JP2018133745A - Radio reception method - Google Patents

Radio reception method Download PDF

Info

Publication number
JP2018133745A
JP2018133745A JP2017027284A JP2017027284A JP2018133745A JP 2018133745 A JP2018133745 A JP 2018133745A JP 2017027284 A JP2017027284 A JP 2017027284A JP 2017027284 A JP2017027284 A JP 2017027284A JP 2018133745 A JP2018133745 A JP 2018133745A
Authority
JP
Japan
Prior art keywords
signal
threshold
band
power
reception method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017027284A
Other languages
Japanese (ja)
Other versions
JP6651476B2 (en
Inventor
皓平 須崎
Kohei Suzaki
皓平 須崎
裕文 笹木
Hirofumi Sasaki
裕文 笹木
秀哉 宗
Hideya So
秀哉 宗
知明 大槻
Tomoaki Otsuki
知明 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Keio University
Original Assignee
Nippon Telegraph and Telephone Corp
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Keio University filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017027284A priority Critical patent/JP6651476B2/en
Publication of JP2018133745A publication Critical patent/JP2018133745A/en
Application granted granted Critical
Publication of JP6651476B2 publication Critical patent/JP6651476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To calculate by Q learning a threshold to be used to determine a superposition band and a non-superposition band.SOLUTION: A radio reception method comprises: receiving a reception signal having a desired signal and an interference signal superposed; determining electric power of an unnecessary signal using a predetermined threshold; classifying a subcarrier of the reception signal by a superposition band and a non-superposition band; performing likelihood estimation on desired signal electric power and noise electric power from a data subcarrier of the non-superposition band; and performing likelihood estimation on interference signal electric power from a data subcarrier of the superposition band. The radio reception method has a Q table classified by combinations of an electric power ratio DUR of the desired signal and interference signal and increase/decrease values of a plurality of different thresholds, and also comprises: calculating a DUR using a predetermined tentative threshold; increasing or decreasing a threshold corresponding to a maximum element among values of respective elements of the Q table corresponding to the DUR; and determining a threshold using Q learning in which values of respective corresponding elements of the Q table are recalculated and updated based upon a compensation function using the threshold.SELECTED DRAWING: Figure 1

Description

本発明は、マルチキャリア無線通信を行う無線通信システムにおける無線受信方法に関する。   The present invention relates to a radio reception method in a radio communication system that performs multicarrier radio communication.

近年、各種無線通信システムの普及により周波数資源の枯渇が問題となっており、複数の無線信号による周波数共用化を図ることで周波数利用効率を向上する重畳伝送技術の検討が進められている。   In recent years, the depletion of frequency resources has become a problem due to the widespread use of various wireless communication systems, and studies on superposition transmission techniques that improve frequency utilization efficiency by sharing frequencies with a plurality of wireless signals are being promoted.

図4は、2つの周波数チャネルを共用する無線通信システムの一例を示す。
図4において、無線通信システムは、無線LAN基地局51,52と無線端末53とを備える。無線LAN基地局51は、中心周波数fa である周波数チャネルCH1を用いて通信する。無線LAN基地局52は、中心周波数fb (fa<fb)である周波数チャネルCH5用いて通信する。無線端末53は、無線LAN基地局51,52の双方の無線信号が到達する位置に配置され、中心周波数fa ,fb の2つの無線信号が部分的に互いに干渉した信号を受信する。なお、周波数帯域を共用する他の例として、無線LANシステムと、 bluetooth(登録商標)や WiMAX(登録商標) との組合せなど、異なる通信方式のシステム同士が周波数共用する場合も考えられる。
FIG. 4 shows an example of a wireless communication system sharing two frequency channels.
In FIG. 4, the wireless communication system includes wireless LAN base stations 51 and 52 and a wireless terminal 53. The wireless LAN base station 51 communicates using the frequency channel CH1 having the center frequency fa. The wireless LAN base station 52 communicates using the frequency channel CH5 having the center frequency fb (fa <fb). The wireless terminal 53 is arranged at a position where the wireless signals of both the wireless LAN base stations 51 and 52 reach, and receives a signal in which two wireless signals having center frequencies fa and fb partially interfere with each other. As another example of sharing the frequency band, there may be a case where systems of different communication methods such as a combination of a wireless LAN system and bluetooth (registered trademark) or WiMAX (registered trademark) share the frequency.

一般にこのような干渉信号が存在する場合、通信特性が著しく劣化するが、所望信号の伝送方式がマルチキャリアかつ誤り訂正符号化を具備することを前提に、干渉の影響を抑圧しながらFEC(前方誤り訂正:Forward Error Correction)復号し、正確な伝送を実現する技術がある(非特許文献1)。当該技術は、所望信号の復調前に、受信信号のうち干渉信号の存在する周波数成分をRF段やIF段においてフィルタリング処理、あるいはベースバンド領域において該当周波数成分に対する尤度の重み付け処理を施すことで、干渉信号の影響を抑圧して復調、復号することを特徴としている。   In general, when such an interference signal exists, the communication characteristics are significantly deteriorated. However, on the assumption that the transmission method of the desired signal includes multicarrier and error correction coding, FEC (forward) is performed while suppressing the influence of interference. There is a technique for decoding and realizing accurate transmission (Non-Patent Document 1). This technique involves filtering the frequency components of the received signal in the received signal before the demodulation of the desired signal in the RF stage or IF stage or weighting the likelihood for the corresponding frequency component in the baseband region. Further, the present invention is characterized in that the influence of the interference signal is suppressed and demodulated and decoded.

このような受信処理を実施するために、干渉信号の存在する周波数帯域(各サブキャリアの干渉確率)や所望信号対干渉信号電力比を検出する技術が提案されている(非特許文献2)。これは、無線フレームを受信後、パイロットシンボルを用いて1フレーム内で繰り返し干渉帯域を推定し、得られた干渉帯域を用いて不要信号電力を推定する技術である。当該技術を用いた従来の無線受信装置の構成例を図5に示す。   In order to implement such reception processing, a technique for detecting a frequency band (interference probability of each subcarrier) in which an interference signal exists and a desired signal-to-interference signal power ratio has been proposed (Non-Patent Document 2). In this technique, after receiving a radio frame, an interference band is repeatedly estimated within one frame using pilot symbols, and unnecessary signal power is estimated using the obtained interference band. FIG. 5 shows a configuration example of a conventional radio receiving apparatus using the technology.

図5において、無線受信装置には、所望信号に干渉信号および雑音電力が重畳された受信信号が入力する。この受信信号の同期確立後、サイクリックプレフィックス除去回路11でOFDM信号のサイクリックプレフィックスが除去され、FTT回路12で周波数領域信号に変換され、サブキャリア成分を抽出して受信信号バッファ13およびLLR演算回路14に入力する。以降、サブキャリア単位の処理となる。   In FIG. 5, a reception signal in which an interference signal and noise power are superimposed on a desired signal is input to the radio reception apparatus. After the synchronization of the received signal is established, the cyclic prefix removal circuit 11 removes the cyclic prefix of the OFDM signal, the FTT circuit 12 converts the signal to a frequency domain signal, extracts the subcarrier component, and receives the received signal buffer 13 and the LLR calculation. Input to the circuit 14. Thereafter, processing is performed in units of subcarriers.

不要信号電力算出回路21は、受信信号バッファ13に蓄積された受信信号から、誤り訂正符号化回路16、PSK/QAMマッピング回路17および伝送路重み回路18により生成された所望信号(レプリカ信号)を減算することで、不要信号電力を計算して重畳帯域判定回路22に入力する。重畳帯域判定回路22は、不要信号電力を適当な閾値を用いて判定し、不要信号電力が閾値を越えれば重畳帯域、閾値を下回れば非重畳帯域と判定し、重畳帯域と判定されたサブキャリアにおいて干渉電力を推定し、非重畳帯域と判定されたサブキャリアにおいて雑音電力を推定し、各推定値をLLR演算回路14に与える。   The unnecessary signal power calculation circuit 21 generates a desired signal (replica signal) generated by the error correction coding circuit 16, the PSK / QAM mapping circuit 17, and the transmission path weight circuit 18 from the reception signal stored in the reception signal buffer 13. By subtracting, the unnecessary signal power is calculated and input to the superimposed band determination circuit 22. The superimposition band determination circuit 22 determines the unnecessary signal power using an appropriate threshold, determines that the unnecessary signal power exceeds the threshold, determines the superimposition band, and if the unnecessary signal power falls below the threshold, determines the non-superimposition band. The interference power is estimated at, the noise power is estimated at the subcarrier determined to be a non-superimposed band, and each estimated value is given to the LLR calculation circuit.

LLR演算回路14は、干渉電力および雑音電力の推定値を用いて対数尤度比(Log-likelihood ratio:LLR)を計算する。このとき、重畳帯域では雑音電力と干渉電力を考慮したLLRを演算し、非重畳帯域では雑音電力のみを考慮したLLRを演算し、LLRを復号回路15に入力して復号受信ビットを得る。   The LLR calculation circuit 14 calculates a log-likelihood ratio (LLR) using the estimated values of interference power and noise power. At this time, the LLR is calculated in consideration of noise power and interference power in the superimposed band, the LLR is calculated in consideration of only noise power in the non-superimposed band, and the LLR is input to the decoding circuit 15 to obtain decoded received bits.

なお、誤り訂正符号化回路16およびPSK/QAMマッピング回路17は、復号回路15から出力される復号受信ビットを元に送信レプリカ信号を生成し、伝送路重み回路18で送信レプリカ信号と伝送路推定値を乗算してサブキャリアごとの受信レプリカ信号(所望信号)を生成する。   The error correction coding circuit 16 and the PSK / QAM mapping circuit 17 generate a transmission replica signal based on the decoded received bits output from the decoding circuit 15, and the transmission replica weight and the transmission path estimation are performed by the transmission path weight circuit 18. The received replica signal (desired signal) for each subcarrier is generated by multiplying the value.

増野,杉山,“マルチキャリア重畳伝送による周波数利用効率向上効果,”信学技報, vol.108, no.188, RCS2008-67, pp.85-90, 2008年8月.Masuno, Sugiyama, “Effect of frequency utilization improvement by multi-carrier superposition transmission,” IEICE Technical Report, vol.108, no.188, RCS2008-67, pp.85-90, August 2008. 柴田洋平, 依田尚賢, 大槻知明, 増野淳, 杉山隆利, “マルチキャリア重畳伝送における対数尤度設定に関する一検討, ”映像情報メディア学会放送技術研究会, 2015年2月19日Yohei Shibata, Naoken Yoda, Tomoaki Ohtsuki, Satoshi Masuno, Takatoshi Sugiyama, “A Study on Log Likelihood Settings in Multi-Carrier Superposition Transmission,” IEICE Broadcast Technology Society, February 19, 2015

重畳帯域および非重畳帯域の判定に用いる閾値について、低SNR値などの特定の条件下でレプリカ信号を減算した後の残留電力を使用すると、閾値の初期推定値に誤差が生じてしまう可能性があった。また、従来方式では、干渉発生などの環境がある程度予測できる際には有効であったが、予測不能な干渉が発生する環境では干渉情報の検出精度が劣化することがあった。例えば、干渉電力が高い場合には検出率が低下し、干渉電力が大きく変動する場合にはその変動に追従できない課題があった。   If the residual power after subtraction of the replica signal under a specific condition such as a low SNR value is used for the threshold value used for determining the superimposed band and the non-superimposed band, an error may occur in the initial estimated value of the threshold value. there were. The conventional method is effective when the environment such as the occurrence of interference can be predicted to some extent, but the detection accuracy of interference information may deteriorate in an environment where unpredictable interference occurs. For example, when the interference power is high, the detection rate decreases, and when the interference power greatly varies, there is a problem that the variation cannot be followed.

本発明は、干渉電力が高いあるいは干渉電力の変動が大きいなど、予測不能な干渉が発生する環境でマルチキャリア無線通信を行う無線通信システムにおいて、重畳帯域および非重畳帯域の判定に用いる閾値をQ学習によりダイナミックに算出することにより、干渉情報の検出精度を高めることができる無線受信方法を提供することを目的とする。   In a wireless communication system that performs multi-carrier wireless communication in an environment in which unpredictable interference occurs, such as high interference power or large fluctuations in interference power, the present invention sets a threshold value used for determining a superimposed band and a non-superimposed band as Q. It is an object of the present invention to provide a radio reception method that can improve the detection accuracy of interference information by dynamically calculating by learning.

本発明は、マルチキャリア重畳伝送方式を用いて送信されたデータサブキャリアの所望信号と、該所望信号に干渉を与える干渉信号とが重畳された受信信号を受信する無線受信方法において、受信信号から所望信号のレプリカ信号を減算して得られる不要信号の電力をサブキャリアごとに算出するステップと、不要信号の電力を所定の閾値を用いて判定し、受信信号のサブキャリアを重畳帯域および非重畳帯域に分類し、所望信号電力および雑音電力を該非重畳帯域のデータサブキャリアから最尤推定し、干渉信号電力を該重畳帯域のデータサブキャリアから最尤推定するステップとを有し、所望信号と干渉信号の電力比DURと、異なる複数の閾値の増減値との組合せで場合分けされたQテーブルをもち、所定の仮閾値を用いてDURを計算し、該DURに対応するQテーブルの各要素の値の中で最大となる要素に対応する閾値の増減を行い、この閾値を用いて対応するQテーブルの各要素の値を報酬関数に基づいて再計算・更新するQ学習を用いて閾値の決定を行う。   The present invention provides a radio reception method for receiving a reception signal in which a desired signal of a data subcarrier transmitted using a multicarrier superimposed transmission scheme and an interference signal that interferes with the desired signal are superimposed. The step of calculating the power of the unnecessary signal obtained by subtracting the replica signal of the desired signal for each subcarrier, the power of the unnecessary signal is determined using a predetermined threshold, and the subcarrier of the received signal is overlapped and non-superposed And classifying the desired signal power and noise power from the data subcarriers in the non-superimposed band, and estimating the interference signal power from the data subcarriers in the superposed band. It has a Q table that is classified by the combination of the interference signal power ratio DUR and the increase / decrease values of a plurality of different threshold values, and calculates the DUR using a predetermined temporary threshold value. Then, the threshold value corresponding to the largest element among the values of each element of the Q table corresponding to the DUR is increased or decreased, and the value of each element of the corresponding Q table is calculated based on the reward function using the threshold value. The threshold value is determined using Q-learning to be recalculated / updated.

本発明の無線受信方法において、Qテーブルの各要素の値を決める報酬関数は、重畳帯域および非重畳帯域のサブキャリアの各平均電力から閾値を減算して絶対値をとり、それぞれの絶対値の差が最小となったときに最大値をとる設定である。   In the wireless reception method of the present invention, the reward function for determining the value of each element of the Q table takes an absolute value by subtracting a threshold value from each average power of the subcarriers in the superimposed band and the non-superimposed band. This is the setting that takes the maximum value when the difference is minimum.

本発明の無線受信方法において、閾値の増減の際に、所定の確率でQテーブルの各要素の値の中で最大とならない要素に対して閾値の増減を行う。   In the wireless reception method of the present invention, when the threshold value is increased or decreased, the threshold value is increased or decreased for elements that do not become the maximum among the values of each element of the Q table with a predetermined probability.

本発明は、干渉電力が高いあるいは干渉電力の変動が大きいなど、予測不能な干渉が発生する環境でも、重畳帯域および非重畳帯域の判定に用いる閾値をQ学習によりダイナミックに算出することにより、干渉情報の検出精度を高めることができる。   In the present invention, even in an environment where unpredictable interference occurs, such as when the interference power is high or the fluctuation of the interference power is large, the threshold value used for determining the superimposed band and the non-superimposed band is dynamically calculated by Q learning, thereby Information detection accuracy can be increased.

本発明における閾値を最適化する処理手順を示すフローチャートである。It is a flowchart which shows the process sequence which optimizes the threshold value in this invention. 本発明の有効性を示すシミュレーション結果を示す図である。It is a figure which shows the simulation result which shows the effectiveness of this invention. 本発明におけるEb/Noと検出率の関係を示す図である。It is a figure which shows the relationship between Eb / No and a detection rate in this invention. 2つの周波数チャネルを共用する無線通信システムの一例を示す図である。It is a figure which shows an example of the radio | wireless communications system which shares two frequency channels. 従来の無線受信装置の構成例を示す図である。It is a figure which shows the structural example of the conventional radio | wireless receiver.

本発明は、重畳帯域および非重畳帯域の判定に用いる閾値を最適化するために、Q学習によるQテーブルの値を最適化する報酬関数を用いることを特徴とする。   The present invention is characterized by using a reward function for optimizing a Q table value by Q learning in order to optimize a threshold value used for determination of a superposed band and a non-superimposed band.

ここで、Qテーブルは、状態sとアクションaの組み合わせの各要素QSyAxを用いて次のように表される。

Figure 2018133745
Here, the Q table is expressed as follows using each element Q SyAx of the combination of the state s and the action a.
Figure 2018133745

図1は、本発明における閾値を最適化する処理手順を示す。
図1において、所望信号と干渉信号の電力比DUR(Desired to Undesired power Ratio)を計算し、状態sを決定する。次に、状態sm (m=0〜y)においてアクションタイプの選択を行い、基本的にはQ値最大のアクションan (n=0〜x)を選択し、所定の確率ρでQ値最大以外のアクションan も選択する。アクションan は閾値の増加、保持、減少の3通りで与える。なお、閾値の増減値は任意の固定値または変数とする。
FIG. 1 shows a processing procedure for optimizing a threshold in the present invention.
In FIG. 1, a power ratio DUR (Desired to Undesired power Ratio) between a desired signal and an interference signal is calculated, and the state s is determined. Next, the selection of the action types in the state s m (m = 0~y), essentially selects the Q value up action a n (n = 0~x), Q value at a predetermined probability ρ also select the action a n other than the maximum. Action a n increase in the threshold, hold, given in three ways reduced. The increase / decrease value of the threshold is an arbitrary fixed value or variable.

ここで、重畳帯域および非重畳帯域のサブキャリアの平均電力をRSB、RNSB とし、重畳帯域および非重畳帯域の判定に用いる閾値をTrpとする。本発明はこの閾値Trpの最適化を目的としており、その指標S(Trp)として、RSBおよびRNSB から閾値Trpをそれぞれ減算し、それぞれの絶対値間で再度減算を行った値を次のように定義する。
S(Trp)=|RSB−Trp|−|RNSB−Trp
Here, let R SB and R NSB be the average power of the subcarriers in the superimposed band and the non-superimposed band, and T rp be the threshold used for determining the superimposed band and the non-superimposed band. The present invention aims to optimize the threshold value T rp , and its index S (T rp ) is a value obtained by subtracting the threshold value T rp from R SB and R NSB and subtracting again between the absolute values. Is defined as follows.
S (T rp ) = | R SB −T rp | − | R NSB −T rp |

このS(Trp)が最小となったときに最大値をとる報酬関数Rωt(s,a)を次のように計算する。
Rωt(s,a)=γ(s,a)*|1/S(Trp)t|*(1+(S(Trp)t-1−S(Trp)t))
このように、状態sで選択されたアクションaの機能的有用性を決定する報酬関数に基づいて評価されるQテーブルを更新しながら、閾値Trpの最適値を算出する。
A reward function Rω t (s, a) that takes a maximum value when S (T rp ) becomes minimum is calculated as follows.
t (s, a) = γ (s, a) * | 1 / S (T rp ) t | * (1+ (S (T rp ) t−1 −S (T rp ) t ))
In this way, the optimal value of the threshold T rp is calculated while updating the Q table evaluated based on the reward function that determines the functional utility of the action a selected in the state s.

なお、報酬関数の一部であるγ(s,a) は減少係数であり、次のように表される。
γ(s,a)=1*(0.7GT(s,a))
0.7 は、収束の安定性と収束時間の関係を決める値であり、他の値を用いてもよい。ここでのGT(s,a) は、Qテーブルと同じサイズの行列である。
Note that γ (s, a), which is a part of the reward function, is a reduction coefficient and is expressed as follows.
γ (s, a) = 1 * (0.7 GT (s, a) )
0.7 is a value that determines the relationship between convergence stability and convergence time, and other values may be used. GT (s, a) here is a matrix having the same size as the Q table.

GT(s,a) は、状態sにおけるアクションaが連続して選択された回数であり、選択回数が多いほどγ(s,a) は小さな値となるため、報酬関数の増加量が減ることになり、状態sとアクションaにおけるQテーブルのQ値が収束することになる。   GT (s, a) is the number of times that the action a in the state s is continuously selected. As the number of selections increases, γ (s, a) becomes a smaller value, so the increase in the reward function decreases. Thus, the Q values of the Q table in the state s and the action a converge.

また、S(Trp)t-1−S(Trp)tは、閾値設定のアクションの妥当性に関して評価する項である。仮に間違った方向に閾値を設定した場合、この値は負の値をとる。ただし、必要以上に報酬関数が減少することを防ぐために、数値1を加えることによってその影響の低減を図っている。 Further, S (T rp ) t−1 −S (T rp ) t is a term to be evaluated regarding the validity of the action for setting the threshold. If a threshold value is set in the wrong direction, this value takes a negative value. However, in order to prevent the reward function from decreasing more than necessary, the effect is reduced by adding a numerical value 1.

図2は、本発明の有効性を示すシミュレーション結果を示す。
ここでは、DUR=0[dB]、Eb/No=0[dB]における従来方式(Theoretical Threshold)と本発明方式(Q-Learning Threshold)のパケット数と検出率の正確性を示す。パケット数が増えると、Q学習が完了し、従来方式より正確に検出できていることがわかる。
FIG. 2 shows simulation results showing the effectiveness of the present invention.
Here, the accuracy of the number of packets and the detection rate of the conventional method (Theoretical Threshold) and the present invention method (Q-Learning Threshold) in DUR = 0 [dB] and Eb / No = 0 [dB] are shown. As the number of packets increases, it can be seen that Q-learning is completed and detection is more accurate than the conventional method.

本シミュレーションに用いるパラメータは次の通りである。
SNR range 0〜10 dB
DUR −3,0,3dB
サブキャリア数 62
パケットサイズ 7シンボル(2パイロット、5データ)
パケット数 1430
閾値の初期値 0.8
閾値の変更率 0.05
重複帯域 20/64 (31.25%)
The parameters used for this simulation are as follows.
SNR range 0 to 10 dB
DUR -3, 0, 3dB
Number of subcarriers 62
Packet size 7 symbols (2 pilots, 5 data)
Number of packets 1430
Initial threshold value 0.8
Threshold change rate 0.05
Duplicate bandwidth 20/64 (31.25%)

図3は、本発明におけるEb/Noと検出率の関係を示す。
ここでは、本発明における検出率は、低SNR領域において従来方式より改善し、高SNR領域においても従来方式とほぼ同等であることが確認できる。したがって、Eb/Noの閾値を別途設定し、Eb/Noと当該閾値の大小関係に応じて、従来方式と本発明方式を切り替えるようにしてもよい。
FIG. 3 shows the relationship between Eb / No and detection rate in the present invention.
Here, it can be confirmed that the detection rate in the present invention is improved from the conventional method in the low SNR region, and is almost the same as that in the conventional method even in the high SNR region. Therefore, a threshold value for Eb / No may be set separately, and the conventional method and the present invention method may be switched according to the magnitude relationship between Eb / No and the threshold value.

11 サイクリックプレフィックス除去回路
12 FFT回路
13 受信信号バッファ
14 LLR演算回路
15 復号回路
16 誤り訂正符号化回路
17 PSK/QAMマッピング回路
18 伝送路重み回路
21 不要信号電力算出回路
22 重畳帯域判定回路
DESCRIPTION OF SYMBOLS 11 Cyclic prefix removal circuit 12 FFT circuit 13 Reception signal buffer 14 LLR arithmetic circuit 15 Decoding circuit 16 Error correction encoding circuit 17 PSK / QAM mapping circuit 18 Transmission path weight circuit 21 Unnecessary signal power calculation circuit 22 Superimposition band judgment circuit

Claims (3)

マルチキャリア重畳伝送方式を用いて送信されたデータサブキャリアの所望信号と、該所望信号に干渉を与える干渉信号とが重畳された受信信号を受信する無線受信方法において、
前記受信信号から前記所望信号のレプリカ信号を減算して得られる不要信号の電力をサブキャリアごとに算出するステップと、
前記不要信号の電力を所定の閾値を用いて判定し、前記受信信号のサブキャリアを重畳帯域および非重畳帯域に分類し、所望信号電力および雑音電力を該非重畳帯域のデータサブキャリアから最尤推定し、干渉信号電力を該重畳帯域のデータサブキャリアから最尤推定するステップと
を有し、
前記所望信号と前記干渉信号の電力比(DUR)と、異なる複数の閾値の増減値との組合せで場合分けされたQテーブルをもち、所定の仮閾値を用いてDURを計算し、該DURに対応するQテーブルの各要素の値の中で最大となる要素に対応する閾値の増減を行い、この閾値を用いて対応するQテーブルの各要素の値を報酬関数に基づいて再計算・更新するQ学習を用いて前記閾値の決定を行う
ことを特徴とする無線受信方法。
In a radio reception method for receiving a reception signal in which a desired signal of a data subcarrier transmitted using a multicarrier superimposed transmission scheme and an interference signal that interferes with the desired signal are superimposed,
Calculating the power of the unnecessary signal obtained by subtracting the replica signal of the desired signal from the received signal for each subcarrier;
The power of the unnecessary signal is determined using a predetermined threshold, the subcarriers of the received signal are classified into a superimposed band and a non-superimposed band, and the desired signal power and noise power are estimated from the data subcarriers of the non-superimposed band. And the maximum likelihood estimation of the interference signal power from the data subcarriers in the superposed band,
It has a Q table divided according to the combination of the power ratio (DUR) of the desired signal and the interference signal and the increase / decrease values of a plurality of different thresholds, calculates the DUR using a predetermined temporary threshold, The threshold value corresponding to the largest element among the values of each element of the corresponding Q table is increased or decreased, and the value of each element of the corresponding Q table is recalculated and updated based on the reward function using this threshold value. The wireless reception method, wherein the threshold is determined using Q-learning.
請求項1に記載の無線受信方法において、
前記Qテーブルの各要素の値を決める前記報酬関数は、前記重畳帯域および前記非重畳帯域のサブキャリアの各平均電力から閾値を減算して絶対値をとり、それぞれの絶対値の差が最小となったときに最大値をとる設定である
ことを特徴とする無線受信方法。
The wireless reception method according to claim 1,
The reward function for determining the value of each element of the Q table takes an absolute value by subtracting a threshold value from each average power of the subcarriers in the superimposed band and the non-superimposed band, and the difference between the absolute values is minimum. A wireless reception method characterized in that the maximum value is set when
請求項1に記載の無線受信方法において、
前記閾値の増減の際に、所定の確率で前記Qテーブルの各要素の値の中で最大とならない要素に対して前記閾値の増減を行う
ことを特徴とする無線受信方法。
The wireless reception method according to claim 1,
The radio reception method according to claim 1, wherein when the threshold value is increased or decreased, the threshold value is increased or decreased with respect to an element that does not become the maximum among the values of each element of the Q table with a predetermined probability.
JP2017027284A 2017-02-16 2017-02-16 Wireless reception method Active JP6651476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017027284A JP6651476B2 (en) 2017-02-16 2017-02-16 Wireless reception method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017027284A JP6651476B2 (en) 2017-02-16 2017-02-16 Wireless reception method

Publications (2)

Publication Number Publication Date
JP2018133745A true JP2018133745A (en) 2018-08-23
JP6651476B2 JP6651476B2 (en) 2020-02-19

Family

ID=63248635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017027284A Active JP6651476B2 (en) 2017-02-16 2017-02-16 Wireless reception method

Country Status (1)

Country Link
JP (1) JP6651476B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120002567A1 (en) * 2010-07-01 2012-01-05 The Hong Kong University Of Science And Technology Cross-layer optimization for next-generation wifi systems
JP2017034338A (en) * 2015-07-29 2017-02-09 日本電信電話株式会社 Receiver and interference estimation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120002567A1 (en) * 2010-07-01 2012-01-05 The Hong Kong University Of Science And Technology Cross-layer optimization for next-generation wifi systems
JP2017034338A (en) * 2015-07-29 2017-02-09 日本電信電話株式会社 Receiver and interference estimation method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALI B. ALI-SHAIKH ET AL.: "Q-Learning Based Superposed Band Detection in Multicarrier Transmission", IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), JPN6019044201, May 2017 (2017-05-01), ISSN: 0004195521 *
NAOTOSHI YODA ET AL.: " Interference Detection Technique Using Robust LLR for Superposed Multicarrier Transmission", 2013 IEEE 24TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), JPN6019044198, 2013, pages 1092 - 1096, ISSN: 0004154962 *
柴田 洋平ほか: "マルチキャリア重畳伝送における対数尤度設定に関する一検討", 映像情報メディア学会技術報告, vol. 第39巻,第6号, JPN6019044200, 19 February 2015 (2015-02-19), pages 17 - 20, ISSN: 0004154963 *

Also Published As

Publication number Publication date
JP6651476B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
RU2536371C2 (en) Determining wireless link quality based on received signals
KR101564479B1 (en) Method and system for reduced complexity channel estimation and interference cancellation for v-mimo demodulation
JP5513523B2 (en) Method and apparatus for delay spread compensation
JP2015198449A (en) Method and device for cancelling narrow band interference in single carrier signal and computer program
Sendrei et al. Iterative receiver for clipped GFDM signals
US20150171941A1 (en) Communication system, communication method, base station device, and mobile station device
JP2014522620A (en) Signal receiving apparatus and method in wireless communication system
JP5282321B2 (en) Boosted dedicated reference signal
US10686637B2 (en) Receiving apparatus and receiving method
EP3195503A1 (en) Interference estimation for lte receiver
KR101670599B1 (en) Hybrid Receiver based on System Level Simulation in Backhaul System
JP6411966B2 (en) Receiver and interference estimation method
JP6651476B2 (en) Wireless reception method
JPWO2014141628A1 (en) Receiving apparatus and channel estimation control method in wireless communication system
US8094756B2 (en) Portable communications device with demodulation correction and related methods
WO2020238867A1 (en) Phase noise suppression method and device
WO2014060484A1 (en) Llr weighting to enhance performances of soft decision at low snr values
JP2014187418A (en) Receiver and receiving method
JP6395639B2 (en) Method and apparatus and computer program for canceling narrowband interference in a single carrier signal
Yoda et al. Interference suppression using EM algorithm in OFDM transmissions
US10050820B2 (en) Apparatus and method for modulation/demodulation for transmitting and receiving signal in wireless communication system
JP6571605B2 (en) Radio receiving method and radio receiving apparatus
JP5541500B2 (en) Multi-carrier communication interference power estimation method and receiver
JP2012085050A (en) Radio receiver and radio reception method
JP2008092227A (en) Wireless communication device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200122

R150 Certificate of patent or registration of utility model

Ref document number: 6651476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250