JP2018138912A - Method for grasping chlorine state of solid fuel - Google Patents

Method for grasping chlorine state of solid fuel Download PDF

Info

Publication number
JP2018138912A
JP2018138912A JP2017034050A JP2017034050A JP2018138912A JP 2018138912 A JP2018138912 A JP 2018138912A JP 2017034050 A JP2017034050 A JP 2017034050A JP 2017034050 A JP2017034050 A JP 2017034050A JP 2018138912 A JP2018138912 A JP 2018138912A
Authority
JP
Japan
Prior art keywords
solid fuel
chlorine
ratio
fuel
grasping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017034050A
Other languages
Japanese (ja)
Inventor
祐太 斉藤
Yuta Saito
祐太 斉藤
潔 櫻木
Kiyoshi Sakuragi
潔 櫻木
哲也 庄司
Tetsuya Shoji
哲也 庄司
円 大高
Madoka Otaka
円 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2017034050A priority Critical patent/JP2018138912A/en
Publication of JP2018138912A publication Critical patent/JP2018138912A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PROBLEM TO BE SOLVED: To easily grasp the state of chlorine contained in a solid fuel on the basis of color information.SOLUTION: A method for grasping a chlorine state of a solid fuel includes: causing the lightness Land/or hue angle hab of the solid fuel to correspond to the ratio of solid carbon in the solid fuel (fuel property) (step S5); and causing a content ratio of chlorine to correspond on the basis of the ratio of solid carbon to grasp the content ratio of chlorine on the basis of the lightness Land/or hue angle hab (step S6).SELECTED DRAWING: Figure 1

Description

本発明は、固体燃料の塩素状況把握方法に関し、例えば、バイオマスを炭化して固体燃料とした際の塩素の含有割合を把握する塩素状況把握方法に関する。   The present invention relates to a method for grasping chlorine status of solid fuel, for example, a method for grasping chlorine status for grasping the content ratio of chlorine when biomass is carbonized to be solid fuel.

例えば、火力発電所では、未利用な資源として扱われていたバイオマスの燃料利用が進められている。特に、カーボンニュートラルな木質バイオマスの利用が進められている。(例えば、特許文献1)。特許文献1では、木質バイオマスを熱分解することにより、炭化物とガスを生成し、炭化物をボイラの燃料として用いて電力を得ることが提案されている。   For example, in a thermal power plant, the use of biomass fuel that has been treated as an unused resource is being promoted. In particular, the use of carbon neutral woody biomass is being promoted. (For example, patent document 1). Patent Document 1 proposes that pyrolysis of woody biomass generates carbide and gas, and uses the carbide as fuel for the boiler to obtain electric power.

また、バイオマスから作られた炭化物を石炭に混ぜてボイラで燃焼させて電力を得ることが考えられている。このような状況から、バイオマスの使用量が拡大しつつある。しかし、バイオマスの需要増加に伴い、石炭と混焼させることができる高品位なバイオマスの入手が困難になったり、バイオマスの調達価格が上昇したりすることが予想される。   In addition, it is considered to obtain electric power by mixing carbide made from biomass with coal and burning it with a boiler. Under such circumstances, the amount of biomass used is expanding. However, with the increase in demand for biomass, it is expected that it will become difficult to obtain high-quality biomass that can be co-fired with coal, and the procurement price of biomass will increase.

このため、現状では、石炭と混焼させることができないバイオマス、例えば、海に近い場所で伐採された樹木で、塩素が多く含まれている燃料としては低品位なバイオマス(木質バイオマス)の使用が検討されている。塩素が多量に含まれているバイオマスを燃料として使用することができれば、石炭火力発電所に適用可能なバイオマス種の拡大が図れると共に、バイオマスの供給量増大に伴って、入手に必要なコストを抑制することができると考えられている。   Therefore, at present, the use of biomass that cannot be co-fired with coal, for example, low-grade biomass (woody biomass) as a fuel that contains a lot of chlorine in trees that have been harvested near the sea Has been. If biomass containing a large amount of chlorine can be used as a fuel, it will be possible to expand the types of biomass applicable to coal-fired power plants, and to reduce the cost required for acquisition as the amount of biomass supplied increases. Is believed to be able to.

バイオマスを炭化して得られる固体燃料は、単位重量当たりの塩素含有率が高くなるため、炭化処理の過程で塩素を除去することが好ましい。塩素を除去する場合、塩素の含有割合を把握しておくことで、適切に塩素を除去することが可能になる。塩素の除去が適切に行えるようになれば、安価なバイオマスを使用したい要望に応えることが可能になる。   Since the solid fuel obtained by carbonizing biomass has a high chlorine content per unit weight, it is preferable to remove chlorine during the carbonization process. When removing chlorine, it becomes possible to remove chlorine appropriately by grasping the content ratio of chlorine. If chlorine can be removed appropriately, it will be possible to meet the desire to use inexpensive biomass.

このような状況から、塩素が含まれるバイオマスを炭化して固体燃料を得る製造プロセスにおいて、塩素の含有状況を容易に検出できる技術の出現が望まれているのが現状である。   Under such circumstances, in the manufacturing process for carbonizing biomass containing chlorine to obtain a solid fuel, the present situation is that the emergence of a technology capable of easily detecting the content of chlorine is desired.

特開2014−205730号公報JP 2014-205730 A

本発明は上記状況に鑑みてなされたもので、固体燃料の塩素の含有状況を容易に把握することができる固体燃料の塩素状況把握方法を提供することを目的とする。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a method for grasping the chlorine status of a solid fuel that can easily grasp the chlorine content of the solid fuel.

特に、バイオマス(木質バイオマス)を炭化して炭化物(固体燃料)を得た際に、塩素の含有状況を容易に把握することができる固体燃料の塩素状況把握方法を提供することを目的とする。   In particular, an object of the present invention is to provide a solid fuel chlorine status grasping method that can easily grasp the chlorine content when biomass (woody biomass) is carbonized to obtain a carbide (solid fuel).

上記目的を達成するための請求項1に係る本発明の固体燃料の塩素状況把握方法は、固体燃料の色情報を測定し、得られた色情報と前記固体燃料の燃料性状を対応させ、前記燃料性状に対する前記固体燃料の塩素含有割合を対応させることで、前記固体燃料の塩素含有割合を把握することを特徴とする。   In order to achieve the above object, the solid fuel chlorine status grasping method of the present invention according to claim 1 measures the color information of the solid fuel, associates the obtained color information with the fuel property of the solid fuel, and The chlorine content ratio of the solid fuel is grasped by associating the chlorine content ratio of the solid fuel with the fuel property.

請求項1に係る本発明では、色情報と固体燃料の燃料性状を対応させ、燃料性状に基づいて塩素含有割合を対応させることで、色情報に基づいて塩素含有割合を把握することができる。このため、色情報を基に、固体燃料の塩素の含有状況を容易に把握することが可能になる。   In this invention which concerns on Claim 1, color content and the fuel property of a solid fuel are matched, and the chlorine content rate can be grasped | ascertained based on color information by making a chlorine content rate respond | correspond based on a fuel property. For this reason, it becomes possible to easily grasp the chlorine content of the solid fuel based on the color information.

そして、請求項2に係る本発明の固体燃料の塩素状況把握方法は、請求項1に記載の固体燃料の塩素状況把握方法において、前記燃料性状は、前記固体燃料の燃料割合であることを特徴とする。   According to a second aspect of the present invention, there is provided a solid fuel chlorine status grasping method according to the present invention, wherein the fuel property is a fuel ratio of the solid fuel. And

請求項2に係る本発明では、燃料性状として、燃料割合(例えば、固定炭素量)に基づいて塩素含有割合を対応させることができる。   In this invention which concerns on Claim 2, a chlorine content rate can be made to correspond as a fuel property based on a fuel rate (for example, fixed carbon amount).

また、請求項3に係る本発明の固体燃料の塩素状況把握方法は、請求項1もしくは請求項2に記載の固体燃料の塩素状況把握方法において、前記色情報は、明るさの度合いを示す明度の情報と、複数の色度の軸を含む平面内の基準軸に対する角度である色相角の情報の少なくとも一つにより得られる情報であることを特徴とする。   According to a third aspect of the present invention, there is provided the solid fuel chlorine status grasping method according to the first or second aspect of the present invention, wherein the color information is a brightness indicating a degree of brightness. And information on hue angle which is an angle with respect to a reference axis in a plane including a plurality of chromaticity axes.

請求項3に係る本発明では、色情報として、明るさの度合いを示す明度の色情報、もしくは(及び)、色度の状況を示す色相角の色情報を用いることができる。   In the present invention according to claim 3, lightness color information indicating the degree of brightness or (and) hue angle color information indicating the chromaticity status can be used as the color information.

また、請求項4に係る本発明の固体燃料の塩素状況把握方法は、請求項1から請求項3のいずれか一項に記載の固体燃料の塩素状況把握方法において、前記固体燃料の原料は、バイオマスであることを特徴とする。   Moreover, the solid fuel chlorine status grasping method of the present invention according to claim 4 is the solid fuel chlorine status grasping method according to any one of claims 1 to 3, wherein the raw material of the solid fuel is: It is characterized by being biomass.

請求項4に係る本発明では、バイオマスを炭化した固体燃料の塩素の割合を把握することができる。バイオマスとしては、林地残材、間伐材、未利用樹、製材廃材、建設廃材等の木質バイオマスを用いることが好適である。また、バイオマスとしては、稲、麦わら、もみ殻等の未利用バイオマスや、古紙、家畜の糞尿、食品残渣、汚泥等の廃棄物バイオマスを用いることも可能である。   In this invention which concerns on Claim 4, the ratio of the chlorine of the solid fuel which carbonized biomass can be grasped | ascertained. As the biomass, it is preferable to use woody biomass such as forest residue, thinned wood, unused trees, sawmill waste, construction waste, and the like. Moreover, as biomass, it is also possible to use unused biomass such as rice, straw, and rice husk, and waste biomass such as waste paper, livestock manure, food residue, and sludge.

本発明の固体燃料の塩素状況把握方法は、色情報を基に、固体燃料の塩素の含有状況を容易に把握することが可能になる。   The solid fuel chlorine status grasping method of the present invention makes it possible to easily grasp the chlorine content of the solid fuel based on the color information.

本発明の固体燃料の塩素状況把握方法は、特に、バイオマス(木質バイオマス)を炭化して炭化物(固体燃料)を得た際に、色情報を基に、塩素の含有状況を容易に把握することが可能になる。   The method for grasping chlorine status of solid fuel according to the present invention is to easily grasp the chlorine content status based on color information, especially when carbonized biomass (woody biomass) to obtain carbide (solid fuel). Is possible.

本発明の一実施例に係る固体燃料の塩素状況把握方法を実施する工程図である。It is process drawing which implements the chlorine condition grasping | ascertaining method of the solid fuel which concerns on one Example of this invention. 色情報を説明する色空間の概念図である。It is a conceptual diagram of the color space explaining color information. 固定炭素の割合と明るさの度合いの関係を表すグラフである。It is a graph showing the relationship between the ratio of fixed carbon and the degree of brightness. 固定炭素の割合と色相角の関係を表すグラフである。It is a graph showing the relationship between the ratio of fixed carbon and a hue angle. 塩素の含有割合と固定炭素割合の関係を表すグラフである。It is a graph showing the relationship between the content rate of chlorine and the fixed carbon rate. 塩素の含有割合と明るさの度合いの関係を表すグラフである。It is a graph showing the relationship between the content rate of chlorine and the degree of brightness. 塩素の含有割合と色相角の関係を表すグラフである。It is a graph showing the relationship between the content rate of chlorine and the hue angle. 色差情報の計測値と固体燃料の性状分析値の一例の表図である。It is a table | surface figure of an example of the measured value of color difference information, and the property analysis value of a solid fuel.

本実施例の固体燃料の塩素状況把握方法は、バイオマス(木質バイオマス)を炭化して固体燃料として使用する際に、色情報(色差計で測定した色差情報)を基にして、固体燃料の塩素の割合を容易に把握するようにしたものである。木質バイオマスの塩素の割合が把握できることで、炭化物を使用する側で、塩素の処理を的確に実施することが可能になる。   The method of grasping the chlorine status of the solid fuel of the present embodiment is based on color information (color difference information measured with a color difference meter) when carbonizing biomass (woody biomass) and using it as solid fuel. The ratio is easily grasped. Being able to grasp the proportion of chlorine in the woody biomass makes it possible to accurately carry out the chlorine treatment on the side where the carbide is used.

固体燃料の原料となるバイオマスとしては、林地残材、間伐材、未利用樹、製材廃材、建設廃材等の木質バイオマスを用いることが好適である。また、原料のバイオマスとしては、稲、麦わら、もみ殻等の未利用バイオマスや、古紙、家畜の糞尿、食品残渣、汚泥等の廃棄物バイオマスを用いることも可能である。   As biomass used as a raw material for solid fuel, it is preferable to use woody biomass such as forest land residual materials, thinned wood, unused trees, lumber waste, construction waste. In addition, as raw material biomass, it is also possible to use unused biomass such as rice, straw, and rice husks, and waste biomass such as waste paper, livestock manure, food residues, and sludge.

図1、図2に基づいて本発明の固体燃料の塩素状況把握方法の概略を説明する。図1には本発明の一実施例に係る固体燃料の塩素状況把握方法を実施する工程説明、図2には色差情報を説明する色空間の概念を示してある。   The outline of the solid state chlorine status grasping method of the present invention will be described based on FIGS. FIG. 1 shows a process for carrying out a solid fuel chlorine status grasping method according to an embodiment of the present invention, and FIG. 2 shows a color space concept for explaining color difference information.

原料であるバイオマス(木質バイオマス)を炭化して炭化燃料(固体燃料)とし、図1に示すように、色差計を用いて固体燃料の色情報を測定する(ステップS1)。色差計の計測では、固体燃料を粉砕し、例えば、200メッシュのふるいにかけて測定用の試料とすることで、均一な状態で色度を計測することができる。   The raw material biomass (woody biomass) is carbonized into carbonized fuel (solid fuel), and color information of the solid fuel is measured using a color difference meter as shown in FIG. 1 (step S1). In the measurement by the color difference meter, the chromaticity can be measured in a uniform state by pulverizing the solid fuel and, for example, using a 200 mesh sieve as a measurement sample.

色差計によって得られる情報は、例えば、図2に示すL表色系の色空間によって整理することができる。L表色系において、Lは、黒色から白色までを縦軸で表して明るさの度合いを表現した明度を示したもので、黒色に対する白色の度合いを0から100として表現している。 The information obtained by the color difference meter can be organized, for example, by the color space of the L * a * b * color system shown in FIG. In the L * a * b * color system, L * represents the lightness expressed by the vertical axis from black to white and expressing the degree of brightness. The degree of white to black is expressed as 0 to 100 doing.

尚、表色系として、CIE表色系(RGB、XYZ、xyY、L、L等)以外にも、マンセル表色系、オストワルト表色系等、種々の表色系を用いることも可能である。 In addition to the CIE color systems (RGB, XYZ, xyY, L * a * b * , L * u * v *, etc.), there are various color systems such as Munsell color system, Ostwald color system, etc. It is also possible to use a color system.

表色系において、aは色度を示したものであり、aが、赤色/緑色、bが、黄色/青色の度合いを表現したもので、aがプラス側では赤色を、マイナス側では緑色を表し、bがプラス側では黄色を、マイナス側では青色を表現している。そして、aの色度の軸を含む平面が明度の縦軸に直交した平面を構成し、aとbとがなす角度が(基準軸に対する角度)、色相角habとして定義され、次式で表すことができる。 In the L * a * b * color system, a * b * represents chromaticity, a * represents red / green, b * represents the degree of yellow / blue, and a * Represents red on the plus side, green on the minus side, b * represents yellow on the plus side, and blue on the minus side. The plane including the chromaticity axis of a * b * constitutes a plane orthogonal to the vertical axis of brightness, and the angle formed by a * and b * (angle relative to the reference axis) is defined as the hue angle hab And can be expressed as:

色相角:hab=tan−1(b/aHue angle: hab = tan −1 (b * / a * )

参考として、図8には、色情報の測定値と固体燃料の性状分析値の一例を示してある。図8は、L表色系の測定値(及び、色相角hab)に対する性状の状況となっている。 For reference, FIG. 8 shows an example of color information measurement values and solid fuel property analysis values. FIG. 8 shows the state of properties with respect to the measured values (and hue angle hab) of the L * a * b * color system.

図1に戻り、ステップS2で色情報であるLを取得する。Lを取得した後、ステップS3で明度Lと固体燃料の燃料性状である固定炭素の状況(固定炭素の割合)との関係を導出すると共に(具体的には後述する)、ステップS4で色相角habと固体燃料の性状である固定炭素の状況(固定炭素の割合)との関係を導出する(具体的には後述する)。 Returning to FIG. 1, color information L * a * b * is acquired in step S2. After acquiring L * a * b * , in step S3, the relationship between the lightness L * and the state of fixed carbon (the ratio of fixed carbon) that is the fuel property of the solid fuel is derived (specifically described later). In step S4, a relationship between the hue angle hab and the state of fixed carbon (the ratio of fixed carbon) which is the property of the solid fuel is derived (specifically described later).

ステップS5では、ステップS3で導出した固体燃料の固定炭素の割合、及び、ステップS4で導出した固体燃料の固定炭素の割合と、固体燃料に含まれる塩素の割合(塩素含有割合)を対応させる(具体的には後述する)。そして、ステップS6で、色差計によって得られた情報から固体燃料の塩素含有割合を把握する。   In step S5, the ratio of the fixed carbon of the solid fuel derived in step S3 and the ratio of the fixed carbon of the solid fuel derived in step S4 correspond to the ratio of chlorine contained in the solid fuel (chlorine content ratio) ( Specific details will be described later). Then, in step S6, the chlorine content ratio of the solid fuel is grasped from the information obtained by the color difference meter.

つまり、ステップS3の処理(明度Lと固定炭素の割合を導出する処理)と、ステップS4の処理(色相角habと固定炭素の割合を導出する処理)を行った後、ステップS5で固体燃料に含まれる塩素の割合を対応させ、ステップS6で、固体燃料の塩素含有割合を把握する。 That is, after performing the process of step S3 (process for deriving the lightness L * and the ratio of fixed carbon) and the process of step S4 (process for deriving the ratio of the hue angle hab and the fixed carbon), in step S5 the solid fuel In step S6, the chlorine content ratio of the solid fuel is determined.

尚、ステップS3の処理だけを実行し、明度Lと固定炭素の割合を導出することだけで固体燃料に含まれる塩素の割合を対応させることも可能である。また、ステップS4の処理だけを実行し、色相角habと固定炭素の割合を導出することだけで固体燃料に含まれる塩素の割合を対応させることも可能である。 It is also possible to make the ratio of chlorine contained in the solid fuel correspond by only executing the processing of step S3 and deriving the lightness L * and the ratio of fixed carbon. Also, it is possible to make the proportion of chlorine contained in the solid fuel correspond by only executing the processing of step S4 and deriving the hue angle hab and the proportion of fixed carbon.

上述したように、色情報と固体燃料の固定炭素の割合(燃料性状)を対応させ、固定炭素の割合に基づいて塩素含有割合を対応させることで、色情報に基づいて塩素含有割合を把握することができる。このため、色情報を基に、固体燃料の塩素の含有状況を容易に把握することが可能になる。   As described above, the color information and the proportion of fixed carbon in the solid fuel (fuel properties) are matched, and the chlorine content is matched based on the proportion of the fixed carbon, thereby grasping the chlorine content based on the color information. be able to. For this reason, it becomes possible to easily grasp the chlorine content of the solid fuel based on the color information.

尚、燃料性状としては、固定炭素の割合の他に、高位発熱量(HHV)等、他の燃料性状を適用することが可能である。   As the fuel properties, other fuel properties such as high heating value (HHV) can be applied in addition to the ratio of fixed carbon.

図3に基づいて固体燃料の燃料性状と明度Lとの関係の一例(ステップS3の一具体例)を説明する。図3(a)には固定炭素の割合の関係と明度Lの関係、図3(b)には高位発熱量(HHV)と明度Lの関係を示してある。 An example of the relationship between the fuel property of the solid fuel and the lightness L * will be described based on FIG. 3 (one specific example of step S3). FIG. 3A shows the relationship between the ratio of fixed carbon and the lightness L * , and FIG. 3B shows the relationship between the higher heating value (HHV) and the lightness L * .

図3(a)に示すように、明度Lが大きくなると固定炭素割合が低くなり、一定の明るさになると固定炭素割合は低い状態に保たれることが確認されている。このため、明度Lが大きくなるにしたがって、固定炭素の割合が低下することがわかる。また、図3(b)に示すように、明度Lが大きくなると高位発熱量(HHV)が低下することが確認されている。 As shown in FIG. 3A, it has been confirmed that the fixed carbon ratio decreases as the lightness L * increases, and the fixed carbon ratio is maintained low when the brightness is constant. For this reason, it turns out that the ratio of fixed carbon falls as the lightness L * becomes large. Further, as shown in FIG. 3B, it has been confirmed that the higher heating value (HHV) decreases as the lightness L * increases.

図4に基づいて固体燃料の燃料性状と色相角hab(度)の関係の一例(ステップS4の一具体例)を説明する。図4(a)には固定炭素の割合と色相角habの関係、図4(b)には高位発熱量(HHV)と色相角habの関係を示してある。   An example of the relationship between the fuel properties of the solid fuel and the hue angle hab (degree) (a specific example of step S4) will be described with reference to FIG. FIG. 4 (a) shows the relationship between the ratio of fixed carbon and the hue angle hab, and FIG. 4 (b) shows the relationship between the higher heating value (HHV) and the hue angle hab.

図4(a)に示すように、色相角habがマイナス側の場合、固定炭素割合が高く、色相角habがマイナス側から徐々に大きくなると(黄色bの度合いに近づくと)、固定炭素割合が直線状に低下することが確認されている。このため、色相角habが大きくなるにしたがって、固定炭素の割合が低下することがわかる。また、図4(b)に示すように、色相角habが大きくなると高位発熱量(HHV)が低下することが確認されている。 As shown in FIG. 4A, when the hue angle hab is on the minus side, the fixed carbon ratio is high, and when the hue angle hab gradually increases from the minus side (approaching the degree of yellow b * ), the fixed carbon ratio. Has been confirmed to decrease linearly. For this reason, it turns out that the ratio of fixed carbon falls as the hue angle hab becomes large. Further, as shown in FIG. 4B, it has been confirmed that the higher heating value (HHV) decreases as the hue angle hab increases.

図5に基づいて塩素含有割合と固定炭素の割合の関係の一例(ステップS5の一具体例)を説明する。図5には塩素含有割合と固定炭素の割合の関係を示してある。   An example of the relationship between the chlorine content ratio and the fixed carbon ratio (one specific example of step S5) will be described with reference to FIG. FIG. 5 shows the relationship between the chlorine content ratio and the fixed carbon ratio.

図5に示すように、固定炭素の割合が高くなるにしたがって塩素含有割合が低くなり、固定炭素の割合が所定の割合を超えると塩素含有割合は低い状態に保たれることが確認されている。このため、固定炭素の割合が高くなるにしたがって塩素含有割合が低下することがわかる。   As shown in FIG. 5, it is confirmed that the chlorine content ratio decreases as the fixed carbon ratio increases, and that the chlorine content ratio is kept low when the fixed carbon ratio exceeds a predetermined ratio. . For this reason, it turns out that a chlorine content rate falls as the rate of fixed carbon becomes high.

図6、図7に基づいて塩素含有割合と色情報の関係の一例(ステップS6の一具体例)を説明する。図6には塩素含有割合と明るさの度合いの関係、図7には塩素含有割合と色相角の関係を示してある。   An example of the relationship between the chlorine content ratio and the color information (one specific example of step S6) will be described with reference to FIGS. FIG. 6 shows the relationship between the chlorine content and the brightness level, and FIG. 7 shows the relationship between the chlorine content and the hue angle.

図3(a)の結果である、明度Lが大きくなるにしたがって、固定炭素の割合が低下する点、及び、図5の結果である、固定炭素の割合が高くなるにしたがって塩素含有割合が低下する点に基づき、明度Lが大きくなるにしたがって、塩素含有割合が高くなることがわかる。 The result of FIG. 3A is that the ratio of fixed carbon decreases as the lightness L * increases, and the result of FIG. 5 is that the chlorine content ratio increases as the ratio of fixed carbon increases. Based on the decreasing point, it can be seen that the chlorine content increases as the lightness L * increases.

つまり、図6に示すように、明度Lが大きくなるにしたがって、塩素含有割合が高くなることを把握することができる。このため、塩素含有割合が低い固体燃料を得るためには、明度Lが小さくなるように、バイオマス(木質バイオマス)を炭化して固体燃料とすることが好ましいことがわかる。 That is, as shown in FIG. 6, it can be understood that the chlorine content ratio increases as the lightness L * increases. For this reason, in order to obtain a solid fuel having a low chlorine content, it is preferable to carbonize biomass (woody biomass) to obtain a solid fuel so that the lightness L * is small.

図4(a)の結果である、色相角habが大きくなるにしたがって、固定炭素の割合が低下する点、及び、図5の結果である、固定炭素の割合が高くなるにしたがって塩素含有割合が低下する点に基づき、色相角habが大きくなるにしたがって、塩素含有割合が高くなることがわかる。   The ratio of the fixed carbon decreases as the hue angle hab, which is the result of FIG. 4A, increases, and the chlorine content ratio increases as the ratio of the fixed carbon, which is the result of FIG. 5, increases. Based on the decreasing point, it can be seen that as the hue angle hab increases, the chlorine content increases.

つまり、図7に示すように、色相角habが大きくなるにしたがって、塩素含有割合が高くなることを把握することができる。このため、塩素含有割合が低い固体燃料を得るためには、色相角habが小さくなるように(マイナスになるように)、バイオマス(木質バイオマス)を炭化して固体燃料とすることが好ましいことがわかる。   That is, as shown in FIG. 7, it can be understood that the chlorine content increases as the hue angle hab increases. For this reason, in order to obtain a solid fuel having a low chlorine content, it is preferable to carbonize biomass (woody biomass) to obtain a solid fuel so that the hue angle hab becomes small (becomes negative). Recognize.

上述したように、色情報である明度L、及び(もしくは)、色相角habと固体燃料の固定炭素の割合(燃料性状)を対応させ、固定炭素の割合に基づいて塩素含有割合を対応させることで、明度L、及び(もしくは)、色相角habに基づいて塩素含有割合を把握することができる。 As described above, the lightness L * , which is color information, and / or the hue angle hab and the fixed carbon ratio (fuel property) of the solid fuel are made to correspond, and the chlorine content ratio is made to correspond based on the fixed carbon ratio. Thus, the chlorine content ratio can be grasped based on the lightness L * and / or the hue angle hab.

このため、明度L、及び(もしくは)、色相角habを基に、固体燃料の塩素の含有状況を容易に把握することが可能になり、例えば、塩素含有割合が低い固体燃料を得るためには、明度Lが小さく、色相角habが小さくなるように(マイナスになるように)、バイオマス(木質バイオマス)を炭化して固体燃料とすることが好適であることがわかる。 For this reason, it becomes possible to easily grasp the chlorine content of the solid fuel based on the lightness L * and / or the hue angle hab. For example, in order to obtain a solid fuel having a low chlorine content It is understood that it is preferable to carbonize biomass (woody biomass) into a solid fuel so that the lightness L * is small and the hue angle hab is small (becomes negative).

上述した固体燃料の塩素状況把握方法は、色情報を基に、固体燃料の塩素の含有状況を容易に把握することが可能になる。   The above-described method for grasping the chlorine status of the solid fuel makes it possible to easily grasp the chlorine content of the solid fuel based on the color information.

本発明は、固体燃料の塩素状況把握方法の産業分野で利用することができる。
INDUSTRIAL APPLICABILITY The present invention can be used in the industrial field of a method for grasping chlorine status of solid fuel.

Claims (4)

固体燃料の色情報を測定し、得られた色情報と前記固体燃料の燃料性状を対応させ、前記燃料性状に対する前記固体燃料の塩素含有割合を対応させることで、前記固体燃料の塩素含有割合を把握する
ことを特徴とする固体燃料の塩素状況把握方法。
The color information of the solid fuel is measured, the obtained color information and the fuel property of the solid fuel are made to correspond, and the chlorine content rate of the solid fuel is made to correspond to the fuel property. A method for grasping chlorine status of solid fuel, characterized by grasping.
請求項1に記載の固体燃料の塩素状況把握方法において、
前記燃料性状は、前記固体燃料の燃料割合である
ことを特徴とする固体燃料の塩素状況把握方法。
In the method for grasping the chlorine status of the solid fuel according to claim 1,
The fuel property is a fuel ratio of the solid fuel. A method for grasping a chlorine state of a solid fuel, characterized in that:
請求項1もしくは請求項2に記載の固体燃料の塩素状況把握方法において、
前記色情報は、明るさの度合いを示す明度の情報と、複数の色度の軸を含む平面内の基準軸に対する角度である色相角の情報の少なくとも一つにより得られる情報である
ことを特徴とする固体燃料の塩素状況把握方法。
In the method for grasping the chlorine status of the solid fuel according to claim 1 or 2,
The color information is information obtained by at least one of lightness information indicating a degree of brightness and hue angle information that is an angle with respect to a reference axis in a plane including a plurality of chromaticity axes. To grasp the chlorine status of solid fuel.
請求項1から請求項3のいずれか一項に記載の固体燃料の塩素状況把握方法において、
前記固体燃料の原料は、バイオマスである
ことを特徴とする固体燃料の塩素状況把握方法。
In the method for grasping the chlorine status of the solid fuel according to any one of claims 1 to 3,
The solid fuel raw material is biomass. The solid fuel chlorine status ascertaining method.
JP2017034050A 2017-02-24 2017-02-24 Method for grasping chlorine state of solid fuel Pending JP2018138912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017034050A JP2018138912A (en) 2017-02-24 2017-02-24 Method for grasping chlorine state of solid fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017034050A JP2018138912A (en) 2017-02-24 2017-02-24 Method for grasping chlorine state of solid fuel

Publications (1)

Publication Number Publication Date
JP2018138912A true JP2018138912A (en) 2018-09-06

Family

ID=63451402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017034050A Pending JP2018138912A (en) 2017-02-24 2017-02-24 Method for grasping chlorine state of solid fuel

Country Status (1)

Country Link
JP (1) JP2018138912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217305A1 (en) * 2019-04-23 2020-10-29 岩谷産業株式会社 Method for producing biomass fuel and biomass fuel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140474A (en) * 1997-11-04 1999-05-25 Kawasaki Steel Corp Production of plastic solid fuel
JP2003206490A (en) * 2002-01-15 2003-07-22 National Institute Of Advanced Industrial & Technology Biomass semi-carbonized compressed fuel precursor and method for producing biomass semi-carbonized compact fuel
JP2011068846A (en) * 2009-08-26 2011-04-07 Creative Co Ltd Solid fuel
JP2013194110A (en) * 2012-03-19 2013-09-30 Taiheiyo Cement Corp Method for producing solid fuel, solid fuel, and method for using the same
US20140109469A1 (en) * 2012-10-24 2014-04-24 Fred L. Jones Process for minimizing dioxin formation during waste and biomass utilization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140474A (en) * 1997-11-04 1999-05-25 Kawasaki Steel Corp Production of plastic solid fuel
JP2003206490A (en) * 2002-01-15 2003-07-22 National Institute Of Advanced Industrial & Technology Biomass semi-carbonized compressed fuel precursor and method for producing biomass semi-carbonized compact fuel
JP2011068846A (en) * 2009-08-26 2011-04-07 Creative Co Ltd Solid fuel
JP2013194110A (en) * 2012-03-19 2013-09-30 Taiheiyo Cement Corp Method for producing solid fuel, solid fuel, and method for using the same
US20140109469A1 (en) * 2012-10-24 2014-04-24 Fred L. Jones Process for minimizing dioxin formation during waste and biomass utilization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
多喜真之、外3名: "色差計を用いた炭化燃料の性状予測手法", バイオマス科学会議発表論文集, vol. 10, JPN6020026156, 8 January 2015 (2015-01-08), pages 11 - 12, ISSN: 0004538017 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217305A1 (en) * 2019-04-23 2020-10-29 岩谷産業株式会社 Method for producing biomass fuel and biomass fuel

Similar Documents

Publication Publication Date Title
JP6684298B2 (en) Solid fuel manufacturing method and solid fuel
CN105602588B (en) Wooden Biomass charing method based on catalysis hydrothermal carbonization and thermal cracking
de Oliveira Maia et al. Characterization and production of banana crop and rice processing waste briquettes
Boniecki et al. Neural image analysis for estimating aerobic and anaerobic decomposition of organic matter based on the example of straw decomposition
JP2018138912A (en) Method for grasping chlorine state of solid fuel
Suryaningsih et al. Fabrication and characterization of rice husk charcoal bio briquettes
JP6328901B2 (en) Method for producing solid fuel and solid fuel
Islam et al. Development of briquette from coir dust and rice husk blend: An alternative energy source
JP6670933B2 (en) Eco-friendly ignition charcoal with reduced toxic gas and method for producing the same
CN105861097A (en) Method for processing environment-friendly inflammable biomass fuel
KR101722698B1 (en) High calorific power fuel, apparatus and method for manufacturing the same for thermoelectric power plant and steelworks using palm oil by-product and wooden biomass
JP6639075B2 (en) Method for producing solid fuel and solid fuel
JP6430691B2 (en) Method for producing solid fuel and solid fuel
CN105368519A (en) Preparation method for environmentally-friendly solid fuel using waste food material and environmentally-friendly solid fuel prepared thereby
WO2016020673A3 (en) Feedstock preparation for anaerobic digestion
Pranowo et al. Characteristics of Briquette as an Alternative Fuel Made of Mixed-Biomass Waste (Dairy Sludge and Coconut Shell)
JP5965693B2 (en) Method for producing solid fuel and solid fuel
Gruduls et al. Characteristics of wood chips from logging residues and quality influencing factors.
JP6779530B2 (en) How to treat olive pomace
Polin et al. Source of airborne sunflower dust generated during combine harvester operation
JP2009007563A (en) Organic waste fuel and manufacturing method for it
Okwu et al. Comparative performance and analysis of fuel briquette produced from water hyacinth plant with paraffin oil
Sołowiej et al. Impact of coffee grounds addition on the calorific value of the selected biological materials
Ladapo et al. Evaluation of energy potentials of briquettes produced from maize and sawmill residues
Barmpoutis et al. Influence of stem diameter and bark ratio of evergreen hardwoods on the fuel characteristics of the produced pellets.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210707