JP2018133290A - Nonaqueous electrolyte and nonaqueous electrolyte battery using the same - Google Patents
Nonaqueous electrolyte and nonaqueous electrolyte battery using the same Download PDFInfo
- Publication number
- JP2018133290A JP2018133290A JP2017027765A JP2017027765A JP2018133290A JP 2018133290 A JP2018133290 A JP 2018133290A JP 2017027765 A JP2017027765 A JP 2017027765A JP 2017027765 A JP2017027765 A JP 2017027765A JP 2018133290 A JP2018133290 A JP 2018133290A
- Authority
- JP
- Japan
- Prior art keywords
- additive
- positive electrode
- electrolytic solution
- negative electrode
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 20
- 239000000654 additive Substances 0.000 claims abstract description 49
- 230000000996 additive effect Effects 0.000 claims abstract description 45
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 32
- 239000002904 solvent Substances 0.000 claims abstract description 11
- 239000000126 substance Substances 0.000 claims abstract description 5
- 150000005678 chain carbonates Chemical class 0.000 claims abstract description 4
- 150000005676 cyclic carbonates Chemical class 0.000 claims abstract description 4
- DGTVXEHQMSJRPE-UHFFFAOYSA-M difluorophosphinate Chemical compound [O-]P(F)(F)=O DGTVXEHQMSJRPE-UHFFFAOYSA-M 0.000 claims abstract description 3
- 229940074371 monofluorophosphate Drugs 0.000 claims abstract description 3
- 239000003792 electrolyte Substances 0.000 claims description 8
- OCORJNRZLMDDQS-UHFFFAOYSA-N CC(OC(=O)OC)COC(CCC)=O Chemical compound CC(OC(=O)OC)COC(CCC)=O OCORJNRZLMDDQS-UHFFFAOYSA-N 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 4
- IGILRSKEFZLPKG-UHFFFAOYSA-M lithium;difluorophosphinate Chemical compound [Li+].[O-]P(F)(F)=O IGILRSKEFZLPKG-UHFFFAOYSA-M 0.000 claims description 4
- NAYXDABINGJAJZ-UHFFFAOYSA-N CC(OC(=O)OCC)COC(CCC)=O Chemical compound CC(OC(=O)OCC)COC(CCC)=O NAYXDABINGJAJZ-UHFFFAOYSA-N 0.000 claims description 3
- 125000003342 alkenyl group Chemical group 0.000 claims description 2
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 2
- 238000005868 electrolysis reaction Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 239000000243 solution Substances 0.000 abstract description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 30
- 229910001416 lithium ion Inorganic materials 0.000 description 30
- 239000007774 positive electrode material Substances 0.000 description 22
- 239000007773 negative electrode material Substances 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- -1 polytetrafluoroethylene Polymers 0.000 description 12
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 11
- 229910052744 lithium Inorganic materials 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229920001940 conductive polymer Polymers 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011883 electrode binding agent Substances 0.000 description 4
- 229910003002 lithium salt Inorganic materials 0.000 description 4
- 159000000002 lithium salts Chemical class 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000002482 conductive additive Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- 229910012258 LiPO Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 2
- 238000007600 charging Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000002153 concerted effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000004807 desolvation Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- SXWUDUINABFBMK-UHFFFAOYSA-L dilithium;fluoro-dioxido-oxo-$l^{5}-phosphane Chemical class [Li+].[Li+].[O-]P([O-])(F)=O SXWUDUINABFBMK-UHFFFAOYSA-L 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- DMEJJWCBIYKVSB-UHFFFAOYSA-N lithium vanadium Chemical compound [Li].[V] DMEJJWCBIYKVSB-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 239000011356 non-aqueous organic solvent Substances 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 150000003839 salts Chemical group 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- UHOPWFKONJYLCF-UHFFFAOYSA-N 2-(2-sulfanylethyl)isoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(CCS)C(=O)C2=C1 UHOPWFKONJYLCF-UHFFFAOYSA-N 0.000 description 1
- GQRIHIMPOOSJMW-UHFFFAOYSA-N CCC(=O)OCCOC(=O)OCC Chemical compound CCC(=O)OCCOC(=O)OCC GQRIHIMPOOSJMW-UHFFFAOYSA-N 0.000 description 1
- MSGYRGHIEBLFLX-UHFFFAOYSA-N F[P]F Chemical compound F[P]F MSGYRGHIEBLFLX-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013275 LiMPO Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- DWYMPOCYEZONEA-UHFFFAOYSA-L fluoridophosphate Chemical compound [O-]P([O-])(F)=O DWYMPOCYEZONEA-UHFFFAOYSA-L 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 description 1
- SWAIALBIBWIKKQ-UHFFFAOYSA-N lithium titanium Chemical compound [Li].[Ti] SWAIALBIBWIKKQ-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910001456 vanadium ion Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本発明は、非水電解液およびそれを用いた非水電解液電池に関する。 The present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte battery using the same.
近年、移動体通信機器、携帯電子機器の主電源として利用されているリチウムイオン二次電池は、起電力が高く、高エネルギー密度であるという特長を有している。 In recent years, a lithium ion secondary battery used as a main power source for mobile communication devices and portable electronic devices has a feature of high electromotive force and high energy density.
リチウムイオン二次電池用の電解液は、電解質であるリチウム塩と非水系の有機溶媒とから構成される。非水系の有機溶媒は、リチウム塩を解離させるために高い誘電率を有すること、広い温度領域で高いイオン伝導度を発現させること、及び電池中で安定であることが要求される。これらの要求を一つの溶媒で達成することは困難であるので、通常はプロピレンカーボネート、エチレンカーボネート等に代表される高沸点溶媒と、ジメチルカーボネート、ジエチルカーボネート等の低沸点溶媒とを組み合わせて使用している。 The electrolyte for a lithium ion secondary battery is composed of a lithium salt that is an electrolyte and a non-aqueous organic solvent. The non-aqueous organic solvent is required to have a high dielectric constant for dissociating the lithium salt, to exhibit high ionic conductivity in a wide temperature range, and to be stable in the battery. Since it is difficult to achieve these requirements with a single solvent, usually a combination of a high-boiling solvent typified by propylene carbonate and ethylene carbonate and a low-boiling solvent such as dimethyl carbonate and diethyl carbonate is used. ing.
また、初期容量、レート特性、サイクル特性、高温保存特性、連続充電特性、自己放電特性、過充電防止特性等、種々の電池特性を改善するために、添加剤を電解液に添加することも数多く検討されてきた。例えば、高温下での自己放電を抑制する方法として、フルオロリン酸リチウム類を添加することが報告されている。(特許文献1) In addition, many additives are added to the electrolyte to improve various battery characteristics such as initial capacity, rate characteristics, cycle characteristics, high temperature storage characteristics, continuous charge characteristics, self-discharge characteristics, and overcharge prevention characteristics. Has been studied. For example, it has been reported that lithium fluorophosphates are added as a method for suppressing self-discharge at high temperatures. (Patent Document 1)
しかしながら、従来技術の方法では未だ諸特性は満足されず、特に低温サイクル特性の改善が求められている。 However, the conventional methods still do not satisfy various characteristics, and improvement of the low temperature cycle characteristics is demanded.
本発明者らは鋭意研究の結果、低温充電時に負極上でリチウムが析出し、デッドリチウムとなってしまうことで低温サイクル特性が悪化していることを見出した。 As a result of intensive studies, the present inventors have found that lithium is deposited on the negative electrode during low-temperature charging and becomes dead lithium, thereby deteriorating the low-temperature cycle characteristics.
本発明は上記従来技術の有する課題に鑑みてなされたものであり、低温サイクル特性を改善することが可能な非水電解液およびそれを用いた非水電解液電池を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a nonaqueous electrolyte capable of improving low-temperature cycle characteristics and a nonaqueous electrolyte battery using the same. .
上記課題を解決するため、本発明に係る非水電解液は、環状カーボネートおよび鎖状カーボネートからなる溶媒を含有する電解液と、下記化学式(1)で表される添加剤(A)と、モノフルオロリン酸塩またはジフルオロリン酸塩から選択される添加剤(B)を含むことを特徴とする。
(ここで、R1〜R4は、それぞれ独立して、水素、炭素数1〜3のアルキル基、ハロゲン、炭素数1〜3のハロゲン元素を含んでもよいアルキル基、シクロアルキル基またはアルケニル基のいずれかであり、nは1〜3の整数である。)
In order to solve the above problems, a nonaqueous electrolytic solution according to the present invention includes an electrolytic solution containing a solvent composed of a cyclic carbonate and a chain carbonate, an additive (A) represented by the following chemical formula (1), It contains an additive (B) selected from fluorophosphate or difluorophosphate.
(Here, R 1 to R 4 are each independently hydrogen, an alkyl group having 1 to 3 carbon atoms, a halogen, an alkyl group that may contain a halogen element having 1 to 3 carbon atoms, a cycloalkyl group, or an alkenyl group. And n is an integer of 1 to 3.)
これによれば、電解液中に上記添加剤(A)および(B)を含むことで、低温サイクル特性を改善することができる。 According to this, low temperature cycle characteristics can be improved by including the additives (A) and (B) in the electrolytic solution.
こうした効果が発現する要因について詳細は明らかではないが、以下のように考えられる。すなわち、添加剤(A)は分子中に酸素原子を多く含有することに加え、分解時にカルボン酸残渣を生成するので、ドナー性の高く、リチウムトラップ性の高いSEI皮膜を負極上に形成する。更に、添加剤(B)が協奏的に分解することでSEI皮膜のリチウムイオン伝導性が向上する。これにより、低温駆動時においても、負極上でのリチウムイオンの脱溶媒和が速やかに行われ、負極上でのLiデンドライド析出が抑制され、低温サイクル特性が改善する。 The details of the factors that cause these effects are not clear, but are considered as follows. That is, since the additive (A) contains a large amount of oxygen atoms in the molecule and generates a carboxylic acid residue upon decomposition, an SEI film having a high donor property and a high lithium trapping property is formed on the negative electrode. Furthermore, lithium ion conductivity of the SEI film is improved by the concerted decomposition of the additive (B). Thereby, even at the time of low temperature driving, desolvation of lithium ions on the negative electrode is performed quickly, Li dendride precipitation on the negative electrode is suppressed, and low temperature cycle characteristics are improved.
本発明に係る非水電解液はさらに、上記添加剤(A)が3−メチル−2,5−ジオキサ−6−オキソノナン酸エチルまたは3−メチル−2,5−ジオキサ−6−オキソノナン酸メチルであることが好ましい。 In the non-aqueous electrolyte according to the present invention, the additive (A) is ethyl 3-methyl-2,5-dioxa-6-oxononanoate or methyl 3-methyl-2,5-dioxa-6-oxononanoate. Preferably there is.
これによれば、添加剤(A)として好適であり、低温サイクル特性がさらに改善する。 According to this, it is suitable as the additive (A), and the low temperature cycle characteristics are further improved.
本発明に係る非水電解液はさらに、上記添加剤(A)が電解液中に1×10−4〜3×10−2mol/L含まれることが好ましい。 In the nonaqueous electrolytic solution according to the present invention, the additive (A) is preferably contained in the electrolytic solution in an amount of 1 × 10 −4 to 3 × 10 −2 mol / L.
これによれば、添加量として好適であり、低温サイクル特性がさらに改善する。 According to this, it is suitable as an addition amount, and the low-temperature cycle characteristics are further improved.
本発明に係る非水電解液はさらに、上記添加剤(B)が、電解液中に1×10−3〜3×10−1mol/L含まれることが好ましい。 In the nonaqueous electrolytic solution according to the present invention, the additive (B) is preferably contained in the electrolytic solution in an amount of 1 × 10 −3 to 3 × 10 −1 mol / L.
これによれば、添加量として好適であり、低温サイクル特性がさらに改善する。 According to this, it is suitable as an addition amount, and the low-temperature cycle characteristics are further improved.
本発明に係る非水電解液はさらに、上記添加剤(B)がジフルオロリン酸リチウムであることが好ましい。 In the nonaqueous electrolytic solution according to the present invention, it is further preferable that the additive (B) is lithium difluorophosphate.
これによれば、添加剤としてより好適であり、低温サイクル特性がさらに改善する。 According to this, it is more suitable as an additive, and the low-temperature cycle characteristics are further improved.
本発明によれば、低温サイクル特性を改善することが可能な非水電解液およびそれを用いた非水電解液電池が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the non-aqueous electrolyte which can improve a low-temperature cycle characteristic and a non-aqueous electrolyte battery using the same are provided.
以下、図面を参照しながら本発明に係る好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments according to the invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.
<リチウムイオン二次電池>
図1に示すように、本実施形態に係るリチウムイオン二次電池100は、互いに対向する板状の負極20及び板状の正極10と、負極20と正極10との間に隣接して配置される板状のセパレータ18と、を備える積層体30と、リチウムイオンを含む非水電解液と、これらを密閉した状態で収容するケース50と、負極20に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード62と、正極10に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード60とを備える。
<Lithium ion secondary battery>
As shown in FIG. 1, a lithium ion
正極10は、正極集電体12と、正極集電体12上に形成された正極活物質層14と、を有する。また、負極20は、負極集電体22と、負極集電体22上に形成された負極活物質層24と、を有する。セパレータ18は、負極活物質層24と正極活物質層14との間に位置している。
The
<正極>
(正極集電体)
正極集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
<Positive electrode>
(Positive electrode current collector)
The positive electrode
(正極活物質層)
正極活物質層14は、正極活物質、正極用バインダー、正極用導電助剤、および正極用添加剤から主に構成されるものである。
(Positive electrode active material layer)
The positive electrode
(正極活物質)
正極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、該リチウムイオンのカウンターアニオン(例えば、PF6 −)のドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、リチウムマンガンスピネル(LiMn2O4)、及び、化学式:LiNixCoyMnzMaO2(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物Lia(M)b(PO4)c(ただし、M=VOまたはV、かつ、0.9≦a≦3.3、0.9≦b≦2.2、0.9≦c≦3.3)、オリビン型LiMPO4(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(Li4Ti5O12)、LiNixCoyAlzO2(0.9<x+y+z<1.1)等の複合金属酸化物が挙げられる。
(Positive electrode active material)
As the positive electrode active material, lithium ion occlusion and release, lithium ion desorption and insertion (intercalation), or doping and dedoping of a counter anion (for example, PF 6 − ) of the lithium ion are reversibly performed. If it can be made to advance, it will not specifically limit, A well-known electrode active material can be used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganese spinel (LiMn 2 O 4 ), and the chemical formula: LiNi x Co y Mn z MaO 2 (x + y + z + a = 1, 0 ≦ x ≦ 1) , 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0 ≦ a ≦ 1, and M is one or more elements selected from Al, Mg, Nb, Ti, Cu, Zn, and Cr) , Lithium vanadium compound Li a (M) b (PO 4 ) c (where M = VO or V, and 0.9 ≦ a ≦ 3.3, 0.9 ≦ b ≦ 2.2, 0.9 ≦ c ≦ 3.3), olivine-type LiMPO 4 (wherein M represents one or more elements selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, and Zr or VO), titanium Lithium acid (Li 4 Ti 5 O 12 ), LiNi x Co y Al z O 2 (0.9 <x + y + z <1.1) and the like.
上記正極活物質のうち、特にリチウムバナジウム化合物を用いた場合、低温サイクル特性が効果的に改善する。上記作用の正確なメカニズムはいまだ不明であるが、正極活物質から溶出したバナジウムイオンが負極上に運ばれ、皮膜形成に有為な作用を及ぼしていると考えられる。 Among the positive electrode active materials, particularly when a lithium vanadium compound is used, the low-temperature cycle characteristics are effectively improved. Although the exact mechanism of the above action is still unclear, it is considered that vanadium ions eluted from the positive electrode active material are carried on the negative electrode and have a significant effect on film formation.
(正極用バインダー)
正極用バインダーとしては、正極活物質同士を結合すると共に、正極活物質層14と正極用集電体12とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等を用いてもよい。また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン、ポリチオフェン、ポリアニリン等が挙げられる。イオン伝導性の導電性高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物と、LiClO4、LiBF4、LiPF6等のリチウム塩とを複合化させたもの等が挙げられる。
(Binder for positive electrode)
As the positive electrode binder, the positive electrode active materials are bonded together, and the positive electrode
正極活物質層14中のバインダーの含有量は特に限定されないが、添加する場合には正極活物質の質量に対して0.5〜5質量部であることが好ましい。
Although content of the binder in the positive electrode
(正極用導電助剤)
正極用導電助剤としては、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、ITO等の導電性酸化物が挙げられる。
(Conductive aid for positive electrode)
The conductive auxiliary agent for positive electrode is not particularly limited as long as it improves the conductivity of the positive electrode
<負極>
(負極集電体)
負極集電体22は、導電性の板材であればよく、例えば、銅等の金属薄板(金属箔)を用いることができる。
<Negative electrode>
(Negative electrode current collector)
The negative electrode
(負極活物質層)
負極活物質層24は、負極活物質、負極用バインダー、および負極用導電助剤から主に構成されるものである。
(Negative electrode active material layer)
The negative electrode
(負極活物質)
負極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)を可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、グラファイト、ハードカーボン等の炭素系材料、酸化シリコン(SiOx)金属シリコン(Si)等の珪素系材料、チタン酸リチウム(LTO)等の金属酸化物、リチウム、スズ、亜鉛等の金属材料が挙げられる。
(Negative electrode active material)
The negative electrode active material is not particularly limited as long as it can reversibly advance occlusion and release of lithium ions and desorption and insertion (intercalation) of lithium ions, and a known electrode active material can be used. . For example, carbon materials such as graphite and hard carbon, silicon materials such as silicon oxide (SiO x ) metal silicon (Si), metal oxides such as lithium titanate (LTO), metal materials such as lithium, tin, and zinc Is mentioned.
上記負極活物質のうち、リチウムを用いた場合で本発明の効果をより得ることができる。上記の要因について詳細は明らかではないが、常温溶融塩がリチウム上でよりドナー性の高いSEI皮膜を形成するためと考えられる。 Of the above negative electrode active materials, the effect of the present invention can be further obtained when lithium is used. Although the details of the above factors are not clear, it is considered that the room temperature molten salt forms a SEI film having a higher donor property on lithium.
負極活物質として金属材料を用いない場合、負極活物質層24は更に、負極用バインダーおよび負極用導電助剤を含んでいてもよい。
When a metal material is not used as the negative electrode active material, the negative electrode
(負極用バインダー)
負極用バインダーとしては特に限定は無く、上記で記載した正極用バインダーと同様のものを用いることができる。
(Binder for negative electrode)
There is no limitation in particular as a binder for negative electrodes, The thing similar to the binder for positive electrodes described above can be used.
(負極用導電助剤)
負極用導電助剤としては特に限定は無く、上記で記載した正極用導電助剤と同様のものを用いることができる。
(Conductive aid for negative electrode)
There is no limitation in particular as a conductive support agent for negative electrodes, The thing similar to the conductive support agent for positive electrodes described above can be used.
<非水電解液>
本実施形態に係る非水電解液は、環状カーボネートおよび鎖状カーボネートからなる溶媒を含有する電解液と、化学式(1)で表される添加剤(A)と、モノフルオロリン酸塩またはジフルオロリン酸塩から選択される添加剤(B)を含むものである。
The nonaqueous electrolytic solution according to this embodiment includes an electrolytic solution containing a solvent composed of a cyclic carbonate and a chain carbonate, an additive (A) represented by the chemical formula (1), and a monofluorophosphate or difluorophosphorus. It contains an additive (B) selected from acid salts.
これによれば、電解液中に上記添加剤(A)および(B)を含むことで、低温サイクル特性を改善することができる。 According to this, low temperature cycle characteristics can be improved by including the additives (A) and (B) in the electrolytic solution.
こうした効果が発現する要因について詳細は明らかではないが、以下のように考えられる。すなわち、添加剤(A)は分子中に酸素原子を多く含有することに加え、分解時にカルボン酸残渣を生成するので、ドナー性の高く、リチウムトラップ性の高いSEI皮膜を負極上に形成する。更に、添加剤(B)が協奏的に分解することでSEI皮膜のリチウムイオン伝導性が向上する。これにより、低温駆動時においても、負極上でのリチウムイオンの脱溶媒和が速やかに行われ、負極上でのLiデンドライド析出が抑制され、低温サイクル特性が改善する。 The details of the factors that cause these effects are not clear, but are considered as follows. That is, since the additive (A) contains a large amount of oxygen atoms in the molecule and generates a carboxylic acid residue upon decomposition, an SEI film having a high donor property and a high lithium trap property is formed on the negative electrode. Furthermore, lithium ion conductivity of the SEI film is improved by the concerted decomposition of the additive (B). Thereby, even at the time of low temperature driving, desolvation of lithium ions on the negative electrode is performed quickly, Li dendride precipitation on the negative electrode is suppressed, and low temperature cycle characteristics are improved.
本実施形態に係る非水電解液はさらに、上記添加剤(A)が3−メチル−2,5−ジオキサ−6−オキソノナン酸エチルまたは3−メチル−2,5−ジオキサ−6−オキソノナン酸メチルであることが好ましい。 In the non-aqueous electrolyte according to this embodiment, the additive (A) is further methyl 3-methyl-2,5-dioxa-6-oxononanoate or methyl 3-methyl-2,5-dioxa-6-oxononanoate. It is preferable that
これによれば、添加剤(A)として好適であり、低温サイクル特性がさらに改善する。 According to this, it is suitable as the additive (A), and the low temperature cycle characteristics are further improved.
本実施形態に係る非水電解液はさらに、上記添加剤(A)が電解液中に1×10−4〜3×10−2mol/L含まれることが好ましい。 In the nonaqueous electrolytic solution according to this embodiment, the additive (A) is preferably contained in the electrolytic solution in an amount of 1 × 10 −4 to 3 × 10 −2 mol / L.
これによれば、添加量として好適であり、低温サイクル特性がさらに改善する。 According to this, it is suitable as an addition amount, and the low-temperature cycle characteristics are further improved.
本実施形態に係る非水電解液はさらに、上記添加剤(B)が、電解液中に1×10−3〜3×10−1mol/L含まれることが好ましい。 In the nonaqueous electrolytic solution according to this embodiment, the additive (B) is preferably contained in the electrolytic solution in an amount of 1 × 10 −3 to 3 × 10 −1 mol / L.
これによれば、添加量として好適であり、低温サイクル特性がさらに改善する。 According to this, it is suitable as an addition amount, and the low-temperature cycle characteristics are further improved.
本実施形態に係る非水電解液はさらに、上記添加剤(B)がジフルオロリン酸リチウムであることが好ましい。 In the nonaqueous electrolytic solution according to this embodiment, it is further preferable that the additive (B) is lithium difluorophosphate.
これによれば、添加剤としてより好適であり、低温サイクル特性がさらに改善する。 According to this, it is more suitable as an additive, and the low-temperature cycle characteristics are further improved.
本実施形態に係る非水電解液はさらに、上記添加剤(A)と添加剤(B)の添加量が、モル比で、添加剤(A):添加剤(B)=1:2〜1:20であることが好ましい。 In the non-aqueous electrolyte according to this embodiment, the additive (A) and the additive (B) are added in a molar ratio of additive (A): additive (B) = 1: 2-1. : 20 is preferable.
これによれば、添加量の比率として好適であり、低温サイクル特性がさらに改善する。 According to this, it is suitable as a ratio of the addition amount, and the low temperature cycle characteristics are further improved.
(溶媒)
さらに電解液の溶媒として、一般にリチウムイオン二次電池に用いられている溶媒を使用することができる。上記溶媒については特に限定はなく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネート化合物、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等の鎖状カーボネート化合物、γ−ブチロラクトン等の環状エステル化合物、プロピオン酸プロピル、プロピオン酸エチル、酢酸エチル等の鎖状エステル化合物、等を任意の割合で混合して用いることができる。
(solvent)
Furthermore, the solvent generally used for the lithium ion secondary battery can be used as the solvent of the electrolytic solution. The solvent is not particularly limited. For example, cyclic carbonate compounds such as ethylene carbonate (EC) and propylene carbonate (PC), chain carbonate compounds such as diethyl carbonate (DEC) and ethyl methyl carbonate (EMC), and γ-butyrolactone. A cyclic ester compound such as propyl propionate, a chain ester compound such as ethyl propionate and ethyl acetate, and the like can be mixed and used at an arbitrary ratio.
(電解質)
電解質は、リチウムイオン二次電池の電解質として用いられるリチウム塩であれば特に限定は無く、例えば、LiPF6、LiBF4、リチウムビスオキサレートボラート等の無機酸陰イオン塩、LiCF3SO3、(CF3SO2)2NLi、(FSO2)2NLi等の有機酸陰イオン塩等を用いることができる。
(Electrolytes)
The electrolyte is not particularly limited as long as it is a lithium salt used as an electrolyte of a lithium ion secondary battery. For example, inorganic acid anion salts such as LiPF 6 , LiBF 4 , lithium bisoxalate borate, LiCF 3 SO 3 , An organic acid anion salt such as (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, or the like can be used.
以上、本発明に係る好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 As mentioned above, although preferred embodiment which concerns on this invention was described, this invention is not limited to the said embodiment.
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.
[実施例1]
(正極の作製)
正極活物質としてLiVOPO485質量部、カーボンブラック5質量部、PVDF10質量部をN−メチル−2−ピロリドン(NMP)に分散させ、正極活物質層形成用のスラリーを調整した。このスラリーを、厚さ20μmのアルミ金属箔の一面に、正極活物質の塗布量が9.0mg/cm2となるように塗布し、100℃で乾燥することで正極活物質層を形成した。その後、ローラープレスによって加圧成形し、正極を作製した。
[Example 1]
(Preparation of positive electrode)
As a positive electrode active material, 85 parts by mass of LiVOPO 4 , 5 parts by mass of carbon black, and 10 parts by mass of PVDF were dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a slurry for forming a positive electrode active material layer. This slurry was applied to one surface of an aluminum metal foil having a thickness of 20 μm so that the applied amount of the positive electrode active material was 9.0 mg / cm 2 and dried at 100 ° C. to form a positive electrode active material layer. Then, it pressure-molded with the roller press and produced the positive electrode.
(負極の作製)
天然黒鉛90質量部、カーボンブラック5質量部、PVDF5質量部をN−メチル−2−ピロリドン(NMP)に分散させ、負極活物質層形成用のスラリーを調整した。上記スラリーを、厚さ20μmの銅箔の一面に、負極活物質の塗布量が6.0mg/cm2となるように塗布し、100℃で乾燥することで負極活物質層を形成した。その後、ローラープレスによって加圧成形し、負極を作製した。
(Preparation of negative electrode)
90 parts by mass of natural graphite, 5 parts by mass of carbon black, and 5 parts by mass of PVDF were dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a slurry for forming a negative electrode active material layer. The slurry was applied to one surface of a copper foil having a thickness of 20 μm so that the amount of the negative electrode active material applied was 6.0 mg / cm 2 and dried at 100 ° C. to form a negative electrode active material layer. Then, it pressure-molded with the roller press and produced the negative electrode.
(電解液の作製)
体積比でEC/DEC=3/7となるように混合し、これに1mol/Lの濃度となるようにLiPF6を溶解させた。その後、この溶液に対し、添加剤(A)として2,5−ジオキサ−6−オキソオクタン酸エチルを1.0×10−3mol/L、ジフルオロリン酸リチウム(LiPO2F2)を1.0×10−2mol/Lの濃度となるように添加し、電解液を作製した。
(Preparation of electrolyte)
Were mixed so that EC / DEC = 3/7 by volume and this dissolved LiPF 6 at a concentration of 1 mol / L. After that, 1.0 × 10 −3 mol / L of ethyl 2,5-dioxa-6-oxooctanoate and lithium difluorophosphate (LiPO 2 F 2 ) as an additive (A) were added to this solution. It added so that it might become a density | concentration of 0 * 10 <-2 > mol / L, and produced electrolyte solution.
(評価用リチウムイオン二次電池の作製)
上記で作製した正極および負極と、それらの間にポリエチレン微多孔膜からなるセパレータを挟んでアルミラミネートパックに入れた。このアルミラミネートパックに、上記で作製した電解液を注入した後、真空シールし、評価用リチウムイオン二次電池を作製した。
(Production of evaluation lithium-ion secondary battery)
The positive electrode and negative electrode produced above and a separator made of a polyethylene microporous film were sandwiched between them to be put in an aluminum laminate pack. After injecting the electrolytic solution prepared above into this aluminum laminate pack, vacuum sealing was performed to prepare a lithium ion secondary battery for evaluation.
(低温サイクル特性の測定)
上記で作製した評価用リチウムイオン二次電池を、0℃に設定した恒温槽(エスペック株式会社製)内に設置した。電池温度が十分に安定した後、二次電池充放電試験装置(北斗電工株式会社製)を用い、充電レート0.5Cの定電流充電で、電池電圧が4.2Vとなるまで充電を行った後、放電レート0.5Cの定電流放電で、電池電圧が2.8Vとなるまで放電を行い、1サイクル目放電容量C1を求めた。上記の充放電を1サイクルと数え、この充放電を繰り返し、300サイクル目放電容量C2を求めた。なお、上記充放電レートのnC(mA)は、公称容量(mAh)を1/n(h)で充放電できる電流値である。
(Measurement of low temperature cycle characteristics)
The lithium ion secondary battery for evaluation produced above was installed in a thermostat (manufactured by Espec Corp.) set at 0 ° C. After the battery temperature was sufficiently stabilized, the secondary battery charge / discharge test apparatus (made by Hokuto Denko Co., Ltd.) was used to charge the battery until the battery voltage reached 4.2 V by constant current charging at a charge rate of 0.5 C. Thereafter, the battery was discharged with a constant current discharge at a discharge rate of 0.5 C until the battery voltage became 2.8 V, and the first cycle discharge capacity C 1 was obtained. The charge and discharge is counted as one cycle, repeating the charge and discharge was determined 300th cycle discharge capacity C 2. In addition, nC (mA) of the said charging / discharging rate is an electric current value which can charge / discharge nominal capacity (mAh) by 1 / n (h).
上記で求めた1サイクル目放電容量C1および300サイクル目放電容量C2から、式(1)に従い、低温サイクル特性を求めた。得られた結果を表1に示す。
低温サイクル特性[%]=C2/C1×100 ・・・(1)
From the first cycle discharge capacity C 1 and 300 cycle discharge capacity C 2 obtained above, in accordance with equation (1) to determine the low-temperature cycle property. The obtained results are shown in Table 1.
Low temperature cycle characteristics [%] = C 2 / C 1 × 100 (1)
[実施例2〜8]
電解液の作製で用いた添加剤(A)の種類を、表1に示した通りに変更した以外は実施例7と同様として、実施例2〜8の評価用リチウムイオン二次電池を作製した。
[Examples 2 to 8]
Lithium secondary batteries for evaluation of Examples 2 to 8 were produced in the same manner as in Example 7 except that the type of additive (A) used in the production of the electrolytic solution was changed as shown in Table 1. .
[実施例9〜14]
電解液の作製で用いた添加剤(A)の添加量を、表1に示した通りに変更した以外は実施例7と同様として、実施例9〜14の評価用リチウムイオン二次電池を作製した。
[Examples 9 to 14]
The evaluation lithium ion secondary batteries of Examples 9 to 14 were produced in the same manner as in Example 7 except that the amount of additive (A) used in the production of the electrolytic solution was changed as shown in Table 1. did.
[実施例15〜18]
電解液の作製で用いた添加剤(B)の添加量を、表1に示した通りに変更した以外は実施例7と同様として、実施例15〜18の評価用リチウムイオン二次電池を作製した。ここで、Li2PO3Fはモノフルオロリン酸リチウムである。
[Examples 15 to 18]
The evaluation lithium ion secondary batteries of Examples 15 to 18 were produced in the same manner as in Example 7 except that the amount of additive (B) used in the production of the electrolytic solution was changed as shown in Table 1. did. Here, Li 2 PO 3 F is lithium monofluorophosphate.
[実施例19〜23]
電解液の作製で用いた添加剤(B)の種類および添加量を、表1に示した通りに変更した以外は実施例7と同様として、実施例19〜23の評価用リチウムイオン二次電池を作製した。
[Examples 19 to 23]
Lithium ion secondary batteries for evaluation of Examples 19 to 23 were the same as Example 7 except that the type and amount of additive (B) used in the preparation of the electrolytic solution were changed as shown in Table 1. Was made.
[実施例24〜27]
正極の作製で用いた正極活物質を、表1に示した通りに変更した以外は実施例7と同様として、実施例24〜27の評価用リチウムイオン二次電池を作製した。
[Examples 24-27]
Lithium ion secondary batteries for evaluation of Examples 24-27 were produced in the same manner as in Example 7 except that the positive electrode active material used in the production of the positive electrode was changed as shown in Table 1.
[比較例1]
表1の通り、電解液の作製で添加剤(B)を加えなかったこと以外は実施例7と同様として、比較例1の評価用リチウムイオン二次電池を作製した。
[Comparative Example 1]
As shown in Table 1, a lithium ion secondary battery for evaluation of Comparative Example 1 was produced in the same manner as in Example 7 except that the additive (B) was not added in the production of the electrolytic solution.
[比較例2]
表1の通り、電解液の作製で添加剤(A)を加えなかったこと以外は実施例7と同様として、比較例1の評価用リチウムイオン二次電池を作製した。
[Comparative Example 2]
As shown in Table 1, a lithium ion secondary battery for evaluation of Comparative Example 1 was produced in the same manner as in Example 7 except that the additive (A) was not added in the production of the electrolytic solution.
[比較例3]
表1の通り、電解液の作製で添加剤を加えなかったこと以外は実施例7と同様として、比較例1の評価用リチウムイオン二次電池を作製した。
[Comparative Example 3]
As shown in Table 1, a lithium ion secondary battery for evaluation of Comparative Example 1 was produced in the same manner as in Example 7 except that no additive was added in the production of the electrolytic solution.
[比較例4〜7]
正極の作製で用いた正極活物質を表1に示した通りに変更したこと以外は比較例3と同様として、比較例4〜7の評価用リチウムイオン二次電池を作製した。
[Comparative Examples 4 to 7]
Lithium ion secondary batteries for evaluation of Comparative Examples 4 to 7 were produced in the same manner as Comparative Example 3 except that the positive electrode active material used in the production of the positive electrode was changed as shown in Table 1.
実施例2〜27、および比較例1〜7で作製した評価用リチウムイオン二次電池について、実施例1と同様に、低温サイクル特性の測定を行った。結果を表1に示す。 About the lithium ion secondary battery for evaluation produced in Examples 2-27 and Comparative Examples 1-7, the low temperature cycling characteristic was measured similarly to Example 1. FIG. The results are shown in Table 1.
実施例1〜27はいずれも、添加剤の一方および両方を加えなかった比較例1〜3に対し、低温サイクル特性が改善した。実施例1〜8の結果から、添加剤(A)として3−メチル−2,5−ジオキサ−6−オキソノナン酸エチルまたは3−メチル−2,5−ジオキサ−6−オキソノナン酸メチルを用いることで、低温サイクル特性がより改善することが確認された。さらに、実施例9〜14の結果から、添加剤(A)の添加量を最適化することで、低温サイクル特性がより改善することが確認された。 In each of Examples 1 to 27, the low-temperature cycle characteristics were improved with respect to Comparative Examples 1 to 3 in which one or both of the additives were not added. From the results of Examples 1 to 8, by using ethyl 3-methyl-2,5-dioxa-6-oxononanoate or methyl 3-methyl-2,5-dioxa-6-oxononanoate as additive (A) It was confirmed that the low-temperature cycle characteristics were further improved. Furthermore, from the results of Examples 9 to 14, it was confirmed that the low temperature cycle characteristics were further improved by optimizing the addition amount of the additive (A).
また、添加剤(B)についても同様に、実施例15〜18の結果から、添加量を最適化することで、低温サイクル特性がより改善することが確認された。さらに、実施例19〜23の結果から、添加剤として添加剤としてLiPO2F2を用いると、低温サイクル特性がより改善することが確認された。 Similarly, for the additive (B), it was confirmed from the results of Examples 15 to 18 that the low temperature cycle characteristics were further improved by optimizing the addition amount. Furthermore, from the results of Examples 19 to 23, it was confirmed that when LiPO 2 F 2 was used as an additive, the low-temperature cycle characteristics were further improved.
加えて、実施例24〜27の結果から、正極活物質としてLiPOVO4を用いた場合、低温サイクル特性がより改善することが確認された。 In addition, from the results of Examples 24-27, it was confirmed that the low temperature cycle characteristics were further improved when LiPOVO 4 was used as the positive electrode active material.
本発明により、低温サイクル特性を改善することが可能な非水電解液が提供される。 According to the present invention, a nonaqueous electrolytic solution capable of improving low temperature cycle characteristics is provided.
10…正極、12…正極集電体、14…正極活物質層、18…セパレータ、20…負極、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、60,62…リード、100…リチウムイオン二次電池。
DESCRIPTION OF
Claims (6)
下記化学式(1)で表される添加剤(A)と、
モノフルオロリン酸塩またはジフルオロリン酸塩から選択される添加剤(B)を含むことを特徴とする非水電解液。
An additive (A) represented by the following chemical formula (1);
A nonaqueous electrolytic solution comprising an additive (B) selected from monofluorophosphate and difluorophosphate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017027765A JP6222389B1 (en) | 2017-02-17 | 2017-02-17 | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017027765A JP6222389B1 (en) | 2017-02-17 | 2017-02-17 | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6222389B1 JP6222389B1 (en) | 2017-11-01 |
JP2018133290A true JP2018133290A (en) | 2018-08-23 |
Family
ID=60205940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017027765A Active JP6222389B1 (en) | 2017-02-17 | 2017-02-17 | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6222389B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023248829A1 (en) * | 2022-06-23 | 2023-12-28 | 株式会社村田製作所 | Electrolyte solution for secondary batteries, and secondary battery |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006070546A1 (en) * | 2004-12-27 | 2006-07-06 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and lithium secondary battery using same |
CN101479818B (en) * | 2006-06-30 | 2012-10-17 | 大塚化学株式会社 | Additive for electrolyte solution and electrolyte solution |
JP2011119183A (en) * | 2009-12-07 | 2011-06-16 | Sony Corp | Secondary cell, electrolyte for secondary cell, electric power tool, electric vehicle, and power storage system |
JP2011124123A (en) * | 2009-12-11 | 2011-06-23 | Sony Corp | Secondary battery, electrolyte for secondary battery, power tool, electric vehicle, and power storage system |
-
2017
- 2017-02-17 JP JP2017027765A patent/JP6222389B1/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023248829A1 (en) * | 2022-06-23 | 2023-12-28 | 株式会社村田製作所 | Electrolyte solution for secondary batteries, and secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP6222389B1 (en) | 2017-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6015653B2 (en) | Non-aqueous electrolyte and lithium ion battery | |
JP4423277B2 (en) | Lithium secondary battery | |
US9893350B2 (en) | Lithium secondary battery | |
US10170760B2 (en) | Lithium ion secondary battery | |
JP6812827B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery using it | |
US11335955B2 (en) | Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using same | |
JP6992362B2 (en) | Lithium ion secondary battery | |
KR20230132384A (en) | Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising the same and lithium secondary battery | |
JP2018133284A (en) | Nonaqueous electrolyte and nonaqueous electrolyte battery using the same | |
JP6222389B1 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same | |
JP2019160617A (en) | Lithium ion secondary battery | |
JP7301449B2 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same | |
JP2018133335A (en) | Nonaqueous electrolyte battery | |
WO2015037115A1 (en) | Negative-electrode material for use in lithium-ion secondary batteries | |
JP2018133285A (en) | Nonaqueous electrolyte and nonaqueous electrolyte battery using the same | |
JP2019061828A (en) | Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same | |
US20180241041A1 (en) | Lithium ion secondary battery | |
JP2019061827A (en) | Lithium ion secondary battery | |
JP2019145409A (en) | Lithium ion secondary battery | |
JP2019061835A (en) | Lithium ion secondary battery | |
JP2019175652A (en) | Lithium ion secondary battery | |
JP2019160615A (en) | Lithium ion secondary battery | |
TWI548137B (en) | Lithium ion secondary battery anode material | |
JP2019061825A (en) | Lithium ion secondary battery | |
JP2017178791A (en) | Sulfonium salt, electrolytic solution for lithium secondary battery, and lithium secondary battery therewith |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170918 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6222389 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |