JP2018136133A - Micro working electrode for highly precise local electrochemical measurement, method for producing micro working electrode for highly precise local electrochemical measurement, and method for releasing insulating coating layer of micro working electrode for highly precise local electrochemical measurement - Google Patents

Micro working electrode for highly precise local electrochemical measurement, method for producing micro working electrode for highly precise local electrochemical measurement, and method for releasing insulating coating layer of micro working electrode for highly precise local electrochemical measurement Download PDF

Info

Publication number
JP2018136133A
JP2018136133A JP2017028783A JP2017028783A JP2018136133A JP 2018136133 A JP2018136133 A JP 2018136133A JP 2017028783 A JP2017028783 A JP 2017028783A JP 2017028783 A JP2017028783 A JP 2017028783A JP 2018136133 A JP2018136133 A JP 2018136133A
Authority
JP
Japan
Prior art keywords
working electrode
coating layer
electrochemical measurement
insulating coating
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017028783A
Other languages
Japanese (ja)
Other versions
JP6143040B1 (en
Inventor
万里子 門脇
Mariko Kadowaki
万里子 門脇
武藤 泉
Izumi Muto
泉 武藤
憲幸 井田
Noriyuki Ida
憲幸 井田
優 菅原
Masaru Sugawara
優 菅原
信義 原
Nobuyoshi Hara
信義 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2017028783A priority Critical patent/JP6143040B1/en
Application granted granted Critical
Publication of JP6143040B1 publication Critical patent/JP6143040B1/en
Publication of JP2018136133A publication Critical patent/JP2018136133A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a micro working electrode for highly precise local electrochemical measurement for analysis of local electrochemical phenomenon, the analysis required in highly precise electrochemical measurement of an origin of micro corrosion, a point of initiation of plating reaction, a process of formation of a micro defect, and so on of metallic materials, to provide a method for producing the same easily and with high precision, and to provide a method for easily releasing an insulating coating layer of the micro working electrode for the highly precise local electrochemical measurement.SOLUTION: A micro working electrode for highly precise local electrochemical measurement comprises: a working electrode surface 2 whose area is 0.01 mmor less; and an insulating coating layer 1 around a periphery of the working electrode surface 2, the insulating coating layer being composed of a hydrophobic organic compound to which a contact angle of a water droplet is larger than 70 degrees. The organic compound is one of ethyl methyl ketoxime, styrene-butadiene, nitrile, and so on or a mixture of two or more thereof. The micro working electrode further comprises a hydrophilic organic compound layer 3 which is on a surface of the insulating coating layer 1 in a form in which to surround the periphery of the working electrode surface 2.SELECTED DRAWING: Figure 1

Description

本発明は、作用電極面の面積が0.01mm2以下の高精度局部電気化学計測用微小作用電極、高精度局部電気化学計測用微小作用電極の作製方法および高精度局部電気化学計測用微小作用電極の絶縁被覆層の剥離方法に関するものである。 The present invention relates to a micro-working electrode for high-precision local electrochemical measurement having a working electrode surface area of 0.01 mm 2 or less, a method for producing a micro-working electrode for high-precision local electrochemical measurement, and a micro-working electrode for high-precision local electrochemical measurement. It is related with the peeling method of this insulation coating layer.

実用材料の表面は不均一であり、腐食、電解めっき、化成処理、陽極酸化などの電気化学反応を制御した新しい材料を開発するためには、材料表面の微小な領域を選び出し、その部分の局部電気化学特性を高い精度で解析することが必要である。例えば、ステンレス鋼の局部腐食の一つである孔食は、大きさが数マイクロメートル(μm)のMnSなどの硫化物系介在物を起点とする電気化学反応である。したがって、微小な作用電極面を作製し、単一の介在物を含む微小領域の電気化学計測を行うことにより、金属材料の耐食性改善に関する非常に有益な情報が得られるものと考えられる。同様に、多結晶金属の粒界や表面疵、特定の結晶粒の内部などを電気化学計測の対象とすることでも、実用材料の耐食性向上に関する重要な知見が得られるものと期待される。   The surface of practical materials is uneven, and in order to develop new materials with controlled electrochemical reactions such as corrosion, electroplating, chemical conversion treatment, and anodization, a small area on the material surface is selected and localized in that area. It is necessary to analyze the electrochemical characteristics with high accuracy. For example, pitting corrosion, which is one of the local corrosions of stainless steel, is an electrochemical reaction starting from sulfide inclusions such as MnS having a size of several micrometers (μm). Therefore, it is considered that very useful information regarding the improvement of the corrosion resistance of the metal material can be obtained by producing a minute working electrode surface and performing electrochemical measurement of a minute region including a single inclusion. Similarly, it is expected that important knowledge regarding the improvement of corrosion resistance of practical materials can be obtained by setting the grain boundaries and surface defects of polycrystalline metals, the inside of specific crystal grains, and the like as targets of electrochemical measurement.

ところで、従来、局部電気化学現象解析のための微小作用電極に関する技術として、2種類以上の絶縁物による微小作用電極面作製に関する技術が開示されている(例えば、特許文献1参照)。すなわち、2種類以上の絶縁物を組み合わせて、作用電極面を囲むように被覆層を構成し、作用電極面を外周の絶縁被覆と共に電解液に浸漬するという方法である。一般的に、微小作用電極面と被覆との境界に残存する空気の気泡を完全に除去することは容易ではない。このため、2種類以上の絶縁物を組み合わせる必要があるとされている。すなわち、電極面外周部の被覆を2種類以上の絶縁物の組み合わせで構成した場合、個々の絶縁物の表面張力の違いにより、微細気泡が1種類の絶縁物の周囲に集まり、凝集・粗大化が起こり、気泡の除去が容易になるという原理である。しかし、この方法では、あくまでも気泡を人為的に除去することが容易になるというものであり、気泡を皆無にすることは不可能であるという技術的課題がある。   By the way, conventionally, as a technique related to a microworking electrode for local electrochemical phenomenon analysis, a technique related to fabrication of a microworking electrode surface using two or more kinds of insulators has been disclosed (for example, see Patent Document 1). That is, it is a method in which two or more kinds of insulators are combined to form a coating layer so as to surround the working electrode surface, and the working electrode surface is immersed in the electrolyte together with the outer insulating coating. In general, it is not easy to completely remove air bubbles remaining at the boundary between the micro-working electrode surface and the coating. For this reason, it is said that it is necessary to combine two or more types of insulators. In other words, when the coating on the outer periphery of the electrode surface is composed of a combination of two or more types of insulators, fine bubbles gather around one type of insulator due to the difference in surface tension between the individual insulators, causing aggregation and coarsening. This is the principle that bubbles are easily removed. However, with this method, it is easy to artificially remove bubbles, and there is a technical problem that it is impossible to eliminate bubbles completely.

また、従来、親水性有機化合物により構成される微小作用電極も開示されている(例えば、特許文献2参照)。その内容は、作用電極面の外周部に、水滴との接触角が70度以下である親水性の有機化合物から成る被覆層を備えるというものである。親水性の有機化合物により被覆層を構成すると、作用電極外周部に気泡が残存しない方が界面エネルギー的に有利であり、自発的に気泡が除去されるという原理である。   Conventionally, a micro working electrode composed of a hydrophilic organic compound has also been disclosed (see, for example, Patent Document 2). The content is that a coating layer made of a hydrophilic organic compound having a contact angle with a water droplet of 70 degrees or less is provided on the outer peripheral portion of the working electrode surface. When the coating layer is composed of a hydrophilic organic compound, it is advantageous in terms of interfacial energy that no bubbles remain on the outer periphery of the working electrode, and the bubbles are removed spontaneously.

この技術に基づいて親水性の有機化合物を用いて絶縁被覆層を形成する場合、被覆作業の正確性・容易性や作業環境の安全性などの観点から、ニトロセルロース、アクリル樹脂、ポリビニル系樹脂、酢酸セルロース、ポリアミドおよびポリアクリロニトリルの内、少なくとも1種類以上を質量百分率にて20%以上を含むことが好ましいとされている。これは、これらの物質が、微小作用電極を作製する際の被覆層を構成する物質として、気泡除去に関して優れた特性を発現するとされているためである。また、その理由は、分子内に極性の高い結合構造を有しており、水分子との間に水素結合を形成しやすいことが主要な原因ではないかと推察されている。このような化学特性を有する物質としては、入手の容易性やコスト、保管時の安全性などの観点から、ニトロセルロース、アクリル樹脂、ポリビニル系樹脂、酢酸セルロース、ポリアミド、ポリアクリロニトリルが好ましいとされる。さらに、これらの物質は、単独では試料表面に塗布することが困難であるため、メタノール、エタノール、プロパノールのいずれか、あるいはその内の2種類以上の混合物で溶かすことで、粘度を調整することが好適とされる。   When forming an insulating coating layer using a hydrophilic organic compound based on this technology, from the viewpoint of accuracy and ease of coating work and safety of the working environment, nitrocellulose, acrylic resin, polyvinyl resin, Among cellulose acetate, polyamide and polyacrylonitrile, at least one kind is preferably contained in 20% or more by mass percentage. This is because these substances are said to exhibit excellent characteristics with respect to the removal of bubbles as substances constituting the coating layer when producing the micro working electrode. In addition, it is speculated that the main reason is that it has a highly polar bond structure in the molecule and easily forms hydrogen bonds with water molecules. As the substance having such chemical characteristics, nitrocellulose, acrylic resin, polyvinyl resin, cellulose acetate, polyamide, and polyacrylonitrile are preferable from the viewpoints of availability, cost, safety during storage, and the like. . Furthermore, since these substances are difficult to apply to the sample surface alone, the viscosity can be adjusted by dissolving them in methanol, ethanol, propanol, or a mixture of two or more of them. Preferred.

しかし、水滴との接触角が70度以下である親水性の有機化合物を用いて絶縁被覆層を形成した場合、たとえ乾燥工程を経たとしても、絶縁被覆層の構成成分として、酸化還元反応を起こしやすいメタノール、エタノール、プロパノールのいずれか、あるいはその内の2種類以上が不可避的に含まれるという問題点がある。すなわち、水滴との接触角が70度以下である親水性の有機化合物を用いて絶縁被覆層を形成した微小作用電極面で電気化学測定を行った場合、メタノール、エタノール、プロパノールのいずれか、あるいはその内の2種類以上の酸化還元反応による電流値を計測してしまい、作用電極面本来の電気化学反応による電流値が微小である場合には、電極面の反応による電流値の変化を高い精度で詳細に測定することは困難である。   However, when the insulating coating layer is formed using a hydrophilic organic compound having a contact angle with water droplets of 70 degrees or less, even if it has undergone a drying process, it causes a redox reaction as a constituent component of the insulating coating layer. There is a problem that methanol, ethanol, propanol, or two or more of them are inevitably contained. That is, when electrochemical measurement is performed on the surface of a micro working electrode in which an insulating coating layer is formed using a hydrophilic organic compound having a contact angle with water droplets of 70 degrees or less, either methanol, ethanol, propanol, or If the current value due to two or more types of oxidation-reduction reactions is measured and the current value due to the original electrochemical reaction on the working electrode surface is very small, the change in the current value due to the reaction on the electrode surface is highly accurate. It is difficult to measure in detail.

さらに、微小作用電極の場合、通常のマクロ電気化学測定に用いる作用電極(通常1cm×1cm)と比較すると、電極面積に対する被覆層/電極面境界部(電極外周部)の割合が高くなる。被覆層/電極面境界部には、試料の溶解反応などによる金属イオンや、溶液に含まれる塩化物イオンなど、電荷を運ぶ化学種が集中しやすいため、より反応が起こりやすい環境となる。特に、局部電気化学計測では、顕微鏡などによる作用電極面のその場観察を同時に実施すること多いため、作用電極表面を鉛直方向に対して水平に配置することが多く、作用電極などから溶出した金属イオンは電極面に留まりやすい必然性を有している。そのため、被覆層/電極面境界部は、電極中央部とは電気化学反応による電流密度が大きく異なる。そして、これが局所電気化学計測に対して大きな計測誤差を生む要因となっている。しかし、このような作用電極面の微小化に伴う作用電極外周部の増大による電流計測誤差を回避するために有効な技術は、開示されていない。すなわち、金属材料の微小な腐食の起点、めっき反応の開始点や微小欠陥の形成過程などを、高い精度で電気化学計測する際に必要となる局部電気化学現象解析のための微小作用電極と、その簡便で高精度な作製手法とは知られていないのが現状である。   Furthermore, in the case of a micro working electrode, the ratio of the coating layer / electrode surface boundary portion (electrode outer peripheral portion) to the electrode area is higher than that of a working electrode (usually 1 cm × 1 cm) used for normal macroelectrochemical measurement. At the boundary between the coating layer and the electrode surface, chemical species that carry charges, such as metal ions due to the dissolution reaction of the sample and chloride ions contained in the solution, are likely to concentrate, so that an environment in which the reaction occurs more easily occurs. In particular, in local electrochemical measurement, in-situ observation of the working electrode surface with a microscope or the like is often performed at the same time, so the surface of the working electrode is often placed horizontally with respect to the vertical direction. Ions have the inevitability of staying on the electrode surface. Therefore, the current density due to the electrochemical reaction is greatly different between the coating layer / electrode surface boundary portion and the electrode central portion. And this is a factor which produces a big measurement error with respect to local electrochemical measurement. However, no technique is disclosed that is effective for avoiding a current measurement error due to an increase in the outer peripheral portion of the working electrode accompanying the miniaturization of the working electrode surface. In other words, a micro working electrode for local electrochemical phenomenon analysis that is necessary for electrochemical measurement with high accuracy, such as the starting point of minute corrosion of metal materials, the starting point of plating reaction and the formation process of micro defects, The current situation is that it is not known as a simple and highly accurate manufacturing method.

また、一般に疎水性の有機化合物により作製された絶縁被覆層は、金属などの電気伝導性を有する基板に固着すると、剥離することがきわめて困難である。しかしながら、微小作用電極は、電気化学計測が終了した後に、電子顕微鏡やX線光電子分光装置などの超高真空を利用した機器で観察や分析を行うことが求められる。そのためには、超高真空などの装置性能を維持できることに加え、分析精度を確保するためにも、作用電極面を腐食・侵食することなく、絶縁被覆を容易に剥離する必要がある。しかし、疎水性の有機化合物により作製された絶縁被覆層を、金属基板などから容易に剥離する方法は知られていない。特に、普通鋼のように薬剤により容易に腐食される耐食性の低い金属材料に対して適用できる方法は、開示されていない。   In general, an insulating coating layer made of a hydrophobic organic compound is extremely difficult to peel off when fixed to a substrate having electrical conductivity such as metal. However, the minute working electrode is required to be observed and analyzed with an apparatus using an ultrahigh vacuum such as an electron microscope or an X-ray photoelectron spectrometer after the electrochemical measurement is completed. For this purpose, in addition to maintaining the performance of the apparatus such as ultra-high vacuum, it is necessary to easily peel off the insulating coating without corroding or eroding the working electrode surface in order to ensure analysis accuracy. However, there is no known method for easily peeling an insulating coating layer made of a hydrophobic organic compound from a metal substrate or the like. In particular, a method that can be applied to a metal material with low corrosion resistance that is easily corroded by chemicals such as ordinary steel is not disclosed.

特許第5136997号公報Japanese Patent No. 5136997 特許第5987230号公報Japanese Patent No. 5987230

本発明は、上記事情に鑑みなされたもので、その目的とするところは、金属材料の微小な腐食の起点、めっき反応の開始点や微小欠陥の形成過程などを、高い精度で電気化学計測する際に必要となる局部電気化学現象解析のための高精度局部電気化学計測用微小作用電極、その簡便で高精度な作製方法およびその高精度局部電気化学計測用微小作用電極の絶縁被覆層の簡便な剥離方法の提供にある。 The present invention has been made in view of the above circumstances, and an object thereof is to perform electrochemical measurement with high accuracy such as a starting point of minute corrosion of a metal material, a starting point of a plating reaction, a formation process of minute defects, and the like. Micro-working electrode for high-accuracy local electrochemical measurement for analysis of local electrochemical phenomena that is necessary in the process, its simple and high-precision manufacturing method, and simple insulation coating layer of the micro-working electrode for high-precision local electrochemical measurement Providing a simple peeling method.

本発明者は、このような従来技術の限界を克服し、未解決の課題を解決するため種々の試験研究を行い、本発明を完成させた。本発明の主旨は、以下の通りである。   The present inventor has completed various aspects of the present invention by overcoming various limitations of the prior art and solving various problems. The gist of the present invention is as follows.

本発明に係る高精度局部電気化学計測用微小作用電極は、作用電極面の面積が0.01mm2以下で、前記作用電極面外周部の絶縁被覆層が、水滴との接触角が70度を超える疎水性の有機化合物から構成されていることを特徴とする。 The fine working electrode for high precision local electrochemical measurement according to the present invention has a working electrode surface area of 0.01 mm 2 or less, and the insulating coating layer on the outer periphery of the working electrode surface has a contact angle of more than 70 degrees with water droplets. It is characterized by comprising a hydrophobic organic compound.

本発明に係る高精度局部電気化学計測用微小作用電極で、前記作用電極面外周部の絶縁被覆層が、エチルメチルケトオキシム、スチレンブタジエン、ニトリル、クロロプレン、メチルビニル、メチルフェニル、フロロシリコーン、エチレンプロピレン、フッ素、ジメチルポリシロキサンのいずれか1種類、あるいは、それらの内の2種類以上の混合物であることが好ましい。   The fine working electrode for high-accuracy local electrochemical measurement according to the present invention, wherein the insulating coating layer on the outer periphery of the working electrode surface is ethylmethylketoxime, styrenebutadiene, nitrile, chloroprene, methylvinyl, methylphenyl, fluorosilicone, ethylene One of propylene, fluorine, and dimethylpolysiloxane, or a mixture of two or more of them is preferable.

本発明に係る高精度局部電気化学計測用微小作用電極は、前記絶縁被覆層の表面に、水滴との接触角が70度以下である親水性の有機化合物層が、前記作用電極面外周部を取り囲む形態で存在し、親水性の前記有機化合物層と前記作用電極面外周部との距離が全周にわたり0.5mm以上3mm以下であり、親水性の前記有機化合物層の幅が1mm以上であることが好ましい。   The fine working electrode for high-accuracy local electrochemical measurement according to the present invention has a hydrophilic organic compound layer having a contact angle with water droplets of 70 degrees or less on the surface of the insulating coating layer. The distance between the hydrophilic organic compound layer and the outer periphery of the working electrode surface is 0.5 mm or more and 3 mm or less over the entire circumference, and the hydrophilic organic compound layer has a width of 1 mm or more. Is preferred.

本発明に係る高精度局部電気化学計測用微小作用電極の作製方法は、本発明に係る高精度局部電気化学計測用微小作用電極の作製方法であって、前記作用電極面外周部の絶縁被覆層の作製に際して、水よりも電位窓が広い有機溶媒で有機化合物を希釈し、粘度を調整したうえで前記作用電極を構成する固体材料に塗布し、その後、乾燥させることを特徴とする。   The method for producing a micro-working electrode for high-accuracy local electrochemical measurement according to the present invention is a method for producing a micro-working electrode for high-accuracy local electrochemical measurement according to the present invention, and the insulating coating layer on the outer peripheral portion of the working electrode surface In the preparation, the organic compound is diluted with an organic solvent having a wider potential window than water, the viscosity is adjusted, applied to the solid material constituting the working electrode, and then dried.

本発明に係る高精度局部電気化学計測用微小作用電極の作製方法は、水よりも電位窓が広い前記有機溶媒として、トルエン、キシレン、ケロシン、シクロヘキサン、アセトニトリル、ジクロロエタン、ジクロロメタン、ジエチルエーテル、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、炭酸プロピレン、テトラヒドロフラン、テトラメチルシランのいずれか1種類、あるいは、それらの内の2種類以上の混合物を使用することが好ましい。   The method for producing a micro-working electrode for high precision local electrochemical measurement according to the present invention is the organic solvent having a wider potential window than water, toluene, xylene, kerosene, cyclohexane, acetonitrile, dichloroethane, dichloromethane, diethyl ether, N, It is preferable to use any one of N-dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, propylene carbonate, tetrahydrofuran, tetramethylsilane, or a mixture of two or more thereof.

本発明に係る高精度局部電気化学計測用微小作用電極の絶縁被覆層の剥離方法は、前記作用電極面をトルエン、キシレン、ジエチルエーテル、1,2-ブチレンオキシド、メタンスルホン酸、1-ブロモプロパンのいずれか1種類、あるいは、それらの内の2種類以上の混合物に浸漬することを特徴とする。   The method for peeling off the insulating coating layer of the micro-working electrode for high precision local electrochemical measurement according to the present invention is such that the working electrode surface is coated with toluene, xylene, diethyl ether, 1,2-butylene oxide, methanesulfonic acid, 1-bromopropane It is characterized by being immersed in any one of the above or a mixture of two or more of them.

本発明によれば、金属材料の微小な腐食起点、めっき反応の開始点や微小欠陥の形成過程などを、高い精度で電気化学計測ことが可能となる高精度局部電気化学計測用微小作用電極を提供することができる。具体的には、本発明に係る高精度局部電気化学計測用微小作用電極に加え、対極、照合電極を用いることで、三電極法による動電位分極曲線、電極インピーダンス、クロノアンペロメトリーなどの各種電気化学計測を精度良く実施できる。また、そのための高精度局部電気化学計測用微小作用電極を、簡便に高い精度で作製することができる作製方法を提供することができる。さらに、高精度局部電気化学計測用微小作用電極の絶縁被覆層を、簡便に剥離することができる剥離方法を提供することができる。   According to the present invention, a micro-working electrode for high-precision local electrochemical measurement that enables high-precision electrochemical measurement of a minute corrosion starting point of a metal material, a starting point of a plating reaction, a formation process of a minute defect, and the like. Can be provided. Specifically, in addition to the fine working electrode for high precision local electrochemical measurement according to the present invention, by using a counter electrode and a reference electrode, various potential potential polarization curves, electrode impedance, chronoamperometry, etc. by the three-electrode method are used. Electrochemical measurement can be performed with high accuracy. In addition, it is possible to provide a production method that can easily produce a high-precision local electrochemical measurement micro-working electrode for that purpose with high accuracy. Furthermore, the peeling method which can peel easily the insulation coating layer of the micro working electrode for a high precision local electrochemical measurement can be provided.

本発明の実施の形態の高精度局部電気化学計測用微小作用電極を使用した、(a)絶縁被覆層の表面に、親水性の有機化合物層が存在しない場合および(b)絶縁被覆層の表面に、親水性の有機化合物層が、作用電極面外周部を取り囲む形態で存在する場合の、電気化学計測用微小電極システムの概略側面図である。(A) When there is no hydrophilic organic compound layer on the surface of the insulating coating layer, and (b) the surface of the insulating coating layer, using the micro-working electrode for high precision local electrochemical measurement of the embodiment of the present invention FIG. 2 is a schematic side view of a microelectrode system for electrochemical measurement when a hydrophilic organic compound layer is present in a form surrounding the outer periphery of the working electrode surface. 本発明の実施の形態の高精度局部電気化学計測用微小作用電極の、炭素鋼(S45C)表面に、ニトロセルロースを主成分とする有機化合物をエタノールで溶かしたものを塗布して作製された作用電極面の、電極面積が 0.0009 mm2、0.008 mm2、0.025 mm2 のときの、pH が 8.0 であるホウ酸緩衝液(非脱気)で測定したアノード分極曲線を示すグラフである。The action produced by applying an organic compound mainly composed of nitrocellulose dissolved in ethanol to the surface of carbon steel (S45C) of the fine working electrode for high precision local electrochemical measurement of the embodiment of the present invention electrode surface, the electrode area of 0.0009 mm 2, 0.008 mm 2, in the case of 0.025 mm 2, is a graph showing the anodic polarization curves measured in borate buffer pH is 8.0 (non-degassed). (a)水滴との接触角が 70度以下である親水性の有機化合物を表面に塗布した被覆層を備える微小作用電極および、(b)水滴との接触角が 70度を超える疎水性の有機化合物を、電位窓が水より広い有機溶媒で溶かすことで粘度を調整したものを表面に塗布した被覆層を備える、本発明の実施の形態の高精度局部電気化学計測用微小作用電極の、微小作用電極表面および表面近傍での金属イオンの拡散の様子を示す説明図である。(A) a micro working electrode having a coating layer coated with a hydrophilic organic compound having a contact angle with water droplets of 70 degrees or less on the surface; and (b) a hydrophobic organic with a contact angle with water droplets exceeding 70 degrees. The fine working electrode for high-precision local electrochemical measurement according to the embodiment of the present invention is provided with a coating layer in which a compound is coated on the surface with a viscosity adjusted by dissolving the compound in an organic solvent having a wider potential window than water. It is explanatory drawing which shows the mode of the spreading | diffusion of the metal ion in the working electrode surface and surface vicinity. 本発明の実施の形態の高精度局部電気化学計測用微小作用電極の、絶縁被覆層の表面に、水滴との接触角が70度以下である親水性の有機化合物層が、作用電極面外周部を取り囲む形態で存在する場合の概略平面図である。In the fine working electrode for high precision local electrochemical measurement of the embodiment of the present invention, a hydrophilic organic compound layer having a contact angle with a water droplet of 70 degrees or less is formed on the surface of the insulating coating layer, and the outer peripheral portion of the working electrode surface FIG. 本発明の実施の形態の高精度局部電気化学計測用微小作用電極の、白金に、ニトロセルロースを主成分とする有機化合物をエタノールで溶かしたものを塗布して作製された作用電極面の、pH が 8.0 であるホウ酸緩衝液(非脱気)で測定したアノード分極曲線を示すグラフである。The pH of the working electrode surface produced by applying a fine working electrode for high precision local electrochemical measurement of an embodiment of the present invention to platinum, which is an organic compound mainly composed of nitrocellulose dissolved in ethanol. It is a graph which shows the anodic polarization curve measured with the borate buffer (non-deaeration) whose is 8.0. 本発明の実施の形態の高精度局部電気化学計測用微小作用電極の、炭素鋼(S45C)表面に、エチルメチルケトオキシムを主成分とする有機化合物をトルエンで溶かしたものを塗布して作製された作用電極面の光学顕微鏡写真である。The fine working electrode for high-accuracy local electrochemical measurement of the embodiment of the present invention is produced by applying an organic compound mainly composed of ethylmethylketoxime dissolved in toluene on the surface of carbon steel (S45C). 2 is an optical micrograph of the working electrode surface. 本発明の実施の形態の高精度局部電気化学計測用微小作用電極の、炭素鋼(S45C)表面に、エチルメチルケトオキシムを主成分とする有機化合物をトルエンで溶かしたものを塗布して作製された作用電極面、およびニトロセルロースを主成分とする有機化合物をエタノールで溶かしたものを塗布して作製された作用電極面の、pH が 8.0 であるホウ酸緩衝液(非脱気)で測定したアノード分極曲線を示すグラフである。The fine working electrode for high-accuracy local electrochemical measurement of the embodiment of the present invention is produced by applying an organic compound mainly composed of ethylmethylketoxime dissolved in toluene on the surface of carbon steel (S45C). Measured with a borate buffer solution (non-degassed) with a pH of 8.0 on a working electrode surface and a working electrode surface prepared by applying an organic compound mainly composed of nitrocellulose dissolved in ethanol It is a graph which shows an anodic polarization curve.

以下に、本発明を実施するための形態について述べる。
図1に、本発明の実施の形態にかかる電気化学計測用微小電極システムの概略図を示す。ただし、図1は、微小領域の電気化学計測と電極面の光学顕微鏡観察とを同時に行う場合の例である。本発明の骨子は、材料表面の微小領域の電気化学計測を行う高精度局部電気化学計測用微小作用電極において、面積が0.01 mm2以下の作用電極面2と、作用電極面2の外周部に、水滴との接触角が70度を超える疎水性の有機化合物を、電位窓が水より広い有機溶媒で溶かすことで粘度を調整したものを表面に塗布した絶縁被覆層1とを備える高精度局部電気化学計測用微小作用電極とその作製方法である。図1(a)は、絶縁被覆層1の表面に、親水性の有機化合物層3が存在しない場合、および図1(b)は、絶縁被覆層1の表面に、親水性の有機化合物層3が、作用電極面2の外周部を取り囲む形態で存在する場合の模式図である。図1に示す対物レンズ、アクリル容器、ポテンショスタットなどは本発明の構成要件ではない。
Hereinafter, embodiments for carrying out the present invention will be described.
FIG. 1 shows a schematic diagram of a microelectrode system for electrochemical measurement according to an embodiment of the present invention. However, FIG. 1 shows an example in which electrochemical measurement of a minute region and optical microscope observation of an electrode surface are performed simultaneously. The essence of the present invention is a fine working electrode for high precision local electrochemical measurement that performs electrochemical measurement of a minute region on the surface of a material, and a working electrode surface 2 having an area of 0.01 mm 2 or less and an outer peripheral portion of the working electrode surface 2. , A high-accuracy local area comprising an insulating coating layer 1 whose surface is coated with a hydrophobic organic compound having a contact angle with water droplets exceeding 70 degrees and dissolved in an organic solvent whose potential window is wider than water. A micro-working electrode for electrochemical measurement and a production method thereof. 1A shows a case where the hydrophilic organic compound layer 3 is not present on the surface of the insulating coating layer 1, and FIG. 1B shows a case where the hydrophilic organic compound layer 3 is formed on the surface of the insulating coating layer 1. These are the schematic diagrams in case it exists in the form surrounding the outer peripheral part of the working electrode surface 2. FIG. The objective lens, acrylic container, potentiostat, and the like shown in FIG. 1 are not constituent elements of the present invention.

図1に示す装置構成での微小領域の電気化学計測において、鉄鋼材料中のある特定の組織や結晶粒などを対象とする場合、金属組織内の一つの相の大きさは多くの場合100μm以下(0.1 mm以下)であるため、作用電極面2の面積は0.01 mm2以下である必要がある。これよりも面積が大きいと、電極面には複数の金属組織を含むこととなり、ある特定の金属組織のみを含む電極面の作製が困難になる。めっきの析出起点や不めっき部の特性解析においては、起点のサイズは直径10μm程度(0.01 mm程度)である。このため、作用電極面2の面積は0.01 mm2以下である必要がある。 In the electrochemical measurement of a minute region in the apparatus configuration shown in FIG. 1, when targeting a specific structure or crystal grain in a steel material, the size of one phase in the metal structure is often 100 μm or less. Since it is (0.1 mm or less), the area of the working electrode surface 2 needs to be 0.01 mm 2 or less. If the area is larger than this, the electrode surface includes a plurality of metal structures, and it becomes difficult to produce an electrode surface including only a specific metal structure. In the characteristic analysis of the plating starting point and the non-plated part, the starting point size is about 10 μm in diameter (about 0.01 mm). For this reason, the area of the working electrode surface 2 needs to be 0.01 mm 2 or less.

図2に、炭素鋼(S45C)に、ニトロセルロースを主成分とする有機化合物をエタノールで溶かしたものを塗布し、作用電極面2を作製した場合の例を示す。この図は、作用電極面2の面積を 0.0009 mm2、0.008 mm2、0.025 mm2としたときの、pH が 8.0 であるホウ酸緩衝液(非脱気)で測定した炭素鋼(S45C)のフェライト組織のアノード分極曲線である。電位は -0.3 V(内部液を飽和KClとするAg/AgCl電極基準、以下同基準)からアノード分極方向へ、23 mV/minの速度で動電位での走査を行った。0.5 V付近の電流値が不働態維持電流密度と呼ばれるものであるが、この電流密度が電極面積を微小にするほど上昇することが分かる。ところで、この図中には、通常用いられている100 mm2 (1 cm2)の作用電極面を作製し、測定したフェライト組織の不働態維持電流密度の値を矢印で示した。図2より、作用電極面2の面積が、0.01 mm2以下である場合には、ニトロセルロースを主成分とする有機化合物をエタノールで溶かしたもので絶縁被覆層1を形成すると、不働態維持電流密度を過大に評価してしまう危険性があることが分かる。 FIG. 2 shows an example in which the working electrode surface 2 is produced by applying carbon steel (S45C) with an organic compound mainly composed of nitrocellulose dissolved in ethanol. This figure shows carbon steel (S45C) measured with borate buffer (non-degassed) with a pH of 8.0 when the area of the working electrode surface 2 is 0.0009 mm 2 , 0.008 mm 2 , and 0.025 mm 2 . It is an anodic polarization curve of a ferrite structure. The potential was scanned at a moving potential at a rate of 23 mV / min in the anodic polarization direction from -0.3 V (Ag / AgCl electrode standard with the internal solution being saturated KCl, hereinafter the same standard). The current value around 0.5 V is called the passive state maintaining current density, and it can be seen that this current density increases as the electrode area becomes smaller. In this figure, a commonly used working electrode surface of 100 mm 2 (1 cm 2 ) was prepared, and the measured value of the passive state maintaining current density of the ferrite structure was indicated by an arrow. According to FIG. 2, when the area of the working electrode surface 2 is 0.01 mm 2 or less, when the insulating coating layer 1 is formed by dissolving an organic compound mainly composed of nitrocellulose with ethanol, a passive state maintaining current is obtained. It turns out that there is a risk of overestimating the density.

ところで、作用電極の面積が 0.01 mm2以下の電気化学計測において、高い精度で電気化学計測を行うには、水滴との接触角が70度を超える疎水性の有機化合物から、作用電極面外周部の絶縁被覆層1が構成されている必要がある。作用電極面積が極微小である場合、電極面積に占める被覆層/電極面境界部の割合が大きくなる。被覆層/電極面境界部には試料の溶解反応などによる金属イオンや、溶液に含まれる塩化物イオンなど電荷を運ぶ化学種が集中しやすいため、より反応が起こりやすい環境となる。特に、局部電気化学計測では、顕微鏡などによる作用電極面2のその場観察を同時に実施すること多いため、図1に示すように、作用電極表面を鉛直方向に対して水平に配置することが多く、作用電極などから溶出した金属イオンは、電極面に留まりやすい必然性を有している。そのため、被覆層/電極面境界部は、電極中央部とは電気化学反応による電流密度が大きく異なる。 By the way, in electrochemical measurement where the area of the working electrode is 0.01 mm 2 or less, in order to perform electrochemical measurement with high accuracy, from the hydrophobic organic compound with a contact angle with water droplets exceeding 70 degrees, the outer peripheral part of the working electrode surface The insulating coating layer 1 must be configured. When the working electrode area is extremely small, the ratio of the coating layer / electrode surface boundary portion in the electrode area increases. Since the chemical species that carry charges such as metal ions due to the dissolution reaction of the sample and chloride ions contained in the solution are likely to concentrate at the coating layer / electrode surface boundary portion, an environment in which the reaction occurs more easily occurs. In particular, in local electrochemical measurement, in-situ observation of the working electrode surface 2 with a microscope or the like is often performed at the same time. Therefore, as shown in FIG. 1, the working electrode surface is often arranged horizontally with respect to the vertical direction. The metal ions eluted from the working electrode and the like have a necessity to stay on the electrode surface. Therefore, the current density due to the electrochemical reaction is greatly different between the coating layer / electrode surface boundary portion and the electrode central portion.

しかし、詳細は不明であるが、水滴との接触角が70度を超える疎水性の有機化合物から作用電極面2の外周部の絶縁被覆層1が構成されている場合には、図3に模式的に示すように、被覆層/電極面境界部に電極面から溶出した金属イオンや塩化物イオンの集中が軽減される。これは、イオン種が濃縮した水溶液の表面張力と、これらのイオン種を含まない水溶液との表面張力の差異に基づく溶液の移動現象であると考えられる。すなわち、水滴との接触角が70度以下の親水性の絶縁被覆層1の場合、電極面から溶出した金属イオンの含有の有無や濃度の高低にかかわらず、水溶液/絶縁被覆の界面は低エネルギー状態で安定している。これに対して、水滴との接触角が70度を超える疎水性の絶縁被覆層1の場合、水溶液/絶縁被覆の界面は高エネルギー状態のため、この疎水性の絶縁被覆層1は、電極面から溶出した金属イオンを多く含む表面張力の低い溶液と接触する方が界面エネルギー的には好適である。このため、水溶液の微妙な対流をきっかけとして、金属イオン含有溶液の移動が起こり、被覆層/電極面境界部に、電気化学計測での誤差要因となるイオン種が蓄積しにくく、電極中央部と電極外周部でほぼ同一の条件で電気化学反応が起こる。   However, although details are unknown, when the insulating coating layer 1 on the outer peripheral portion of the working electrode surface 2 is made of a hydrophobic organic compound having a contact angle with a water droplet of more than 70 degrees, the model is schematically shown in FIG. As shown, the concentration of metal ions and chloride ions eluted from the electrode surface at the coating layer / electrode surface boundary is reduced. This is considered to be a movement phenomenon of the solution based on the difference in surface tension between the aqueous solution containing ionic species and the aqueous solution not containing these ionic species. That is, in the case of the hydrophilic insulating coating layer 1 having a contact angle with water droplets of 70 degrees or less, the aqueous solution / insulating coating interface has low energy regardless of the presence or absence of metal ions eluted from the electrode surface and the concentration level. Stable in condition. On the other hand, in the case of the hydrophobic insulating coating layer 1 having a contact angle with water droplets exceeding 70 degrees, the aqueous solution / insulating coating interface is in a high energy state. It is preferable in terms of interfacial energy to contact with a solution having a low surface tension containing a large amount of metal ions eluted from the surface. For this reason, the movement of the metal ion-containing solution is triggered by the subtle convection of the aqueous solution, and the ion species that cause an error in electrochemical measurement does not accumulate at the coating layer / electrode surface boundary portion. An electrochemical reaction takes place on the electrode outer periphery under almost the same conditions.

このため、作用電極面2の面積が 0.01 mm2以下の電気化学計測において、高い精度で電気化学計測を行うには、疎水性の有機化合物から作用電極面2の外周部の絶縁被覆層1が構成されている必要がある。疎水性の程度としては、水滴との接触角が70度を超える必要がある。望ましくは、80度以上であることがよい。なお、ここでいう接触角とは、JIS R 3257(1999)記載の「基板ガラス表面のぬれ性試験方法」に準拠して計測されるものである。 Therefore, in electrochemical measurement where the area of the working electrode surface 2 is 0.01 mm 2 or less, in order to perform electrochemical measurement with high accuracy, the insulating coating layer 1 on the outer periphery of the working electrode surface 2 is formed from a hydrophobic organic compound. Must be configured. As the degree of hydrophobicity, the contact angle with water droplets needs to exceed 70 degrees. Desirably, it is 80 degrees or more. Here, the contact angle is measured in accordance with “Test method for wettability of substrate glass surface” described in JIS R 3257 (1999).

本発明は、絶縁被覆層1を構成する有機化合物を限定するものではないが、被覆作業の正確性・容易性や作業環境の安全性の観点から、エチルメチルケトオキシム、スチレンブタジエン、ニトリル、クロロプレン、メチルビニル、メチルフェニル、フロロシリコーン、エチレンプロピレン、フッ素、ジメチルポリシロキサンのいずれか1種類、あるいは、それらの内の2種類以上の混合物であることが好ましい。これらの物質が、微小作用電極を作製する際の絶縁被覆層1を構成する物質として優れた特性を発現する理由は、分子内に極性の高い結合構造を有しておらず、水分子との間に水素結合を形成しにくいことが主要な原因ではないかと考えられる。このような化学特性を有する物質は、エチルメチルケトオキシム、スチレンブタジエン、ニトリル、クロロプレン、メチルビニル、メチルフェニル、フロロシリコーン、エチレンプロピレン、フッ素、ジメチルポリシロキサンのみに限定されるものではないが、入手の容易性やコスト、保管時の安全性などの観点から、これらの物質が好ましい。また、これらは単独で使用しても良いが、必要に応じて他の物質と混合しても良い。そして、エチルメチルケトオキシム、スチレンブタジエン、ニトリル、クロロプレン、メチルビニル、メチルフェニル、フロロシリコーン、エチレンプロピレン、フッ素、ジメチルポリシロキサン以外のものと混合して使用する際は、これらの内の1種類以上を質量百分率にて 20%以上含むことが好適である。   The present invention is not limited to the organic compound constituting the insulating coating layer 1, but from the viewpoint of accuracy and ease of coating work and safety of the working environment, ethyl methyl ketoxime, styrene butadiene, nitrile, chloroprene. , Methyl vinyl, methylphenyl, fluorosilicone, ethylene propylene, fluorine, dimethylpolysiloxane, or a mixture of two or more thereof. The reason why these substances exhibit excellent characteristics as a substance constituting the insulating coating layer 1 when producing a micro working electrode is that they do not have a highly polar bond structure in the molecule, and It is thought that the main cause is that it is difficult to form a hydrogen bond between them. Substances with such chemical properties are not limited to ethyl methyl ketoxime, styrene butadiene, nitrile, chloroprene, methyl vinyl, methyl phenyl, fluorosilicone, ethylene propylene, fluorine, dimethylpolysiloxane, but available These materials are preferred from the viewpoints of ease of use, cost, and safety during storage. These may be used alone, but may be mixed with other substances as required. In addition, when used in combination with other than ethyl methyl ketoxime, styrene butadiene, nitrile, chloroprene, methyl vinyl, methyl phenyl, fluorosilicone, ethylene propylene, fluorine, dimethylpolysiloxane, one or more of these It is preferable to contain 20% or more by mass percentage.

また、作用電極面近傍に空気の気泡を残さずに、溶液を作用電極面2の全体に容易に接触させるためには、図1(b)および図4に模式図を示すように、絶縁被覆層1の表面に、水滴との接触角が70度以下である親水性の有機化合物層3が、作用電極面2の外周部を取り囲む形態で存在し、親水性の有機化合物層3と作用電極面2の外周部との距離が全周にわたり 0.5 mm以上 3 mm以下であり、親水性の有機化合物層3の幅が 1 mm以上である必要がある。親水性の有機化合物層3と作用電極面2の外周部の最短距離が0.5mm未満の場合には、親水性の有機化合物層3からの溶出成分による電気化学計測の誤差が、無視できない程に大きくなる。親水性の有機化合物層3と作用電極面2の外周部の最長距離が全周にわたり3mm超では、気泡を残さずに溶液を作用電極面2の全体に容易に接触させる効果は期待できない。また、親水性の有機化合物層3の幅が 1 mm未満では、気泡を残さずに溶液を作用電極面2の全体に容易に接触させることが困難になる。   Further, in order to easily bring the solution into contact with the entire working electrode surface 2 without leaving air bubbles in the vicinity of the working electrode surface, as shown in FIG. 1B and FIG. A hydrophilic organic compound layer 3 having a contact angle with water droplets of 70 degrees or less is present on the surface of the layer 1 so as to surround the outer periphery of the working electrode surface 2, and the hydrophilic organic compound layer 3 and the working electrode The distance from the outer peripheral portion of the surface 2 is 0.5 mm or more and 3 mm or less over the entire circumference, and the width of the hydrophilic organic compound layer 3 needs to be 1 mm or more. When the shortest distance between the hydrophilic organic compound layer 3 and the outer periphery of the working electrode surface 2 is less than 0.5 mm, the error in electrochemical measurement due to the elution component from the hydrophilic organic compound layer 3 is not negligible. growing. If the longest distance between the hydrophilic organic compound layer 3 and the outer periphery of the working electrode surface 2 exceeds 3 mm over the entire circumference, the effect of easily bringing the solution into contact with the entire working electrode surface 2 without leaving bubbles is not expected. If the width of the hydrophilic organic compound layer 3 is less than 1 mm, it is difficult to easily bring the solution into contact with the entire working electrode surface 2 without leaving bubbles.

ところで、作用電極面2の外周部の絶縁被覆層1の作製に際して、水よりも電位窓が広い有機溶媒で疎水性の有機化合物を希釈し、粘度を調整したうえで作用電極を構成する固体材料に塗布し、その後、乾燥させることが好適である。すなわち、絶縁被覆層1を構成するエチルメチルケトオキシム、スチレンブタジエン、ニトリル、クロロプレン、メチルビニル、メチルフェニル、フロロシリコーン、エチレンプロピレン、フッ素、ジメチルポリシロキサンなどの疎水性の有機化合物の多くは、粘度が高く、面積が 0.01 mm2以下の作用電極面2を材料表面のあらかじめ定められた目的の位置に高い精度で作製することは困難である。そのため、面積が 0.01 mm2以下の作用電極面2の作製においては、絶縁被覆層1を構成する疎水性の有機化合物に、有機溶剤を添加し粘度を調整することが好適である。この際、エタノール、メタノール、イソプロパノールなどの水よりも電位窓が狭い有機溶剤を使用すると、電気化学計測の際に、これらが極微量ではあるものの水溶液(電解液)に溶出し、目的としない酸化還元反応を起こしてしまい、高精度な電流測定を困難なものとする。 By the way, in the production of the insulating coating layer 1 on the outer peripheral portion of the working electrode surface 2, the hydrophobic organic compound is diluted with an organic solvent having a wider potential window than water and the viscosity is adjusted, and the solid material constituting the working electrode It is suitable to apply to and then dry. That is, many of the hydrophobic organic compounds such as ethyl methyl ketoxime, styrene butadiene, nitrile, chloroprene, methyl vinyl, methyl phenyl, fluorosilicone, ethylene propylene, fluorine, and dimethylpolysiloxane constituting the insulating coating layer 1 have a viscosity. It is difficult to produce the working electrode surface 2 having a high area and an area of 0.01 mm 2 or less at a predetermined target position on the material surface with high accuracy. Therefore, in the production of the working electrode surface 2 having an area of 0.01 mm 2 or less, it is preferable to adjust the viscosity by adding an organic solvent to the hydrophobic organic compound constituting the insulating coating layer 1. At this time, if an organic solvent with a narrower potential window than water such as ethanol, methanol, isopropanol, etc. is used, it will elute into an aqueous solution (electrolyte) although it is a trace amount during electrochemical measurement, and it will not be the target oxidation. It causes a reduction reaction and makes current measurement with high accuracy difficult.

図5に、白金にニトロセルロースを主成分とする有機化合物をエタノールで溶かしたものを塗布し、面積 0.008 mm2の作用電極面2を作製した場合の、pH が 8.0 であるホウ酸緩衝液(非脱気)で測定したアノード分極曲線を示す。電位は、-0.3 V(内部液を飽和KClとするAg/AgCl電極基準)からアノード分極方向へ、23 mV/minの速度で動電位での走査を行った。この場合、0.8 V付近には、電流密度が電位に依存しない領域が現れているが、通常用いられている 1 cm四方の作用電極面2を作製し測定すると、0.8 Vでの電流値は 10-2 A/m2以下である。したがって、図5より、白金にニトロセルロースを主成分とする有機化合物をエタノールで溶かしたものを塗布し、面積 0.008 mm2の作用電極面2を作製した場合の0.8 Vでの電流密度は、通常用いられている 1 cm四方の作用電極面を作製した場合の電流密度と比較して、10倍以上となっていることが分かる。 5, an organic compound mainly nitrocellulose platinum coated those dissolved in ethanol, in the case of producing a working electrode surface 2 of the area 0.008 mm 2, borate buffer is at a pH of 8.0 ( An anodic polarization curve measured by (non-degassing) is shown. The potential was scanned at a dynamic potential from -0.3 V (Ag / AgCl electrode standard with the internal solution as saturated KCl) in the anodic polarization direction at a rate of 23 mV / min. In this case, a region where the current density does not depend on the potential appears in the vicinity of 0.8 V, but when a working electrode surface 2 of 1 cm square that is normally used is fabricated and measured, the current value at 0.8 V is 10 -2 A / m 2 or less. Therefore, the current density at 0.8 V when prepared from 5, an organic compound mainly nitrocellulose platinum coated those dissolved in ethanol, the working electrode surface 2 of the area 0.008 mm 2 is usually It can be seen that the current density when the working electrode surface of 1 cm square used is 10 times or more.

すなわち、作用電極面2の面積が 0.01 mm2以下の場合に、絶縁被覆層1の作製に、有機溶媒として電位窓の狭いエタノールを用いた場合、電流値を過大に評価してしまう危険性がある。これは、エタノールの酸化還元反応による電流値を計測したことによるものであると考えられる。そのため、絶縁被覆層1を構成する有機化合物の希釈剤としては、水よりも電位窓が広い有機溶剤が好適である。 That is, when the area of the working electrode surface 2 is 0.01 mm 2 or less, there is a risk of overestimating the current value when ethanol with a narrow potential window is used as the organic solvent in the production of the insulating coating layer 1. is there. This is considered to be due to the measurement of the current value due to the redox reaction of ethanol. Therefore, an organic solvent having a wider potential window than water is suitable as a diluent for the organic compound constituting the insulating coating layer 1.

本発明は、希釈用の有機溶剤の種類や組成を限定するものではないが、作業性、安全性、経済性の観点から、トルエン、キシレン、ケロシン、シクロヘキサン、アセトニトリル、ジクロロエタン、ジクロロメタン、ジエチルエーテル、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、炭酸プロピレン、テトラヒドロフラン、テトラメチルシランのいずれか1種類、あるいは、それらの内の2種類以上の混合物を用いることが好ましい。さらに、絶縁被覆層1を形成した後は、希釈溶剤を揮発させるために、充分な乾燥を行う必要がある。   The present invention is not limited to the type and composition of the organic solvent for dilution, but from the viewpoint of workability, safety, and economy, toluene, xylene, kerosene, cyclohexane, acetonitrile, dichloroethane, dichloromethane, diethyl ether, It is preferable to use any one of N, N-dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, propylene carbonate, tetrahydrofuran and tetramethylsilane, or a mixture of two or more thereof. Furthermore, after forming the insulating coating layer 1, it is necessary to perform sufficient drying in order to volatilize the diluting solvent.

ところで、材料表面の微小領域の電気化学計測を行った後に、電子顕微鏡などにより電極面を観察したり分析したりする必要が生じる場合がある。そのような場合、絶縁被覆層1を容易に剥離できることが重要である。また、分析精度を確保するためにも、作用電極面2を腐食・侵食することなく、絶縁被覆層1を容易に剥離する必要がある。作用電極面2を腐食・侵食することなく、絶縁被覆層1を剥離するためには、電極面を水よりも誘電率の小さい有機溶媒に浸漬する方法が望ましい。なぜなら、水よりも誘電率の小さい有機溶媒中では、金属の腐食反応が起きにくいためである。そのような有機溶媒として、トルエン、キシレン、ジエチルエーテル、1,2-ブチレンオキシド、メタンスルホン酸、1-ブロモプロパンのいずれか1種類、あるいは、それらの内の2種類以上の混合物に浸漬することで、絶縁被覆層1を容易に剥離することが可能である。このような化学特性を有する物質は、トルエン、キシレン、ジエチルエーテル、1,2-ブチレンオキシド、メタンスルホン酸、1-ブロモプロパンのみに限定されるものではないが、入手の容易性やコスト、保管時の安全性などの観点から、これらの物質が好ましい。   By the way, it may be necessary to observe and analyze the electrode surface with an electron microscope or the like after performing electrochemical measurement of a minute region on the surface of the material. In such a case, it is important that the insulating coating layer 1 can be easily peeled off. Further, in order to ensure analysis accuracy, it is necessary to easily peel off the insulating coating layer 1 without corroding or eroding the working electrode surface 2. In order to peel the insulating coating layer 1 without corroding / eroding the working electrode surface 2, a method of immersing the electrode surface in an organic solvent having a dielectric constant smaller than that of water is desirable. This is because the corrosion reaction of metal hardly occurs in an organic solvent having a dielectric constant smaller than that of water. Soak in toluene, xylene, diethyl ether, 1,2-butylene oxide, methanesulfonic acid, 1-bromopropane, or a mixture of two or more of them as such organic solvents Thus, the insulating coating layer 1 can be easily peeled off. Substances having such chemical properties are not limited to toluene, xylene, diethyl ether, 1,2-butylene oxide, methanesulfonic acid, and 1-bromopropane, but are easily available, costly, and stored. From the viewpoint of safety at times, these substances are preferable.

以下に、実施例に基づき本発明を詳細に説明するが、本発明は実施例の記載に限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to the description of the examples.

表面研磨した炭素鋼(S45C)の表面に、有機化合物を塗布し絶縁被覆層1を構成し、微小作用電極面(50μm四方の電極面:面積 0.0025 mm2)2を作製した。作製にあたっては、炭素鋼を事前にナイタールでエッチングして、図6に示すように、パーライト組織の周囲にビッカース硬度計の圧痕で印を付け、作用電極面2はパーライト組織のみで構成されるようにして、pH が 8.0 であるホウ酸緩衝液(非脱気)で 23 mV/minの速度で動電位アノード分極曲線を計測した。表1に、絶縁被覆層1の作製に用いた有機化合物の種類と水滴との接触角を示す。表1に示すように、有機化合物としてエチルメチルケトオキシム、スチレンブタジエン、ニトリル、クロロプレン、メチルビニル、メチルフェニル、フロロシリコーン、エチレンプロピレン、フッ素樹脂、ジメチルポリシロキサンを用いた場合、水滴との接触角が 70度を超えることが分かる。 An organic compound was applied to the surface of the surface-polished carbon steel (S45C) to form an insulating coating layer 1, and a fine working electrode surface (50 μm square electrode surface: area 0.0025 mm 2 ) 2 was produced. In production, carbon steel is etched in advance with nital, and as shown in FIG. 6, the periphery of the pearlite structure is marked with an indentation of a Vickers hardness meter, and the working electrode surface 2 is composed only of the pearlite structure. Then, the potentiodynamic anodic polarization curve was measured at a rate of 23 mV / min with a borate buffer (non-degassed) having a pH of 8.0. Table 1 shows the contact angle between the kind of the organic compound used for the production of the insulating coating layer 1 and water droplets. As shown in Table 1, when an organic compound is ethyl methyl ketoxime, styrene butadiene, nitrile, chloroprene, methyl vinyl, methyl phenyl, fluorosilicone, ethylene propylene, fluororesin, or dimethylpolysiloxane, the contact angle with water droplets It can be seen that exceeds 70 degrees.

表2および表3に、絶縁被覆層1の作製に用いた有機化合物および希釈用の有機溶媒を示す。さらに、この表には、水滴との接触角が 70度を超える場合を疎水性の評価結果として「○」、水滴との接触角が 70度以下である場合を「×」で示した。さらに、これらの有機化合物と希釈溶媒を用いて、微小作用電極面(50μm四方の電極面:面積 0.0025 mm2)2の絶縁被覆層1を作製し、pH が 8.0 であるホウ酸緩衝液(非脱気)で、23 mV/minの速度で動電位アノード分極曲線を計測した。このとき、電位 0.5 Vにおける不働態維持電流密度の値が、パーライト組織の炭素鋼上に 1 cm四方の電極面を作製して同じ条件で計測したときの電流密度の値の、5倍以下である場合を、電気化学測定の精度の評価として「◎」、5倍を超えるが7倍以下である場合を「○」とした。 Tables 2 and 3 show the organic compounds and organic solvents for dilution used in the production of the insulating coating layer 1. Furthermore, in this table, a case where the contact angle with the water droplet exceeds 70 degrees is indicated as “◯” as a hydrophobicity evaluation result, and a case where the contact angle with the water droplet is 70 degrees or less is indicated by “x”. Furthermore, using these organic compounds and a diluting solvent, an insulating coating layer 1 having a micro-working electrode surface (50 μm square electrode surface: area 0.0025 mm 2 ) 2 is prepared, and a borate buffer solution (pH of 8.0) In the degassing), the potentiodynamic anodic polarization curve was measured at a rate of 23 mV / min. At this time, the value of the passive state maintaining current density at a potential of 0.5 V is less than 5 times the value of the current density when a 1 cm square electrode surface is prepared on carbon steel with a pearlite structure and measured under the same conditions. In some cases, the evaluation of the accuracy of the electrochemical measurement was “」 ”, and the case where it exceeded 5 times but was 7 times or less was assigned“ ◯ ”.

表2および表3に示すように、有機化合物としてエチルメチルケトオキシム、スチレンブタジエン、ニトリル、クロロプレン、メチルビニル、メチルフェニル、フロロシリコーン、エチレンプロピレン、フッ素樹脂、ジメチルポリシロキサンを用い、有機溶媒としてトルエン、キシレン、ケロシン、シクロヘキサン、アセトニトリル、ジクロロエタン、ジクロロメタン、ジエチルエーテル、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、炭酸プロピレン、テトラヒドロフラン、テトラメチルフランを用いた場合、すなわち絶縁被覆層1と水滴との接触角が 70度を超える場合において、微小作用電極を用いて高い精度で電気化学計測ができることが分かる。   As shown in Table 2 and Table 3, ethyl methyl ketoxime, styrene butadiene, nitrile, chloroprene, methyl vinyl, methyl phenyl, fluorosilicone, ethylene propylene, fluororesin, dimethylpolysiloxane are used as the organic compound, and toluene is used as the organic solvent. , Xylene, kerosene, cyclohexane, acetonitrile, dichloroethane, dichloromethane, diethyl ether, N, N-dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, propylene carbonate, tetrahydrofuran, tetramethylfuran, ie insulation coating It can be seen that when the contact angle between the layer 1 and the water droplet exceeds 70 degrees, electrochemical measurement can be performed with high accuracy using the micro working electrode.

なお、一例として、図7に、これらの内、エチルメチルケトオキシムを主成分とする有機化合物をトルエンで溶かしたもので作用電極面2を作製した場合(表2中の実施例1)、およびニトロセルロースを主成分とする有機化合物をエタノールで溶かしたものを塗布し、作用電極面2を作製した場合(表3中の比較例18)のアノード分極曲線を示す。図7から明らかなように、評価対象とした電位である 0.5 V以外の電位領域においても、疎水性の有機化合物から成る絶縁被覆層1を用いることで、親水性の有機化合物から成る被覆層を用いた場合と比較して電流値が低下していることから、意図しない電気化学反応を効果的に抑制できていることが分かる。   As an example, FIG. 7 shows a case where the working electrode surface 2 is made of an organic compound mainly composed of ethylmethylketoxime dissolved in toluene (Example 1 in Table 2). An anodic polarization curve in the case of preparing a working electrode surface 2 by applying an organic compound containing nitrocellulose as a main component dissolved in ethanol (Comparative Example 18 in Table 3) is shown. As is clear from FIG. 7, even in a potential region other than the potential of 0.5 V, which is the potential for evaluation, the insulating coating layer 1 made of a hydrophobic organic compound is used to form a coating layer made of a hydrophilic organic compound. Since the electric current value has fallen compared with the case where it uses, it turns out that the unintended electrochemical reaction can be suppressed effectively.

表4に、有機化合物としてエチルメチルケトオキシム、有機溶媒としてトルエンを用いて微小作用電極面(50μm四方の電極面:面積 0.0025 mm2)2の絶縁被覆層1を作製し、図4に模式図を示すように、絶縁被覆層1の外周部に、有機化合物としてニトロセルロース、有機溶媒としてエタノールを用いて親水性の有機化合物層3を形成した場合の、作用電極面2の外周部と親水性の有機化合物層3の最短距離および最長距離、親水性の有機化合物層3の幅を示す。さらに、これらの寸法で絶縁被覆層1および親水性の有機化合物層3を作製し、pH が 8.0 であるホウ酸緩衝液(非脱気)で、23 mV/minの速度で動電位アノード分極曲線を計測した。このとき、電位 0.5 Vにおける不働態維持電流密度の値が、パーライト組織の炭素鋼上に 1 cm四方の電極面を作製して同じ条件で計測したときの電流密度の値の、5倍を超えるが7倍以下である場合を「○」、7倍以上である場合を「△」として、電気化学測定の精度を評価した。 Table 4 shows an insulating coating layer 1 having a small working electrode surface (50 μm square electrode surface: area 0.0025 mm 2 ) 2 using ethyl methyl ketoxime as an organic compound and toluene as an organic solvent. As shown, the outer peripheral portion of the working electrode surface 2 and the hydrophilicity when the hydrophilic organic compound layer 3 is formed on the outer peripheral portion of the insulating coating layer 1 using nitrocellulose as the organic compound and ethanol as the organic solvent. The shortest distance and the longest distance of the organic compound layer 3 and the width of the hydrophilic organic compound layer 3 are shown. Further, an insulating coating layer 1 and a hydrophilic organic compound layer 3 are produced with these dimensions, and a potentiodynamic anodic polarization curve at a rate of 23 mV / min with a borate buffer solution (non-deaerated) having a pH of 8.0. Was measured. At this time, the value of the passive state maintaining current density at a potential of 0.5 V exceeds 5 times the value of the current density when a 1 cm square electrode surface is produced on carbon steel having a pearlite structure and measured under the same conditions. The accuracy of the electrochemical measurement was evaluated by assuming that “” is 7 times or less, and “Δ” is 7 times or more.

ところで、微小作用電極面2による実験では、気泡が作用電極面2の外周部の絶縁被覆層1との境界部に残存し、電気化学計測の精度などを低下させる要因となる。そこで、上記の寸法で絶縁被覆層1および親水性の有機化合物層3を作製し、pH が 8.0 であるホウ酸緩衝液(非脱気)中に電極面を浸漬した状態で、光学顕微鏡および水浸対物レンズを用いて電極面表面を観察し、電極面外周部の距離の5%未満が気泡で覆われている場合を「○」、5%以上が気泡で覆われている場合を「△」として、電極面と溶液との接触性を評価した。表4に示すように、親水性の有機化合物層3と作用電極面2の外周部との距離が、全周にわたり 0.5 mm以上 3 mm以下であり、親水性の有機化合物層の幅が 1 mm以上である場合において、気泡の残存を抑制できることが分かる。   By the way, in the experiment using the minute working electrode surface 2, bubbles remain at the boundary portion between the outer peripheral portion of the working electrode surface 2 and the insulating coating layer 1 and cause a decrease in the accuracy of electrochemical measurement. Accordingly, the insulating coating layer 1 and the hydrophilic organic compound layer 3 having the above dimensions are prepared, and the electrode surface is immersed in a borate buffer solution (non-deaerated) having a pH of 8.0, and an optical microscope and water are used. When the surface of the electrode surface is observed using an immersion objective lens, “◯” indicates that less than 5% of the distance on the outer periphery of the electrode surface is covered with bubbles, and “△” indicates that 5% or more is covered with bubbles. The contact between the electrode surface and the solution was evaluated. As shown in Table 4, the distance between the hydrophilic organic compound layer 3 and the outer periphery of the working electrode surface 2 is 0.5 mm or more and 3 mm or less over the entire circumference, and the width of the hydrophilic organic compound layer is 1 mm. In the case of the above, it turns out that the bubble remaining can be suppressed.

表5に、エチルメチルケトオキシムを主成分とする絶縁被覆層1を有機溶媒に浸漬した際の、絶縁被覆層1の剥離性を示す。24時間の浸漬で絶縁被覆層1の 80%以上が剥離する場合を「○」、50%以上 80%未満が剥離する場合を「△」、50%未満しか剥離しない場合を「×」として、絶縁被覆層1の剥離性を評価した。表5に示すように、エチルメチルケトオキシムを主成分とする有機化合物を用いて絶縁被覆層1を構成した場合、電極面をトルエン、キシレンに 24時間浸漬することで、絶縁被覆層1の 50%以上 80%未満が剥離した。これより長時間浸漬することで、さらに絶縁被覆層1を剥離することができると考えられる。また、ジエチルエーテル、1,2-ブチレンオキシド、メタンスルホン酸、1-ブロモプロパンに電極面を 24時間浸漬することで、絶縁被覆層1の 80%以上が剥離した。これらの物質に浸漬することで表面観察に支障のない程度まで絶縁被覆層1を剥離することが可能であると分かる。   Table 5 shows the peelability of the insulating coating layer 1 when the insulating coating layer 1 mainly composed of ethylmethylketoxime is immersed in an organic solvent. “○” indicates that 80% or more of the insulating coating layer 1 peels off after 24 hours of immersion, “△” indicates that 50% or more and less than 80% peels, and “x” indicates that only 50% or less peels off. The peelability of the insulating coating layer 1 was evaluated. As shown in Table 5, when the insulating coating layer 1 is composed of an organic compound mainly composed of ethyl methyl ketoxime, the electrode surface is immersed in toluene and xylene for 24 hours. % And less than 80% peeled off. It is considered that the insulating coating layer 1 can be further peeled by being immersed for a longer time. Further, when the electrode surface was immersed in diethyl ether, 1,2-butylene oxide, methanesulfonic acid, and 1-bromopropane for 24 hours, 80% or more of the insulating coating layer 1 was peeled off. It can be seen that the insulation coating layer 1 can be peeled to such an extent that the surface observation is not hindered by being immersed in these substances.

このように、本発明の実施の形態の高精度局部電気化学計測用微小作用電極により、被覆層の反応や、被覆層/電極面境界のイオンの集中の影響を受けずに、微小電極面の電気化学計測が可能であることが分かる。   As described above, the micro-working electrode for high-precision local electrochemical measurement according to the embodiment of the present invention can be applied to the microelectrode surface without being affected by the reaction of the coating layer or the concentration of ions at the boundary of the coating layer / electrode surface. It can be seen that electrochemical measurement is possible.

本発明の活用例としては、普通鋼などの腐食を起こしやすい材料の局部電気化学現象解析などのための高精度局部電気化学計測用微小作用電極、その作製方法および高精度局部電気化学計測用微小作用電極の絶縁被覆層の剥離方法として利用可能であり、学術研究のみならず産業上としても極めて有益である。   Examples of the use of the present invention include a micro-working electrode for high-accuracy local electrochemical measurement for local electrochemical phenomenon analysis of a material that easily causes corrosion, such as ordinary steel, a manufacturing method thereof, and a micro-electrode for high-accuracy local electrochemical measurement It can be used as a method for peeling off the insulating coating layer of the working electrode, and is extremely useful not only for academic research but also for industry.

1 絶縁被覆層
2 作用電極面
3 親水性の有機化合物層

DESCRIPTION OF SYMBOLS 1 Insulation coating layer 2 Working electrode surface 3 Hydrophilic organic compound layer

本発明に係る高精度局部電気化学計測用微小作用電極は、計測対象である材料表面の任意の位置に作製された、面積が 0.01 mm2以下の作用電極面と、水滴との接触角が 70度を超える疎水性の有機化合物から構成され、前記作用電極面の外周部に形成された絶縁被覆層とを、有することを特徴とする。
The micro-working electrode for high-accuracy local electrochemical measurement according to the present invention has a contact angle between a working electrode surface with an area of 0.01 mm 2 or less , which is produced at an arbitrary position on the surface of the material to be measured, and a water droplet. And an insulating coating layer formed on the outer peripheral portion of the working electrode surface .

本発明に係る高精度局部電気化学計測用微小作用電極で、前記作用電極面外周部の絶縁被覆層が、エチルメチルケトオキシム、スチレンブタジエン、ニトリル、クロロプレン、メチルビニル、メチルフェニル、フロロシリコーン、エチレンプロピレン、フッ素樹脂、ジメチルポリシロキサンのいずれか1種類、あるいは、それらの内の2種類以上の混合物であることが好ましい。
The fine working electrode for high-accuracy local electrochemical measurement according to the present invention, wherein the insulating coating layer on the outer periphery of the working electrode surface is ethylmethylketoxime, styrenebutadiene, nitrile, chloroprene, methylvinyl, methylphenyl, fluorosilicone, ethylene propylene, fluorocarbon resins, one type of dimethylpolysiloxane or is preferably a mixture of two or more of them.

本発明は、絶縁被覆層1を構成する有機化合物を限定するものではないが、被覆作業の正確性・容易性や作業環境の安全性の観点から、エチルメチルケトオキシム、スチレンブタジエン、ニトリル、クロロプレン、メチルビニル、メチルフェニル、フロロシリコーン、エチレンプロピレン、フッ素樹脂、ジメチルポリシロキサンのいずれか1種類、あるいは、それらの内の2種類以上の混合物であることが好ましい。これらの物質が、微小作用電極を作製する際の絶縁被覆層1を構成する物質として優れた特性を発現する理由は、分子内に極性の高い結合構造を有しておらず、水分子との間に水素結合を形成しにくいことが主要な原因ではないかと考えられる。このような化学特性を有する物質は、エチルメチルケトオキシム、スチレンブタジエン、ニトリル、クロロプレン、メチルビニル、メチルフェニル、フロロシリコーン、エチレンプロピレン、フッ素樹脂、ジメチルポリシロキサンのみに限定されるものではないが、入手の容易性やコスト、保管時の安全性などの観点から、これらの物質が好ましい。また、これらは単独で使用しても良いが、必要に応じて他の物質と混合しても良い。そして、エチルメチルケトオキシム、スチレンブタジエン、ニトリル、クロロプレン、メチルビニル、メチルフェニル、フロロシリコーン、エチレンプロピレン、フッ素樹脂、ジメチルポリシロキサン以外のものと混合して使用する際は、これらの内の1種類以上を質量百分率にて 20%以上含むことが好適である。
The present invention is not limited to the organic compound constituting the insulating coating layer 1, but from the viewpoint of accuracy and ease of coating work and safety of the working environment, ethyl methyl ketoxime, styrene butadiene, nitrile, chloroprene. , methyl vinyl, methyl phenyl, fluorosilicone, ethylene propylene, fluorocarbon resins, one type of dimethylpolysiloxane, or be a mixture of two or more of them preferred. The reason why these substances exhibit excellent characteristics as a substance constituting the insulating coating layer 1 when producing a micro working electrode is that they do not have a highly polar bond structure in the molecule, and It is thought that the main cause is that it is difficult to form a hydrogen bond between them. Substances having such chemical properties, ethyl methyl ketoxime, styrene-butadiene, nitrile, chloroprene, methyl vinyl, methyl phenyl, fluorosilicone, ethylene propylene, fluorocarbon resins, but are not limited to dimethyl polysiloxane, These substances are preferable from the viewpoints of availability, cost, safety during storage, and the like. These may be used alone, but may be mixed with other substances as required. Then, when used as a mixture of ethyl methyl ketoxime, styrene-butadiene, nitrile, chloroprene, methyl vinyl, methyl phenyl, fluorosilicone, ethylene propylene, fluorocarbon resins, and other than dimethylpolysiloxane, one of these It is preferable to contain 20% or more by mass percentage.

ところで、作用電極面2の外周部の絶縁被覆層1の作製に際して、水よりも電位窓が広い有機溶媒で疎水性の有機化合物を希釈し、粘度を調整したうえで作用電極を構成する固体材料に塗布し、その後、乾燥させることが好適である。すなわち、絶縁被覆層1を構成するエチルメチルケトオキシム、スチレンブタジエン、ニトリル、クロロプレン、メチルビニル、メチルフェニル、フロロシリコーン、エチレンプロピレン、フッ素樹脂、ジメチルポリシロキサンなどの疎水性の有機化合物の多くは、粘度が高く、面積が 0.01 mm2以下の作用電極面2を材料表面のあらかじめ定められた目的の位置に高い精度で作製することは困難である。そのため、面積が 0.01 mm2以下の作用電極面2の作製においては、絶縁被覆層1を構成する疎水性の有機化合物に、有機溶剤を添加し粘度を調整することが好適である。この際、エタノール、メタノール、イソプロパノールなどの水よりも電位窓が狭い有機溶剤を使用すると、電気化学計測の際に、これらが極微量ではあるものの水溶液(電解液)に溶出し、目的としない酸化還元反応を起こしてしまい、高精度な電流測定を困難なものとする。
By the way, in the production of the insulating coating layer 1 on the outer peripheral portion of the working electrode surface 2, the hydrophobic organic compound is diluted with an organic solvent having a wider potential window than water and the viscosity is adjusted, and the solid material constituting the working electrode It is suitable to apply to and then dry. That is, ethyl methyl ketoxime constituting the insulating coating layer 1, the number of styrene-butadiene, nitrile, chloroprene, methyl vinyl, methyl phenyl, fluorosilicone, ethylene propylene, fluorocarbon resins, hydrophobic organic compounds such as dimethyl polysiloxane, It is difficult to produce the working electrode surface 2 having a high viscosity and an area of 0.01 mm 2 or less at a predetermined target position on the material surface with high accuracy. Therefore, in the production of the working electrode surface 2 having an area of 0.01 mm 2 or less, it is preferable to adjust the viscosity by adding an organic solvent to the hydrophobic organic compound constituting the insulating coating layer 1. At this time, if an organic solvent with a narrower potential window than water such as ethanol, methanol, isopropanol, etc. is used, it will elute into an aqueous solution (electrolyte) although it is a trace amount during electrochemical measurement, and it will not be the target oxidation. It causes a reduction reaction and makes current measurement with high accuracy difficult.

Claims (6)

作用電極面の面積が 0.01 mm2以下で、前記作用電極面外周部の絶縁被覆層が、水滴との接触角が 70度を超える疎水性の有機化合物から構成されていることを特徴とする高精度局部電気化学計測用微小作用電極。 The area of the working electrode surface is 0.01 mm 2 or less, and the insulating coating layer on the outer periphery of the working electrode surface is composed of a hydrophobic organic compound having a contact angle with water droplets exceeding 70 degrees. Micro working electrode for precision local electrochemical measurements. 前記作用電極面外周部の絶縁被覆層が、エチルメチルケトオキシム、スチレンブタジエン、ニトリル、クロロプレン、メチルビニル、メチルフェニル、フロロシリコーン、エチレンプロピレン、フッ素、ジメチルポリシロキサンのいずれか1種類、あるいは、それらの内の2種類以上の混合物であることを特徴とする請求項1記載の高精度局部電気化学計測用微小作用電極。   The insulating coating layer on the outer periphery of the working electrode surface is any one of ethylmethylketoxime, styrenebutadiene, nitrile, chloroprene, methylvinyl, methylphenyl, fluorosilicone, ethylenepropylene, fluorine, dimethylpolysiloxane, or these The fine working electrode for high precision local electrochemical measurement according to claim 1, which is a mixture of two or more of the above. 前記絶縁被覆層の表面に、水滴との接触角が 70度以下である親水性の有機化合物層が、前記作用電極面外周部を取り囲む形態で存在し、親水性の前記有機化合物層と前記作用電極面外周部との距離が全周にわたり 0.5 mm以上 3 mm以下であり、親水性の前記有機化合物層の幅が 1 mm以上であることを特徴とする請求項1もしくは2記載の高精度局部電気化学計測用微小作用電極。   On the surface of the insulating coating layer, a hydrophilic organic compound layer having a contact angle with water droplets of 70 degrees or less exists in a form surrounding the outer peripheral portion of the working electrode surface, and the hydrophilic organic compound layer and the action The high-precision local portion according to claim 1 or 2, wherein the distance from the outer peripheral portion of the electrode surface is 0.5 mm or more and 3 mm or less over the entire circumference, and the width of the hydrophilic organic compound layer is 1 mm or more. Micro working electrode for electrochemical measurement. 請求項1から請求項3のいずれか1項に記載の高精度局部電気化学計測用微小作用電極の作製方法であって、前記作用電極面外周部の絶縁被覆層の作製に際して、水よりも電位窓が広い有機溶媒で有機化合物を希釈し、粘度を調整したうえで前記作用電極を構成する固体材料に塗布し、その後、乾燥させることを特徴とする高精度局部電気化学計測用微小作用電極の作製方法。   The method for producing a micro-working electrode for high precision local electrochemical measurement according to any one of claims 1 to 3, wherein the potential is higher than that of water when the insulating coating layer on the outer peripheral surface of the working electrode is produced. An organic compound diluted with an organic solvent having a wide window, applied to a solid material constituting the working electrode after adjusting the viscosity, and then dried. Manufacturing method. 水よりも電位窓が広い前記有機溶媒として、トルエン、キシレン、ケロシン、シクロヘキサン、アセトニトリル、ジクロロエタン、ジクロロメタン、ジエチルエーテル、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、炭酸プロピレン、テトラヒドロフラン、テトラメチルシランのいずれか1種類、あるいは、それらの内の2種類以上の混合物を使用することを特徴とする請求項4記載の高精度局部電気化学計測用微小作用電極の作製方法。   As the organic solvent having a wider potential window than water, toluene, xylene, kerosene, cyclohexane, acetonitrile, dichloroethane, dichloromethane, diethyl ether, N, N-dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, propylene carbonate, The method for producing a micro-working electrode for high precision local electrochemical measurement according to claim 4, wherein any one of tetrahydrofuran and tetramethylsilane, or a mixture of two or more thereof is used. 請求項1から請求項3のいずれか一項に記載の高精度局部電気化学計測用微小作用電極の絶縁被覆層の剥離方法であって、前記作用電極面をトルエン、キシレン、ジエチルエーテル、1,2-ブチレンオキシド、メタンスルホン酸、1-ブロモプロパンのいずれか1種類、あるいは、それらの内の2種類以上の混合物に浸漬することを特徴とする高精度局部電気化学計測用微小作用電極の絶縁被覆層の剥離方法。


A method for peeling off an insulating coating layer of a micro-working electrode for high precision local electrochemical measurement according to any one of claims 1 to 3, wherein the working electrode surface is coated with toluene, xylene, diethyl ether, 1, Insulation of micro working electrode for high precision local electrochemical measurement characterized by being immersed in one kind of 2-butylene oxide, methanesulfonic acid, 1-bromopropane or a mixture of two or more of them The peeling method of a coating layer.


JP2017028783A 2017-02-20 2017-02-20 Micro-working electrode for high-precision local electrochemical measurement, manufacturing method of micro-working electrode for high-accuracy local electrochemical measurement, and peeling method of insulating coating layer of micro-working electrode for high-precision local electrochemical measurement Active JP6143040B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017028783A JP6143040B1 (en) 2017-02-20 2017-02-20 Micro-working electrode for high-precision local electrochemical measurement, manufacturing method of micro-working electrode for high-accuracy local electrochemical measurement, and peeling method of insulating coating layer of micro-working electrode for high-precision local electrochemical measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017028783A JP6143040B1 (en) 2017-02-20 2017-02-20 Micro-working electrode for high-precision local electrochemical measurement, manufacturing method of micro-working electrode for high-accuracy local electrochemical measurement, and peeling method of insulating coating layer of micro-working electrode for high-precision local electrochemical measurement

Publications (2)

Publication Number Publication Date
JP6143040B1 JP6143040B1 (en) 2017-06-07
JP2018136133A true JP2018136133A (en) 2018-08-30

Family

ID=59011982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017028783A Active JP6143040B1 (en) 2017-02-20 2017-02-20 Micro-working electrode for high-precision local electrochemical measurement, manufacturing method of micro-working electrode for high-accuracy local electrochemical measurement, and peeling method of insulating coating layer of micro-working electrode for high-precision local electrochemical measurement

Country Status (1)

Country Link
JP (1) JP6143040B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049485B (en) * 2021-02-08 2022-11-29 中国船舶重工集团公司第七二五研究所 Metal material marine atmosphere corrosion in-situ monitoring device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585267B2 (en) * 2004-10-12 2010-11-24 積水化学工業株式会社 Trace analysis method
JP5136997B2 (en) * 2011-01-26 2013-02-06 国立大学法人東北大学 Microelectrode system for electrochemical measurement with optical microscope observation function
JP2014002015A (en) * 2012-06-18 2014-01-09 Asahi Glass Co Ltd Microscopic metal electrode and method for manufacturing the same
JP5987230B1 (en) * 2015-03-18 2016-09-07 国立大学法人東北大学 A micro-working electrode for analysis of local electrochemical phenomena

Also Published As

Publication number Publication date
JP6143040B1 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
Santana et al. Visualization of local degradation processes in coated metals by means of scanning electrochemical microscopy in the redox competition mode
US8016987B2 (en) Evaluation of the corrosion inhibiting activity of a coating
Pang et al. On the localised corrosion of carbon steel induced by the in-situ local damage of porous corrosion products
Vimalanandan et al. Zn Mg and Zn Mg Al alloys for improved corrosion protection of steel: Some new aspects
Souto et al. On the use of mercury-coated tips in scanning electrochemical microscopy to investigate galvanic corrosion processes involving zinc and iron
Xavier et al. Evaluation of the corrosion protection performance of epoxy coatings containing Mg nanoparticle on carbon steel in 0.1 M NaCl solution by SECM and EIS techniques
Joseph Raj et al. Scanning electrochemical microscopy for the investigation of galvanic corrosion of iron with zinc in 0.1 M NaCl solution
Arjmand et al. Investigation of 304L stainless steel in a NaCl solution using a microcapillary electrochemical droplet cell: Comparison with conventional electrochemical techniques
JP6143040B1 (en) Micro-working electrode for high-precision local electrochemical measurement, manufacturing method of micro-working electrode for high-accuracy local electrochemical measurement, and peeling method of insulating coating layer of micro-working electrode for high-precision local electrochemical measurement
Eslami et al. Electropolymerization and possible corrosion protection effect of polypyrrole coatings on AA1050 (UNS A91050) in NaCl solutions
KR20180089458A (en) Method for monitoring the total amount of sulfur-containing compounds in a metal plating bath
CN101792919A (en) Anodic oxidation treating fluid containing corrosion inhibition additive
Kim et al. Influence of ZrO2 incorporation into coating layer on electrochemical response of low-carbon steel processed by electrochemical plasma coating
WO2018200731A1 (en) Sensor for lead detection
Al Kharafi et al. Novel technique for the application of azole corrosion inhibitors on copper surface
JP2004323971A (en) Improved bath analysis method
JP6453321B2 (en) Method and apparatus for reducing tin whisker growth on tin and tin plated surfaces by doping tin with germanium
JP2012127869A (en) Insulation-coated probe pin and method for manufacturing the same
US10260159B2 (en) Methods and apparatuses for mitigating tin whisker growth on tin and tin-plated surfaces by doping tin with gold
Taouil et al. Corrosion protection by sonoelectrodeposited organic films on zinc coated steel
JP5987230B1 (en) A micro-working electrode for analysis of local electrochemical phenomena
JP6751924B2 (en) Evaluation method of corrosion resistance and repair method of plated products
Donnici et al. Hydrogel-filled micropipette contact systems for solid state electrochemical measurements
US20120091999A1 (en) Insulated probe pin and method for fabricating the same
Maqsood et al. PTFE thin film coating on 316l stainless steel for corrosion protection in acidic environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170302

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170303

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170425

R150 Certificate of patent or registration of utility model

Ref document number: 6143040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250