manufacturing a semiconductor device according to any one of (6) to (8), the heating temperature in the second step is preferably set to 350 ° C. or higher and 800 ° C. or lower.

本発明の半導体装置は、その製造過程において、結晶核が発生しない範囲で結晶に近い密度の非晶質膜を形成し、これを固相成長させることによって得られる半導体膜を有している。この半導体膜は、大粒径化した結晶粒子からなる多結晶膜であるため、本発明の半導体装置をデバイス動作させたときに、従来よりも高いキャリア移動度を実現することができる。   The semiconductor device of the present invention has a semiconductor film obtained by forming an amorphous film having a density close to a crystal within a range in which crystal nuclei are not generated and solid-phase growing the film in the manufacturing process. Since this semiconductor film is a polycrystalline film made of crystal grains having a large particle size, when the semiconductor device of the present invention is operated as a device, higher carrier mobility than before can be realized.

本発明での半導体膜は、固相成長に必要な加熱温度が低減するため、基材にダメージを与えるような熱的負荷を軽減することができる。   In the semiconductor film according to the present invention, the heating temperature necessary for solid phase growth is reduced, so that a thermal load that damages the substrate can be reduced.

本発明の半導体装置の断面図である。It is sectional drawing of the semiconductor device of this invention. 本発明の半導体装置の製造過程について説明する図である。It is a figure explaining the manufacturing process of the semiconductor device of this invention. (a)、(b)本発明の半導体装置の製造方法において、第一工程での処理温度と、最終的に形成される半導体膜の粒子密度との関係を示すグラフである。(A), (b) In the manufacturing method of the semiconductor device of this invention, it is a graph which shows the relationship between the process temperature in a 1st process, and the particle density of the semiconductor film finally formed. (a)〜(c)本発明の半導体装置の製造方法において、第一工程での処理温度に対応して、最終的に形成される半導体膜のEBSD画像である。(A)-(c) In the manufacturing method of the semiconductor device of this invention, it is an EBSD image of the semiconductor film finally formed corresponding to the process temperature in a 1st process. 本発明の半導体装置の製造方法において、第一工程での処理温度と、最終的に形成される半導体膜の粒子径との関係を示すグラフである。In the manufacturing method of the semiconductor device of the present invention, it is a graph which shows the relation between the processing temperature in the first process, and the particle size of the semiconductor film finally formed. 本発明の半導体装置の製造方法において、第一工程での処理温度と、最終的に形成される半導体膜の正孔密度および正孔移動度との関係を示すグラフである。In the manufacturing method of the semiconductor device of the present invention, it is a graph which shows the relation between the processing temperature in the first process, and the hole density and hole mobility of the semiconductor film finally formed.

以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図は、本発明の特徴を分かりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なっていることがある。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。   Hereinafter, the present invention will be described in detail with appropriate reference to the drawings. In the drawings used in the following description, in order to make the features of the present invention easier to understand, portions that become features may be shown in an enlarged form for convenience, and the dimensional ratios and the like of each component are different from actual ones. There is. In addition, the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited thereto, and can be implemented with appropriate modifications within the scope of the effects of the present invention. .

[半導体装置の構成]
図1は、本発明の一実施形態に係る半導体装置100の断面図である。半導体装置100は、基材101と、基材の一面101aに形成(合成)された半導体膜(半導体薄膜)102とを有している。
[Configuration of semiconductor device]
FIG. 1 is a cross-sectional view of a semiconductor device 100 according to an embodiment of the present invention. The semiconductor device 100 includes a base material 101 and a semiconductor film (semiconductor thin film) 102 formed (synthesized) on one surface 101a of the base material.

基材101は、SiO、ガラス、プラスティック等の絶縁体、それらを搭載した基板、あるいはLSIチップ等からなる。 The substrate 101 is made of an insulator such as SiO 2 , glass, or plastic, a substrate on which these are mounted, an LSI chip, or the like.

半導体膜102は、薄膜形成が可能なあらゆる材料、例えばGe、SiGe、Si、GeSn、SiC、GaAs、InP、GaN、ZnSe、CdS、ZnO等の大粒径化した結晶粒子からなる多結晶膜である。結晶粒子の平均粒径は、1μm以上であればよく、5μm以上30μm以下であれば好ましく、30μm程度であればより好ましい。   The semiconductor film 102 is a polycrystalline film made of any material capable of forming a thin film, such as Ge, SiGe, Si, GeSn, SiC, GaAs, InP, GaN, ZnSe, CdS, and ZnO. is there. The average particle size of the crystal particles may be 1 μm or more, preferably 5 μm or more and 30 μm or less, and more preferably about 30 μm.

半導体膜102の厚さは、50nm以上であればよく、50nm以上5000nm以下であれば好ましい。   The thickness of the semiconductor film 102 may be 50 nm or more, and preferably 50 nm or more and 5000 nm or less.

[半導体装置の製造方法]
半導体装置100を製造するための主要な2工程について、図2を用いて説明する。
[Method for Manufacturing Semiconductor Device]
Two main steps for manufacturing the semiconductor device 100 will be described with reference to FIG.

(第一工程)
基材101を加熱しながら、基材の一面101に対し、Ge、SiGe、Si、GeSn、SiC、GaAs、InP、GaN、ZnSe、CdS、ZnO等の粒子102Aを堆積させ、非晶質の半導体膜102Bを形成する(図2の左側)。
(First step)
While heating the base material 101, particles 102A such as Ge, SiGe, Si, GeSn, SiC, GaAs, InP, GaN, ZnSe, CdS, and ZnO are deposited on one surface 101 of the base material to form an amorphous semiconductor. A film 102B is formed (left side in FIG. 2).

加熱方法、堆積方法としては、特に限定されるものではなく、一般的な方法(分子線堆積法、CVD法、スパッタリング法等)を用いることができる。分子線堆積法を用いる場合には、高真空中で粒子102Aの分子線を発生させ、これを加熱中の基材の一面101aに照射することにより、粒子102Aを堆積させて非晶質の膜102Bを形成することになる。この方法では成膜温度を低く設定することができるため、プラスティック等の耐熱性が低い基材、LSIチップ等に対して成膜する場合に、好ましい方法となる。   The heating method and the deposition method are not particularly limited, and general methods (molecular beam deposition method, CVD method, sputtering method, etc.) can be used. When the molecular beam deposition method is used, a molecular beam of the particle 102A is generated in a high vacuum, and the surface 102a of the heated substrate is irradiated with the molecular beam, thereby depositing the particle 102A to form an amorphous film. 102B is formed. In this method, since the film formation temperature can be set low, it is a preferable method when forming a film on a substrate having low heat resistance such as plastic, an LSI chip, or the like.

第一工程での加熱温度は、形成される非晶質膜102Bが、できる限り結晶に近い粒子数密度(同じ材料の結晶における粒子の密度の98%以上102%未満)であり、かつ、結晶核が発生していない状態となるように調整する。つまり、半導体膜102Bに結晶核が発生しない範囲で、可能な限り大きい温度となるように調整する。   The heating temperature in the first step is such that the amorphous film 102B to be formed has a particle number density as close as possible to the crystal (98% or more and less than 102% of the density of particles in the crystal of the same material) and the crystal Adjust so that no nucleus is generated. That is, the temperature is adjusted to be as high as possible without causing crystal nuclei in the semiconductor film 102B.

実際には、半導体膜102Bに結晶核が発生する温度の30%以上100%未満となるように調整すればよく、50%以上100%未満となるように調整すればより好ましい。具体的には、概ね100℃以上700℃以下となる。この温度は、形成する半導体膜102の材料と厚さに応じて調整する。例えば、Geからなる厚さ100nmの半導体膜102を形成する場合には、100〜150℃とする。また、SiGe、Siからなる厚さ100nmの半導体膜102を形成する場合には、それぞれ100〜650℃、500〜650℃とする。   Actually, the temperature may be adjusted to be 30% or more and less than 100% of the temperature at which crystal nuclei are generated in the semiconductor film 102B, and more preferably 50% or more and less than 100%. Specifically, the temperature is approximately 100 ° C. or more and 700 ° C. or less. This temperature is adjusted in accordance with the material and thickness of the semiconductor film 102 to be formed. For example, when the semiconductor film 102 made of Ge and having a thickness of 100 nm is formed, the temperature is set to 100 to 150 ° C. In the case of forming the semiconductor film 102 made of SiGe and Si and having a thickness of 100 nm, the temperature is set to 100 to 650 ° C. and 500 to 650 ° C., respectively.

(第二工程)
熱処理(雰囲気は問わない)を行い、第一工程で形成された非晶質の半導体膜102Bの固相成長を促し、多結晶の半導体膜(多結晶膜)102Cを合成する(図2の右側)。第二工程において、加熱温度は350℃以上800℃以下とすることが好ましく、加熱時間は0.1時間以上300時間以下とすることが好ましい。
(Second step)
Heat treatment (regardless of atmosphere) is performed to promote solid phase growth of the amorphous semiconductor film 102B formed in the first step, and a polycrystalline semiconductor film (polycrystalline film) 102C is synthesized (right side of FIG. 2). ). In the second step, the heating temperature is preferably 350 ° C. or more and 800 ° C. or less, and the heating time is preferably 0.1 hours or more and 300 hours or less.

第一工程での加熱温度を上述したように調整することにより、形成される半導体膜102Cは、1μm以上の大粒径の粒子からなる多結晶膜となる。   By adjusting the heating temperature in the first step as described above, the formed semiconductor film 102C becomes a polycrystalline film made of particles having a large particle diameter of 1 μm or more.

第一工程および第二工程を経て得られた半導体装置100は、その製造過程において、結晶核が発生しない範囲で結晶に近い密度の非晶質膜102Bを形成し、これを固相成長させることによって得られる多結晶の半導体膜102Cを有している。この半導体膜102Cは、1μm以上の大粒径化した結晶粒子からなる多結晶膜であるため、半導体装置100をデバイス動作させたときに、従来よりも高いキャリア移動度を実現することができる。例えば、Geからなる厚さ100nmの半導体膜においては、正孔移動度を340cm/V・sまで向上させることができる。また、Geからなる厚さ300nmの半導体膜においては、正孔移動度を380cm/V・sまで向上させることができる。 The semiconductor device 100 obtained through the first step and the second step forms an amorphous film 102B having a density close to a crystal within a range in which crystal nuclei are not generated in the manufacturing process, and this is solid-phase grown. A polycrystalline semiconductor film 102C obtained by the above process. Since the semiconductor film 102C is a polycrystalline film made of crystal grains having a large particle size of 1 μm or more, when the semiconductor device 100 is operated as a device, higher carrier mobility than before can be realized. For example, in a semiconductor film made of Ge and having a thickness of 100 nm, hole mobility can be improved to 340 cm 2 / V · s. In addition, in a semiconductor film made of Ge and having a thickness of 300 nm, the hole mobility can be improved to 380 cm 2 / V · s.

半導体膜102を構成する結晶の粒径が1μmより小さい場合、粒界によるキャリアの散乱が顕著となるため、本発明と同等の移動度を得ることはできない。   When the crystal grain size of the semiconductor film 102 is smaller than 1 μm, carrier scattering due to the grain boundary becomes significant, and thus mobility equivalent to that of the present invention cannot be obtained.

以上のように、本実施形態に係る半導体装置100は、その製造過程において、結晶核が発生しない範囲で結晶に近い密度の非晶質膜102Bを形成し、これを固相成長させることによって得られる半導体膜102Cを有している。この半導体膜102Cは、1μm以上の大粒径化した結晶粒子からなる多結晶膜であるため、従来よりも高いキャリア移動度を実現することができる。   As described above, the semiconductor device 100 according to the present embodiment is obtained by forming the amorphous film 102B having a density close to a crystal within a range in which crystal nuclei are not generated and performing solid phase growth in the manufacturing process. The semiconductor film 102C is formed. Since the semiconductor film 102C is a polycrystalline film made of crystal grains having a large particle size of 1 μm or more, higher carrier mobility than conventional can be realized.

本実施形態での半導体膜102Cでは、固相成長に必要な加熱温度が低減する。例えばGeにおいては、基材101にダメージを与えるような500℃以上の高温処理を行うことなく形成することができる。そのため、基材101として、LSIチップや耐熱性の低いガラス、プラスティック等を幅広く用いることができる。   In the semiconductor film 102C in this embodiment, the heating temperature necessary for solid phase growth is reduced. For example, in Ge, it can form without performing the high temperature process of 500 degreeC or more which damages the base material 101. FIG. Therefore, a wide variety of LSI chips, glass with low heat resistance, plastics, and the like can be used as the base material 101.

以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Hereinafter, the effects of the present invention will be made clearer by examples. In addition, this invention is not limited to a following example, In the range which does not change the summary, it can change suitably and can implement.

(実施例1)
分子線堆積法により、石英ガラス基板上に、基板温度Tを50℃〜200℃の範囲で設定した状態で、ゲルマニウム(Ge)粒子を堆積させ、厚さ100nmのGe薄膜を形成(蒸着)した(第一工程)。成膜レートを1nm/minとし、成膜時間を100分間とした。
Example 1
With a molecular beam deposition method, germanium (Ge) particles are deposited on a quartz glass substrate in a state where the substrate temperature Td is set in the range of 50 ° C. to 200 ° C. to form a Ge thin film with a thickness of 100 nm (vapor deposition). (First step). The film formation rate was 1 nm / min, and the film formation time was 100 minutes.

その後、第一工程を経た試料を、窒素雰囲気とした電気炉内に導入し、第一工程で形成したGe薄膜に対し、375℃で140時間、400℃で60時間、450℃で5時間の熱処理を行い、固相成長を促した(第二工程)。   Then, the sample which passed the 1st process was introduce | transduced in the electric furnace made into nitrogen atmosphere, with respect to Ge thin film formed at the 1st process, it is 140 hours at 375 degreeC, 60 hours at 400 degreeC, and 5 hours at 450 degreeC. Heat treatment was performed to promote solid phase growth (second step).

第一工程で形成したGe薄膜に対し、X線反射率測定(XRR)を行った結果を図3(a)のグラフに示す。グラフの横軸は試料の傾斜角(2θ)[deg]を示し、縦軸は反射光の強度[a.u.]を示している。   The graph of FIG. 3A shows the results of X-ray reflectivity measurement (XRR) performed on the Ge thin film formed in the first step. The horizontal axis of the graph represents the tilt angle (2θ) [deg] of the sample, and the vertical axis represents the intensity of reflected light [a. u. ] Is shown.

この測定結果に基づいて、第一工程で設定した基板温度Tに対応する、Ge薄膜の粒子密度を算出した。算出結果を図3(b)のグラフに示す。グラフの横軸は基板温度T[℃]を示し、縦軸は粒子密度[g/cm]を示している。Geが結晶化した場合の粒子密度は約5.34[g/cm]と推定され、これを一点鎖線で示している。 Based on this measurement result, the particle density of the Ge thin film corresponding to the substrate temperature Td set in the first step was calculated. The calculation results are shown in the graph of FIG. The horizontal axis of the graph represents the substrate temperature T d [° C.], and the vertical axis represents the particle density [g / cm 3 ]. When Ge is crystallized, the particle density is estimated to be about 5.34 [g / cm 3 ], which is indicated by a one-dot chain line.

粒子密度に着目すると、Ge薄膜の構成粒子は、基板温度Tを低く設定して形成した場合には、低密度の非晶質の構造をとるが、設定温度を上げるにつれて緻密化し、100℃以上とした場合には、粒子密度が結晶に漸近することが分かる。 Focusing on the particle density, the constituent particles of the Ge thin film have a low-density amorphous structure when formed at a low substrate temperature Td. In the case described above, it can be seen that the particle density is asymptotic to the crystal.

第二工程を経て得られた半導体装置に対し、ラマン分光測定を行ったところ、第一工程においてT>175℃とした場合においては、堆積時の核発生が確認された。 When the Raman spectroscopic measurement was performed on the semiconductor device obtained through the second step, nucleation during deposition was confirmed when T d > 175 ° C. in the first step.

また、Ge薄膜の形成時に設定する基板温度Tを高くするほど、第二工程での核の成長速度は上昇する傾向にあり、例えば、Tを100℃以上とした場合には、375℃、140時間程度の熱処理で結晶化することが確認された。この温度(375℃)は、プラスティック上での薄膜合成も可能とする温度である。 Further, as the substrate temperature Td set at the time of forming the Ge thin film is increased, the nucleus growth rate in the second step tends to increase. For example, when Td is set to 100 ° C. or higher, 375 ° C. It was confirmed that crystallization occurred by heat treatment for about 140 hours. This temperature (375 ° C.) is a temperature at which thin film synthesis on a plastic is possible.

第二工程を経て得られた多結晶Ge膜の構成粒子の粒径について、電子線後方散乱回折(EBSD)法を用いて評価した。   The particle diameter of the constituent particles of the polycrystalline Ge film obtained through the second step was evaluated using an electron beam backscatter diffraction (EBSD) method.

図4(a)〜(c)は、基板温度Tを50℃、100℃、200℃とした場合のEBSD画像である。これらのEBSD画像から、多結晶Ge膜の結晶方位は、Tを50℃、200℃とした場合にはランダムであるのに対し、Tを100℃とした場合には特定の方向に優先配向していることが分かる。また、Tを100℃とした場合には1μm以上の結晶粒が得られていることが分る。 4A to 4C are EBSD images when the substrate temperature Td is 50 ° C., 100 ° C., and 200 ° C. FIG. From these EBSD images, the crystal orientation of the polycrystalline Ge film is random when Td is 50 ° C. and 200 ° C., but priority is given to a specific direction when T d is 100 ° C. It can be seen that it is oriented. It can also be seen that when Td is 100 ° C., crystal grains of 1 μm or more are obtained.

図5は、多結晶Ge膜の構成粒子の粒径と、第一工程で設定した基板温度Tとの関係を示すグラフである。グラフの横軸は基板温度T[℃]を示し、縦軸は粒径[μm]を示している。ここには、第二工程の熱処理温度Tを375℃、400℃、450℃とした場合の粒径を、それぞれ四角プロット、三角プロット、円プロットで示している。 FIG. 5 is a graph showing the relationship between the particle diameter of the constituent particles of the polycrystalline Ge film and the substrate temperature Td set in the first step. The horizontal axis of the graph represents the substrate temperature T d [° C.], and the vertical axis represents the particle size [μm]. Here shows the heat treatment temperature T g of the second step 375 ° C., 400 ° C., the particle size in the case of a 450 ° C., square plot respectively, triangular plot, a circle plot.

Ge薄膜の粒径は、基板温度Tに強く依存しており、基板温度Tが125℃のときに最大値(約5μm)となっている。この結果は、下記〔1〕、〔2〕の事項を示唆している。
〔1〕基板温度Tが100〜150℃の範囲において、非晶質Geは、その密度を結晶レベルに近づけることにより、核成長が促進され、大粒径化する。
〔2〕基板温度Tが150℃より大きい範囲において、堆積時に発生した初期核は高密度であり、固相成長時に小粒径化を促す。
The particle size of the Ge thin film is strongly dependent on the substrate temperature T d, the substrate temperature T d is the maximum value (about 5 [mu] m) at 125 ° C.. This result suggests the following items [1] and [2].
[1] In the range where the substrate temperature Td is in the range of 100 to 150 ° C., the amorphous Ge has its density brought close to the crystal level, thereby promoting nucleus growth and increasing the particle size.
[2] In the range where the substrate temperature Td is higher than 150 ° C., the initial nuclei generated at the time of deposition are high density, and the particle size is promoted to be reduced during solid phase growth.

第二工程を経て得られた多結晶Ge膜の電気的特性について、van der Pauw法を用いて評価した。   The electrical characteristics of the polycrystalline Ge film obtained through the second step were evaluated using the van der Pauw method.

図6は、第一工程で設定した基板温度Tと、多結晶Ge膜の正孔移動度、および正孔密度との関係を示すグラフである。グラフの横軸は基板温度T[℃]を示し、縦軸は正孔移動度(左側)、正孔密度(右側)を示している。基板温度Tを125℃とした場合に、結晶粒径を反映し、多結晶Ge膜として最低レベルの正孔密度(3×1017cm−3)および最高の正孔移動度(340cm/V・s)が得られている。 FIG. 6 is a graph showing the relationship between the substrate temperature Td set in the first step, the hole mobility of the polycrystalline Ge film, and the hole density. The horizontal axis of the graph represents the substrate temperature T d [° C.], and the vertical axis represents the hole mobility (left side) and the hole density (right side). When the substrate temperature Td is 125 ° C., the crystal grain size is reflected, and the lowest hole density (3 × 10 17 cm −3 ) and the highest hole mobility (340 cm 2 / V · s) is obtained.

(実施例2)
分子線堆積法により、石英ガラス基板上に、基板温度Tを150℃で設定した状態で、ゲルマニウム(Ge)粒子を堆積させ、厚さ300nmのGe薄膜を形成(蒸着)した(第一工程)。成膜レートを1nm/minとし、成膜時間を300分間とした。
(Example 2)
With a molecular beam deposition method, germanium (Ge) particles were deposited on a quartz glass substrate with a substrate temperature Td set at 150 ° C. to form (evaporate) a Ge thin film having a thickness of 300 nm (first step). ). The film formation rate was 1 nm / min, and the film formation time was 300 minutes.

その後、第一工程を経た試料を、窒素雰囲気とした電気炉内に導入し、第一工程で形成したGe薄膜に対し、450℃で5時間の熱処理を行い、固相成長を促した(第二工程)。   After that, the sample after the first step was introduced into an electric furnace in a nitrogen atmosphere, and the Ge thin film formed in the first step was subjected to heat treatment at 450 ° C. for 5 hours to promote solid phase growth (first step). Two steps).

第二工程を経て得られた多結晶Ge膜の電気的特性について、実施例1と同様に評価したところ、実施例1よりもさらに高い正孔移動度380cm/V・sが得られた。 When the electrical characteristics of the polycrystalline Ge film obtained through the second step were evaluated in the same manner as in Example 1, a higher hole mobility of 380 cm 2 / V · s than in Example 1 was obtained.

本発明は、「高速、軽量かつフレキシブルな携帯型情報端末の開発」、「LSIの3次元化、多機能化」、「高効率と低コストを両立する多接合型太陽電池の開発」等に広く活用することができる。   The present invention includes "development of a high-speed, light-weight and flexible portable information terminal", "three-dimensional and multi-functional LSI", "development of a multi-junction solar cell that achieves both high efficiency and low cost", etc. Can be widely used.

100・・・半導体装置、101・・・基材、101a・・・基材の一面、
102、102A・・・粒子、102B、102C・・・半導体膜。
DESCRIPTION OF SYMBOLS 100 ... Semiconductor device, 101 ... Base material, 101a ... One surface of a base material,
102, 102A ... Particles, 102B, 102C ... Semiconductor films.

Claims (9)

基材と、
基材の一面に形成された半導体膜とを有し、
前記半導体膜は、平均粒径が1μm以上の結晶粒子からなる多結晶膜であることを特徴とする半導体装置。
A substrate;
A semiconductor film formed on one surface of the substrate;
The semiconductor device according to claim 1, wherein the semiconductor film is a polycrystalline film made of crystal grains having an average grain size of 1 μm or more.
前記半導体膜の厚さが、50nm以上であることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor film has a thickness of 50 nm or more. 前記結晶粒子がGeからなることを特徴とする請求項1または2のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the crystal particles are made of Ge. 前記結晶粒子がSiGeからなることを特徴とする請求項1または2のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the crystal particles are made of SiGe. 前記結晶粒子がSiからなることを特徴とする請求項1または2のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the crystal particles are made of Si. 請求項1〜5に記載の半導体装置の製造方法であって、
前記基材を加熱しながら、前記基材の一面に非晶質の半導体膜を形成する第一工程と、
前記半導体膜を加熱して、前記半導体膜の固相成長を促す第二工程と、を有し、
前記第一工程での加熱温度を、前記半導体膜に結晶核が発生する温度の50%以上100%未満となるように調整することを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device according to claim 1,
A first step of forming an amorphous semiconductor film on one surface of the substrate while heating the substrate;
Heating the semiconductor film to promote solid phase growth of the semiconductor film, and
A method for manufacturing a semiconductor device, wherein the heating temperature in the first step is adjusted to be 50% or more and less than 100% of a temperature at which crystal nuclei are generated in the semiconductor film.
前記第一工程での加熱温度を、前記半導体膜を構成する粒子の密度が、同じ材料の結晶における粒子の密度の98%以上102%未満となるように調整することを特徴とする請求項6に記載の半導体装置の製造方法。   7. The heating temperature in the first step is adjusted so that the density of particles constituting the semiconductor film is 98% or more and less than 102% of the density of particles in crystals of the same material. The manufacturing method of the semiconductor device as described in any one of Claims 1-3. 前記第一工程での加熱温度を、100℃以上700℃以下とすることを特徴とする請求項6または7のいずれかに記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 6, wherein the heating temperature in the first step is set to 100 ° C. or more and 700 ° C. or less. 前記第二工程での加熱温度を、350℃以上800℃以下とすることを特徴とする請求項6〜8のいずれか一項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 6, wherein a heating temperature in the second step is set to 350 ° C. or higher and 800 ° C. or lower.
JP2017037505A 2017-02-28 2017-02-28 Manufacturing method of semiconductor device Active JP6985711B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017037505A JP6985711B2 (en) 2017-02-28 2017-02-28 Manufacturing method of semiconductor device
JP2021007370A JP7360180B2 (en) 2017-02-28 2021-01-20 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017037505A JP6985711B2 (en) 2017-02-28 2017-02-28 Manufacturing method of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021007370A Division JP7360180B2 (en) 2017-02-28 2021-01-20 Semiconductor device and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018142672A true JP2018142672A (en) 2018-09-13
JP6985711B2 JP6985711B2 (en) 2021-12-22

Family

ID=63526821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017037505A Active JP6985711B2 (en) 2017-02-28 2017-02-28 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP6985711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037774A1 (en) 2021-09-08 2023-03-16 国立大学法人 筑波大学 Semiconductor apparatus and method for manufacturing semiconductor apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120872A (en) * 1989-10-04 1991-05-23 Seiko Epson Corp Semiconductor device and manufacture thereof
JPH03125422A (en) * 1989-10-09 1991-05-28 Canon Inc Growing method for crystal
JPH03126220A (en) * 1989-10-12 1991-05-29 Sanyo Electric Co Ltd Semiconductor element
JPH0422120A (en) * 1990-05-17 1992-01-27 Seiko Epson Corp Thin film semiconductor device
JPH05291136A (en) * 1992-04-15 1993-11-05 Canon Inc Non-single crystal germanium semiconductor
JPH07249574A (en) * 1994-01-19 1995-09-26 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor and manufacture of thin film transistor
JP2002094066A (en) * 2000-09-12 2002-03-29 Sony Corp Method for manufacturing thin-film transistor
JP2007201336A (en) * 2006-01-30 2007-08-09 Hitachi Ltd Forming method of semiconductor laminated body
WO2012164626A1 (en) * 2011-06-02 2012-12-06 パナソニック株式会社 Thin film semiconductor device manufacturing method, thin film semiconductor array substrate manufacturing method, crystal silicon thin film forming method, and crystal silicon thin film forming device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120872A (en) * 1989-10-04 1991-05-23 Seiko Epson Corp Semiconductor device and manufacture thereof
JPH03125422A (en) * 1989-10-09 1991-05-28 Canon Inc Growing method for crystal
JPH03126220A (en) * 1989-10-12 1991-05-29 Sanyo Electric Co Ltd Semiconductor element
JPH0422120A (en) * 1990-05-17 1992-01-27 Seiko Epson Corp Thin film semiconductor device
JPH05291136A (en) * 1992-04-15 1993-11-05 Canon Inc Non-single crystal germanium semiconductor
JPH07249574A (en) * 1994-01-19 1995-09-26 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor and manufacture of thin film transistor
JP2002094066A (en) * 2000-09-12 2002-03-29 Sony Corp Method for manufacturing thin-film transistor
JP2007201336A (en) * 2006-01-30 2007-08-09 Hitachi Ltd Forming method of semiconductor laminated body
WO2012164626A1 (en) * 2011-06-02 2012-12-06 パナソニック株式会社 Thin film semiconductor device manufacturing method, thin film semiconductor array substrate manufacturing method, crystal silicon thin film forming method, and crystal silicon thin film forming device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037774A1 (en) 2021-09-08 2023-03-16 国立大学法人 筑波大学 Semiconductor apparatus and method for manufacturing semiconductor apparatus
TWI825974B (en) * 2021-09-08 2023-12-11 國立大學法人筑波大學 Semiconductor device and method of manufacturing semiconductor device
KR20240027052A (en) 2021-09-08 2024-02-29 고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠 Semiconductor devices and methods of manufacturing semiconductor devices

Also Published As

Publication number Publication date
JP6985711B2 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
Alaskar et al. Towards van der Waals epitaxial growth of GaAs on Si using a graphene buffer layer
Li et al. Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics
US20080217622A1 (en) Novel, semiconductor-based, large-area, flexible, electronic devices
JP6739452B2 (en) Epitaxial Hexagonal Material on IBAD Textured Substrate
US9873938B2 (en) Depositing calcium fluoride template layers for solar cells
US20130298985A1 (en) Microelectronic structures including cuprous oxide semiconductors and having improved p-n heterojunctions
Teplin et al. A new approach to thin film crystal silicon on glass: Biaxially-textured silicon on foreign template layers
Dutta et al. Large grained single-crystalline-like germanium thin film on flexible Ni–W tape
JP6985711B2 (en) Manufacturing method of semiconductor device
US10600644B2 (en) Mono- and multilayer silicene prepared by plasma-enhanced chemical vapor deposition
US10727050B1 (en) Wafer-scale catalytic deposition of black phosphorus
US8236603B1 (en) Polycrystalline semiconductor layers and methods for forming the same
JP7360180B2 (en) Semiconductor device and its manufacturing method
Kuo et al. High quality gaas epilayers grown on Si substrate using 100 nm Ge buffer layer
Kabacelik et al. Structural and electrical analysis of poly-Ge films fabricated by e-beam evaporation for optoelectronic applications
JPH1192293A (en) Silicon carbide single crystal and its production
Chaurasia et al. Wafer-scale epitaxial germanium (100),(111),(110) films on silicon using liquid phase crystallization
Hashim et al. Room-temperature deposition of silicon thin films by RF magnetron sputtering
Ren et al. Growth optimization for self-catalyzed GaAs-based nanowires on metal-induced crystallized amorphous substrate
JP2017045974A (en) Production method for germanium layer, germanium layer, substrate with germanium layer, germanium nanodot, substrate with germanium nanowire, laminate, thin film transistor and semiconductor element
Wang et al. Crystallization of GeSn thin films deposited on Ge (100) substrate by magnetron sputtering
TWI827204B (en) Method for manufacturing crystallized laminated structure
Kumar et al. Optimization of controlled two-step liquid phase crystallization of Ge-on-Si
JPH04298020A (en) Manufacture of silicon thin film crystal
CN114761627B (en) Method for growing high-quality heteroepitaxial monoclinic gallium oxide crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210120

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210312

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210316

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210402

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210406

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210420

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210831

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210928

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211102

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211118

R150 Certificate of patent or registration of utility model

Ref document number: 6985711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150