JP2018141663A - Condition measurement device, condition measurement system, and condition measurement method - Google Patents

Condition measurement device, condition measurement system, and condition measurement method Download PDF

Info

Publication number
JP2018141663A
JP2018141663A JP2017034813A JP2017034813A JP2018141663A JP 2018141663 A JP2018141663 A JP 2018141663A JP 2017034813 A JP2017034813 A JP 2017034813A JP 2017034813 A JP2017034813 A JP 2017034813A JP 2018141663 A JP2018141663 A JP 2018141663A
Authority
JP
Japan
Prior art keywords
columnar structure
natural frequency
state
displacement
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017034813A
Other languages
Japanese (ja)
Other versions
JP6688242B2 (en
Inventor
水沼 守
Mamoru Mizunuma
守 水沼
加々見 修
Osamu Kagami
修 加々見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017034813A priority Critical patent/JP6688242B2/en
Publication of JP2018141663A publication Critical patent/JP2018141663A/en
Application granted granted Critical
Publication of JP6688242B2 publication Critical patent/JP6688242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently measure and check conditions of a columnar structure.SOLUTION: A natural frequency of a utility pole 100 is calculated from a displacement of the utility pole 100 as determined by analyzing time-series image data obtained by photographing stripe pattern markers 110 attached to the utility pole 100. On the basis of the natural frequency, conditions of the utility pole 100 are determined. It is thereby possible to measure and check the conditions of the utility pole 100 without going to a site.SELECTED DRAWING: Figure 1

Description

本発明は、構造物の状態を判定する技術に関する。   The present invention relates to a technique for determining the state of a structure.

主に1965〜1975年頃に急速に整備された社会基盤設備は老朽化しているものも増えてきており、点検・修理更改の必要性が高まっている。電力・通信用電柱、道路標識、街路灯、交通信号機、送電線・送電鉄塔、工場等プラント内設備などが、鋼構造物の腐食、コンクリート構造物のひび割れ・剥離などに起因する損壊倒壊という事態に至る以前に、その状態を点検によって把握することが急務となってきている。   Social infrastructure facilities that were rapidly developed mainly around 1965-1975 are increasingly aging, and the need for inspection and repairs is increasing. Electricity / communication utility poles, road signs, street lights, traffic lights, power transmission lines / transmission towers, plant facilities such as factories are damaged due to corrosion of steel structures, cracks / peeling of concrete structures, etc. Before arriving, it has become an urgent task to grasp the condition by inspection.

構造物の状態を把握する手段の一つとして、ディジタルカメラで撮影された画像から構造物の変位分布を評価する全視野計測がある。例えば、橋梁に取り付けたマーカーを定点固定したディジタルカメラで撮影し、マーカーを取り付けた箇所の変位を測定することで、橋梁のたわみを計測できる。全視野計測には、ランダム模様のマーカーを用いるディジタル画像相関法と規則模様を用いるモアレ法がある。モアレ法では、橋梁のトラス構造自体をマーカーに利用して変位を計測できる。   One means for grasping the state of the structure is full-field measurement that evaluates the displacement distribution of the structure from an image taken by a digital camera. For example, the deflection of a bridge can be measured by photographing a marker attached to the bridge with a digital camera with a fixed point and measuring the displacement of the marker attached location. The full-field measurement includes a digital image correlation method using a random pattern marker and a moire method using a regular pattern. The Moire method can measure displacement using the bridge truss structure itself as a marker.

一方で、非特許文献1には、モータ駆動に圧電素子機構を組み入れた技術によって1μradの角度位置決め精度が実現できる撮影機材のポインティング技術が開示されている。この技術を用いると、撮影機材から5km先で、5mmの精度の角度位置決めが可能であり、5km先にある電柱頭頂部に接続されている上部支線(鋼より線)をディジタルカメラ画角内に正確に取り込むに十分な位置決め精度に到達している。さらに、非特許文献2で報告されている高精度校正装置では、±0.5秒の誤差での角度校正が可能な装置が報告されており、十分な技術成熟があると判断される状況にある。   On the other hand, Non-Patent Document 1 discloses a pointing technique for photographing equipment capable of realizing an angular positioning accuracy of 1 μrad by a technique in which a piezoelectric element mechanism is incorporated in a motor drive. Using this technology, it is possible to perform angular positioning with an accuracy of 5 mm at a distance of 5 km from the photographic equipment, and the upper branch line (steel strand) connected to the top of the utility pole at a distance of 5 km is within the angle of view of the digital camera. The positioning accuracy is high enough to capture accurately. Furthermore, in the high-precision calibration device reported in Non-Patent Document 2, a device capable of angle calibration with an error of ± 0.5 seconds has been reported, and it is judged that there is sufficient technical maturity. is there.

“光衛星間通信実験衛星「きらり」(OICETS)プロジェクトに係る事後評価いついて”、[online]、宇宙航空研究開発機構、[2016年12月15日検索]、インターネット〈URL:http://www.mext.go.jp/b_menu/shingi/uchuu/reports/08031301/003.pdf〉"After the ex-post evaluation of the optical inter-satellite communication experimental satellite" KIRARI "(OICETS) project", [online], Japan Aerospace Exploration Agency, [December 15, 2016 search], Internet <URL: http: // www.mext.go.jp/b_menu/shingi/uchuu/reports/08031301/003.pdf> 渡部司、益田正、梶谷誠、藤本弘之、中山貫、「ロータリーエンコーダの高精度校正装置の開発(第1報)−校正システムと基礎実験−」、精密工学会誌、公益社団法人精密工学会、2001年、第67巻、第7号、pp.1091-1095Tsukasa Watanabe, Tadashi Masuda, Makoto Sugaya, Hiroyuki Fujimoto, Tsuru Nakayama, “Development of high-precision calibration system for rotary encoder (1st report)-Calibration system and basic experiment-”, Journal of Japan Society for Precision Engineering, Japan Society for Precision Engineering, 2001, Vol. 67, No. 7, pp.1091-1095 “無電柱化対策に関する調査の結果”、[online]、総務省、[2016年12月15日検索]、インターネット〈URL:http://www.soumu.go.jp/main_content/000308785.pdf〉“Results of investigation on non-electric pole measures”, [online], Ministry of Internal Affairs and Communications, [December 15, 2016 search], Internet <URL: http://www.soumu.go.jp/main_content/000308785.pdf>

柱状構造物の状態を知るためには、検査者が柱状構造物のある現地まで赴き点検作業を実施する必要があった。市街地や郊外に設置されている柱状構造物は非常に多くの数が存在するため(非特許文献3)、短時間で効率良く点検しなければならないという課題がある。   In order to know the state of the columnar structure, it was necessary for the inspector to go to the site where the columnar structure was located and carry out the inspection work. Since there are a great number of columnar structures installed in urban areas and suburbs (Non-patent Document 3), there is a problem that inspection must be performed efficiently in a short time.

本発明は、上記に鑑みてなされたものであり、柱状構造物の状態を効率よく計測点検することを目的とする。   The present invention has been made in view of the above, and an object thereof is to efficiently measure and inspect the state of a columnar structure.

第1の本発明に係る状態測定装置は、柱状構造物に付した所定のパターンを撮影した時系列画像データを入力する入力手段と、前記時系列画像データから前記柱状構造物に発生している変位を求める変位算出手段と、前記変位から前記柱状構造物の固有振動数を求める固有振動数算出手段と、前記固有振動数に基づいて前記柱状構造物の状態を判定する判定手段と、を有することを特徴とする。   The state measuring apparatus according to the first aspect of the present invention is an input means for inputting time-series image data obtained by photographing a predetermined pattern attached to a columnar structure, and is generated in the columnar structure from the time-series image data. Displacement calculating means for obtaining displacement, natural frequency calculating means for obtaining the natural frequency of the columnar structure from the displacement, and determining means for determining the state of the columnar structure based on the natural frequency It is characterized by that.

第2の本発明に係る状態測定システムは、柱状構造物に付した所定のパターンを撮影する撮影装置と、前記柱状構造物の三次元位置情報を地図サーバから取得し、当該三次元位置情報に基づいて前記撮影装置が前記所定のパターンを撮影できるように前記撮影装置の角度位置決めを行う可動台と、前記撮影装置が撮影した時系列画像データを入力する入力手段、前記時系列画像データから前記柱状構造物に発生している変位を求める変位算出手段、前記変位から前記柱状構造物の固有振動数を求める固有振動数算出手段、前記固有振動数に基づいて前記柱状構造物の状態を判定する判定手段を有する状態測定装置と、を備えることを特徴とする。   A state measurement system according to a second aspect of the present invention acquires a three-dimensional position information of a photographing device for photographing a predetermined pattern attached to a columnar structure and the columnar structure from a map server, and includes the three-dimensional position information. Based on a movable base for positioning the angle of the photographing device so that the photographing device can photograph the predetermined pattern, input means for inputting time-series image data photographed by the photographing device, and the time-series image data from the time-series image data Displacement calculating means for obtaining displacement generated in the columnar structure, natural frequency calculating means for obtaining the natural frequency of the columnar structure from the displacement, and determining the state of the columnar structure based on the natural frequency And a state measuring device having a determining means.

第3の本発明に係る状態測定方法は、柱状構造物に付した所定のパターンを撮影した時系列画像データを入力するステップと、前記時系列画像データから前記柱状構造物に発生している変位を求めるステップと、前記変位から前記柱状構造物の固有振動数を求めるステップと、前記固有振動数に基づいて前記柱状構造物の状態を判定するステップと、を有することを特徴とする。   A state measuring method according to a third aspect of the present invention includes a step of inputting time-series image data obtained by photographing a predetermined pattern attached to a columnar structure, and a displacement generated in the columnar structure from the time-series image data. And a step of determining a natural frequency of the columnar structure from the displacement, and a step of determining a state of the columnar structure based on the natural frequency.

本発明によれば、柱状構造物の状態を効率よく計測点検することができる。   According to the present invention, it is possible to efficiently measure and inspect the state of the columnar structure.

本実施形態の状態測定装置を含む全体構成図である。It is a whole lineblock diagram containing the state measuring device of this embodiment. 二次元ディジタルパターンマーカーの例を示す図である。It is a figure which shows the example of a two-dimensional digital pattern marker. 本実施形態の状態測定装置の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the state measurement apparatus of this embodiment. 電柱にひび割れが発生した場合の固有振動数の変化を示すグラフである。It is a graph which shows the change of the natural frequency when the crack generate | occur | produces in the utility pole. 固有振動数データの変化を時系列に示すグラフである。It is a graph which shows the change of natural frequency data in time series.

図1は、本実施形態の状態測定装置を含む全体構成図である。同図に示す状態測定装置1は、望遠鏡4を取り付けたディジタルカメラ3で遠隔の電柱100を撮影した画像を入力し、画像を解析して電柱100の変位を求め、求めた変位を固有振動数に変換し、得られた固有振動数に基づいて電柱100の状態(ひび割れ等の有無)を判定する。なお、電柱100に限らず街路灯などの他の柱状構造物にも同様に適用できる。   FIG. 1 is an overall configuration diagram including a state measuring apparatus according to the present embodiment. The state measurement apparatus 1 shown in FIG. 1 inputs an image obtained by photographing a remote utility pole 100 with a digital camera 3 to which a telescope 4 is attached, analyzes the image to obtain the displacement of the utility pole 100, and obtains the obtained displacement as a natural frequency. Based on the obtained natural frequency, the state of the utility pole 100 (the presence or absence of cracks or the like) is determined. In addition, it is applicable not only to the utility pole 100 but also to other columnar structures such as street lamps.

図1に示す状態測定装置1は、入力部11、変位算出部12、振動数算出部13、及び判定部14を備える。状態測定装置1が備える各部は、演算処理装置、記憶装置等を備えたコンピュータにより構成して、各部の処理がプログラムによって実行されるものとしてもよい。このプログラムは状態測定装置1が備える記憶装置に記憶されており、磁気ディスク、光ディスク、半導体メモリ等の記録媒体に記録することも、ネットワークを通して提供することも可能である。   The state measurement apparatus 1 shown in FIG. 1 includes an input unit 11, a displacement calculation unit 12, a frequency calculation unit 13, and a determination unit 14. Each unit included in the state measurement device 1 may be configured by a computer including an arithmetic processing device, a storage device, and the like, and the processing of each unit may be executed by a program. This program is stored in a storage device included in the state measurement device 1, and can be recorded on a recording medium such as a magnetic disk, an optical disk, or a semiconductor memory, or provided through a network.

入力部11は、電柱100を撮影した時系列画像データを入力する。   The input unit 11 inputs time series image data obtained by photographing the utility pole 100.

変位算出部12は、入力した時系列画像データを解析し、電柱100に発生している変位を求める。変位の解析には、電柱100に付されたマーカー110に応じて、ディジタル画像相関法又はモアレ縞位相解析法を用いることができる。   The displacement calculation unit 12 analyzes the input time-series image data and obtains the displacement generated in the utility pole 100. In the analysis of the displacement, a digital image correlation method or a moire fringe phase analysis method can be used according to the marker 110 attached to the utility pole 100.

電柱100には、縞状パターンのマーカー110が付されている。電柱100に設置する二次元ディジタルマーカーは、画像処理により電柱100の変位を測定できるものであればよい。図2に、電柱100に取り付ける二次元ディジタルパターンマーカーの例を示す。なお、電柱100上部に設置された支線や吊り線が鋼より線の場合、鋼より線の外観形状が縞状パターンとして観測できる。遠隔から投影機またはレーザ走査器などを使用して二次元ディジタルパターンを電柱100に投影してもよい。   The utility pole 100 is provided with a striped pattern marker 110. The two-dimensional digital marker installed on the utility pole 100 may be any one that can measure the displacement of the utility pole 100 by image processing. In FIG. 2, the example of the two-dimensional digital pattern marker attached to the utility pole 100 is shown. In addition, when the branch line and suspension line installed in the upper part of the utility pole 100 are steel strands, the external shape of a steel strand can be observed as a striped pattern. A two-dimensional digital pattern may be projected onto the utility pole 100 using a projector or a laser scanner from a remote location.

振動数算出部13は、求めた変位から電柱100の固有振動数を算出する。   The frequency calculation unit 13 calculates the natural frequency of the utility pole 100 from the obtained displacement.

判定部14は、固有振動数に基づいて電柱100の状態を判定する。例えば、予め定めた規格値と比較、予め蓄積しておいた統計データとの比較、あるいは、固有振動数の時系列データの統計値の変化を検出することにより、電柱100の状態を判定する。   The determination unit 14 determines the state of the utility pole 100 based on the natural frequency. For example, the state of the utility pole 100 is determined by comparing with a predetermined standard value, comparing with statistical data stored in advance, or detecting a change in statistical value of time-series data of natural frequency.

ディジタルカメラ3は、二軸角度位置決め機構を有する可動台5の上に積載されて、高所、例えば市街地の建造物(通信用・送電用鉄塔や高層建築物)の上部に配置される。角度位置決め機構には、非特許文献1に記載された、積層圧電素子による1軸制御により±0.92μrad(捕捉時)、±0.64μrad(追尾時)の角度制御技術を用いることができる。   The digital camera 3 is mounted on a movable table 5 having a biaxial angle positioning mechanism, and is disposed on a high place, for example, an upper part of a building in an urban area (communication / power transmission tower or high-rise building). As the angle positioning mechanism, an angle control technique of ± 0.92 μrad (at the time of capture) and ± 0.64 μrad (at the time of tracking) can be used by uniaxial control by the multilayer piezoelectric element described in Non-Patent Document 1.

高精度角度位置決め技術を十分に活用するには、水平方向だけでも全周360度に対して十万分の57、仰角10度に対して十万分の16を選択する必要がある。多数の遠隔の電柱100を撮影するために、二方向で約一千万分の1の角度位置決めを手動操作で行うのは困難である。そこで、三次元地図サーバ2を可動台5に接続し、三次元地図サーバ2から得られる電柱100の位置情報に基づいて可動台5を制御し、電柱100に付与されたマーカー110をディジタルカメラ3の画角内に収めるとよい。電柱100の計測が終了した後は、次の近隣の検査対象物に対して角度位置決めを行い、継続して同様の点検計測を繰り返す。これにより、街路上の検査対象物へのポインティングが自動化できる。三次元地図サーバ2が保持する三次元ディジタル地図に関しては、自動運転自動車の開発と関連して急速に整備されることが予想される。   In order to fully utilize the high-accuracy angle positioning technique, it is necessary to select 57 / 100,000 for 360 degrees for the entire circumference and 16 / 100,000 for the elevation angle of 10 degrees even in the horizontal direction alone. In order to photograph a large number of remote utility poles 100, it is difficult to manually perform angular positioning of about 1 / 10,000,000 in two directions. Therefore, the 3D map server 2 is connected to the movable platform 5, the movable platform 5 is controlled based on the position information of the utility pole 100 obtained from the 3D map server 2, and the marker 110 attached to the utility pole 100 is attached to the digital camera 3. It should be within the angle of view. After the measurement of the utility pole 100 is completed, angle positioning is performed for the next neighboring inspection object, and the same inspection measurement is repeated continuously. Thereby, pointing to the inspection object on a street can be automated. The three-dimensional digital map held by the three-dimensional map server 2 is expected to be rapidly maintained in connection with the development of an autonomous driving vehicle.

次に、本実施形態の状態測定装置の処理の流れについて説明する。   Next, a processing flow of the state measurement device according to the present embodiment will be described.

図3は、本実施形態の状態測定装置の処理の流れを示すフローチャートである。   FIG. 3 is a flowchart showing the flow of processing of the state measurement apparatus of this embodiment.

入力部11は、電柱100を撮影した時系列の画像データを入力する(ステップS11)。例えば、時刻t1に電柱100を撮影した画像データと時刻t2に電柱100を撮影した画像データを入力する。   The input unit 11 inputs time-series image data obtained by photographing the utility pole 100 (step S11). For example, image data obtained by photographing the utility pole 100 at time t1 and image data obtained by photographing the utility pole 100 at time t2 are input.

変位算出部12は、画像データを解析して変位を求める(ステップS12)。変位算出部12は、画像データのパターンを追跡、マッチングをとって、時系列の画像データの中から正規化された相関係数の最適値となる領域を探す処理を行って全視野の変形等データを得るディジタル画像相関法の処理を行い、電柱100の歪み、変位を求める。以下の参考文献1に記載された方法を用いて歪み、変位を求めてもよい。
参考文献1:森本吉春、外2名、「サンプリングモアレ法による変位・ひずみ分布計測」、Journal of the Vacuum Society of Japan、日本真空学会、2011年3月11日、第54巻、第1号、pp.32-38
The displacement calculation unit 12 analyzes the image data to obtain the displacement (step S12). The displacement calculation unit 12 tracks and matches the pattern of the image data, and performs a process of searching for an area that is the optimum value of the normalized correlation coefficient from the time-series image data to deform the entire field of view, etc. A digital image correlation method for obtaining data is performed to determine the distortion and displacement of the utility pole 100. The method described in Reference Document 1 below may be used to determine strain and displacement.
Reference 1: Yoshiharu Morimoto, 2 others, “Displacement and strain distribution measurement by sampling moire method”, Journal of the Vacuum Society of Japan, Japan Vacuum Society, March 11, 2011, Vol. 54, No. 1, pp.32-38

振動数算出部13は、変位から固有振動数を算出する(ステップS13)。電柱100の固有振動数ω=2πf,f=v/λは、変位xから速度v=dx/dtを求めて算出できる。
参考文献2:国松直、「シリーズ『振動に関わる苦情への対応』−第2回 振動の基礎:振動の発生と伝搬−」、機関誌ちょうせい、総務省公害等調整委員会、平成25年8月、第74号
The frequency calculator 13 calculates the natural frequency from the displacement (step S13). The natural frequency ω = 2πf and f = v / λ of the utility pole 100 can be calculated by obtaining the velocity v = dx / dt from the displacement x.
Reference 2: Nao Kunimatsu, “Series“ Corresponding to Complaints Concerning Vibration ”-2nd Basis of Vibration: Generation and Propagation of Vibration”, Journal of the Ministry of Internal Affairs and Communications, Pollution Control Committee, 2013 August 74th

判定部14は、固有振動数に基づいて電柱100の状態を判定する(ステップS14)。以下、判定部14による状態の判定方法の例を説明する。   The determination unit 14 determines the state of the utility pole 100 based on the natural frequency (step S14). Hereinafter, an example of a state determination method by the determination unit 14 will be described.

第1の判定方法は、固有振動数を規格値と比較して異常を判定する方法である。   The first determination method is a method for determining abnormality by comparing the natural frequency with a standard value.

図4は、電柱にひび割れが発生した場合の固有振動数の変化を示すグラフである。実線は、ひび割れが発生していない電柱の固有振動数を示し、点線は、ひび割れが発生した電柱の固有振動数を示す。同図に示すように、電柱にひび割れが発生すると固有振動数が低下する。そこで、判定部14は、規格値を基に、固有振動数が規格値を超えて低下した場合に、電柱100に異常があると判定する。   FIG. 4 is a graph showing changes in the natural frequency when a crack occurs in the utility pole. The solid line indicates the natural frequency of the utility pole without cracks, and the dotted line indicates the natural frequency of the utility pole with cracks. As shown in the figure, the natural frequency decreases when a crack occurs in the utility pole. Therefore, the determination unit 14 determines that there is an abnormality in the utility pole 100 when the natural frequency decreases beyond the standard value based on the standard value.

第2の判定方法は、固有振動数を統計データと比較して異常を判定する方法である。   The second determination method is a method for determining abnormality by comparing the natural frequency with statistical data.

例えば、予め、電柱に人為的に異なるサイズのひび割れを作り、電柱の固有振動数の変化量のデータを蓄積しておき、蓄積されている固有振動数の変化量のデータの中から、ある変化量を選択し、その変化量を基準として異常を判定する。多数のデータを回帰分析して相関関数を求めておき、相関関数を用いて異常を判定する。   For example, artificially create cracks of different sizes in the power pole in advance, accumulate data on the amount of change in the natural frequency of the power pole, and change from the accumulated data on the amount of change in the natural frequency. An amount is selected, and abnormality is determined based on the amount of change. A correlation function is obtained by performing regression analysis on a large number of data, and abnormality is determined using the correlation function.

第3の判定方法は、固有振動数の時系列データに基づいて異常を判定する方法である。   The third determination method is a method for determining abnormality based on time-series data of natural frequencies.

図5に示すように、時系列の固有振動数データの所定の期間あるいは所定の個数の統計値に閾値を超える変化があった場合に異常と判定する。例えば、固有振動数が大きく変化した前後10点のデータの統計値をそれぞれ求めて比較し、統計値の差分が閾値以上であった場合に異常と判定する。   As shown in FIG. 5, it is determined that there is an abnormality when a predetermined period of time-series natural frequency data or a predetermined number of statistical values change beyond a threshold value. For example, the statistical values of the data at 10 points before and after the natural frequency has changed greatly are obtained and compared, and if the difference between the statistical values is greater than or equal to the threshold value, it is determined as abnormal.

以上説明したように、本実施形態によれば、電柱100に付与された縞状パターンのマーカー110を撮影した時系列画像データを入力し、入力した時系列画像データを解析して電柱100に発生している変位を求め、求めた変位から電柱100の固有振動数を算出し、固有振動数に基づいて電柱100の状態を判定することにより、現地に赴くことなく、電柱100の状態を計測点検することができる。計測点検の結果、必要である場合にのみ、現地に出向き、詳細な点検修理・更改を実施すればよい。   As described above, according to the present embodiment, time-series image data obtained by photographing the stripe-shaped pattern marker 110 applied to the utility pole 100 is input, and the input time-series image data is analyzed to be generated in the utility pole 100. The state of the utility pole 100 is measured and checked without going to the site by calculating the natural frequency of the utility pole 100 from the obtained displacement and determining the state of the utility pole 100 based on the natural frequency. can do. It is only necessary to go to the site and perform detailed inspection / repair / renewal if necessary as a result of the measurement / inspection.

本実施形態によれば、三次元地図サーバ2から得られる位置情報に基づいてディジタルカメラ3を取り付けた可動台5を制御し、電柱100に付与されたマーカー110をディジタルカメラ3の画角内に収めることにより、検査対象物へのポインティングを自動化できる。   According to this embodiment, the movable base 5 to which the digital camera 3 is attached is controlled based on the position information obtained from the 3D map server 2, and the marker 110 attached to the utility pole 100 is within the angle of view of the digital camera 3. By storing, pointing to the inspection object can be automated.

なお、関東広域圏(半径50〜100km)を地デジ放送の放送エリアとする東京スカイツリーの塔頂近くに、本実施形態の状態測定装置を設置することができれば、人口3000万人の生活圏内にある膨大な柱状社会基盤設備の計測点検の可能性がある。東京都下にある電柱数は、約111万本である。このうち、大気状態が観測に最適ではない場合にも計測点検可能と考えられる半径30km(2800km)に限っても、本実施形態の状態測定装置で計測点検可能なものは5〜60万本存在する。埼玉、千葉、神奈川エリアを含めて考えると200万本以上は計測点検可能であり、建物の影などで観測できないもの9割を除外しても、20万本以上は点検計測可能であると推量される。さらに、日本全国にある電柱は、約1200万本とされ、前記同様の密度で計測点検装置を設置することができれば100万本以上の計測点検が可能であると推量される。これ以外にも、道路標識、街路灯、交通信号機、送電線・送電鉄塔などに、本願発明による状態測定方法を適用することで、さらに多数の設備状態測定が可能になると考えられる。 In addition, if the state measuring device of this embodiment can be installed near the tower of Tokyo Sky Tree, which uses the Kanto wide area (radius 50-100 km) as a broadcasting area for terrestrial digital broadcasting, it is within the living area of a population of 30 million people. There is a possibility of measuring and checking the huge columnar social infrastructure facilities in the area. The number of utility poles under Tokyo is about 1.1 million. Among these, even if the radius is limited to 30 km (2800 km 2 ), which can be measured and checked even when the atmospheric condition is not optimal for observation, 5 to 600,000 can be measured and checked with the state measuring apparatus of this embodiment. Exists. Including the Saitama, Chiba, and Kanagawa areas, 2 million or more can be measured and inspected. Even if 90% of objects that cannot be observed due to the shadows of buildings are excluded, 200,000 or more can be inspected and measured. Is done. Furthermore, the number of utility poles in Japan is approximately 12 million, and it is estimated that more than 1 million measurement and inspection can be performed if measurement and inspection devices can be installed at the same density as described above. In addition to this, it is considered that a large number of equipment state measurements can be performed by applying the state measurement method according to the present invention to road signs, street lights, traffic lights, power transmission lines and power transmission towers, and the like.

1…状態測定装置
11…入力部
12…変位算出部
13…振動数算出部
14…判定部
2…三次元地図サーバ
3…ディジタルカメラ
4…望遠鏡
5…可動台
100…電柱
110…マーカー
DESCRIPTION OF SYMBOLS 1 ... State measuring apparatus 11 ... Input part 12 ... Displacement calculation part 13 ... Frequency calculation part 14 ... Determination part 2 ... Three-dimensional map server 3 ... Digital camera 4 ... Telescope 5 ... Movable stand 100 ... Electric pole 110 ... Marker

Claims (6)

柱状構造物に付した所定のパターンを撮影した時系列画像データを入力する入力手段と、
前記時系列画像データから前記柱状構造物に発生している変位を求める変位算出手段と、
前記変位から前記柱状構造物の固有振動数を求める固有振動数算出手段と、
前記固有振動数に基づいて前記柱状構造物の状態を判定する判定手段と、
を有することを特徴とする状態測定装置。
An input means for inputting time-series image data obtained by photographing a predetermined pattern attached to the columnar structure;
A displacement calculating means for obtaining a displacement generated in the columnar structure from the time-series image data;
A natural frequency calculating means for obtaining a natural frequency of the columnar structure from the displacement;
Determination means for determining the state of the columnar structure based on the natural frequency;
A state measuring device comprising:
前記判定手段は、前記固有振動数と規格値とを比較して前記柱状構造物の状態を判定することを特徴とする請求項1に記載の状態測定装置。   The state measuring apparatus according to claim 1, wherein the determination unit determines the state of the columnar structure by comparing the natural frequency with a standard value. 前記柱状構造物の固有振動数の統計データを記憶した記憶手段を備え、
前記判定手段は、前記固有振動数算出手段が求めた前記固有振動数と前記統計データとを比較して前記柱状構造物の状態を判定することを特徴とする請求項1に記載の状態測定装置。
Comprising storage means for storing statistical data of the natural frequency of the columnar structure;
2. The state measuring apparatus according to claim 1, wherein the determination unit determines the state of the columnar structure by comparing the natural frequency obtained by the natural frequency calculation unit and the statistical data. .
前記柱状構造物の固有振動数の時系列データを記憶する記憶手段を備え、
前記判定手段は、所定の期間あるいは所定の個数の前記時系列データの統計値の変化量に基づいて前記柱状構造物の状態を判定することを特徴とする請求項1に記載の状態測定装置。
Storage means for storing time-series data of the natural frequency of the columnar structure;
The state measuring apparatus according to claim 1, wherein the determination unit determines the state of the columnar structure based on a change amount of a statistical value of the time series data of a predetermined period or a predetermined number.
柱状構造物に付した所定のパターンを撮影する撮影装置と、
前記柱状構造物の三次元位置情報を地図サーバから取得し、当該三次元位置情報に基づいて前記撮影装置が前記所定のパターンを撮影できるように前記撮影装置の角度位置決めを行う可動台と、
前記撮影装置が撮影した時系列画像データを入力する入力手段、前記時系列画像データから前記柱状構造物に発生している変位を求める変位算出手段、前記変位から前記柱状構造物の固有振動数を求める固有振動数算出手段、前記固有振動数に基づいて前記柱状構造物の状態を判定する判定手段を有する状態測定装置と、
を備えることを特徴とする状態測定システム。
A photographing device for photographing a predetermined pattern attached to the columnar structure;
A movable base that obtains three-dimensional position information of the columnar structure from a map server, and performs angle positioning of the photographing apparatus so that the photographing apparatus can photograph the predetermined pattern based on the three-dimensional position information;
Input means for inputting time-series image data photographed by the photographing apparatus, displacement calculation means for obtaining a displacement generated in the columnar structure from the time-series image data, and a natural frequency of the columnar structure from the displacement. A natural frequency calculating means to be obtained, a state measuring device having a determining means for determining the state of the columnar structure based on the natural frequency;
A state measurement system comprising:
柱状構造物に付した所定のパターンを撮影した時系列画像データを入力するステップと、
前記時系列画像データから前記柱状構造物に発生している変位を求めるステップと、
前記変位から前記柱状構造物の固有振動数を求めるステップと、
前記固有振動数に基づいて前記柱状構造物の状態を判定するステップと、
を有することを特徴とする状態測定方法。
Inputting time-series image data obtained by photographing a predetermined pattern attached to the columnar structure;
Obtaining a displacement occurring in the columnar structure from the time-series image data;
Obtaining a natural frequency of the columnar structure from the displacement;
Determining the state of the columnar structure based on the natural frequency;
The state measuring method characterized by having.
JP2017034813A 2017-02-27 2017-02-27 Condition measurement system Active JP6688242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017034813A JP6688242B2 (en) 2017-02-27 2017-02-27 Condition measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017034813A JP6688242B2 (en) 2017-02-27 2017-02-27 Condition measurement system

Publications (2)

Publication Number Publication Date
JP2018141663A true JP2018141663A (en) 2018-09-13
JP6688242B2 JP6688242B2 (en) 2020-04-28

Family

ID=63527803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017034813A Active JP6688242B2 (en) 2017-02-27 2017-02-27 Condition measurement system

Country Status (1)

Country Link
JP (1) JP6688242B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098101A (en) * 2018-12-17 2020-06-25 株式会社フジタ Structure soundness evaluation apparatus
JP2020148672A (en) * 2019-03-14 2020-09-17 株式会社東芝 Soundness evaluation system and soundness evaluation method
KR20210008661A (en) * 2019-07-15 2021-01-25 주식회사 지오멕스소프트 Method for monitoring cracks on surface of structure by tracking of markers in image data
JP2021099328A (en) * 2019-12-20 2021-07-01 財團法人船舶▲曁▼▲海▼洋▲産▼▲業▼研發中心 System and method for monitoring structure
JP7011093B1 (en) 2021-02-08 2022-01-26 株式会社フジタ Displacement measuring device and displacement measuring method
CN116186634A (en) * 2023-04-26 2023-05-30 青岛新航农高科产业发展有限公司 Intelligent management system for construction data of building engineering
US11914206B2 (en) 2021-09-30 2024-02-27 Fujitsu Limited Computer-readable non-transitory medium, abnormality detection device and abnormality detection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162096A (en) * 1998-11-30 2000-06-16 Kurimoto Ltd Measuring method for vibration of civil enginnering and construction structure
JP2006226716A (en) * 2005-02-15 2006-08-31 Jfe R & D Corp Damage detection method and system of structure
JP2007333445A (en) * 2006-06-13 2007-12-27 Central Res Inst Of Electric Power Ind Method for determining integrity of concrete structural member
JP2009198366A (en) * 2008-02-22 2009-09-03 Railway Technical Res Inst Soundness diagnosis method of structure
JP2015072006A (en) * 2013-09-04 2015-04-16 Ntn株式会社 State monitoring device of wind power generator
JP2018017620A (en) * 2016-07-28 2018-02-01 公益財団法人鉄道総合技術研究所 State change detection apparatus, and state change detection program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162096A (en) * 1998-11-30 2000-06-16 Kurimoto Ltd Measuring method for vibration of civil enginnering and construction structure
JP2006226716A (en) * 2005-02-15 2006-08-31 Jfe R & D Corp Damage detection method and system of structure
JP2007333445A (en) * 2006-06-13 2007-12-27 Central Res Inst Of Electric Power Ind Method for determining integrity of concrete structural member
JP2009198366A (en) * 2008-02-22 2009-09-03 Railway Technical Res Inst Soundness diagnosis method of structure
JP2015072006A (en) * 2013-09-04 2015-04-16 Ntn株式会社 State monitoring device of wind power generator
JP2018017620A (en) * 2016-07-28 2018-02-01 公益財団法人鉄道総合技術研究所 State change detection apparatus, and state change detection program

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098101A (en) * 2018-12-17 2020-06-25 株式会社フジタ Structure soundness evaluation apparatus
JP2020148672A (en) * 2019-03-14 2020-09-17 株式会社東芝 Soundness evaluation system and soundness evaluation method
JP7062607B2 (en) 2019-03-14 2022-05-06 株式会社東芝 Soundness evaluation system and soundness evaluation method
KR20210008661A (en) * 2019-07-15 2021-01-25 주식회사 지오멕스소프트 Method for monitoring cracks on surface of structure by tracking of markers in image data
KR102227031B1 (en) 2019-07-15 2021-03-12 주식회사 지오멕스소프트 Method for monitoring cracks on surface of structure by tracking of markers in image data
JP2021099328A (en) * 2019-12-20 2021-07-01 財團法人船舶▲曁▼▲海▼洋▲産▼▲業▼研發中心 System and method for monitoring structure
JP7206247B2 (en) 2019-12-20 2023-01-17 財團法人船舶▲曁▼▲海▼洋▲産▼▲業▼研發中心 Structural monitoring system and method
JP7011093B1 (en) 2021-02-08 2022-01-26 株式会社フジタ Displacement measuring device and displacement measuring method
JP2022120950A (en) * 2021-02-08 2022-08-19 株式会社フジタ Displacement measurement device and displacement measurement method
US11914206B2 (en) 2021-09-30 2024-02-27 Fujitsu Limited Computer-readable non-transitory medium, abnormality detection device and abnormality detection method
CN116186634A (en) * 2023-04-26 2023-05-30 青岛新航农高科产业发展有限公司 Intelligent management system for construction data of building engineering
CN116186634B (en) * 2023-04-26 2023-07-07 青岛新航农高科产业发展有限公司 Intelligent management system for construction data of building engineering

Also Published As

Publication number Publication date
JP6688242B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP6688242B2 (en) Condition measurement system
Sony et al. A literature review of next‐generation smart sensing technology in structural health monitoring
Duque et al. Synthesis of unmanned aerial vehicle applications for infrastructures
JP6161071B2 (en) Equipment state detection method and apparatus
Kromanis et al. A multiple camera position approach for accurate displacement measurement using computer vision
Kalaitzakis et al. Dynamic structural health monitoring using a DIC-enabled drone
Riveiro et al. An innovative method for remote measurement of minimum vertical underclearance in routine bridge inspection
Clemens et al. Uncertainties associated with laser profiling of concrete sewer pipes for the quantification of the interior geometry
US20200292411A1 (en) Displacement component detection apparatus, displacement component detection method, and computer-readable recording medium
Nasimi et al. A methodology for measuring the total displacements of structures using a laser–camera system
CN111243083A (en) Three-dimensional modeling method based on unmanned aerial vehicle oblique photogrammetry technology
JP7074043B2 (en) Equipment status detector, equipment status detection method, and program
Sabato et al. Noncontact sensing techniques for AI-aided structural health monitoring: a systematic review
Dizaji et al. Full-field non-destructive image-based diagnostics of a structure using 3D digital image correlation and laser scanner techniques
KR20190013467A (en) Live metrology of an object during manufacturing or other operations
Zhou et al. Mechanical state inversion method for structural performance evaluation of existing suspension bridges using 3D laser scanning
Panella et al. Cost-benefit analysis of rail tunnel inspection for photogrammetry and laser scanning
Ferreira Digital video applied to air pollution emission monitoring and modelling
CN110276092B (en) Outdoor GIS equipment temperature displacement live-action measurement and evaluation method
Wojciechowski et al. Detection of Critical Infrastructure Elements Damage with Drones
Gražulis et al. The horizontal deformation analysis of high-rise buildings
Piot et al. New Tools for the Monitoring of Cooling Towers
Gao et al. 3D measurement and feature extraction for metal nuts
Wang et al. Application of unmanned aerial vehicle (UAV) technology on damage inspection of reinforced concrete structures
Chou et al. Application of an unmanned aerial vehicle for crack measurement using image calibration supported by laser projectors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200403

R150 Certificate of patent or registration of utility model

Ref document number: 6688242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150