JP2018135825A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2018135825A
JP2018135825A JP2017031429A JP2017031429A JP2018135825A JP 2018135825 A JP2018135825 A JP 2018135825A JP 2017031429 A JP2017031429 A JP 2017031429A JP 2017031429 A JP2017031429 A JP 2017031429A JP 2018135825 A JP2018135825 A JP 2018135825A
Authority
JP
Japan
Prior art keywords
egr
exhaust gas
internal combustion
combustion engine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017031429A
Other languages
Japanese (ja)
Inventor
智也 田中
Tomoya Tanaka
智也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2017031429A priority Critical patent/JP2018135825A/en
Publication of JP2018135825A publication Critical patent/JP2018135825A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine in which a foreign matter such as a particulate matter hardly deposits in an exhaust gas recirculation mechanism.SOLUTION: An internal combustion engine 1 includes: an intake channel 3 for introducing an intake gas to a combustion chamber 2; an exhaust gas passage 3 for discharging an exhaust gas from the combustion chamber 2; and an exhaust gas recirculation mechanism 5 having EGR passage 50 for returning part of an exhaust gas as EGR gas 5 g to the exhaust passage 3. The exhaust passage 4 includes a bent part 40. The GR passage 50 includes an inlet port 53 for EGR gas 5 g connected to an inside of a bent part of the bent part 40.SELECTED DRAWING: Figure 1

Description

本発明は、排気ガス再循環機構を備える内燃機関に関する。   The present invention relates to an internal combustion engine having an exhaust gas recirculation mechanism.

近年、NOx生成量を低減する技術として、排気ガス再循環機構(Exhaust Gas Recirculation:EGR)が注目されている。排気ガス再循環機構は、燃焼室から排出された排気ガスの一部をEGRガスとして吸気経路に戻すEGR通路を備える。燃焼室にEGRガスを導入することで、燃焼室の酸素量が減り、燃焼温度が低下するので、NOxの生成量が低減される。   In recent years, an exhaust gas recirculation mechanism (EGR) has attracted attention as a technique for reducing the amount of NOx produced. The exhaust gas recirculation mechanism includes an EGR passage that returns a part of the exhaust gas discharged from the combustion chamber to the intake passage as EGR gas. By introducing EGR gas into the combustion chamber, the amount of oxygen in the combustion chamber is reduced and the combustion temperature is lowered, so that the amount of NOx produced is reduced.

ディーゼルエンジンや、燃焼室に直接燃料を噴射する直接噴射型のガソリンエンジンの排気ガスには、大小様々な粒径の粒子状物質(例えば煤など)や未燃焼燃料などの異物が含まれている。これらの異物は、EGR通路を通って燃焼室に導入され、燃焼される。特許文献1には、排気経路に螺旋状の流路を設定し、遠心力によって粒子状物質を偏在させ、粒子状物質の濃度が低下した排気ガスを大気へ放出し、粒子状物質の濃度が上昇した排気ガスをEGRガスとしてEGR通路に戻す技術が開示されている。   Exhaust gas from diesel engines and direct-injection gasoline engines that inject fuel directly into the combustion chamber contains foreign substances such as particulate matter of various sizes (for example, soot) and unburned fuel. . These foreign substances are introduced into the combustion chamber through the EGR passage and burned. In Patent Document 1, a spiral flow path is set in the exhaust path, the particulate matter is unevenly distributed by centrifugal force, exhaust gas having a reduced concentration of the particulate matter is discharged to the atmosphere, and the concentration of the particulate matter is reduced. A technique for returning the exhaust gas that has risen to the EGR passage as EGR gas is disclosed.

特開2010−276012号公報JP 2010-276012 A

特許文献1の構成では、EGRガスに粒子状物質を偏在させているため、EGR通路やEGRバルブに粒子状物質などの異物が経時的に堆積し易い。大粒径の粒子状物質は、EGR通路やEGRバルブに堆積し易く、車両の運転状況によっては排気ガスに粒径の大きな粒子状物質が生成され易くなる場合もある。異物の堆積量が多くなるとEGRガス量の調整が難しくなり、エミッションの悪化や燃費の低下などの不具合が生じる恐れがある。   In the configuration of Patent Document 1, since the particulate matter is unevenly distributed in the EGR gas, foreign matters such as the particulate matter are likely to be deposited over time in the EGR passage and the EGR valve. Particulate matter having a large particle size is likely to accumulate in the EGR passage and the EGR valve, and depending on the driving condition of the vehicle, a particulate matter having a large particle size may be easily generated in the exhaust gas. If the amount of accumulated foreign matter increases, it becomes difficult to adjust the amount of EGR gas, which may cause problems such as deterioration in emissions and fuel consumption.

本発明は上記事情に鑑みてなされたものであり、その目的の一つは、排気ガス再循環機構に粒子状物質などの異物が堆積し難い内燃機関を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide an internal combustion engine in which foreign matter such as particulate matter is difficult to accumulate in an exhaust gas recirculation mechanism.

本発明の一形態に係る内燃機関は、
燃焼室に吸気ガスを導入する吸気経路と、
前記燃焼室から排気ガスを排出する排気経路と、
前記排気ガスの一部をEGRガスとして前記吸気系路に戻すEGR通路を有する排気ガス再循環機構と、を備える内燃機関であって、
前記排気経路は、屈曲部を備え、
前記EGR通路は、前記屈曲部の曲げの内側に繋がる前記EGRガスの入口を備える。
An internal combustion engine according to one aspect of the present invention is
An intake path for introducing intake gas into the combustion chamber;
An exhaust path for exhausting exhaust gas from the combustion chamber;
An exhaust gas recirculation mechanism having an EGR passage for returning a part of the exhaust gas as EGR gas to the intake system path,
The exhaust path includes a bent portion,
The EGR passage includes an inlet of the EGR gas connected to the inside of the bent portion.

上記内燃機関の一形態として、
前記排気経路における前記屈曲部の下流に設けられ、前記排気ガスに含まれる粒子状物質を捕集するパティキュレートフィルタを備える形態を挙げることができる。
As one form of the internal combustion engine,
A form provided with the particulate filter which is provided in the downstream of the above-mentioned bent part in the above-mentioned exhaust course, and collects the particulate matter contained in the above-mentioned exhaust gas can be mentioned.

排気経路に屈曲部を形成することで、排気ガスに含まれる粒子状物質に、屈曲部の曲げの外側に向う遠心力が作用する。径が大きく重い粒子状物質ほど遠心力が大きくなるので、大粒径の粒子状物質は屈曲部の曲げの外側に寄り易い。ここで、上記内燃機関の構成では、屈曲部の曲げの内側にEGR通路の入口が繋がっているので、EGR通路には大粒径の粒子状物質が取り込まれ難くなる。そのため、上記内燃機関では、EGR通路やEGRバルブに粒子状物質が堆積し難くなる。   By forming the bent portion in the exhaust path, a centrifugal force directed to the outside of the bent portion acts on the particulate matter contained in the exhaust gas. Since the centrifugal force increases as the diameter and weight of the particulate matter increases, the particulate matter having a large particle size tends to be closer to the outside of the bent portion. Here, in the configuration of the internal combustion engine, since the inlet of the EGR passage is connected to the inside of the bending portion, it is difficult for a particulate matter having a large particle size to be taken into the EGR passage. Therefore, in the internal combustion engine, it is difficult for particulate matter to accumulate in the EGR passage and the EGR valve.

屈曲部の下流にパティキュレートフィルタを配置することで、屈曲部で振り分けた大粒径の粒子状物質を捕集でき、大気に放出される排気ガスをクリーンにすることができる。   By disposing the particulate filter downstream of the bent portion, particulate matter having a large particle size distributed by the bent portion can be collected, and exhaust gas released to the atmosphere can be cleaned.

実施形態1に係る内燃機関の概略構成図である。1 is a schematic configuration diagram of an internal combustion engine according to a first embodiment. 実施形態1の内燃機関の排気経路のうち、屈曲部近傍の概略構成図である。FIG. 2 is a schematic configuration diagram in the vicinity of a bent portion in the exhaust path of the internal combustion engine of the first embodiment.

以下、本発明の内燃機関の実施形態を図面に基づいて説明する。なお、本発明は、これらの例示に限定されず、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   Hereinafter, an embodiment of an internal combustion engine of the present invention will be described based on the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and it is intended that all the changes within the meaning and range equivalent to a claim are included.

<実施形態1>
図1の概略構成図に示すように、内燃機関1は、燃焼室2で混合気を燃焼させることで、図示しないピストンを往復させ、そのピストンの往復運動を図示しないクランクシャフトで回転運動に変換する熱機関である。この内燃機関1は、燃焼室2の内部に混合気を導入する吸気経路3と、燃焼室2から排気ガスを排出する排気経路4と、を備える。排気経路4の途中には、排気ガスに含まれる炭化水素や一酸化炭素を分解する触媒装置6と、排気ガスに含まれる粒子状物質を捕集するパティキュレートフィルタ7が設けられている。本例の内燃機関1はさらに、排気ガスの一部を吸気経路3に戻す排気ガス再循環機構(EGR)5を備える。
<Embodiment 1>
As shown in the schematic configuration diagram of FIG. 1, the internal combustion engine 1 burns the air-fuel mixture in the combustion chamber 2 to reciprocate a piston (not shown), and converts the reciprocating motion of the piston into rotational motion by a crankshaft (not shown). It is a heat engine. The internal combustion engine 1 includes an intake passage 3 that introduces an air-fuel mixture into the combustion chamber 2 and an exhaust passage 4 that discharges exhaust gas from the combustion chamber 2. A catalyst device 6 that decomposes hydrocarbons and carbon monoxide contained in the exhaust gas and a particulate filter 7 that collects particulate matter contained in the exhaust gas are provided in the middle of the exhaust path 4. The internal combustion engine 1 of this example further includes an exhaust gas recirculation mechanism (EGR) 5 that returns a part of the exhaust gas to the intake passage 3.

排気ガス再循環機構5は、EGR通路50、EGRバルブ51、およびEGRクーラ52を備える。EGR通路50は、排気経路4と吸気経路3とに連通され、燃焼室2から排出された排気ガスの一部をEGRガス5gとして吸気経路3に戻す。EGRバルブ51は、吸気経路3に導入するEGRガス5gの量を調整する。EGRクーラ52は、EGRガス5gを冷却する構成であって、公知のものを使用できる。EGRクーラ52を用いることで、EGRガス5gを含む吸気ガスが高温になって膨張し、燃焼室2に導入される酸素量が減ることを抑制できる。   The exhaust gas recirculation mechanism 5 includes an EGR passage 50, an EGR valve 51, and an EGR cooler 52. The EGR passage 50 communicates with the exhaust passage 4 and the intake passage 3, and returns a part of the exhaust gas discharged from the combustion chamber 2 to the intake passage 3 as the EGR gas 5g. The EGR valve 51 adjusts the amount of EGR gas 5 g introduced into the intake path 3. The EGR cooler 52 is configured to cool 5 g of EGR gas, and a known one can be used. By using the EGR cooler 52, it is possible to suppress that the intake gas including the EGR gas 5g expands at a high temperature and the amount of oxygen introduced into the combustion chamber 2 is reduced.

本例の内燃機関1では、排気ガスに含まれる粒子状物質のうち、粒径の大きな粒子状物質がEGR通路50に導入され難くすることで、EGR通路50やEGRバルブ51、EGRクーラ52に粒子状物質を含む異物が堆積し難くしている。その具体的な構成を以下に説明する。   In the internal combustion engine 1 of the present example, among the particulate substances contained in the exhaust gas, the particulate matter having a large particle size is made difficult to be introduced into the EGR passage 50, so that Foreign matter containing particulate matter is difficult to deposit. The specific configuration will be described below.

EGRにおける異物の堆積を抑制する構成の一つとして、本例の内燃機関1では、排気経路4における触媒装置6とパティキュレートフィルタ7とを繋ぐ部分に屈曲部40を設けている。本例の屈曲部40は所定の曲率半径でS字状に曲げられた管路である。屈曲部40を設けることで、図2に示すように、粒子状物質8A,8Bに、曲げの外側に向かう遠心力が作用する。遠心力は質量に依存して大きくなるため、大粒径の粒子状物質8Aには、小粒径の粒子状物質8Bよりも曲げの外側に寄せられ易い。この屈曲部40の曲率半径としては、例えば3cm以上10cm以下とすることが挙げられる。   As one configuration for suppressing the accumulation of foreign matter in EGR, in the internal combustion engine 1 of this example, a bent portion 40 is provided at a portion connecting the catalyst device 6 and the particulate filter 7 in the exhaust passage 4. The bent portion 40 in this example is a pipe line bent into an S shape with a predetermined radius of curvature. By providing the bent portion 40, as shown in FIG. 2, a centrifugal force directed to the outside of the bending acts on the particulate substances 8A and 8B. Since the centrifugal force increases depending on the mass, the particulate material 8A having a large particle size is more likely to be moved outside the bend than the particulate material 8B having a small particle size. Examples of the radius of curvature of the bent portion 40 include 3 cm or more and 10 cm or less.

ここで、屈曲部40は、粒子状物質に遠心力を作用させ、曲げの外側に粒子状物質を寄せるために設けられるため、その機能を発揮できる形状であれば特に限定されない。例えば、屈曲部40は螺旋状に形成されていても良い。   Here, since the bending part 40 is provided in order to apply a centrifugal force to the particulate matter and bring the particulate matter to the outside of the bend, it is not particularly limited as long as it has a shape capable of exhibiting its function. For example, the bent portion 40 may be formed in a spiral shape.

EGRにおける異物の堆積を抑制する構成の一つとして、本例の内燃機関1はさらに、屈曲部40の曲げの内側にEGR通路50を繋げている。屈曲部40の曲げの内側にEGRガス5gの入口53を設けることで、図2に示すように、曲げの外側に寄せられた大粒径の粒子状物質8AはEGR通路50に導入され難くなり、曲げの外側に寄せられ難い小粒径の粒子状物質8BがEGRガス5gに含まれた状態になる。   As one configuration for suppressing the accumulation of foreign matter in the EGR, the internal combustion engine 1 of this example further connects the EGR passage 50 to the inside of the bent portion 40. By providing the EGR gas 5g inlet 53 inside the bend of the bent portion 40, as shown in FIG. 2, the particulate matter 8A having a large particle size brought close to the outside of the bend is hardly introduced into the EGR passage 50. Thus, the particulate matter 8B having a small particle diameter which is hardly brought to the outside of the bend is included in the EGR gas 5g.

≪効果≫
上述したように、EGRガス5gに大粒径の粒子状物質8Aが含まれ難くなるので、EGR通路50などに異物が堆積し難くなる。また、EGR通路50に導入され、燃焼室2に送り込まれる粒子状物質8Bは微細であるため、燃焼室2で燃焼させ易い。そのため、異物の堆積に伴うエミッションの悪化や燃費の低下などの不具合を抑制できる。また、異物を除去する頻度を低減できるため、車両のメンテナンス性を向上させることができる。
≪Effect≫
As described above, since it is difficult for the EGR gas 5g to contain the particulate matter 8A having a large particle diameter, it is difficult for foreign matter to accumulate in the EGR passage 50 and the like. Further, since the particulate matter 8B introduced into the EGR passage 50 and fed into the combustion chamber 2 is fine, it is easy to burn in the combustion chamber 2. Therefore, it is possible to suppress inconveniences such as emission deterioration and fuel consumption reduction due to foreign matter accumulation. In addition, since the frequency of removing foreign matters can be reduced, the maintainability of the vehicle can be improved.

一方、屈曲部40によって曲げの外側に寄せられた大粒径の粒子状物質8Aは、屈曲部40を通過した後、パティキュレートフィルタ7に捕集される。そのため、本例の内燃機関1から大気に放出される排気ガスはクリーンで、環境に対する負荷は小さい。   On the other hand, the particulate matter 8A having a large particle diameter brought to the outside of the bend by the bent portion 40 is collected by the particulate filter 7 after passing through the bent portion 40. Therefore, the exhaust gas discharged from the internal combustion engine 1 of this example to the atmosphere is clean and the load on the environment is small.

また、本例の内燃機関1では、小粒径の粒子状物質8Bは主にEGR通路50に導入され、パティキュレートフィルタ7には主に大粒径の粒子状物質8Aが導入される。そのため、パティキュレートフィルタ7の通気孔径を大き目に設定することができる。パティキュレートフィルタ7の通気孔径を大きくすると、排気ガスの圧力損失が低減されるので、排気ガスの圧力損失に起因する内燃機関1のトルクの低下を抑えることができる。   Further, in the internal combustion engine 1 of the present example, the particulate matter 8B having a small particle size is mainly introduced into the EGR passage 50, and the particulate matter 8A having a large particle size is mainly introduced into the particulate filter 7. Therefore, the vent hole diameter of the particulate filter 7 can be set large. When the vent hole diameter of the particulate filter 7 is increased, the pressure loss of the exhaust gas is reduced, so that a decrease in the torque of the internal combustion engine 1 due to the pressure loss of the exhaust gas can be suppressed.

1 内燃機関
2 燃焼室
3 吸気経路
4 排気経路 40 屈曲部
5 排気ガス再循環機構(EGR) 5g EGRガス
50 EGR通路 51 EGRバルブ 52 EGRクーラ 53 入口
6 触媒装置
7 パティキュレートフィルタ
8A 大粒径の粒子状物質 8B 小粒径の粒子状物質
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Combustion chamber 3 Intake path 4 Exhaust path 40 Bending part 5 Exhaust gas recirculation mechanism (EGR) 5g EGR gas 50 EGR path 51 EGR valve 52 EGR cooler 53 Inlet 6 Catalytic device 7 Particulate filter 8A Particulate matter 8B Particulate matter with small particle size

Claims (2)

燃焼室に吸気ガスを導入する吸気経路と、
前記燃焼室から排気ガスを排出する排気経路と、
前記排気ガスの一部をEGRガスとして前記吸気系路に戻すEGR通路を有する排気ガス再循環機構と、を備える内燃機関であって、
前記排気経路は、屈曲部を備え、
前記EGR通路は、前記屈曲部の曲げの内側に繋がる前記EGRガスの入口を備える内燃機関。
An intake path for introducing intake gas into the combustion chamber;
An exhaust path for exhausting exhaust gas from the combustion chamber;
An exhaust gas recirculation mechanism having an EGR passage for returning a part of the exhaust gas as EGR gas to the intake system path,
The exhaust path includes a bent portion,
The internal combustion engine, wherein the EGR passage includes an inlet of the EGR gas that is connected to the inside of the bent portion.
前記排気経路における前記屈曲部の下流に設けられ、前記排気ガスに含まれる粒子状物質を捕集するパティキュレートフィルタを備える請求項1に記載の内燃機関。   The internal combustion engine according to claim 1, further comprising a particulate filter that is provided downstream of the bent portion in the exhaust path and collects particulate matter contained in the exhaust gas.
JP2017031429A 2017-02-22 2017-02-22 Internal combustion engine Pending JP2018135825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017031429A JP2018135825A (en) 2017-02-22 2017-02-22 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017031429A JP2018135825A (en) 2017-02-22 2017-02-22 Internal combustion engine

Publications (1)

Publication Number Publication Date
JP2018135825A true JP2018135825A (en) 2018-08-30

Family

ID=63365408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017031429A Pending JP2018135825A (en) 2017-02-22 2017-02-22 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP2018135825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375604B2 (en) 2020-02-21 2023-11-08 マツダ株式会社 Engine exhaust circulation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375604B2 (en) 2020-02-21 2023-11-08 マツダ株式会社 Engine exhaust circulation system

Similar Documents

Publication Publication Date Title
CN100507226C (en) Crankcase ventilation system
US9181856B2 (en) Exhaust driven auxiliary air pump and products and methods of using the same
JP2009537734A5 (en)
JP5146303B2 (en) Exhaust gas recirculation device
EP2039898A1 (en) Continuously regenerating particulate filter for internal combustion engine
US6862881B1 (en) Method and apparatus for controlling regeneration of a particulate filter
Bhure Effect of exhaust back pressure on performance and emission characteristics of diesel engine equipped with diesel oxidation catalyst and exhaust gas recirculation
RU2007142519A (en) EXHAUST GAS CLEANING SYSTEM FOR INTERNAL COMBUSTION ENGINE
FR3107304A1 (en) CATALYTIC DEVICE FOR TREATMENT OF EXHAUST GASES FROM AN INTERNAL COMBUSTION ENGINE
JP2018135825A (en) Internal combustion engine
JP2014015848A (en) Exhaust emission control device of vehicle
US20150143802A1 (en) System and method of controlling exhaust temperature
EP1515013A3 (en) Exhaust purifying apparatus of internal combustion engine
Sonntag et al. Evaluation of accelerated ash loading procedures for diesel particulate filters
US9849416B2 (en) Method for cleaning exhaust filter system
CN112424459B (en) Exhaust structure of vehicle-mounted engine
JP2007327440A (en) Engine with supercharger
JP5381426B2 (en) Internal combustion engine exhaust pipe
WO2007076978A3 (en) Particulate filter assembly
US20190003359A1 (en) Particulate filter
CN108019254B (en) Method for optimizing regeneration and purification of an exhaust gas system
CN101297105A (en) System for purifying the exhaust gases emitted by internal combustion engines
JP2010222976A (en) Exhaust gas recirculation device
JP2007021430A (en) Manufacturing method of particulate filter
JP6065852B2 (en) Engine exhaust gas purification device