JP2018134922A - Cooling water flow rate control method and power conversion device - Google Patents

Cooling water flow rate control method and power conversion device Download PDF

Info

Publication number
JP2018134922A
JP2018134922A JP2017029542A JP2017029542A JP2018134922A JP 2018134922 A JP2018134922 A JP 2018134922A JP 2017029542 A JP2017029542 A JP 2017029542A JP 2017029542 A JP2017029542 A JP 2017029542A JP 2018134922 A JP2018134922 A JP 2018134922A
Authority
JP
Japan
Prior art keywords
power
flow rate
electric vehicle
cooling
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017029542A
Other languages
Japanese (ja)
Other versions
JP2018134922A5 (en
JP6801498B2 (en
Inventor
正宣 平松
Masanori Hiramatsu
正宣 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2017029542A priority Critical patent/JP6801498B2/en
Publication of JP2018134922A publication Critical patent/JP2018134922A/en
Publication of JP2018134922A5 publication Critical patent/JP2018134922A5/en
Application granted granted Critical
Publication of JP6801498B2 publication Critical patent/JP6801498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve the reliability by saving the power of a cooling device provided in a power conversion device for electric railway.SOLUTION: An electric railway system 1 includes an electric motor vehicle 2, a feeder 3 and power conversion devices a, a, b, b. The electric motor vehicle 2 includes a communication unit which transmits the current position, the current power consumption, and the current regenerative electric power of the electric motor vehicle 2 to the power conversion devices a, a, b, b. The power conversion device b(and the power conversion device b) includes a water-cooling type cooling device 4. In consideration of the control delay of the cooling device 4, the cooling start electric motor vehicle position (Ps) is set in advance, and the cooling device 4 starts the circulation of the cooling water when the electric motor vehicle 2 passes through the cooling start electric motor vehicle position (Ps). The control target value of the cooling water is decided with the target flow rate setting map indicating the correlation of the cooling water flow rate in accordance with the current power consumption (or current regenerative electric power) of the electric motor vehicle 2 and the heat quantity of the power conversion device b(or power conversion device b) at the current power consumption (or current regenerative electric power).SELECTED DRAWING: Figure 5

Description

本発明は、水冷式の冷却装置の冷却水流量制御方法に関する。特に、電鉄用電力変換装置の冷却装置における冷却水流量の制御方法に関する。   The present invention relates to a cooling water flow rate control method for a water-cooled cooling device. In particular, the present invention relates to a method for controlling a cooling water flow rate in a cooling device of a power converter for electric railway.

電気鉄道システムでは、様々な電力変換装置が地上に配置されており、これらの電力変換装置によって、電気車の力行に必要な電力の供給や減速時に発生する電力の回生が行われる。   In an electric railway system, various power conversion devices are arranged on the ground, and these power conversion devices supply power necessary for powering an electric vehicle and regenerate power generated during deceleration.

図8に示すように、従来の電気鉄道システム12において、き電線3は複数の区間C、D(以後、この区間を電力供給区間C、Dと呼ぶ)に分割されており、電力供給区間C、Dごとに電力供給や電力回生を分担する電力変換装置c1、c2、d1、d2が設置される。電力変換装置c1、c2は、電力供給区間Cを受け持ち、電力変換装置c1により電力供給区間Cを通行中の電気車13へ電力供給が行われ、電力変換装置c2により電力供給区間Cを通行中の電気車13からの電力回生が行われる。同様に、電力変換装置d1、d2は、電力供給区間Dを受け持ち、電力変換装置d1により電力供給区間Dを通行中の電気車13へ電力供給が行われ、電力変換装置d2により電力供給区間Dを通行中の電気車13からの電力回生が行われる。 As shown in FIG. 8, in the conventional electric railway system 12, the feeder 3 is divided into a plurality of sections C and D (hereinafter, these sections are referred to as power supply sections C and D). , Power converters c 1 , c 2 , d 1 , and d 2 that share power supply and power regeneration are installed for each D. The power converters c 1 and c 2 are in charge of the power supply section C, and the power converter c 1 supplies power to the electric vehicle 13 passing through the power supply section C, and the power converter c 2 supplies power. Power regeneration from the electric vehicle 13 that is passing through C is performed. Similarly, the power converters d 1 and d 2 are in charge of the power supply section D, and the power converter d 1 supplies power to the electric vehicle 13 passing through the power supply section D. The power converter d 2 Power regeneration from the electric vehicle 13 that is traveling in the power supply section D is performed.

電力変換装置c1、c2、d1、d2は、半導体やリアクトル、変圧器などにより構成されており、電力供給や電力回生に伴いこれらが発熱する。その冷却のために水冷式の冷却装置を備える機種がある。 The power converters c 1 , c 2 , d 1 , and d 2 are configured by semiconductors, reactors, transformers, and the like, and these generate heat with power supply and power regeneration. There is a model equipped with a water-cooled cooling device for the cooling.

図9に示すように、水冷式の冷却装置14は、水を冷媒として循環させる。冷却水の循環は電動ポンプ7で行っており電力を消費するので、省電力化のためには循環させる冷却水流量を発熱体9(半導体、リアクトル、変圧器など)の発熱量に合わせ調節することが望ましい。電力変換装置c1、c2、d1、d2の供給電力(または、回生電力)が大きくなると、電力変換装置c1、c2、d1、d2に備えられた発熱体9の発熱量が増えるため、冷却装置14の冷却水流量を増やす必要がある。一方で、必要以上の冷却水を循環させると電動ポンプ7の消費電力が無駄になるので、電力変換装置c1、c2、d1、d2における供給電力(または、回生電力)が小さくなり発熱体9の発熱量が減ったときは冷却装置14の冷却水流量を減らしてよい。 As shown in FIG. 9, the water-cooled cooling device 14 circulates water as a refrigerant. Since the cooling water is circulated by the electric pump 7 and consumes power, the cooling water flow rate to be circulated is adjusted according to the heat generation amount of the heating element 9 (semiconductor, reactor, transformer, etc.) in order to save power. It is desirable. Power converter c 1, c 2, d 1 , d 2 of the power supply (or regenerative power) becomes large, the heat generation of the electric power converter c 1, c 2, d 1 , d heating element 9 provided in the 2 Since the amount increases, it is necessary to increase the cooling water flow rate of the cooling device 14. On the other hand, if the cooling water more than necessary is circulated, the power consumption of the electric pump 7 is wasted, so that the power supplied (or regenerative power) in the power converters c 1 , c 2 , d 1 , d 2 is reduced. When the heat generation amount of the heating element 9 is reduced, the cooling water flow rate of the cooling device 14 may be reduced.

また、従来技術に係る水冷式の冷却装置では、電力変換装置の発熱量に応じて適正な(必要十分な)冷却水流量となるように冷却装置を制御する技術が提案されている(例えば、特許文献1)。   Moreover, in the water-cooling type cooling device according to the related art, a technology for controlling the cooling device so as to obtain an appropriate (necessary and sufficient) cooling water flow rate according to the heat generation amount of the power conversion device has been proposed (for example, Patent Document 1).

特開2007−166804号公報JP 2007-166804 A 特開2011−245979号公報JP 2011-245979 A 特開2000−289616号公報JP 2000-289616 A 特開2013−244758号公報JP 2013-244758 A

電鉄用電力変換装置は、電気車の通行に伴って電力供給(または、電力回生)による発熱が生じるため、発熱には間欠が多い。冷却装置の電動ポンプを省電力運転するためには、電気車が通行していないときは最低冷却水流量にしておき、電気車の通行時に発熱量に応じて冷却水流量を増やすことが望ましい。しかし、電鉄用電力変換装置は、電力変換装置の中でも大型な部類であり、冷却水量が多い。例えば、機種にもよるが数百リットルの冷却水を循環させる冷却装置もあり、冷却水流量を増やす際には大きな運動エネルギーを与える必要がある。このため、最低冷却水流量から電気車の通行時の冷却に必要な冷却水流量に引き上げるまでには数分を要する場合がある。高出力の電動ポンプを用いれば、この制御遅れ時間を短縮できるが、高出力の電動ポンプは大型で高価なため採用することが困難である。したがって、電鉄用電力変換装置に対して、特許文献1に記載されたような最適制御技術を適用することが困難であり、最大負荷の発熱量に合わせた一定の冷却水流量で冷却を行っているのが実情である。   In the electric power converter for electric railways, heat is generated due to power supply (or power regeneration) with the passage of the electric vehicle. In order to perform power-saving operation of the electric pump of the cooling device, it is desirable to set the minimum cooling water flow rate when the electric vehicle is not passing, and increase the cooling water flow rate according to the heat generation amount when the electric vehicle is passing. However, power converters for electric railways are a large category among power converters and have a large amount of cooling water. For example, depending on the model, there is a cooling device that circulates several hundred liters of cooling water, and it is necessary to give a large kinetic energy when increasing the cooling water flow rate. For this reason, it may take several minutes to raise the minimum cooling water flow rate to the cooling water flow rate necessary for cooling when the electric vehicle is passing. If a high-output electric pump is used, this control delay time can be shortened, but the high-output electric pump is difficult to adopt because it is large and expensive. Therefore, it is difficult to apply the optimum control technique as described in Patent Document 1 to electric power converters for railways, and cooling is performed at a constant cooling water flow rate that matches the heat generation amount of the maximum load. The fact is.

本発明は、上記の事情を鑑みて成されたものであり、電鉄用電力変換装置に備えられる水冷式の冷却装置において、省電力かつ信頼性の高い冷却水流量制御技術を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a power-saving and highly reliable cooling water flow rate control technique in a water-cooled cooling device provided in a power converter for electric railways. It is said.

上記目的を達成する本発明の冷却水流量制御方法の一態様は、複数の区間に分割されたき電線の一つの区間に設けられ、該一つの区間を通行する電気車への電力供給または該一つの区間を通行する電気車からの電力回生を行う電力変換装置の冷却装置であって、冷却水を循環させるポンプと、該ポンプの制御を行うコントローラと、を備える冷却装置における冷却水流量制御方法であって、前記一つの区間に隣接する他の区間に、前記冷却水の流量が前記電力変換装置の冷却に必要な流量となるように、前記ポンプの制御を開始する冷却開始電気車位置を予め設定し、前記一つの区間に、前記冷却水の流量が所定の最低流量となるように前記ポンプの制御を行う冷却停止電気車位置を予め設定し、前記コントローラが、電気車の現在位置と、当該現在位置における前記電気車の現在消費電力または現在回生電力を受信し、前記冷却開始電気車位置を通過した電気車の現在消費電力または現在回生電力に応じて、前記冷却水の流量が前記電力変換装置の冷却に必要な流量となるように前記ポンプを制御し、前記冷却開始電気車位置と前記冷却停止電気車位置の間を通行する電気車がない場合、前記冷却水の流量が所定の最低流量となるように前記ポンプを制御することを特徴としている。   One aspect of the cooling water flow rate control method of the present invention that achieves the above object is to provide power to an electric vehicle that is provided in one section of a feeder line divided into a plurality of sections and that passes through the one section. Cooling water flow rate control method in a cooling device for a power converter that regenerates electric power from an electric vehicle that passes through one section, comprising a pump that circulates the cooling water and a controller that controls the pump In another section adjacent to the one section, a cooling start electric vehicle position for starting control of the pump is set so that the flow rate of the cooling water becomes a flow rate necessary for cooling the power converter. Preset a cooling stop electric vehicle position for controlling the pump so that the cooling water flow rate becomes a predetermined minimum flow rate in the one section, and the controller sets the current position of the electric vehicle , The current flow or current regenerative power of the electric vehicle at the current position is received, and the flow rate of the cooling water is the power according to the current power consumption or the current regenerative power of the electric vehicle that has passed the cooling start electric vehicle position. When the pump is controlled so as to have a flow rate necessary for cooling the converter, and there is no electric vehicle passing between the cooling start electric vehicle position and the cooling stop electric vehicle position, the flow rate of the cooling water is a predetermined flow rate. The pump is controlled so as to have a minimum flow rate.

また、上記目的を達成する本発明の冷却水流量制御方法の他の態様は、上記冷却水流量制御方法において、前記コントローラは、前記電気車の現在消費電力と当該現在消費電力における前記電力変換装置の発熱量に応じた冷却水流量の相関を示す目標流量設定用マップ、または、前記電気車の現在回生電力と当該現在回生電力における前記電力変換装置の発熱量に応じた冷却水流量の相関を示す目標流量設定用マップに基づいて、前記電力変換装置の冷却に必要な冷却水の流量を決定し、決定された流量となるように前記ポンプを制御することを特徴としている。   In another aspect of the cooling water flow rate control method of the present invention that achieves the above object, in the cooling water flow rate control method, the controller includes the current power consumption of the electric vehicle and the power conversion device for the current power consumption. The target flow rate setting map showing the correlation of the cooling water flow rate according to the heat generation amount of the current, or the correlation between the current regenerative power of the electric vehicle and the cooling water flow rate according to the heat generation amount of the power converter at the current regenerative power On the basis of the target flow rate setting map shown, the flow rate of the cooling water necessary for cooling the power converter is determined, and the pump is controlled to be the determined flow rate.

また、上記目的を達成する本発明の冷却水流量制御方法の他の態様は、上記冷却水流量制御方法において、前記電気車の現在位置、当該現在位置における前記電気車の現在消費電力及び現在回生電力の情報を、前記電力変換装置の外部に設けられた司令所に集約し、前記コントローラは、前記司令所に集約された情報を受信して、前記ポンプを制御することを特徴としている。   Further, another aspect of the cooling water flow rate control method of the present invention that achieves the above object is that in the cooling water flow rate control method, the current position of the electric vehicle, the current power consumption and the current regeneration of the electric vehicle at the current position. The power information is collected in a command center provided outside the power converter, and the controller receives the information collected in the command center and controls the pump.

また、上記目的を達成する本発明の電力変換装置の一態様は、複数の区間に分割されたき電線の一つの区間に設けられ、該一つの区間を通行する電気車への電力供給または該一つの区間を通行する電気車からの電力回生を行う電力変換装置であって、前記電力変換装置は、電力供給または電力回生の際に生じる熱を冷却する冷却装置を備え、前記冷却装置は、冷却水を循環させるポンプと、該ポンプの制御を行うコントローラと、前記電気車の現在位置、当該現在位置における前記電気車の現在消費電力または現在回生電力の情報を受信する通信装置と、を備え、前記コントローラは、前記通信装置から前記情報を受信し、前記冷却開始電気車位置を通過した電気車の現在消費電力または現在回生電力に応じて、前記冷却水の流量が前記電力変換装置の冷却に必要な流量となるように、前記ポンプを制御し、予め前記一つの区間に設定された冷却停止電気車位置と前記冷却開始電気車位置の間を通行する電気車がない場合、前記冷却水の流量が所定の最低流量となるように前記ポンプを制御することを特徴としている。   Also, one aspect of the power conversion device of the present invention that achieves the above object is provided in one section of a feeder line divided into a plurality of sections and supplies power to an electric vehicle that passes through the one section or the one section. A power conversion device that performs power regeneration from an electric vehicle that passes through one section, wherein the power conversion device includes a cooling device that cools heat generated during power supply or power regeneration, and the cooling device is a cooling device. A pump that circulates water, a controller that controls the pump, a current position of the electric vehicle, and a communication device that receives information on the current power consumption or the current regenerative power of the electric vehicle at the current position, The controller receives the information from the communication device, and the flow rate of the cooling water depends on the current power consumption or the current regenerative power of the electric vehicle that has passed the cooling start electric vehicle position. When there is no electric vehicle that controls the pump so that the flow rate is necessary for cooling the conversion device and passes between the cooling stop electric vehicle position set in advance in the one section and the cooling start electric vehicle position The pump is controlled so that the flow rate of the cooling water becomes a predetermined minimum flow rate.

また、上記目的を達成する本発明の電力変換装置の他の態様は、上記電力変換装置において、前記コントローラは、前記電気車の現在消費電力と当該現在消費電力における前記電力変換装置の発熱量に応じた冷却水流量との相関を示す目標流量設定用マップ、または、前記電気車の現在回生電力と当該現在回生電力における前記電力変換装置の発熱量に応じた冷却水流量との相関を示す目標流量設定用マップを備え、この目標流量設定用マップに基づいて、前記冷却水の流量を決定し、決定された流量となるように前記ポンプを制御することを特徴としている。   According to another aspect of the power conversion device of the present invention that achieves the above object, in the power conversion device, the controller determines the current power consumption of the electric vehicle and the amount of heat generated by the power conversion device at the current power consumption. A target flow rate setting map showing a correlation with the corresponding cooling water flow rate, or a target showing a correlation between the current regenerative power of the electric vehicle and the cooling water flow rate according to the heat generation amount of the power converter at the current regenerative power A flow rate setting map is provided, the flow rate of the cooling water is determined based on the target flow rate setting map, and the pump is controlled to have the determined flow rate.

また、上記目的を達成する本発明の電気鉄道システムの一態様は、上記の電力変換装置と、前記電力変換装置の冷却装置の通信装置に送信される、電気車の現在位置、当該現在位置における前記電気車の現在消費電力及び現在回生電力の情報を集約する司令所を備えたことを特徴としている。   Moreover, one aspect of the electric railway system of the present invention that achieves the above object is the current position of the electric vehicle, which is transmitted to the power conversion device and the communication device of the cooling device of the power conversion device, at the current position. A command center for collecting information on current power consumption and current regenerative power of the electric vehicle is provided.

以上の発明によれば、電鉄用電力変換装置に備えられる水冷式の冷却装置を省電力化し、信頼性を向上することができる。   According to the above invention, it is possible to save power and improve the reliability of the water-cooled cooling device provided in the electric power converter.

本発明の第1実施形態に係る電気鉄道システムの概略を示す図である。It is a figure showing the outline of the electric railway system concerning a 1st embodiment of the present invention. 電気車から電力変換装置への情報伝達の概略を示す図である。It is a figure which shows the outline of the information transmission from an electric vehicle to a power converter device. 電力変換装置に設けられる水冷式の冷却装置の概略構成図である。It is a schematic block diagram of the water cooling type cooling device provided in a power converter device. (a)電気車の消費電力と冷却装置の目標冷却水流量との相関を示す目標流量設定用マップの一例を示す図、(b)電気車の回生電力と冷却装置の目標冷却水流量との相関を示す目標流量設定用マップの一例を示す図である。(A) The figure which shows an example of the map for target flow setting which shows the correlation with the power consumption of an electric vehicle, and the target cooling water flow rate of a cooling device, (b) Between the regenerative electric power of an electric vehicle, and the target cooling water flow rate of a cooling device It is a figure which shows an example of the map for target flow setting which shows a correlation. 電力変換装置における冷却装置の制御方法を説明する説明図であり、(a)電気車が電力供給区間Bに進入する前の状態を示す図、(b)電気車が冷却開始電気車位置を通行している状態を示す図、(c)電気車が電力供給区間Bを通行している状態を示す図である。It is explanatory drawing explaining the control method of the cooling device in a power converter device, (a) The figure which shows the state before an electric vehicle approachs the electric power supply area B, (b) The electric vehicle passes a cooling start electric vehicle position. The figure which shows the state which is carrying out, (c) The figure which shows the state in which the electric vehicle is passing the electric power supply area B. 電気車の位置に対する冷却装置の冷却水流量の制御例を示す特性図である。It is a characteristic view which shows the example of control of the cooling water flow rate of the cooling device with respect to the position of an electric vehicle. 本発明の第2実施形態に係る電気鉄道システムにおける電気車から電力変換装置への情報伝達の概略を示す図である。It is a figure which shows the outline of the information transmission from the electric vehicle to the power converter device in the electric railway system which concerns on 2nd Embodiment of this invention. 従来技術に係る電気鉄道システムの概略を示す図である。It is a figure which shows the outline of the electric railway system which concerns on a prior art. 従来技術に係る水冷式の冷却装置の概略構成図である。It is a schematic block diagram of the water cooling type cooling device which concerns on a prior art.

本発明の実施形態に係る冷却水流量制御方法及び電力変換装置並びにこの電力変換装置を備える電気鉄道システムについて、図面に基づいて詳細に説明する。なお、本発明は、実施形態に限定されるものではなく、その特徴を損なわない範囲で適宜設計変更が可能であり、設計変更されたものも、本発明の技術的範囲に属する。   A cooling water flow rate control method, a power converter, and an electric railway system including the power converter according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiment, and the design can be changed as appropriate within a range that does not impair the characteristics thereof, and the design change also belongs to the technical scope of the present invention.

図1に示すように、本発明の第1実施形態に係る電気鉄道システム1は、電気車2、き電線3、電力変換装置a1、a2、b1、b2を備える。き電線3は複数の区間A、B(以後、この区間を電力供給区間A、Bと呼ぶ)に分割されており、電力供給区間A、Bごとに電力供給や電力回生を分担する電力変換装置a1、a2、b1、b2が設置される。 As shown in FIG. 1, the electric railway system 1 according to the first embodiment of the present invention includes an electric vehicle 2, a feeder 3, and power converters a 1 , a 2 , b 1 , b 2 . The feeder 3 is divided into a plurality of sections A and B (hereinafter, these sections are referred to as power supply sections A and B), and a power converter that shares power supply and power regeneration for each of the power supply sections A and B a 1 , a 2 , b 1 , b 2 are installed.

電力変換装置a1、a2は、電力供給区間Aを受け持ち、電力変換装置a1により電力供給区間Aを通行中の電気車2に対して電力供給が行われ、電力変換装置a2により電力供給区間Aを通行中の電気車2からの電力回生が行われる。同様に、電力変換装置b1、b2は、電力供給区間Bを受け持ち、電力変換装置b1により電力供給区間Bを通行中の電気車2に対して電力供給が行われ、電力変換装置b2により電力供給区間Bを通行中の電気車2からの電力回生が行われる。以後、電力変換装置b1、b2の構成及び動作について詳細に説明する。電力変換装置a1、a2の構成及び動作については、電力変換装置b1、b2と同様であるので、詳細な説明を省略する。 The power conversion devices a 1 and a 2 are in charge of the power supply section A, the power conversion apparatus a 1 supplies power to the electric vehicle 2 passing through the power supply section A, and the power conversion apparatus a 2 supplies power. Electric power regeneration is performed from the electric vehicle 2 passing through the supply section A. Similarly, the power conversion devices b 1 and b 2 take charge of the power supply section B, and the power conversion apparatus b 1 supplies power to the electric vehicle 2 passing through the power supply section B. the power regeneration from the electric vehicle 2 in passing the power supply section B is carried out by 2. Hereinafter, the configuration and operation of the power conversion devices b 1 and b 2 will be described in detail. Since the configurations and operations of the power conversion devices a 1 and a 2 are the same as those of the power conversion devices b 1 and b 2 , detailed description thereof is omitted.

図2に示すように、電気車2は、図示省略の通信部を備え、この通信部を介して、電気車2から電力変換装置b1(及び、電力変換装置b2)に、電気車2の現在位置、現在消費電力、現在回生電力が伝達される。つまり、電気車2には、電気車2の現在位置を検出する位置検出部、電気車2の現在消費電力を検出する消費電力検出部、電気車2の現在回生電力を検出する回生電力検出部、が備えられ、各検出部で検出された情報が通信部を介して電力変換装置b1、b2に送信される。 As shown in FIG. 2, the electric vehicle 2 includes a communication unit (not shown), and the electric vehicle 2 is transferred from the electric vehicle 2 to the power conversion device b 1 (and the power conversion device b 2 ) via the communication unit. Current position, current power consumption, and current regenerative power are transmitted. That is, the electric vehicle 2 includes a position detection unit that detects the current position of the electric vehicle 2, a power consumption detection unit that detects the current power consumption of the electric vehicle 2, and a regenerative power detection unit that detects the current regenerative power of the electric vehicle 2. , And information detected by each detection unit is transmitted to the power conversion devices b 1 and b 2 via the communication unit.

通信部は、例えば、一定時間ごとに、電気車2の現在位置などの情報を電力変換装置b1(及び、電力変換装置b2)に伝達する。電気車2と電力変換装置b1、b2との間の通信方法は、特に限定されるものではなく、直接方式(無線、レーザ、電力線通信など)による通信方法や、基地局(例えば、無線+専用線または公衆回線)などを介した間接方式による通信方法が用いられる。また、電気車2の現在位置を特定する方法も、特に限定されるものではなく、例えば、軌道信号を用いた方法やGPSを用いた方法(特許文献3、4)などにより電気車2の現在位置が特定される。 For example, the communication unit transmits information such as the current position of the electric vehicle 2 to the power conversion device b 1 (and the power conversion device b 2 ) at regular intervals. The communication method between the electric vehicle 2 and the power converters b 1 and b 2 is not particularly limited, and a communication method using a direct method (wireless, laser, power line communication, etc.) or a base station (for example, wireless) + An indirect communication method via a dedicated line or public line). Also, the method for specifying the current position of the electric vehicle 2 is not particularly limited. For example, the current position of the electric vehicle 2 can be determined by a method using a trajectory signal or a method using a GPS (Patent Documents 3 and 4). A location is identified.

電力変換装置b1、b2には、図3に示すような冷却装置4がそれぞれ備えられる。冷却装置4は、通信装置5、冷却装置コントローラ6、電動ポンプ7、熱交換器8を備える。 The power converters b 1 and b 2 are each provided with a cooling device 4 as shown in FIG. The cooling device 4 includes a communication device 5, a cooling device controller 6, an electric pump 7, and a heat exchanger 8.

通信装置5は、通信ネットワークに接続されており、この通信ネットワークから、電気車2の現在位置、現在消費電力、現在回生電力を受信し、受信した情報を冷却装置コントローラ6に送信する。   The communication device 5 is connected to a communication network, receives the current position, current power consumption, and current regenerative power of the electric vehicle 2 from the communication network, and transmits the received information to the cooling device controller 6.

冷却装置コントローラ6は、これらの情報を元に適正な冷却水流量を決定し、決定された冷却水流量となるように電動ポンプ7を制御する。電気車2に電力供給を行う電力変換装置b1では、冷却装置コントローラ6には、例えば、図4(a)に示すような、電気車2の現在消費電力と、この現在消費電力に応じた適正な(電力変換装置b1の発熱を冷却するために必要かつ十分な)目標冷却水流量の相関を示す目標流量設定用マップが格納される。そして、このマップに基づいて、電気車2の現在消費電力に応じた冷却装置4の目標冷却水流量が設定される。また、電気車2からの電力回生を行う電力変換装置b2では、冷却装置コントローラ6には、例えば、図4(b)に示すような、電気車2の現在回生電力と、この現在回生電力に応じた適正な(電力変換装置b2の発熱を冷却するために必要かつ十分な)目標冷却水流量の相関を示す目標流量設定用マップが格納される。そして、このマップに基づいて、電気車2の現在回生電力に応じた冷却装置4の目標冷却水流量が設定される。 The cooling device controller 6 determines an appropriate cooling water flow rate based on these pieces of information, and controls the electric pump 7 so as to obtain the determined cooling water flow rate. In the power conversion device b 1 that supplies power to the electric vehicle 2, the cooling device controller 6 responds to the current power consumption of the electric vehicle 2 and the current power consumption, for example, as shown in FIG. A target flow rate setting map indicating the correlation of the appropriate target coolant flow rate (necessary and sufficient for cooling the heat generation of the power converter b 1 ) is stored. And based on this map, the target cooling water flow rate of the cooling device 4 according to the current power consumption of the electric vehicle 2 is set. Further, in the power conversion device b 2 that regenerates power from the electric vehicle 2, the cooling device controller 6 includes the current regenerative power of the electric vehicle 2 and the current regenerative power as shown in FIG. The target flow rate setting map indicating the correlation of the target cooling water flow rate (necessary and sufficient for cooling the heat generation of the power converter b 2 ) according to the above is stored. And based on this map, the target cooling water flow rate of the cooling device 4 according to the present regenerative electric power of the electric vehicle 2 is set.

電動ポンプ7は、電力変換装置b1、b2の発熱体9(例えば、半導体、リアクトル、変圧器など)の近傍に冷却水を循環させる。熱交換器8は、冷却水の熱を外部に放出する。 The electric pump 7 circulates cooling water in the vicinity of the heating elements 9 (for example, semiconductors, reactors, transformers, etc.) of the power converters b 1 and b 2 . The heat exchanger 8 releases the heat of the cooling water to the outside.

ここで、図5に基づいて、電力変換装置b1、b2を冷却する冷却装置4の冷却水循環開始から循環停止までの流れを説明する。電力供給区間A、Bは連続した区間であり、電気車2は電力供給区間A、電力供給区間Bの順に通行する。 Here, based on FIG. 5, the flow from the cooling water circulation start to the circulation stop of the cooling device 4 for cooling the power conversion devices b 1 and b 2 will be described. The power supply sections A and B are continuous sections, and the electric vehicle 2 passes through the power supply section A and the power supply section B in this order.

電力変換装置b1、b2の冷却装置コントローラ6には所定の値として、冷却開始電気車位置(Ps)、冷却停止電気車位置(Pe)が設定される。説明の便宜上、電力変換装置b1、b2に設定された冷却開始電気車位置(Ps)と冷却停止電気車位置(Pe)が同じ位置の場合を例示して説明するが、冷却開始電気車位置(Ps)や冷却停止電気車位置(Pe)は、電力変換装置b1、b2ごとにそれぞれ設定されるものである。
電力変換装置b1、b2の冷却装置コントローラ6は、電気車2から受信した電気車2の現在位置と、冷却装置コントローラ6に設定された冷却開始電気車位置(Ps)および冷却停止電気車位置(Pe)とを比較して、電気車2の現在位置に応じた冷却水循環制御方法の切り替えタイミングを得る。
As the predetermined values, the cooling start electric vehicle position (Ps) and the cooling stop electric vehicle position (Pe) are set in the cooling device controller 6 of the power conversion devices b 1 and b 2 . For convenience of explanation, a case where the cooling start electric vehicle position (Ps) and the cooling stop electric vehicle position (Pe) set in the power converters b 1 and b 2 are the same will be described as an example. The position (Ps) and the cooling stop electric vehicle position (Pe) are set for each of the power converters b 1 and b 2 .
The cooling device controller 6 of the power converters b 1 and b 2 includes the current position of the electric vehicle 2 received from the electric vehicle 2, the cooling start electric vehicle position (Ps) and the cooling stop electric vehicle set in the cooling device controller 6. The position (Pe) is compared to obtain the switching timing of the cooling water circulation control method according to the current position of the electric vehicle 2.

冷却開始電気車位置(Ps)は、最低冷却水流量から制御目標冷却水流量に達するまでの制御遅れ時間を考慮して、電力供給区間Bよりも手前(例えば、電力供給区間Aの終端近く)に設定される。冷却停止電気車位置(Pe)は、例えば、電力供給区間Bの終端に設定される。   The cooling start electric vehicle position (Ps) is in front of the power supply section B (for example, near the end of the power supply section A) in consideration of the control delay time from the minimum coolant flow rate to the control target coolant flow rate. Set to The cooling stop electric vehicle position (Pe) is set at the end of the power supply section B, for example.

図5(a)では、電気車2は電力供給区間Aを通行中であり、電力変換装置a1が電力供給を行い、電力変換装置a2が電力回生を行っている。電力変換装置b1、b2は、まだ電力供給・電力回生を行っていない。 In FIG. 5A, the electric vehicle 2 is passing through the power supply section A, the power conversion device a 1 supplies power, and the power conversion device a 2 performs power regeneration. The power conversion devices b 1 and b 2 have not yet performed power supply and power regeneration.

図5(b)は、電気車2が電力変換装置b1、b2の冷却開始電気車位置(Ps)に到達した場面である。このとき、電力変換装置b1、b2に備えられた冷却装置4は、冷却水の循環を開始する。このときの冷却水流量は、電力変換装置b1(または、電力変換装置b2)の発熱量に合わせて適正な流量となるように、電気車2の現在消費電力、現在回生電力と、電力変換装置b1(または、電力変換装置b2)の発熱量に応じた冷却水流量の相関によって制御目標値が決定される。すなわち、電力供給を担う電力変換装置b1に備えられた冷却装置4では、電気車2の冷却開始電気車位置(Ps)における消費電力に応じて冷却水流量が決定され、決定された冷却水流量となるように電動ポンプ7の制御が開始される。同様に、電力回生を担う電力変換装置b2に備えられた冷却装置4では、電気車2の冷却開始電気車位置(Ps)における現在回生電力に応じて冷却水流量が決定され、決定された冷却水流量となるように電動ポンプ7の制御が開始される。 FIG. 5B is a scene where the electric vehicle 2 has reached the cooling start electric vehicle position (Ps) of the power conversion devices b 1 and b 2 . At this time, the cooling device 4 provided in the power converters b 1 and b 2 starts circulation of the cooling water. The cooling water flow rate at this time is the current power consumption, the current regenerative power, and the power of the electric vehicle 2 so that the flow rate is appropriate for the amount of heat generated by the power conversion device b 1 (or the power conversion device b 2 ). The control target value is determined by the correlation of the coolant flow rate according to the heat generation amount of the converter b 1 (or the power converter b 2 ). That is, in the cooling device 4 provided in the power conversion device b 1 responsible for power supply, the cooling water flow rate is determined according to the power consumption at the cooling start electric vehicle position (Ps) of the electric vehicle 2, and the determined cooling water is determined. Control of the electric pump 7 is started so as to achieve a flow rate. Similarly, in the cooling device 4 provided in the power conversion device b 2 responsible for power regeneration, the coolant flow rate is determined and determined according to the current regenerative power at the cooling start electric vehicle position (Ps) of the electric vehicle 2. Control of the electric pump 7 is started so as to obtain the cooling water flow rate.

図5(c)では、電気車2は、電力供給区間Bを通行中である。電力変換装置b1が電気車2に電力供給を行っており、変動する現在消費電力(移動する電気車2の位置における現在消費電力)に応じて、適正な冷却水流量を決定して電動ポンプ7を駆動する制御が継続される。同様に、電力変換装置b2では、変動する現在回生電力(移動する電気車2の位置における現在回生電力)に応じて、適正な冷却水流量を決定して電動ポンプ7が制御される。 In FIG. 5C, the electric vehicle 2 is passing through the power supply section B. The electric power converter b 1 supplies electric power to the electric vehicle 2, and the electric pump is determined by determining an appropriate cooling water flow rate according to the fluctuating current power consumption (current power consumption at the position of the moving electric vehicle 2). The control for driving 7 is continued. Similarly, in the power converter b 2 , the electric pump 7 is controlled by determining an appropriate cooling water flow rate according to the fluctuating current regenerative power (current regenerative power at the position of the moving electric vehicle 2).

この制御により、例えば、図6に示すように、電力変換装置b1、b2に備えられた冷却装置4は、電力供給区間Bに電気車2が進入する前に、事前に冷却水の循環を開始することができる。その結果、制御遅れがあったとしても電力供給区間Bに電気車2が進入した時点には適正な冷却水流量を循環させることができる。そして、電気車2が冷却停止電気車位置(Pe)を通過した後は、その時点での冷却水流量を所定の冷却水クールダウン時間(例えば、n分間(nは、任意に設定可能であり、具体的にはn=3などが設定される))継続させた後、冷却水流量が所定の最低流量となるように制御される。 With this control, for example, as shown in FIG. 6, the cooling device 4 provided in the power conversion devices b 1 and b 2 circulates the cooling water in advance before the electric vehicle 2 enters the power supply section B. Can start. As a result, even if there is a control delay, an appropriate coolant flow rate can be circulated when the electric vehicle 2 enters the power supply section B. Then, after the electric vehicle 2 has passed the cooling stop electric vehicle position (Pe), the cooling water flow rate at that time can be set to a predetermined cooling water cool-down time (for example, n minutes (n can be arbitrarily set). Specifically, n = 3 or the like is set))) After being continued, the cooling water flow rate is controlled to be a predetermined minimum flow rate.

つまり、電力変換装置b1、b2(または、電力変換装置a1、a2)は、その電力供給区間B(または、電力供給区間A)に電気車2が進入すると、電力供給・回生を開始して発熱する。この発熱に備えて適正な冷却水流量を冷却装置4に循環させる必要があるが、前述の通り、電気鉄道システム1に用いられる冷却装置4においては、冷却水の循環を開始してから目標の流量になるまでに、数分の時間遅れがある。 That is, when the electric vehicle 2 enters the power supply section B (or power supply section A), the power conversion apparatuses b 1 and b 2 (or power conversion apparatuses a 1 and a 2 ) perform power supply / regeneration. It starts and generates heat. In preparation for this heat generation, it is necessary to circulate an appropriate cooling water flow rate to the cooling device 4. As described above, in the cooling device 4 used in the electric railway system 1, the circulation of the cooling water is started after the start of circulation of the cooling water. There is a delay of several minutes before the flow rate is reached.

そこで、この制御遅れを考慮して予め冷却開始電気車位置(Ps)を設定し、この冷却開始電気車位置(Ps)に基づいて、電気車2が電力供給区間Bに進入して電力供給・電力回生の開始より制御遅れ時間分前に、事前に冷却水流量の制御を開始する。このとき、電気車2の消費電力・回生電力に応じて適正な(発熱を冷却するために必要かつ十分な)冷却水流量を決定し、これを目標値として電動ポンプ7が制御される。電気車2が電力供給区間Bを通過して(つまり、電気車2が冷却停止電気車位置(Pe)を通過して)、電力変換装置b1、b2からの電力供給・電力回生が停止した後は、その時点で冷却水流量を所定の冷却期間継続させた後、所定の最低流量となるように電動ポンプ7が制御される。 Therefore, in consideration of this control delay, a cooling start electric vehicle position (Ps) is set in advance, and based on this cooling start electric vehicle position (Ps), the electric vehicle 2 enters the power supply section B and supplies power. The control of the cooling water flow rate is started in advance before the control delay time from the start of power regeneration. At this time, an appropriate coolant flow rate (necessary and sufficient for cooling the heat generation) is determined according to the power consumption / regenerative power of the electric vehicle 2, and the electric pump 7 is controlled using this as a target value. The electric vehicle 2 passes through the power supply section B (that is, the electric vehicle 2 passes through the cooling stop electric vehicle position (Pe)), and power supply and power regeneration from the power conversion devices b 1 and b 2 are stopped. After that, the electric pump 7 is controlled so that a predetermined minimum flow rate is obtained after the cooling water flow rate is continued for a predetermined cooling period at that time.

なお、同一の電力供給区間Bに複数の電気車2が進入して、電力変換装置b1、b2が複数の電気車2に対して電力供給(または、複数の電気車2からの電力回生)を行う場合、一つ目の電気車2が電力供給区間Bの冷却開始電気車位置(Ps)に到達した時点で、冷却水流量の制御が開始され、すべての電気車2が電力供給区間Bの冷却停止電気車位置(Pe)を通過するまで冷却水流量の制御が継続される。冷却水流量の制御目標は、前述のPs−Pe間を通行中のすべての電気車2の現在消費電力(または、現在回生電力)の合計値に応じて決定される。 A plurality of electric vehicles 2 enter the same power supply section B, and the power conversion devices b 1 and b 2 supply power to the plurality of electric vehicles 2 (or power regeneration from the plurality of electric vehicles 2). ), When the first electric vehicle 2 reaches the cooling start electric vehicle position (Ps) in the power supply section B, the control of the coolant flow rate is started, and all the electric vehicles 2 are in the power supply section. Control of the cooling water flow rate is continued until it passes the B cooling stop electric vehicle position (Pe). The control target of the coolant flow rate is determined according to the total value of the current power consumption (or current regenerative power) of all the electric vehicles 2 passing between Ps and Pe.

本発明の第2実施形態に係る電気鉄道システムについて、図7に基づいて詳細に説明する。第2実施形態に係る電気鉄道システム10は、電気車2から電力変換装置b1、b2(または、電力変換装置a1、a2)への情報伝達の経路以外は、第1実施形態の電気鉄道システム1と同様であるので、異なる部分について詳細に説明する。 The electric railway system according to the second embodiment of the present invention will be described in detail with reference to FIG. The electric railway system 10 according to the second embodiment is the same as that of the first embodiment except for the information transmission path from the electric vehicle 2 to the power conversion devices b 1 and b 2 (or the power conversion devices a 1 and a 2 ). Since it is the same as that of the electric railway system 1, different parts will be described in detail.

図7に示すように、本発明の第2実施形態に係る電気鉄道システム10は、電気車2の現在位置などの情報を中継する司令所11を備える。そして、電気車2の現在位置、現在消費電力、現在回生電力は、電気車2から司令所11に伝達された後、司令所11が中継して電力変換装置b1、b2に伝達される。電気車2と司令所11との間(または、電力変換装置b1、b2と司令所11との間)の通信方法は、特に限定されるものはなく、例えば、第1実施形態の電気鉄道システム1と同様の通信方法が用いられる。 As shown in FIG. 7, the electric railway system 10 according to the second embodiment of the present invention includes a command center 11 that relays information such as the current position of the electric vehicle 2. Then, the current position, current power consumption, and current regenerative power of the electric vehicle 2 are transmitted from the electric vehicle 2 to the command center 11, and then relayed by the command center 11 and transmitted to the power converters b 1 and b 2. . The communication method between the electric vehicle 2 and the command center 11 (or between the power conversion devices b 1 and b 2 and the command center 11) is not particularly limited, and for example, the electric power of the first embodiment. A communication method similar to that of the railway system 1 is used.

以上のような、本発明の実施形態に係る電気鉄道システム1、10によれば、電力変換装置b1、b2(または、電力変換装置a1、a2)に備えられた冷却装置4は、電気車2の現在位置、現在消費電力、現在回生電力を把握することで、制御遅れ時間があっても、電力変換装置b1、b2(または、電力変換装置a1、a2)が電力供給(または、回生電力の吸収)を開始して発熱する前に適正な冷却水流量に制御することができる。 According to the electric railway systems 1 and 10 according to the embodiment of the present invention as described above, the cooling device 4 provided in the power conversion devices b 1 and b 2 (or the power conversion devices a 1 and a 2 ) By grasping the current position, current power consumption, and current regenerative power of the electric vehicle 2, the power converters b 1 and b 2 (or the power converters a 1 and a 2 ) can be used even if there is a control delay time. It is possible to control the flow rate of the cooling water to an appropriate level before starting to supply power (or absorbing regenerative power) and generating heat.

これにより、特別に高出力の電動ポンプを用いずに信頼性の高い冷却性能が実現可能であり、電力変換装置a1、a2、b1、b2が大型化、高コスト化することがない。 As a result, highly reliable cooling performance can be realized without using a special high-output electric pump, and the power converters a 1 , a 2 , b 1 , and b 2 can be increased in size and cost. Absent.

また、本発明の実施形態に係る冷却水流量制御方法によれば、冷却装置4の冷却水流量は、冷却に必要かつ十分な量に制御される。これにより、冷却水の循環のための電動ポンプ7が消費する電力を節約することができる。   Moreover, according to the cooling water flow rate control method according to the embodiment of the present invention, the cooling water flow rate of the cooling device 4 is controlled to an amount necessary and sufficient for cooling. Thereby, the electric power consumed by the electric pump 7 for circulating the cooling water can be saved.

1、10…電気鉄道システム
2…電気車
3…き電線
4…冷却装置
5…通信装置
6…冷却装置コントローラ(コントローラ)
7…電動ポンプ(ポンプ)
8…熱交換器
9…発熱体
11…司令所
1、a2、b1、b2…電力変換装置
DESCRIPTION OF SYMBOLS 1,10 ... Electric railway system 2 ... Electric vehicle 3 ... Feeding wire 4 ... Cooling device 5 ... Communication device 6 ... Cooling device controller (controller)
7 ... Electric pump (pump)
8 ... heat exchanger 9 ... heating element 11 ... command post a 1, a 2, b 1 , b 2 ... power converter

Claims (6)

複数の区間に分割されたき電線の一つの区間に設けられ、該一つの区間を通行する電気車への電力供給または該一つの区間を通行する電気車からの電力回生を行う電力変換装置の冷却装置であって、冷却水を循環させるポンプと、該ポンプの制御を行うコントローラと、を備える冷却装置における冷却水流量制御方法であって、
前記一つの区間に隣接する他の区間に、前記冷却水の流量が前記電力変換装置の冷却に必要な流量となるように、前記ポンプの制御を開始する冷却開始電気車位置を予め設定し、
前記一つの区間に、前記冷却水の流量が所定の最低流量となるように前記ポンプの制御を行う冷却停止電気車位置を予め設定し、
前記コントローラが、
電気車の現在位置と、当該現在位置における前記電気車の現在消費電力または現在回生電力を受信し、
前記冷却開始電気車位置を通過した電気車の現在消費電力または現在回生電力に応じて、前記冷却水の流量が前記電力変換装置の冷却に必要な流量となるように前記ポンプを制御し、
前記冷却開始電気車位置と前記冷却停止電気車位置の間を通行する電気車がない場合、前記冷却水の流量が所定の最低流量となるように前記ポンプを制御する
ことを特徴とする冷却水流量制御方法。
Cooling of a power conversion device provided in one section of a feeder divided into a plurality of sections and supplying power to an electric vehicle passing through the one section or regenerating power from an electric vehicle passing through the one section A cooling water flow rate control method in a cooling device comprising a pump for circulating cooling water and a controller for controlling the pump,
In another section adjacent to the one section, a cooling start electric vehicle position for starting control of the pump is set in advance so that the flow rate of the cooling water becomes a flow rate necessary for cooling the power converter,
In the one section, preset a cooling stop electric vehicle position for controlling the pump so that the flow rate of the cooling water becomes a predetermined minimum flow rate,
The controller is
Receiving the current position of the electric car and the current power consumption or current regenerative power of the electric car at the current position;
According to the current power consumption or current regenerative power of the electric vehicle that has passed through the cooling start electric vehicle position, the pump is controlled so that the flow rate of the cooling water becomes a flow rate necessary for cooling the power converter,
When there is no electric vehicle passing between the cooling start electric vehicle position and the cooling stop electric vehicle position, the pump is controlled so that the flow rate of the cooling water becomes a predetermined minimum flow rate. Flow rate control method.
前記コントローラは、前記電気車の現在消費電力と当該現在消費電力における前記電力変換装置の発熱量に応じた冷却水流量の相関を示す目標流量設定用マップ、または、前記電気車の現在回生電力と当該現在回生電力における前記電力変換装置の発熱量に応じた冷却水流量の相関を示す目標流量設定用マップに基づいて、前記電力変換装置の冷却に必要な冷却水の流量を決定し、決定された流量となるように前記ポンプを制御する
ことを特徴とする請求項1に記載の冷却水流量制御方法。
The controller includes a target flow rate setting map indicating a correlation between a current power consumption of the electric vehicle and a cooling water flow rate according to a heat generation amount of the power conversion device at the current power consumption, or a current regenerative power of the electric vehicle. Based on the target flow rate setting map showing the correlation of the cooling water flow rate according to the heat generation amount of the power conversion device in the current regenerative power, the flow rate of the cooling water necessary for cooling the power conversion device is determined and determined. The cooling water flow rate control method according to claim 1, wherein the pump is controlled so as to have a high flow rate.
前記電気車の現在位置、当該現在位置における前記電気車の現在消費電力及び現在回生電力の情報を、前記電力変換装置の外部に設けられた司令所に集約し、
前記コントローラは、前記司令所に集約された情報を受信して、前記ポンプを制御する
ことを特徴とする請求項1または請求項2に記載の冷却水流量制御方法。
Information on the current position of the electric vehicle, current power consumption and current regenerative power of the electric vehicle at the current position is collected in a command center provided outside the power converter,
3. The cooling water flow rate control method according to claim 1, wherein the controller receives information collected at the command center and controls the pump. 4.
複数の区間に分割されたき電線の一つの区間に設けられ、該一つの区間を通行する電気車への電力供給または該一つの区間を通行する電気車からの電力回生を行う電力変換装置であって、
前記電力変換装置は、電力供給または電力回生の際に生じる熱を冷却する冷却装置を備え、
前記冷却装置は、冷却水を循環させるポンプと、該ポンプの制御を行うコントローラと、前記電気車の現在位置、当該現在位置における前記電気車の現在消費電力または現在回生電力の情報を受信する通信装置と、を備え、
前記コントローラは、前記通信装置から前記情報を受信し、前記冷却開始電気車位置を通過した電気車の現在消費電力または現在回生電力に応じて、前記冷却水の流量が前記電力変換装置の冷却に必要な流量となるように前記ポンプを制御し、予め前記一つの区間に設定された冷却停止電気車位置と前記冷却開始電気車位置の間を通行する電気車がない場合、前記冷却水の流量が所定の最低流量となるように前記ポンプを制御する
ことを特徴とする電力変換装置。
A power conversion device provided in one section of a feeder divided into a plurality of sections and supplying power to an electric vehicle passing through the one section or regenerating power from an electric vehicle passing through the one section. And
The power conversion device includes a cooling device that cools heat generated during power supply or power regeneration,
The cooling device includes a pump that circulates cooling water, a controller that controls the pump, and a current position of the electric vehicle, and communication that receives information on current power consumption or current regenerative power of the electric vehicle at the current position. An apparatus,
The controller receives the information from the communication device, and the flow rate of the cooling water is used to cool the power converter according to the current power consumption or the current regenerative power of the electric vehicle that has passed the cooling start electric vehicle position. When the pump is controlled to have a necessary flow rate and there is no electric vehicle passing between the cooling stop electric vehicle position and the cooling start electric vehicle position set in advance in the one section, the flow rate of the cooling water Wherein the pump is controlled so as to have a predetermined minimum flow rate.
前記コントローラは、前記電気車の現在消費電力と当該現在消費電力における前記電力変換装置の発熱量に応じた冷却水流量との相関を示す目標流量設定用マップ、または、前記電気車の現在回生電力と当該現在回生電力における前記電力変換装置の発熱量に応じた冷却水流量との相関を示す目標流量設定用マップを備え、この目標流量設定用マップに基づいて、前記冷却水の流量を決定し、決定された流量となるように前記ポンプを制御する
ことを特徴とする請求項4に記載の電力変換装置。
The controller is a target flow rate setting map showing a correlation between the current power consumption of the electric vehicle and the coolant flow rate corresponding to the heat generation amount of the power conversion device at the current power consumption, or the current regenerative power of the electric vehicle And a target flow rate setting map showing a correlation between the current regenerative power and the cooling water flow rate according to the heat generation amount of the power converter, and determining the flow rate of the cooling water based on the target flow rate setting map. The power converter according to claim 4, wherein the pump is controlled so that the determined flow rate is obtained.
請求項4または請求項5に記載の電力変換装置と、
前記電力変換装置の冷却装置の通信装置に送信される、電気車の現在位置、当該現在位置における前記電気車の現在消費電力及び現在回生電力の情報を集約する司令所を備えた
ことを特徴とする電気鉄道システム。
The power conversion device according to claim 4 or 5,
A command center that collects information on the current position of the electric vehicle, the current power consumption of the electric vehicle at the current position, and the current regenerative power, which is transmitted to the communication device of the cooling device of the power conversion device, Electric railway system to do.
JP2017029542A 2017-02-21 2017-02-21 Cooling water flow rate control method Active JP6801498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017029542A JP6801498B2 (en) 2017-02-21 2017-02-21 Cooling water flow rate control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017029542A JP6801498B2 (en) 2017-02-21 2017-02-21 Cooling water flow rate control method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020160600A Division JP7001134B2 (en) 2020-09-25 2020-09-25 Power converter, electric railway system

Publications (3)

Publication Number Publication Date
JP2018134922A true JP2018134922A (en) 2018-08-30
JP2018134922A5 JP2018134922A5 (en) 2020-11-12
JP6801498B2 JP6801498B2 (en) 2020-12-16

Family

ID=63365151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017029542A Active JP6801498B2 (en) 2017-02-21 2017-02-21 Cooling water flow rate control method

Country Status (1)

Country Link
JP (1) JP6801498B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332988A (en) * 2003-05-06 2004-11-25 Mitsubishi Electric Corp Inverter device
WO2009107715A1 (en) * 2008-02-29 2009-09-03 川崎重工業株式会社 Electric railway power-supply system
JP2011245979A (en) * 2010-05-27 2011-12-08 Meidensha Corp Feeding voltage control method of electric railroad system
JP2016140204A (en) * 2015-01-28 2016-08-04 株式会社東芝 Electric vehicle control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332988A (en) * 2003-05-06 2004-11-25 Mitsubishi Electric Corp Inverter device
WO2009107715A1 (en) * 2008-02-29 2009-09-03 川崎重工業株式会社 Electric railway power-supply system
JP2011245979A (en) * 2010-05-27 2011-12-08 Meidensha Corp Feeding voltage control method of electric railroad system
JP2016140204A (en) * 2015-01-28 2016-08-04 株式会社東芝 Electric vehicle control device

Also Published As

Publication number Publication date
JP6801498B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP6602426B2 (en) Charging system for electric vehicles
US9960461B2 (en) System and method for temperature control of multi-battery systems
US9126498B2 (en) Method and system for distributing a recuperation for a vehicle
JP2019079658A (en) Fuel cell vehicle
JP2010202184A (en) Secondary cooling system of plug-in hybrid electric vehicle
CN106828120A (en) The EBA and control method of a kind of parallel type hybrid dynamic heavy truck
JP2018194290A (en) Cooling device
JP2009225630A (en) Electric vehicle with load adjustment device
CN111542982B (en) Control unit and method for adjusting an energy store of a vehicle
KR101294064B1 (en) Apparatus for cooling power module of green car and method thereof
CN106458009B (en) The temperature control system of electric vehicle
CN110745001A (en) Energy distribution device and vehicle
JP2018134922A (en) Cooling water flow rate control method and power conversion device
JP7001134B2 (en) Power converter, electric railway system
JP2015033182A (en) Cooling system of semiconductor power converter
JP5395947B2 (en) Electric vehicle having a load adjusting device
AU2021347695B2 (en) Lithium battery system and overhead working truck
JP4259411B2 (en) DC-DC converter
KR20180110967A (en) Self-sufficient solar fresh air heating and water preheating hybrid system
CN113291186A (en) Method and charging device for controlling a charging process of an electrical energy store
CN107762612B (en) On-demand cooling of a plurality of converters of an electric machine
KR101251280B1 (en) Control method for ensured braking of fuel cell vehicle when regenerative braking
JP2016540490A (en) Method and apparatus for controlling the voltage of a catenary supplying power to a vehicle
CN113263951B (en) Battery control method and related device
JP2013121237A (en) Device for cooling power equipment of electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6801498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150