JP2018138500A - Quartz glass material having oh-group diffusion inhibition ability, and method for producing the same - Google Patents

Quartz glass material having oh-group diffusion inhibition ability, and method for producing the same Download PDF

Info

Publication number
JP2018138500A
JP2018138500A JP2017033350A JP2017033350A JP2018138500A JP 2018138500 A JP2018138500 A JP 2018138500A JP 2017033350 A JP2017033350 A JP 2017033350A JP 2017033350 A JP2017033350 A JP 2017033350A JP 2018138500 A JP2018138500 A JP 2018138500A
Authority
JP
Japan
Prior art keywords
quartz glass
less
soot
gas atmosphere
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017033350A
Other languages
Japanese (ja)
Other versions
JP6769893B2 (en
Inventor
堀越 秀春
Hideharu Horikoshi
秀春 堀越
伸 葛生
Shin Kuzuu
伸 葛生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Fukui NUC
Tohos SGM KK
Original Assignee
University of Fukui NUC
Tohos SGM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Fukui NUC, Tohos SGM KK filed Critical University of Fukui NUC
Priority to JP2017033350A priority Critical patent/JP6769893B2/en
Publication of JP2018138500A publication Critical patent/JP2018138500A/en
Application granted granted Critical
Publication of JP6769893B2 publication Critical patent/JP6769893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide quartz glass having an effect of inhibiting dispersion of an OH group.SOLUTION: A quartz glass material has oxygen-deficient defects, has 70% or less of the transmissivity at 250 nm per an optical path length of 10 mm and has 20 ppm or less of an OH-group content, due to absorption caused by the defects. A method for producing quartz glass includes: a step of heating a porous silica body (a soot body) in a hydrogen gas atmosphere; and a step of heating the soot body processed in the hydrogen gas atmosphere to make it transparent glass.SELECTED DRAWING: None

Description

本発明は、OH基拡散抑制能を有する石英ガラス材料及びその製造方法に関する。   The present invention relates to a quartz glass material having OH group diffusion suppressing ability and a method for producing the same.

半導体デバイスの高集積化に伴い、不純物汚染の少ない構造材が要求されている。石英ガラスは、エッチング装置の窓材やボート等の治具の材料として使用されている。ところが、OH基を含有する石英ガラスは、装置内にOH基が拡散し汚染源となる可能性がある。OH基を含有しない石英ガラスでも、長時間の使用で雰囲気中のOH基(水蒸気)がガラス中を拡散し、汚染源となる可能性がある。   As semiconductor devices are highly integrated, structural materials with less impurity contamination are required. Quartz glass is used as a material for jigs such as windows for etching apparatuses and boats. However, in quartz glass containing OH groups, there is a possibility that OH groups diffuse into the apparatus and become a contamination source. Even in quartz glass containing no OH group, there is a possibility that OH groups (water vapor) in the atmosphere diffuse in the glass after a long period of use and become a contamination source.

光ファイバ材料においては、OH基拡散層による光の損失を回避するためにOH基拡散層を除去した材料を用いる光ファイバ材料の製造方法が知られている(特許文献1)。また、エッチング装置の窓材やボート等の治具の材料に用いられる石英ガラスについては、紫外線吸収性を考慮してOH含有量を低減した石英ガラスが知られている(特許文献2、3)。   As an optical fiber material, a method of manufacturing an optical fiber material using a material from which the OH group diffusion layer is removed in order to avoid light loss due to the OH group diffusion layer is known (Patent Document 1). In addition, as for quartz glass used as a material for jigs such as window materials for boats and boats, quartz glass having a reduced OH content in consideration of ultraviolet absorption is known (Patent Documents 2 and 3). .

特開平11−1339号公報JP-A-11-1339 特開2005−170706号公報Japanese Patent Laying-Open No. 2005-170706 特開2010−18470号公報JP 2010-18470 A

しかし、OH含有量を低減した石英ガラスが知られていたが、OH基の拡散を抑制する効果がある石英ガラスは知られていなかった。   However, quartz glass having a reduced OH content has been known, but quartz glass having an effect of suppressing diffusion of OH groups has not been known.

本発明の目的は、OH基の拡散を抑制する効果がある石英ガラスを提供することにある。   An object of the present invention is to provide a quartz glass having an effect of suppressing diffusion of OH groups.

本発明者は、OH基濃度が低く、かつ酸素欠乏欠陥を含有する合成石英ガラスは、OH基の拡散を抑制する効果があることを見出し、本発明を完成させた。石英ガラス材料で、OH基の拡散抑制に関する既存技術は無い。   The present inventor has found that synthetic quartz glass having a low OH group concentration and containing oxygen-deficient defects has an effect of suppressing diffusion of OH groups, and has completed the present invention. There is no existing technology related to the suppression of OH group diffusion in quartz glass materials.

本発明は以下の通りである。
[1]
酸素欠乏欠陥を有し、その欠陥による吸収により、光路長10mmでの250nmの透過率が70%以下であり、かつOH基含有量が20ppm以下である石英ガラス材料。
[2]
前記透過率が50%以下である、[1]に記載の石英ガラス。
[3]
OH基を除く不純物含有量の総和が、1ppm以下である[1]又は[2]に記載の石英ガラス。
[4]
[1]〜[3]のいずれかに記載の石英ガラスAと石英ガラスB(但し、石英ガラスBは、光路長10mmでの250nmの透過率が80%以上である)とを接合した石英ガラス物品。
[5]
石英ガラスBの少なくとも一部の表面に石英ガラスAの被覆層を設けた[4]に記載の物品。
[6]
多孔質シリカ体(スート体)を水素ガス雰囲気下で加熱処理する工程、及び
水素ガス雰囲気で処理したスート体を、加熱処理して透明ガラス化する工程を含む、[1]〜[3]のいずれかに記載の合成石英ガラスの製造方法。
[7]
前記多孔質シリカ体(スート体)は、
Si含有合成原料をバーナー火炎中で反応させ、シリカ微粒子(スート)を形成する工程、及び
得られたスートをターゲット上に堆積させ多孔質シリカ体(スート体)を得る工程、を含む方法で調製される[6]に記載の製造方法。
[8]
前記水素ガス雰囲気での加熱処理は、水素ガス100%雰囲気であり、かつ加熱処理温度は1000℃以上である[6]又は[7]に記載の製造方法。
[9]
透明ガラス化の加熱処理は、ヘリウムガス100%雰囲気であり、かつ加熱処理温度は1300℃以上である、[6]〜[8]のいずれかに記載の製造方法。
The present invention is as follows.
[1]
A quartz glass material having oxygen-deficient defects and having a transmittance of 250 nm at an optical path length of 10 mm of 70% or less and an OH group content of 20 ppm or less due to absorption by the defects.
[2]
The quartz glass according to [1], wherein the transmittance is 50% or less.
[3]
The quartz glass according to [1] or [2], wherein the total content of impurities excluding OH groups is 1 ppm or less.
[4]
[1]-[3] quartz glass A and quartz glass B (however, quartz glass B has an optical path length of 10 mm and a transmittance of 250 nm of 80% or more). Goods.
[5]
The article according to [4], wherein a coating layer of quartz glass A is provided on at least a part of the surface of quartz glass B.
[6]
[1] to [3], including a step of heat-treating a porous silica body (soot body) in a hydrogen gas atmosphere, and a step of heat-treating the soot body treated in the hydrogen gas atmosphere to form a transparent glass. The manufacturing method of the synthetic quartz glass in any one.
[7]
The porous silica body (soot body) is
Prepared by a method comprising a step of reacting a Si-containing synthetic raw material in a burner flame to form silica fine particles (soot) and a step of depositing the obtained soot on a target to obtain a porous silica body (soot body). The production method according to [6].
[8]
The manufacturing method according to [6] or [7], wherein the heat treatment in the hydrogen gas atmosphere is a hydrogen gas 100% atmosphere and the heat treatment temperature is 1000 ° C. or higher.
[9]
The heat treatment for transparent vitrification is a manufacturing method according to any one of [6] to [8], wherein the atmosphere is 100% helium gas and the heat treatment temperature is 1300 ° C. or higher.

本発明によれば、OH基の拡散を抑制する効果がある石英ガラスを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the quartz glass which has the effect which suppresses spreading | diffusion of OH group can be provided.

本発明は、酸素欠乏欠陥を有し、その欠陥による吸収により、光路長10mmでの250nmの透過率が70%以下であり、かつOH基含有量が20ppm以下である石英ガラス材料に関する。   The present invention relates to a quartz glass material having an oxygen deficiency defect, and having a transmittance of 250 nm at an optical path length of 10 mm of 70% or less and an OH group content of 20 ppm or less due to absorption by the defect.

上記酸素欠乏欠陥を有し、かつOH基含有量が20ppm以下である本発明の石英ガラス材料は、OH基の拡散を抑制する効果を有する。   The quartz glass material of the present invention having the oxygen deficiency defect and having an OH group content of 20 ppm or less has an effect of suppressing diffusion of OH groups.

石英ガラスにおいて250nmの光吸収は、石英ガラス中の酸素欠乏欠陥に起因することが知られており、250nmの透過率が低いほど、石英ガラス中の酸素欠乏欠陥が多いことを意味する。本発明では、光路長10mmでの250nmの透過率を酸素欠乏欠陥量の指標に用いる。   It is known that light absorption at 250 nm in quartz glass is caused by oxygen deficiency defects in quartz glass, and the lower the transmittance at 250 nm, the more oxygen deficiency defects in quartz glass. In the present invention, a transmittance of 250 nm with an optical path length of 10 mm is used as an index of the oxygen deficiency defect amount.

酸素欠乏欠陥量は低いほど、OH基の拡散を抑制する効果が高く、前記透過率は、70%以下であり、好ましくは60%以下、より好ましくは50%以下である。   The lower the oxygen deficiency defect amount, the higher the effect of suppressing the diffusion of OH groups, and the transmittance is 70% or less, preferably 60% or less, more preferably 50% or less.

本発明の石英ガラスが有する、OH基拡散抑制のメカニズムは明らかではない。しかし、酸素欠乏欠陥とOH基が反応しOH基以外の形態になりOH基が消滅したためと考えられ、本発明では、OH基濃度に加えて、酸素欠乏欠陥量の指標として光路長10mmでの250nmの透過率を規定する。   The mechanism of OH group diffusion suppression possessed by the quartz glass of the present invention is not clear. However, it is considered that oxygen deficiency defects and OH groups reacted to form other than OH groups and the OH groups disappeared. In the present invention, in addition to the OH group concentration, an optical path length of 10 mm is used as an index of the amount of oxygen deficiency defects. A transmittance of 250 nm is defined.

本発明の石英ガラスは、OH基含有量が20ppm以下である。OH基含有量が20ppm以下であり、かつ上記酸素欠乏欠陥量を有することで、良好なOH基の拡散を抑制する効果を有する。OH基含有量は好ましくは15ppm以下、より好ましくは10ppm以下であり、さらに好ましくは5ppm以下である。OH基含有量の下限値は特に限定しない。   The quartz glass of the present invention has an OH group content of 20 ppm or less. By having an OH group content of 20 ppm or less and the above oxygen deficiency defect amount, it has an effect of suppressing the diffusion of good OH groups. The OH group content is preferably 15 ppm or less, more preferably 10 ppm or less, and even more preferably 5 ppm or less. The lower limit value of the OH group content is not particularly limited.

本発明の石英ガラスは、OH基を除く不純物含有量の総和が、1ppm以下である合成石英ガラスを材料とした物であることが、OH基の拡散を抑制する効果が高いという観点から好ましい。OH基を除く不純物の含有量は、例えば、各元素≦10ppbであり、OH基を除く不純物の含有量の総和は≦100ppbである。   The quartz glass of the present invention is preferably made of synthetic quartz glass whose total content of impurities excluding OH groups is 1 ppm or less from the viewpoint of high effect of suppressing diffusion of OH groups. The content of impurities excluding OH groups is, for example, each element ≦ 10 ppb, and the total content of impurities excluding OH groups is ≦ 100 ppb.

本発明は、上記本発明の石英ガラス(石英ガラスAと呼ぶ)と酸素欠乏欠陥量は光路長10mmでの250nmの透過率が80%以上に相当する石英ガラス(石英ガラスBと呼ぶ)とを接合した石英ガラス物品を包含する。この物品は、石英ガラスBの少なくとも一部の表面に石英ガラスAの被覆層を設けた物品であることができる。   The present invention relates to the quartz glass of the present invention (referred to as quartz glass A) and the quartz glass (referred to as quartz glass B) whose oxygen deficiency defect amount corresponds to 80% or more of the transmittance at 250 nm when the optical path length is 10 mm. Includes bonded quartz glass articles. This article can be an article in which a coating layer of quartz glass A is provided on at least a part of the surface of quartz glass B.

本発明の石英ガラスは、単独で使用する他、例えば、既存の石英ガラス容器の表面層として使用することで、所望の特性を維持しつつ、OH基の拡散抑制能を付与することが可能である。   In addition to being used alone, the quartz glass of the present invention can be used as a surface layer of an existing quartz glass container, for example, to impart the ability to suppress diffusion of OH groups while maintaining desired characteristics. is there.

例えば、高温で使用する耐熱性石英ガラス製容器の内面に本発明の石英ガラス材料を接合することで、耐熱性が高くかつOH基の侵入を抑制する容器を製造することが出来る。この容器は、高温反応でかつ、OH基のコンタミを嫌う反応の容器として使用出来る。   For example, by bonding the quartz glass material of the present invention to the inner surface of a heat-resistant quartz glass container used at a high temperature, a container having high heat resistance and suppressing intrusion of OH groups can be produced. This container can be used as a container for a reaction that is a high temperature reaction and dislikes OH group contamination.

石英ガラスの接合方法は、例えば、電気炉あるいはバーナー等で溶融接合する方法を挙げることができる。但し、石英ガラスの接合方法は電気炉あるいはバーナー等に限定されない。   As a method for joining quartz glass, for example, a method of melting and joining with an electric furnace or a burner can be exemplified. However, the method for joining quartz glass is not limited to an electric furnace or a burner.

通常は、高OH基の材料から低OH基の材料へOH基が拡散するが、本発明の石英ガラス材料は、高OH基材と接合し熱処理しても、OH基の増加(拡散によるOH基の侵入)が見られない。   Normally, OH groups diffuse from a high OH group material to a low OH group material, but the quartz glass material of the present invention increases the OH groups (OH due to diffusion) even when bonded to a high OH substrate and heat-treated. Group intrusion) is not seen.

本発明の合成石英ガラスは、スート体を水素ガス雰囲気下で加熱処理し、かつその後、透明ガラス化のため加熱処理することを含む方法で製造することができる。スート体とは多孔質シリカ体であり、多孔質シリカ体(スート体)の調製方法は、公知の方法を利用できる。例えば、多孔質シリカ体(スート体)は、
Si含有合成原料をバーナー火炎中で反応させ、シリカ微粒子(スート)を形成する工程、及び
得られたスートをターゲット上に堆積させ多孔質シリカ体(スート体)を得る工程、を含む方法で調製することができる。但し、この方法に限定される意図ではない。
The synthetic quartz glass of the present invention can be produced by a method including heat-treating a soot body in a hydrogen gas atmosphere and then heat-treating for transparent vitrification. The soot body is a porous silica body, and a known method can be used as a method for preparing the porous silica body (soot body). For example, a porous silica body (soot body)
Prepared by a method comprising a step of reacting a Si-containing synthetic raw material in a burner flame to form silica fine particles (soot) and a step of depositing the obtained soot on a target to obtain a porous silica body (soot body). can do. However, it is not the intention limited to this method.

スート体の水素ガス雰囲気での加熱処理は、例えば、水素ガス100%雰囲気であり、かつ加熱処理温度は1000℃以上、好ましくは1100℃以上、より好ましくは1200℃以上である。水素ガス雰囲気での加熱処理の時間は、加熱処理温度及び原料とする石英ガラスの種類にもよるが、例えば、1〜10時間の範囲である。   The heat treatment of the soot body in the hydrogen gas atmosphere is, for example, a 100% hydrogen gas atmosphere, and the heat treatment temperature is 1000 ° C. or higher, preferably 1100 ° C. or higher, more preferably 1200 ° C. or higher. The time for the heat treatment in the hydrogen gas atmosphere is, for example, in the range of 1 to 10 hours, although depending on the heat treatment temperature and the type of quartz glass used as a raw material.

透明ガラス化の加熱処理は、例えば、ヘリウムガス100%雰囲気であり、かつ加熱処理温度は1300℃以上、好ましくは1400℃以上、より好ましくは1500℃以上である。ヘリウムガス雰囲気での加熱処理の時間は、加熱処理温度及び原料とする石英ガラスの種類にもよるが、例えば、1〜10時間の範囲である。透明ガラス化の加熱処理としては、ヘリウムガスを用いる方法以外の方法を用いることもできる。   The heat treatment for transparent vitrification is, for example, a 100% helium gas atmosphere, and the heat treatment temperature is 1300 ° C. or higher, preferably 1400 ° C. or higher, more preferably 1500 ° C. or higher. The time for the heat treatment in the helium gas atmosphere is, for example, in the range of 1 to 10 hours, although depending on the heat treatment temperature and the type of quartz glass used as a raw material. As the heat treatment for transparent vitrification, a method other than the method using helium gas can be used.

以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。実施例及び比較例では、各種石英ガラスを接合し、高温で熱処理した際の接合界面でのOH基濃度変化を測定し、OH基の拡散度合いを評価した。   Hereinafter, the present invention will be described in more detail based on examples. However, the examples are illustrative of the present invention, and the present invention is not intended to be limited to the examples. In Examples and Comparative Examples, various quartz glasses were bonded and the change in OH group concentration at the bonding interface when heat-treated at a high temperature was measured to evaluate the degree of diffusion of OH groups.

・試料1(本発明)
原料に四塩化珪素(SiCl4)を使用し、スート法により合成石英ガラスインゴットを製造。石英ガラス製バーナーの中心管から原料を供給し、バーナーの外管からH2ガス及びO2ガスを供給してスート体を合成した。このスート体を100vol%H2ガス雰囲気、1200℃で5時間熱処理を行った。その後、100%Heガス雰囲気で1500℃、5時間熱処理を行い透明な石英ガラスインゴットを得た。得られたインゴットを10×30×5mmtの大きさに加工し、試料1とした。
Sample 1 (invention)
Using silicon tetrachloride (SiCl 4 ) as a raw material, a synthetic quartz glass ingot is manufactured by the soot method. The soot body was synthesized by supplying the raw material from the central tube of the quartz glass burner and supplying H 2 gas and O 2 gas from the outer tube of the burner. This soot body was heat-treated at 100 ° C. for 5 hours at 1200 ° C. in a 100 vol% H 2 gas atmosphere. Thereafter, a heat treatment was performed in a 100% He gas atmosphere at 1500 ° C. for 5 hours to obtain a transparent quartz glass ingot. The obtained ingot was processed into a size of 10 × 30 × 5 mmt to obtain a sample 1.

・試料2
スート体の熱処理を100vol%N2ガスで行った以外は、試料1と同等の条件で製造した。得られたインゴットを10×30×5mmtの大きさに加工し、試料2とした。
・ Sample 2
The soot body was manufactured under the same conditions as Sample 1 except that the soot body was heat-treated with 100 vol% N 2 gas. The obtained ingot was processed into a size of 10 × 30 × 5 mmt to obtain Sample 2.

・試料3
原料にSiCl4を使用し、直接法により合成石英ガラスインゴットを製造した。
石英ガラス製バーナーの中心管から原料を供給し、バーナーの外管からH2ガス及びO2ガスを供給し、脱水縮合反応により生成したシリカ微粒子を、ターゲット上に堆積させると同時に透明ガラス化し石英ガラスインゴットを得た。得られたインゴットを10×30×5mmtの大きさに加工し、試料3とした。
・ Sample 3
A synthetic silica glass ingot was produced by a direct method using SiCl 4 as a raw material.
The raw material is supplied from the central tube of the quartz glass burner, H 2 gas and O 2 gas are supplied from the outer tube of the burner, and the silica fine particles produced by the dehydration condensation reaction are deposited on the target and simultaneously converted into transparent glass. A glass ingot was obtained. The obtained ingot was processed into a size of 10 × 30 × 5 mmt to obtain Sample 3.

・試料4
原料の天然石英粉をプラズマ火炎中に供給し溶融させた後、ターゲット上に堆積させて透明な石英ガラスインゴットを得た。得られたインゴットを10×30×5mmtの大きさに加工し、試料4とした。
・ Sample 4
The raw natural quartz powder was supplied into a plasma flame and melted, and then deposited on a target to obtain a transparent quartz glass ingot. The obtained ingot was processed into a size of 10 × 30 × 5 mmt to obtain a sample 4.

・試料5
プラズマ火炎の代わりに酸水素バーナー火炎を使用した以外は、試料4と同等の条件で製造し透明な石英ガラスインゴットを得た。得られたインゴットを10×30×5mmtの大きさに加工し、試料5とした。
・ Sample 5
A transparent quartz glass ingot was obtained under the same conditions as Sample 4 except that an oxyhydrogen burner flame was used instead of the plasma flame. The obtained ingot was processed into a size of 10 × 30 × 5 mmt to obtain a sample 5.

・OH基拡散試験1
試料1と試料3、試料2と試料3を、電気炉内で1150℃1時間保持して融着させ接合した。接合した試料を、大気中900℃で300時間熱処理後、接合界面から0.2mmの位置の試料1及び試料2のOH基濃度を測定し、OH基の拡散を評価した。
・ OH group diffusion test 1
Samples 1 and 3 and Samples 2 and 3 were held in an electric furnace at 1150 ° C. for 1 hour, fused and joined. The bonded samples were heat treated at 900 ° C. in the atmosphere for 300 hours, and then the OH group concentrations of Sample 1 and Sample 2 at a position 0.2 mm from the bonding interface were measured to evaluate the diffusion of OH groups.

・OH基拡散試験2
試料表面を酸水素バーナーで表面温度が1200℃になるまで加熱し、この温度を保持したまま1時間バーナーで加熱し続けることにより、高温の水蒸気雰囲気にさらした時の、バーナーで加熱した表面から0.1mmの位置のOH基濃度を測定し、OH基の拡散を評価した。
・ OH group diffusion test 2
The surface of the sample was heated with an oxyhydrogen burner until the surface temperature reached 1200 ° C., and was kept heated with the burner for 1 hour while maintaining this temperature, so that the surface heated by the burner when exposed to a high-temperature steam atmosphere The OH group concentration at a position of 0.1 mm was measured to evaluate the diffusion of OH groups.

・OH基濃度測定
日本分光製 フーリエ変換赤外分光光度計FT/IR−6600 Plusを用いて測定した、波長2720nmの吸光度から算出した。
-OH group density | concentration measurement It computed from the light absorbency of wavelength 2720nm measured using the Fourier transform infrared spectrophotometer FT / IR-6600 Plus made from JASCO.

・透過率測定
島津製 紫外可視近赤外分光光度計UV−3105を用い、250nmにおける光路長10mmtでの外部透過率を測定した。250nmの透過率は、酸素欠乏欠陥量に比例して低くなるため、酸素欠乏欠陥量の指標とした。
-Transmittance measurement The external transmittance | permeability in 10 nm of optical path length in 250 nm was measured using Shimadzu UV visible near infrared spectrophotometer UV-3105. Since the transmittance at 250 nm decreases in proportion to the oxygen deficiency defect amount, it was used as an index of the oxygen deficiency defect amount.

・試料一覧表
・ Sample list

・OH基拡散試験1結果
・ OH group diffusion test 1 result

・OH基拡散試験2結果
・ OH group diffusion test 2 results

表2及び3に示す結果から、試料1(本発明の石英ガラス材料)は、OH基の拡散を抑制する効果を有し、その効果は、石英ガラス材料間での拡散及び接する雰囲気中からの拡散のいずれに対しても高いことが分かる。   From the results shown in Tables 2 and 3, Sample 1 (quartz glass material of the present invention) has an effect of suppressing the diffusion of OH groups, and the effect is from the diffusion between the quartz glass materials and the atmosphere in contact. It can be seen that it is high for both diffusions.

本発明は、石英ガラス材料及び物品に関す分野に有用である。   The present invention is useful in the field of quartz glass materials and articles.

Claims (9)

酸素欠乏欠陥を有し、その欠陥による吸収により、光路長10mmでの250nmの透過率が70%以下であり、かつOH基含有量が20ppm以下である石英ガラス材料。 A quartz glass material having oxygen-deficient defects and having a transmittance of 250 nm at an optical path length of 10 mm of 70% or less and an OH group content of 20 ppm or less due to absorption by the defects. 前記透過率が50%以下である、請求項1に記載の石英ガラス。 The quartz glass according to claim 1, wherein the transmittance is 50% or less. OH基を除く不純物含有量の総和が、1ppm以下である請求項1又は2に記載の石英ガラス。 The quartz glass according to claim 1 or 2, wherein the total content of impurities excluding OH groups is 1 ppm or less. 請求項1〜3のいずれかに記載の石英ガラスAと石英ガラスB(但し、石英ガラスBは、光路長10mmでの250nmの透過率が80%以上である)とを接合した石英ガラス物品。 A quartz glass article obtained by bonding the quartz glass A and the quartz glass B according to any one of claims 1 to 3 (wherein the quartz glass B has a transmittance of 250 nm at an optical path length of 10 mm of 80% or more). 石英ガラスBの少なくとも一部の表面に石英ガラスAの被覆層を設けた請求項4に記載の物品。 The article according to claim 4, wherein a coating layer of quartz glass A is provided on at least a part of the surface of quartz glass B. 多孔質シリカ体(スート体)を水素ガス雰囲気下で加熱処理する工程、及び
水素ガス雰囲気で処理したスート体を、加熱処理して透明ガラス化する工程を含む、請求項1〜3のいずれかに記載の合成石英ガラスの製造方法。
Any one of Claims 1-3 including the process of heat-processing a porous silica body (soot body) in a hydrogen gas atmosphere, and the process of heat-treating the soot body processed in the hydrogen gas atmosphere, and carrying out transparent vitrification. The manufacturing method of synthetic quartz glass as described in 2.
前記多孔質シリカ体(スート体)は、
Si含有合成原料をバーナー火炎中で反応させ、シリカ微粒子(スート)を形成する工程、及び
得られたスートをターゲット上に堆積させ多孔質シリカ体(スート体)を得る工程、を含む方法で調製される請求項6に記載の製造方法。
The porous silica body (soot body) is
Prepared by a method comprising a step of reacting a Si-containing synthetic raw material in a burner flame to form silica fine particles (soot) and a step of depositing the obtained soot on a target to obtain a porous silica body (soot body). The manufacturing method according to claim 6.
前記水素ガス雰囲気での加熱処理は、水素ガス100%雰囲気であり、かつ加熱処理温度は1000℃以上である請求項6又は7に記載の製造方法。 The manufacturing method according to claim 6 or 7, wherein the heat treatment in the hydrogen gas atmosphere is a 100% hydrogen gas atmosphere, and the heat treatment temperature is 1000 ° C or higher. 透明ガラス化の加熱処理は、ヘリウムガス100%雰囲気であり、かつ加熱処理温度は1300℃以上である、請求項6〜8のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 6 to 8, wherein the heat treatment for transparent vitrification is an atmosphere of 100% helium gas and the heat treatment temperature is 1300 ° C or higher.
JP2017033350A 2017-02-24 2017-02-24 Quartz glass material with OH group diffusion inhibitory ability and its manufacturing method Active JP6769893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017033350A JP6769893B2 (en) 2017-02-24 2017-02-24 Quartz glass material with OH group diffusion inhibitory ability and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017033350A JP6769893B2 (en) 2017-02-24 2017-02-24 Quartz glass material with OH group diffusion inhibitory ability and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018138500A true JP2018138500A (en) 2018-09-06
JP6769893B2 JP6769893B2 (en) 2020-10-14

Family

ID=63451292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017033350A Active JP6769893B2 (en) 2017-02-24 2017-02-24 Quartz glass material with OH group diffusion inhibitory ability and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6769893B2 (en)

Also Published As

Publication number Publication date
JP6769893B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP5394734B2 (en) Cage made of quartz glass for processing semiconductor wafers and method of manufacturing the cage
TWI380957B (en) Fused silica having low oh, od levels and method of making
KR101869979B1 (en) Titania-doped quartz glass and making method
US8211817B2 (en) Fused silica glass and process for producing the same
JPH04195101A (en) Ultraviolet ray transmitting optical glass and molded article thereof
JP6328665B2 (en) Method for producing a TiO2-SiO2 glass blank for mirror substrates used in EUV lithography
JP6423434B2 (en) Method for producing titanium-doped silica glass used in EUV lithography
JPH0280343A (en) Ultraviolet light resistant synthetic quartz glass and production thereof
CN105517965B (en) The method for manufacturing the quartz glass of Fe2O3 doping
Kuzuu et al. Effects of heat treatment on absorption bands in OH-free and OH-containing fused quartz
TWI651277B (en) Method for producing a blank of fluorine-and titanium-doped glass with a high silicic-acid content for use in euv lithography and blank produced according to said method
JP5935765B2 (en) Synthetic quartz glass for nanoimprint mold, method for producing the same, and mold for nanoimprint
KR20080097260A (en) Method for controlling oh content in a quartz glass
JP2003183037A (en) Quartz glass blank for optical part and use thereof
JP6769893B2 (en) Quartz glass material with OH group diffusion inhibitory ability and its manufacturing method
JPH08133753A (en) Optical synthetic quartz glass, its production and application thereof
JP7122997B2 (en) Titanium-containing quartz glass excellent in ultraviolet absorption and method for producing the same
JP5050969B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JPH05301733A (en) Silica glass and its production
JPH0733259B2 (en) Ultraviolet-resistant synthetic quartz glass and method for producing the same
JP2005145792A (en) Aluminum-doped synthetic quartz glass and its manufacturing method
KR940007219B1 (en) Uv light-permeable glass and article comprising the same
JP2010018481A (en) Ultraviolet ray- and infrared ray-absorbing synthetic silica glass and method for producing the same
JPH11228166A (en) High purity transparent quartz glass and its production
KR20080074256A (en) A manufacturing method for high-purify quartz glass with low oh content

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200924

R150 Certificate of patent or registration of utility model

Ref document number: 6769893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250