JP2018132222A - Fuel nozzle cooling structure for regenerative burner - Google Patents

Fuel nozzle cooling structure for regenerative burner Download PDF

Info

Publication number
JP2018132222A
JP2018132222A JP2017024772A JP2017024772A JP2018132222A JP 2018132222 A JP2018132222 A JP 2018132222A JP 2017024772 A JP2017024772 A JP 2017024772A JP 2017024772 A JP2017024772 A JP 2017024772A JP 2018132222 A JP2018132222 A JP 2018132222A
Authority
JP
Japan
Prior art keywords
exhaust
fuel nozzle
burner
opening
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017024772A
Other languages
Japanese (ja)
Other versions
JP6483169B2 (en
Inventor
祐作 河本
Yusaku Kawamoto
祐作 河本
北村 和也
Kazuya Kitamura
和也 北村
健介 川端
kensuke Kawabata
健介 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2017024772A priority Critical patent/JP6483169B2/en
Priority to TW106138458A priority patent/TWI755441B/en
Priority to CN201711212217.9A priority patent/CN108426247B/en
Priority to KR1020170183912A priority patent/KR102344215B1/en
Publication of JP2018132222A publication Critical patent/JP2018132222A/en
Application granted granted Critical
Publication of JP6483169B2 publication Critical patent/JP6483169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/78Cooling burner parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • F23C7/06Disposition of air supply not passing through burner for heating the incoming air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Gas Burners (AREA)
  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel nozzle cooling structure for a regenerative burner which is capable of reducing required installation cost and required installation space for cooling a fuel nozzle and also simplifies layout of piping or the like by utilizing an exhaust blower that performs exhaustion in an exhaust operation mode.SOLUTION: The present invention relates to a regenerative burner which alternately repeats an exhaust mode and a combustion mode. The regenerative burner comprises: a hollow cylindrical fuel nozzle which is provided inside of a burner body and injects a fuel that is mixed with combustion air to generate a flame, from its distal end; a cooling tube which is provided while enclosing an outer periphery of the fuel nozzle and includes a communication part for communicating to an exhaust system and an opening that is opened in atmospheric air; and a connection pipe which connects the communication part to the exhaust system. The fuel nozzle is cooled by atmospheric air that is circulated through the opening to the communication part by an exhaustion/suction operation of the exhaust system via the connection pipe.SELECTED DRAWING: Figure 1

Description

本発明は、排気運転モードで排気を行う排気ブロアを利用することで、燃料ノズルの冷却のために必要な設備費用及び必要な設置スペースを軽減することが可能であって、配管等のレイアウトも簡略なリジェネレイティブバーナの燃料ノズル冷却構造に関する。   By using an exhaust blower that performs exhaust in the exhaust operation mode, the present invention can reduce the equipment cost and installation space necessary for cooling the fuel nozzle, and the layout of piping and the like can also be reduced. The present invention relates to a fuel nozzle cooling structure of a simple regenerative burner.

リジェネレイティブバーナを用いた炉(特許文献1参照)は各種知られていて、その際、リジェネレイティブバーナを冷却する構造(特許文献2及び3参照)も知られている。特許文献1の「工業用炉、工業用炉の省エネルギ稼働方法及び工業用炉の改造方法」は、燃焼室と煙突を接続する排気管と、開放されて、排気管内に外気(ATM)を取り込む吸気開閉弁と、ジェネレータとして機能される吸引ブロアに接続され、開放された吸気開閉弁から取り込まれて排気管を流れる外気により回転されて発電する羽根車とを備えて構成されている。特許文献1では、2つで対の蓄熱式バーナは、それらの燃焼運転と排気運転とが交互に切り替えられるようになっている。   Various types of furnaces using regenerative burners (see Patent Document 1) are known, and structures for cooling the regenerative burner (see Patent Documents 2 and 3) are also known. Patent Document 1 “Industrial Furnace, Energy Saving Operation Method of Industrial Furnace, and Remodeling Method of Industrial Furnace” discloses that an exhaust pipe connecting a combustion chamber and a chimney is opened, and outside air (ATM) is placed in the exhaust pipe. An intake opening / closing valve to be taken in and an impeller connected to a suction blower functioning as a generator, which is taken in from the opened intake opening / closing valve and rotated by outside air flowing through the exhaust pipe to generate electric power. In Patent Document 1, two pairs of regenerative burners are configured such that their combustion operation and exhaust operation are switched alternately.

特許文献2の「高温空気用低NOxバーナ」は、燃料を噴射する燃料ノズルの先端部にバッフルを外嵌状に取り付けると共に、このバッフルの外周にスリット状の二次空気供給孔を形成した構成であって、燃料ノズルは、内周部を燃料通路とし、外周部を冷却空気通路とした二重管に構成され、バッフルは、中心に燃料と冷却空気の噴出孔を設けると共に、この噴出孔の外周側には、入口から出口に向けて同一のピッチ円直径の面内において、30〜50°の角度を付けた複数の一次空気供給孔を設け、かつ、これら噴出孔と一次空気供給孔の出口に燃料、冷却空気、一次空気の噴出口部を形成して構成されている。特許文献2のバーナでは、燃料ノズルの冷却に用いる空気を炉内に放出するようにしている。   The “low NOx burner for high-temperature air” disclosed in Patent Document 2 has a configuration in which a baffle is externally attached to the tip of a fuel nozzle that injects fuel and a slit-like secondary air supply hole is formed on the outer periphery of the baffle. The fuel nozzle is configured as a double pipe having an inner peripheral portion as a fuel passage and an outer peripheral portion as a cooling air passage, and the baffle is provided with an injection hole for fuel and cooling air at the center. Are provided with a plurality of primary air supply holes with an angle of 30 to 50 ° in a plane having the same pitch circle diameter from the inlet toward the outlet, and these ejection holes and primary air supply holes. An outlet of fuel, cooling air, and primary air is formed at the outlet of the nozzle. In the burner of Patent Document 2, air used for cooling the fuel nozzle is discharged into the furnace.

特許文献3の「蓄熱式バーナ燃料ノズル管の冷却装置」は、導入空気を炉内に放出せず、冷却空気管の冷却のみに用い、しかも前進、行進の往復で冷却して、冷却空気管の過熱を有効に防ぐことを課題とし、燃料ノズル管の外周に内管と外管からなる二重管を配設し、外管と燃料ノズル管の先端開口部を蓋体で閉止すると共に、外管と内管の間の外側通路と、内管と燃料ノズル管の間の内側通路とを蓋体を介し連通して構成した冷却空気管を設けるようにしている。特許文献3では、冷却に用いる導入空気を炉内に放出しないようにしていて、導入空気を空気冷却管に送り込むためには、ブロアを設備する必要がある。   Patent Document 3 “Cooling Device for Regenerative Burner Fuel Nozzle Pipe” uses a cooling air pipe that does not release the introduced air into the furnace but only cools the cooling air pipe, and cools it by reciprocating forward and marching. In order to effectively prevent overheating of the fuel nozzle pipe, a double pipe consisting of an inner pipe and an outer pipe is disposed on the outer periphery of the fuel nozzle pipe, and the end opening of the outer pipe and the fuel nozzle pipe is closed with a lid, A cooling air pipe is provided in which an outer passage between the outer pipe and the inner pipe and an inner passage between the inner pipe and the fuel nozzle pipe are communicated with each other via a lid. In Patent Document 3, the introduction air used for cooling is not discharged into the furnace, and in order to send the introduction air into the air cooling pipe, it is necessary to provide a blower.

特開2016−133255号公報JP-A-2006-133255 特開平10−185128号公報Japanese Patent Laid-Open No. 10-185128 特開2001−182915号公報JP 2001-182915 A

リジェネレイティブバーナで加熱される炉内雰囲気は、変動せずに均質であることが好ましく、この点で、リジェネレイティブバーナに備える燃料ノズルの冷却構造としては、導入空気を炉内に放出することのない特許文献3の二重管構造を用いることが好ましい。   The atmosphere in the furnace heated by the regenerative burner is preferably uniform without fluctuation. In this respect, the cooling structure of the fuel nozzle provided in the regenerative burner releases the introduced air into the furnace. It is preferable to use the double tube structure of Patent Document 3 that does not occur.

しかしながら、特許文献3は、いかにして導入空気を空気冷却管に供給するかについては、何ら開示していない。通常一般的には、ブロアを新設もしくは増設して、当該ブロアから空気供給管へ導入空気を供給することが考えられる。ブロアを新設等すると、配管を含めて、そのための設備費用が発生すると同時に、設置スペースも確保する必要があるという課題があった。   However, Patent Document 3 does not disclose how to supply the introduction air to the air cooling pipe. In general, it can be considered that a blower is newly installed or added and the introduction air is supplied from the blower to the air supply pipe. When a blower is newly installed, there is a problem that it is necessary to secure an installation space at the same time as equipment costs for the piping and the like are generated.

本発明は上記従来の課題に鑑みて創案されたものであって、排気運転モードで排気を行う排気ブロアを利用することで、燃料ノズルの冷却のために必要な設備費用及び必要な設置スペースを軽減することが可能であって、配管等のレイアウトも簡略なリジェネレイティブバーナの燃料ノズル冷却構造を提供することを目的とする。   The present invention was devised in view of the above-described conventional problems, and by using an exhaust blower that performs exhaust in the exhaust operation mode, it is possible to reduce the facility cost and the necessary installation space necessary for cooling the fuel nozzle. An object of the present invention is to provide a fuel nozzle cooling structure for a regenerative burner that can be reduced and the layout of piping and the like is simple.

本発明にかかるリジェネレイティブバーナの燃料ノズル冷却構造は、排気ブロアを有する排気系の排気吸引作用でバーナ本体の火口から吸引される炉内排気を蓄熱部に流通させて排熱を蓄熱させる排気モードと、該蓄熱部に流通されて加熱される燃焼空気で生成される火炎が該バーナ本体の火口から炉内へ噴出される燃焼モードとを交互に繰り返すリジェネレイティブバーナであって、上記バーナ本体内部に設けられ、燃焼空気と混合されて火炎を生成する燃料をその先端部から噴射する中空筒体状の燃料ノズルと、上記燃料ノズルの外周囲を包囲して設けられ、上記排気系に連通させるための連通部及び大気開放される開口部を有する冷却用チューブと、上記連通部を上記排気系に接続する接続管とを備え、該接属管を介する上記排気系の排気吸引作用で、上記開口部を通じて上記連通部に向かって流通する大気により上記燃料ノズルを冷却するようにしたことを特徴とする。   The fuel nozzle cooling structure of the regenerative burner according to the present invention is an exhaust that stores exhaust heat by circulating the furnace exhaust sucked from the crater of the burner body through the exhaust suction action of the exhaust system having the exhaust blower to the heat storage section. A regenerative burner that alternately repeats a mode and a combustion mode in which a flame generated by combustion air that is circulated and heated in the heat storage section is ejected from the crater of the burner body into the furnace, A hollow cylindrical fuel nozzle that is provided inside the main body and injects fuel that is mixed with combustion air to generate a flame from its tip, and is provided so as to surround the outer periphery of the fuel nozzle. A cooling tube having a communication portion for communicating with the air and an opening that is open to the atmosphere; and a connecting pipe for connecting the communication portion to the exhaust system. In air suction, characterized in that so as to cool the fuel nozzle by the air flowing toward the communicating portion through the opening.

また、本発明にかかるリジェネレイティブバーナの燃料ノズル冷却構造は、排気ブロアを有する排気系を開閉する排気弁が開かれかつ給気ブロアを有する給気系を開閉する給気弁が閉じられて、該排気系の排気吸引作用でバーナ本体の火口から吸引される炉内排気を、蓄熱部に流通させて排熱を蓄熱させ、該排気弁を介して該排気系へ排出する排気モードと、該排気弁が閉じられかつ該給気弁が開かれて、該給気系の給気作用で該バーナ本体へ給気される燃焼空気を、該蓄熱部に流通させて加熱し、加熱された燃焼空気で生成される火炎が該バーナ本体の火口から炉内へ噴出される燃焼モードとを交互に繰り返すリジェネレイティブバーナであって、上記バーナ本体内部に設けられ、燃焼空気と混合されて火炎を生成する燃料をその先端部から噴射する中空筒体状の燃料ノズルと、上記燃料ノズルの外周囲を包囲して設けられ、上記排気系に連通させるための連通部及び大気開放される開口部を有する冷却用チューブと、上記蓄熱部と上記排気弁との中間位置で、上記連通部を上記排気系に接続する接続管とを備え、排気モード時には、上記接続管を介する上記排気系の排気吸引作用で、上記開口部を通じて上記連通部に向かって流通する大気により上記燃料ノズルを冷却し、燃焼モード時には、上記給気系の給気作用で、該蓄熱部を迂回して、該接続管を介し該連通部を通じて該開口部に向かって流通する燃焼空気により該冷却ノズルを冷却するようにしたことを特徴とする。   In the fuel nozzle cooling structure for a regenerative burner according to the present invention, an exhaust valve for opening and closing an exhaust system having an exhaust blower is opened and an air supply valve for opening and closing an air supply system having an air supply blower is closed. And an exhaust mode in which the exhaust in the furnace sucked from the crater of the burner body by the exhaust suction action of the exhaust system is circulated through the heat storage unit to store the exhaust heat, and is discharged to the exhaust system through the exhaust valve; The exhaust valve is closed and the air supply valve is opened, and the combustion air supplied to the burner main body by the air supply action of the air supply system is circulated through the heat storage section and heated. A regenerative burner in which a flame generated by combustion air alternately repeats a combustion mode ejected from a crater of the burner body into the furnace, and is provided inside the burner body and mixed with the combustion air to form a flame That produces fuel at its tip A hollow cylindrical fuel nozzle to be injected, a cooling tube provided surrounding the outer periphery of the fuel nozzle, having a communication part for communicating with the exhaust system and an opening part opened to the atmosphere, and the heat storage And a connecting pipe that connects the communicating part to the exhaust system at an intermediate position between the exhaust valve and the exhaust valve, and in the exhaust mode, the exhaust system performs exhaust suction action of the exhaust system through the connecting pipe through the opening. The fuel nozzle is cooled by the air flowing toward the communication portion, and in the combustion mode, the opening portion passes through the communication portion via the connection pipe, bypassing the heat storage portion by the air supply action of the air supply system. The cooling nozzle is cooled by the combustion air flowing toward the front.

前記冷却用チューブの前記連通部及び前記開口部は、前記燃料ノズル先端部と反対側の基端部側に形成され、上記冷却用チューブには、上記燃料ノズルの外回りを取り囲んで、その長さ方向に先端部側から基端部側に亘って形成され、上記連通部に連通される第1流路と、該第1流路の外回りを取り囲んで、上記燃料ノズルの長さ方向に先端部側から基端部側へ亘って形成され、上記開口部に連通される第2流路と、上記燃料ノズルの先端部側で上記第1流路と上記第2流路とを連通させる接続流路とを備えることを特徴とする。   The communication portion and the opening of the cooling tube are formed on the base end side opposite to the fuel nozzle tip, and the cooling tube surrounds the outer periphery of the fuel nozzle and has a length thereof. A first flow path formed from the front end side to the base end side in the direction and communicating with the communication section; and surrounding the outer periphery of the first flow path, the front end section in the length direction of the fuel nozzle The second flow path formed from the side to the base end side and communicated with the opening, and the connection flow for communicating the first flow path and the second flow path on the distal end side of the fuel nozzle And a road.

一方が燃焼モードのときに他方が排気モードで運転される一対の前記リジェネレイティブバーナを備え、これらリジェネレイティブバーナの前記排気系は互いに合流部で合流され、該合流部の下流に単一の前記排気ブロアが備えられることを特徴とする。   A pair of the regenerative burners operated when one is in the combustion mode and the other is operated in the exhaust mode, and the exhaust systems of these regenerative burners are joined together at a junction, and a single unit is provided downstream of the junction. The exhaust blower is provided.

本発明にかかるリジェネレイティブバーナの燃料ノズル冷却構造にあっては、排気運転モードで排気を行う排気ブロアを利用することで、燃料ノズルの冷却のために必要な設備費用及び必要な設置スペースを軽減することができ、配管等のレイアウトも簡略化することができる。   In the fuel nozzle cooling structure of the regenerative burner according to the present invention, by using the exhaust blower that performs exhaust in the exhaust operation mode, the equipment cost and the necessary installation space required for cooling the fuel nozzle are reduced. This can be reduced, and the layout of piping and the like can be simplified.

本発明に係るリジェネレイティブバーナの燃料ノズル冷却構造の第1実施形態を示す構成図である。It is a block diagram which shows 1st Embodiment of the fuel nozzle cooling structure of the regenerative burner which concerns on this invention. 本発明に係るリジェネレイティブバーナの燃料ノズル冷却構造の第2実施形態を示す構成図である。It is a block diagram which shows 2nd Embodiment of the fuel nozzle cooling structure of the regenerative burner which concerns on this invention.

以下に、本発明にかかるリジェネレイティブバーナの燃料ノズル冷却構造の好適な実施形態を、添付図面を参照して詳細に説明する。図1は、第1実施形態に係るリジェネレイティブバーナの燃料ノズル冷却構造を示す構成図である。   Hereinafter, a preferred embodiment of a fuel nozzle cooling structure for a regenerative burner according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a configuration diagram showing a fuel nozzle cooling structure of a regenerative burner according to the first embodiment.

図1に示すようにリジェネレイティブバーナ1L,1Rは従来周知のように、炉5内に向かう一端に火口2L,2Rを有するバーナ本体3L,3Rと、バーナ本体3L,3Rの他端3aに、当該バーナ本体3L,3Rに隣接させて直結して設けられた蓄熱部4L,4Rとを備えていて、バーナ本体3L,3Rの火口2L,2Rから炉5内に向けて火炎Fを噴出して炉5内を加熱する(例えば、1,000℃程度)燃焼モードと、火口2L,2Rから炉5内の排気Eを吸引して排出する排気モードとが対面する一対で、交互に繰り返し切り換えられて運転されるようになっている。   As shown in FIG. 1, the regenerative burners 1L and 1R are connected to the burner main bodies 3L and 3R having craters 2L and 2R at one end toward the furnace 5, and the other end 3a of the burner main bodies 3L and 3R, as is conventionally known. And a heat storage section 4L, 4R provided directly adjacent to the burner bodies 3L, 3R, and a flame F is ejected from the craters 2L, 2R of the burner bodies 3L, 3R into the furnace 5 The combustion mode in which the inside of the furnace 5 is heated (for example, about 1,000 ° C.) and the exhaust mode in which the exhaust E in the furnace 5 is sucked and discharged from the craters 2L and 2R face each other, and are alternately and repeatedly switched. It is designed to be driven.

リジェネレイティブバーナ1L,1Rでは、排気モード時に、排気ブロア14を有する排気系16の排気吸引作用によって炉5内から排気Eが吸引され、吸引された排気Eは蓄熱部4L,4Rに流通され、これにより当該排気Eの排熱が蓄熱部4L,4Rに蓄熱され、蓄熱部4L,4Rを通過した排気Eは降温されて(例えば、200℃程度)排気系16へ排出されることとなり、その後、排気モードから燃焼モードに運転が切り換えられると、給気ブロア11を有する給気系13の給気作用で燃焼空気が蓄熱部4L,4Rに流通されて、当該蓄熱部4L,4Rに蓄熱された排気Eの排熱で燃焼空気が予熱(加熱)される。   In the regenerative burner 1L, 1R, in the exhaust mode, the exhaust E is sucked from the furnace 5 by the exhaust suction action of the exhaust system 16 having the exhaust blower 14, and the sucked exhaust E is circulated to the heat storage units 4L, 4R. Thus, the exhaust heat of the exhaust E is stored in the heat storage units 4L and 4R, and the exhaust E passing through the heat storage units 4L and 4R is cooled (for example, about 200 ° C.) and discharged to the exhaust system 16. Thereafter, when the operation is switched from the exhaust mode to the combustion mode, the combustion air is circulated to the heat storage units 4L and 4R by the air supply action of the air supply system 13 having the air supply blower 11, and the heat storage units 4L and 4R store heat. The combustion air is preheated (heated) by the exhaust heat of the exhaust E.

そして、予熱された燃焼空気が、バーナ本体3L,3Rへ給気され、当該バーナ本体3L,3Rの内部に設けられた燃料ノズル6L,6Rを通じて供給される燃料ガスと混合されて燃焼されることにより、バーナ本体3L,3Rは、排熱を利用した省エネルギ運転で、火炎Fを生成する。   Then, the preheated combustion air is supplied to the burner main bodies 3L and 3R, mixed with the fuel gas supplied through the fuel nozzles 6L and 6R provided in the burner main bodies 3L and 3R, and burned. Thus, the burner main bodies 3L and 3R generate the flame F by energy saving operation using exhaust heat.

リジェネレイティブバーナ1L,1Rを採用する場合、燃焼モードと排気モードのモード切り換えに伴って炉内温度が変動しないように、当該バーナ1L,1Rは、一対一組で用いられる。   When the regenerative burners 1L and 1R are employed, the burners 1L and 1R are used in a pair so that the furnace temperature does not fluctuate with the mode switching between the combustion mode and the exhaust mode.

いずれか一方のリジェネレイティブバーナ1L(1R)が燃焼モードのときには、他方のリジェネレイティブバーナ1R(1L)は排気モードで運転され、前者が排気モードに切り換えられたときには、後者が燃焼モードに切り換えられるように、燃焼モードと排気モードとが一対のリジェネレイティブバーナ1L,1R相互間で交互になるように運転制御される。   When one of the regenerative burners 1L (1R) is in the combustion mode, the other regenerative burner 1R (1L) is operated in the exhaust mode, and when the former is switched to the exhaust mode, the latter is in the combustion mode. Operation is controlled so that the combustion mode and the exhaust mode are alternated between the pair of regenerative burners 1L and 1R so as to be switched.

図示例では、炉5を構成する断面四角形状の炉壁のうち、互いに向かい合う左右の炉側壁それぞれに、一対でバーナ本体3L,3Rが設けられている。一対のバーナ本体は、同じ壁面に隣接して設けるようにしてもよい。   In the illustrated example, a pair of burner bodies 3L and 3R are provided on each of the left and right furnace side walls facing each other among the square-shaped furnace walls constituting the furnace 5. The pair of burner bodies may be provided adjacent to the same wall surface.

本実施形態に係るリジェネレイティブバーナの燃料ノズル冷却構造では、図1に示すように、左右一対の各リジェネレイティブバーナ1L,1Rは、炉5内に向けて開放された火口2L,2Rを一端に有する、通路形態のバーナ本体3L,3Rと、バーナ本体3L,3Rの他端3aにその一端4aが接続された蓄熱部4L,4Rと、バーナ本体3L,3Rの他端3a側を貫通して当該バーナ本体3L,3R内部に外部から挿入して設けられ、先端部開口6aが火口2L,2Rに臨ませられて、燃焼空気と混合されて火炎Fを生成する燃料ガスなどの燃料を先端部開口6aから火口2L,2Rに向けて噴射する中空筒体状の燃料ノズル6L,6Rと、燃料ノズル6L,6Rの外周囲を包囲して設けられ、バーナ本体3L,3Rの他端3a側を貫通して当該バーナ本体3L,3R内部に、その外部から燃料ノズル6L,6Rの先端部開口6aもしくはその近傍まで延出される冷却用チューブ8L,8Rと、燃料の供給・停止を制御する燃料用開閉弁9L,9R(図中、白抜き表示は開;黒ベタ表示は閉)を有し、各燃料ノズル6L,6Rに、その長さ方向一端側の先端部開口6aとは反対側の燃料ノズル6L,6Rの基端6b側で接続されて、燃料を燃料ノズル6L,6Rの先端部開口6aへ向けて供給する燃料供給系10と、燃焼空気をバーナ本体3L,3Rへ供給するための給気ブロア11及び燃焼空気の供給・停止を制御する開閉自在な給気弁12L,12R(図中、白抜き表示は開;黒ベタ表示は閉)を有し、各蓄熱部4L,4Rの他端4bに接続されて燃焼空気を蓄熱部4L,4Rへ給気する給気系13と、炉5内の排気Eを火口2L,2Rから吸引して炉5外へ排出するための排気ブロア14及び排気Eの排出・停止を制御する開閉自在な排気弁15L,15R(図中、白抜き表示は開;黒ベタ表示は閉)を有し、各蓄熱部4L,4Rの他端4bに接続されて蓄熱部4L,4Rから流出される排気Eが流通される排気系16とを備えて構成される。   In the fuel nozzle cooling structure of the regenerative burner according to the present embodiment, as shown in FIG. 1, the pair of left and right regenerative burners 1L, 1R has craters 2L, 2R opened toward the inside of the furnace 5. Passing through the burner main bodies 3L, 3R in the form of passages at one end, the heat storage parts 4L, 4R having one end 4a connected to the other end 3a of the burner main bodies 3L, 3R, and the other end 3a side of the burner main bodies 3L, 3R Then, the burner main body 3L, 3R is inserted from the outside, the tip opening 6a faces the craters 2L, 2R, and a fuel such as a fuel gas that is mixed with the combustion air to generate the flame F is supplied. Hollow cylindrical fuel nozzles 6L, 6R that are injected from the tip opening 6a toward the craters 2L, 2R, and the outer periphery of the fuel nozzles 6L, 6R are provided so as to surround the other ends 3a of the burner bodies 3L, 3R. Penetrate the side Then, inside the burner main bodies 3L, 3R, cooling tubes 8L, 8R extending from the outside to the front end openings 6a of the fuel nozzles 6L, 6R or in the vicinity thereof, and fuel opening / closing for controlling the supply / stop of the fuel Each of the fuel nozzles 6L and 6R has a fuel nozzle on the side opposite to the tip end opening 6a on the one end side in the length direction. A fuel supply system 10 connected to the base end 6b side of 6L and 6R to supply fuel toward the front end opening 6a of the fuel nozzles 6L and 6R, and a supply for supplying combustion air to the burner bodies 3L and 3R The air blower 11 and the air supply valves 12L and 12R that can be opened and closed to control the supply / stop of combustion air (in the figure, the white display is open; the black solid display is closed), and each of the heat storage units 4L and 4R 4L connected to the end 4b to store the combustion air An air supply system 13 for supplying air to 4R, an exhaust blower 14 for sucking the exhaust E in the furnace 5 from the craters 2L and 2R and discharging it to the outside of the furnace 5, and an open / close control for controlling the discharge / stop of the exhaust E Exhaust valves 15L and 15R (in the figure, the white display is open; the black solid display is closed) are connected to the other ends 4b of the heat storage units 4L and 4R, and exhaust E flows out of the heat storage units 4L and 4R. And an exhaust system 16 through which the gas flows.

給気系13は詳細には、一対のリジェネレイティブバーナ1L,1Rの蓄熱部4L,4Rにそれぞれ直結されて、各蓄熱部4L,4Rへ供給される燃焼空気がそれぞれ流通される一対の燃焼空気供給管13aと、これら燃焼空気供給管13aを合流させる燃焼空気合流部13bと、燃焼空気合流部13bを介して各燃焼空気供給管13aに接続される燃焼空気供給本管13cとから構成され、給気ブロア11は、一対のリジェネレイティブバーナ1L,1R双方に燃焼空気を供給するために燃焼空気供給本管13cに設けられ、給気弁12L,12Rは、一対のリジェネレイティブバーナ1L,1Rの運転モードを個別に切り換えるために、燃焼空気供給管13aに設けられる。   Specifically, the air supply system 13 is directly connected to the heat storage units 4L and 4R of the pair of regenerative burners 1L and 1R, respectively, and a pair of combustions through which the combustion air supplied to the heat storage units 4L and 4R is circulated. It comprises an air supply pipe 13a, a combustion air merging section 13b that joins these combustion air supply pipes 13a, and a combustion air supply main pipe 13c that is connected to each combustion air supply pipe 13a via the combustion air merging section 13b. The air supply blower 11 is provided in the combustion air supply main pipe 13c to supply combustion air to both the pair of regenerative burners 1L and 1R, and the air supply valves 12L and 12R include the pair of regenerative burners 1L. , 1R are provided in the combustion air supply pipe 13a in order to individually switch the operation mode.

そして、燃焼モードのリジェネレイティブバーナ1R(1L)では、排気弁15R(15L)が閉じられ、かつ給気弁12R(12L)が開かれて、給気系13の給気作用で送り込まれる燃焼空気は、給気弁12R(12L)を介して蓄熱部4R(4L)へ流通され、蓄熱部4R(4L)からさらに、バーナ本体3R(3L)の火口2R(2L)へ向けて供給されるようになっている。   In the regenerative burner 1R (1L) in the combustion mode, the exhaust valve 15R (15L) is closed and the air supply valve 12R (12L) is opened, and combustion is sent by the air supply action of the air supply system 13 The air is circulated to the heat storage unit 4R (4L) via the air supply valve 12R (12L), and is further supplied from the heat storage unit 4R (4L) toward the crater 2R (2L) of the burner body 3R (3L). It is like that.

排気系16は詳細には、一対のリジェネレイティブバーナ1L,1Rの蓄熱部4L,4Rにそれぞれ直結されて、各蓄熱部4L,4Rから排出される排気Eがそれぞれ流通される一対の排気管16aと、これら排気管16aが互いに合流される排気合流部16bと、排気合流部16bを介して各排気管16aに接続される排気本管16cとから構成され、排気ブロア14は、一対のリジェネレイティブバーナ1L,1R双方から排気Eを排出するために排気本管16cに設けられ、排気弁15L,15Rは、一対のリジェネレイティブバーナ1L,1Rの運転モードを個別に切り換えるために、排気管16aに設けられる。   Specifically, the exhaust system 16 is directly connected to the heat storage units 4L and 4R of the pair of regenerative burners 1L and 1R, and a pair of exhaust pipes through which the exhaust E discharged from the heat storage units 4L and 4R is circulated. 16a, an exhaust merging portion 16b where these exhaust pipes 16a merge with each other, and an exhaust main pipe 16c connected to each exhaust pipe 16a via the exhaust merging portion 16b. The exhaust blower 14 includes a pair of regenerative generators. The exhaust main pipe 16c is provided to exhaust the exhaust E from both the lative burners 1L and 1R, and the exhaust valves 15L and 15R are exhausted to individually switch the operation modes of the pair of regenerative burners 1L and 1R. It is provided in the tube 16a.

そして、排気モードのリジェネレイティブバーナ1L(1R)では、排気弁15L(15R)が開かれ、かつ給気弁12L(12R)が閉じられて、排気系16の排気吸引作用で吸引される排気Eは、バーナ本体3L(3R)の火口2L(2R)から蓄熱部4L(4R)へ流通され、蓄熱部4L(4R)からさらに、排気弁15L(15R)を介して排気系16へ排出されるようになっている。   Then, in the regenerative burner 1L (1R) in the exhaust mode, the exhaust valve 15L (15R) is opened and the air supply valve 12L (12R) is closed, and the exhaust sucked by the exhaust suction action of the exhaust system 16 E is circulated from the crater 2L (2R) of the burner body 3L (3R) to the heat storage unit 4L (4R), and is further discharged from the heat storage unit 4L (4R) to the exhaust system 16 via the exhaust valve 15L (15R). It has become so.

燃料用開閉弁9L,9Rは、リジェネレイティブバーナ1L,1Rが燃焼モードのとき、燃料を燃料ノズル6L,6Rに供給するために開かれ、排気モードのとき、燃料の供給を停止するために閉じられる。   The fuel on-off valves 9L and 9R are opened to supply fuel to the fuel nozzles 6L and 6R when the regenerative burners 1L and 1R are in the combustion mode, and to stop supplying fuel when in the exhaust mode. Closed.

給気弁12L,12Rは、リジェネレイティブバーナ1L,1Rが燃焼モードのとき、燃焼空気を、蓄熱部4L,4Rを介してバーナ本体3L,3Rの火口2L,2Rに供給するために開かれ、排気モードのとき、燃焼空気の供給を停止するために閉じられる。   The supply valves 12L and 12R are opened to supply combustion air to the craters 2L and 2R of the burner main bodies 3L and 3R via the heat storage units 4L and 4R when the regenerative burners 1L and 1R are in the combustion mode. In the exhaust mode, it is closed to stop the supply of combustion air.

排気弁15L,15Rは、リジェネレイティブバーナ1L,1Rが排気モードのとき、炉5内の排気Eを、蓄熱部4L,4Rを介してバーナ本体3L,3Rの火口2L,2Rから吸引するために開かれ、燃焼モードのとき、排気Eの吸引を停止するために閉じられる。給気ブロア11及び排気ブロア14は、炉5の操業中は通常、常時運転される。   The exhaust valves 15L and 15R suck the exhaust E in the furnace 5 from the craters 2L and 2R of the burner main bodies 3L and 3R through the heat storage portions 4L and 4R when the regenerative burners 1L and 1R are in the exhaust mode. And closed in order to stop the suction of the exhaust E when in the combustion mode. The air supply blower 11 and the exhaust blower 14 are normally operated during the operation of the furnace 5.

本実施形態では、上述したリジェネレイティブバーナ1L,1Rの基本構成に対し、高温の火口2L,2Rに臨ませて配置され、また、高温の排気Eがその周辺に流通する燃料ノズル6L,6Rを冷却するための冷却構造が各リジェネレイティブバーナ1L,1Rそれぞれに備えられる。燃料ノズル6L,6Rの冷却構造は主として、上記冷却用チューブ8L,8Rと、冷却用チューブ8L,8Rを排気系16に接続する接続管17L,17Rとから構成される。   In the present embodiment, the fuel nozzles 6L, 6R are arranged so as to face the hot craters 2L, 2R with respect to the basic configuration of the regenerative burners 1L, 1R described above, and the high temperature exhaust E circulates in the vicinity thereof. Each regenerative burner 1L, 1R is provided with a cooling structure for cooling. The cooling structure of the fuel nozzles 6L and 6R is mainly composed of the cooling tubes 8L and 8R and connecting tubes 17L and 17R that connect the cooling tubes 8L and 8R to the exhaust system 16.

冷却用チューブ8L,8Rは、燃料ノズル6L,6Rの外回りを取り囲んで、その長さ方向に先端部開口6a側から基端部6b側に亘ってパイプ状に形成され、バーナ本体3L,3R外方の燃料ノズル6L,6Rの基端部6b側で、当該燃料ノズル6L,6Rの外周面に接合される環状の封鎖端板19aでその基端部が封鎖され、火口2L,2Rに近接する先端部側が開放された内管19と、内管19の外回りを取り囲んで、燃料ノズル6L,6Rの長さ方向に先端部開口6a側から基端部6b側に亘ってパイプ状に形成され、バーナ本体3L,3R外方の燃料ノズル6L,6Rの基端部6b側で、内管19の外周面に接合される環状の第1封止端板20aでその基端部が封止されると共に、内管19よりも火口2L,2R側に延出されている燃料ノズル6L,6Rの先端部開口6a位置で、内管19の先端部側を火口2L,2R側から覆いつつ、燃料ノズル6L,6Rの外周面に接合される環状の第2封止端板20bで先端部側が封止された外管20と、バーナ本体3L,3R外方の燃料ノズル6L,6Rの基端部6b側で、外管20に、大気開放して形成された開口部21、並びに内管19に、排気系16に連通させるために形成された連通部22とから構成される。   The cooling tubes 8L and 8R surround the outer periphery of the fuel nozzles 6L and 6R, and are formed in a pipe shape in the length direction from the tip end opening 6a side to the base end portion 6b side, and are outside the burner main bodies 3L and 3R. On the side of the base end portion 6b of the fuel nozzle 6L, 6R, the base end portion is sealed by an annular closed end plate 19a joined to the outer peripheral surface of the fuel nozzle 6L, 6R, and close to the craters 2L, 2R The inner tube 19 with the distal end side open, and the outer circumference of the inner tube 19 are formed in a pipe shape from the distal end opening 6a side to the proximal end portion 6b side in the length direction of the fuel nozzles 6L and 6R. At the base end 6b side of the fuel nozzles 6L, 6R outside the burner bodies 3L, 3R, the base end is sealed by an annular first sealing end plate 20a joined to the outer peripheral surface of the inner tube 19. In addition, it is extended to the crater 2L, 2R side from the inner pipe 19 An annular second sealed end plate that is joined to the outer peripheral surface of the fuel nozzles 6L and 6R while covering the tip end side of the inner tube 19 from the crater 2L and 2R side at the position of the tip opening 6a of the fuel nozzles 6L and 6R. The outer tube 20 whose front end side is sealed with 20b, and the opening 21 formed in the outer tube 20 on the base end portion 6b side of the fuel nozzles 6L and 6R outside the burner main bodies 3L and 3R and opened to the atmosphere. , And a communication portion 22 formed to communicate with the exhaust system 16 in the inner pipe 19.

そして、これら内管19及び外管20により、冷却用チューブ8L,8Rには、燃料ノズル6L,6Rの外回りを取り囲んで、その長さ方向に先端開口部6a側から基端部6b側に亘って形成され、連通部22に連通される第1流路23と、第1流路23の外回りを取り囲んで、燃料ノズル6L,6Rの長さ方向に先端部開口6a側から基端部6b側へ亘って形成され、開口部21に連通される第2流路24と、燃料ノズル6L,6Rの先端部開口6a側で、流路が折り返すように、第1流路23と第2流路24とを連通させる接続流路25とが備えられる。   The inner tube 19 and the outer tube 20 allow the cooling tubes 8L and 8R to surround the outer periphery of the fuel nozzles 6L and 6R, and extend in the length direction from the distal end opening 6a side to the proximal end portion 6b side. The first flow path 23 that is formed in communication with the communication portion 22 and surrounds the outer periphery of the first flow path 23 and extends in the length direction of the fuel nozzles 6L and 6R from the front end opening 6a side to the base end portion 6b side The first flow path 23 and the second flow path are formed so that the flow path is folded back on the side of the second flow path 24 that is formed over the front end and communicates with the opening 21 and the front end opening 6a of the fuel nozzles 6L and 6R. 24 is provided with a connection flow path 25 that communicates with 24.

すなわち、排気吸引作用を奏する排気系16は、燃料ノズル6L,6Rの外回りを経由して、大気開放される。そして、冷却用チューブ8L,8Rの連通部22は、接続管17L,17Rを介して排気系16に、本実施形態では各蓄熱部4L,4Rからの排気管16aが合流される排気合流部16bの下流側で、排気ブロア14が単一で備えられる排気本管16cに接続される。各リジェネレイティブバーナ1L,1Rの接続管17L,17Rの排気系16に対する接続位置は、排気弁15L,15Rと排気ブロア14との中間位置であれば、どのような位置に接続してもよい。   That is, the exhaust system 16 having an exhaust suction action is opened to the atmosphere via the outer periphery of the fuel nozzles 6L and 6R. And the communicating part 22 of the tubes 8L and 8R for cooling is connected to the exhaust system 16 via the connecting pipes 17L and 17R, and in this embodiment, the exhaust joining part 16b where the exhaust pipes 16a from the heat storage parts 4L and 4R are joined. , The exhaust blower 14 is connected to an exhaust main pipe 16c provided as a single unit. As long as the connection positions of the connection pipes 17L and 17R of the regenerative burners 1L and 1R to the exhaust system 16 are intermediate positions between the exhaust valves 15L and 15R and the exhaust blower 14, they may be connected to any position. .

次に、第1実施形態にかかるリジェネレイティブバーナの燃料ノズル冷却構造の作用について説明する。炉5の稼働中では例えば図1に示すように、いずれか一方(右側)のリジェネレイティブバーナ1Rでは、燃料用開閉弁9R及び給気弁12Rが開かれ、かつ排気弁15Rが閉じられて、燃焼モードであり、他方(左側)のリジェネレイティブバーナ1Lでは、燃料用開閉弁9L及び給気弁12Lが閉じられ、かつ排気弁15Lが開かれて、排気モードで運転される。リジェネレイティブバーナ1L,1R自体の運転は、上述したように周知である。   Next, the operation of the fuel nozzle cooling structure of the regenerative burner according to the first embodiment will be described. During operation of the furnace 5, for example, as shown in FIG. 1, in either one (right side) regenerative burner 1R, the fuel on-off valve 9R and the air supply valve 12R are opened, and the exhaust valve 15R is closed. In the other (left side) regenerative burner 1L, the fuel on-off valve 9L and the supply valve 12L are closed, and the exhaust valve 15L is opened to operate in the exhaust mode. The operation of the regenerative burner 1L, 1R itself is well known as described above.

排気ブロア14による排気吸引作用により、排気モードのリジェネレイティブバーナ1Lの蓄熱部4Lを流通し、蓄熱部4Lに蓄熱して降温された排気Eは、開かれている排気弁15Lを介して排気ブロア14に達し、排出される。   Due to the exhaust suction action of the exhaust blower 14, the exhaust E that flows through the heat storage section 4L of the regenerative burner 1L in the exhaust mode and stores the heat in the heat storage section 4L and cools down is exhausted through the open exhaust valve 15L. It reaches the blower 14 and is discharged.

この排気ブロア14の排気吸引作用は、排気本管16cから両接続管17L,17Rを介して、各冷却用チューブ8L,8Rの連通部22に作用する。連通部22は、第1流路23、接続流路25、並びに第2流路24を介して、大気開放されている開口部21と連通されているので、排気ブロア14の排気吸引作用によって大気が、開口部21を通じ連通部22に向かって、両方の冷却用チューブ8L,8R内に流通される。   The exhaust suction action of the exhaust blower 14 acts on the communication portion 22 of each of the cooling tubes 8L and 8R from the exhaust main pipe 16c through the both connection pipes 17L and 17R. The communication portion 22 communicates with the opening 21 that is open to the atmosphere via the first flow path 23, the connection flow path 25, and the second flow path 24. However, it is circulated in both the cooling tubes 8L and 8R toward the communicating portion 22 through the opening 21.

蓄熱部4L,4Rの一端4aにおける温度(約1,000℃)よりもはるかに低い常温の大気は、一対のリジェネレイティブバーナ1L,1R双方の冷却用チューブ8L,8Rの基端部側の開口部21から、炉5内に臨む火口2L,2Rに設置されて高温状態にある、燃焼モード及び排気モード双方の一対のリジェネレイティブバーナ1L,1Rに備えられる燃料ノズル6L,6Rの先端部開口6aへ向かって、外管20内の第2流路24を流通し、接続流路25で折り返されてさらに内管19内の第1流路23を流通して、これにより、両方のリジェネレイティブバーナ1L,1Rの燃料ノズル6L,6Rを冷却し、冷却した後、もちろん炉5内へ流出されることなく、連通部22から、排気Eが流通している排気系16へと単一の排気ブロア14の排気吸引作用で吸引され排出される。   The atmospheric air at a temperature much lower than the temperature (about 1,000 ° C.) at the one end 4a of the heat storage section 4L, 4R is on the base end side of the cooling tubes 8L, 8R of both the pair of regenerative burners 1L, 1R. Front ends of fuel nozzles 6L and 6R provided in a pair of regenerative burners 1L and 1R in both the combustion mode and the exhaust mode, which are installed in the craters 2L and 2R facing the furnace 5 from the opening 21 and are in a high temperature state. Toward the opening 6a, the second flow path 24 in the outer pipe 20 is circulated, folded back at the connection flow path 25 and further circulated through the first flow path 23 in the inner pipe 19, whereby both regenerations are performed. The fuel nozzles 6L and 6R of the latent burners 1L and 1R are cooled, and after being cooled, of course, the fuel nozzles 6L and 6R are not discharged into the furnace 5 and are singlely supplied from the communication portion 22 to the exhaust system 16 through which the exhaust E flows. Exhaust vent Is sucked by the exhaust suction action of A 14 is discharged.

左側のリジェネレイティブバーナ1Lが燃焼モードに切り換えられ、右側のリジェネレイティブバーナ1Rが排気モードに切り換えられても、排気ブロア14の運転時は常時、左右両方の燃料ノズル6L,6Rは、排気吸引作用で導入される大気によって冷却が確保されるようになっている。   Even if the left regenerative burner 1L is switched to the combustion mode and the right regenerative burner 1R is switched to the exhaust mode, both the left and right fuel nozzles 6L and 6R are always exhausted when the exhaust blower 14 is in operation. Cooling is ensured by the air introduced by the suction action.

以上説明した第1実施形態に係るリジェネレイティブバーナの燃料ノズル冷却構造にあっては、排気ブロア14を有する排気系16の排気吸引作用でバーナ本体3L,3Rの火口2L,2Rから吸引される炉内排気Eを、バーナ本体3L,3Rに隣接して直結して設けられた蓄熱部4L,4Rに流通させて排熱を蓄熱させる排気モードと、蓄熱部4L,4Rに流通されて加熱される燃焼空気で生成される火炎Fがバーナ本体3L,3Rの火口2L,2Rから炉5内へ噴出される燃焼モードとを交互に繰り返すリジェネレイティブバーナ1L,1Rであって、バーナ本体3L,3R内部に設けられ、燃焼空気と混合されて火炎Fを生成する燃料をその先端部開口6aから炉5内へ噴射する中空筒体状の燃料ノズル6L,6Rと、燃料ノズル6L,6Rの外周囲を包囲して設けられ、排気系16に連通させるための連通部22及び大気開放される開口部21を有する冷却用チューブ8L,8Rと、連通部22を排気系16に接続する接続管17L,17Rとを備え、接属管17L,17Rを介する排気系16の排気吸引作用で、開口部21を通じて連通部22に向かって流通する大気により燃料ノズル6L,6Rを冷却するようにしたので、排気モードで排気Eを排出する排気ブロア14を利用して、冷却用の大気を冷却用チューブ8L,8Rに流入させて燃料ノズル6L,6Rを冷却してこれが熱変形されることを防止でき、そしてまた、燃料ノズル6L,6Rを冷却するために必要な設備は、燃料ノズル6L,6Rを包囲する冷却用チューブ8L,8R及び冷却用チューブ8L,8Rと排気系16とを接続する接続管17L,17Rだけで済むので、設備費用及び必要な設置スペースもパイプのスペース程度であって軽減することができ、従って、レイアウトも簡略なものとすることができる。   In the fuel nozzle cooling structure of the regenerative burner according to the first embodiment described above, suction is performed from the craters 2L and 2R of the burner main bodies 3L and 3R by the exhaust suction action of the exhaust system 16 having the exhaust blower 14. The furnace exhaust E is passed through the heat storage units 4L and 4R provided directly adjacent to the burner bodies 3L and 3R, and the exhaust mode for storing the exhaust heat and the heat storage units 4L and 4R are passed through and heated. Are regenerative burners 1L, 1R that alternately repeat a combustion mode in which the flame F generated by the combustion air is injected into the furnace 5 from the craters 2L, 2R of the burner bodies 3L, 3R, Fuel cylinders 6L, 6R in the form of hollow cylinders that are provided inside 3R and inject fuel that is mixed with combustion air and generates flame F into the furnace 5 from the opening 6a of the tip, and fuel nozzle 6L Cooling tubes 8L and 8R which are provided to surround the outer periphery of 6R and have a communication part 22 for communicating with the exhaust system 16 and an opening 21 opened to the atmosphere, and the communication part 22 are connected to the exhaust system 16. The connection nozzles 17L and 17R are provided, and the fuel nozzles 6L and 6R are cooled by the air flowing toward the communication portion 22 through the opening 21 by the exhaust suction action of the exhaust system 16 through the attachment tubes 17L and 17R. Therefore, using the exhaust blower 14 that exhausts the exhaust E in the exhaust mode, the cooling atmosphere is caused to flow into the cooling tubes 8L and 8R to cool the fuel nozzles 6L and 6R, and this is thermally deformed. The equipment necessary for cooling the fuel nozzles 6L and 6R can be prevented, and the cooling tubes 8L and 8R and the cooling tubes 8L and 8 surrounding the fuel nozzles 6L and 6R are provided. Since only the connecting pipes 17L and 17R for connecting the exhaust system 16 to the exhaust system 16 are required, the equipment cost and the necessary installation space can be reduced by the space of the pipe, and therefore the layout can be simplified. it can.

冷却用チューブ8L,8Rの連通部22及び開口部21は、燃料ノズル6L,6Rの先端部開口6aとは反対側の基端部6b側に形成され、冷却用チューブ8L,8Rには、燃料ノズル6L,6Rの外回りを取り囲んで、その長さ方向に先端部開口6a側から基端部6b側に亘って形成され、連通部22に連通される第1流路23と、第1流路23の外回りを取り囲んで、燃料ノズル6L,6Rの長さ方向に先端部開口6a側から基端部6b側へ亘って形成され、開口部21に連通される第2流路24と、燃料ノズル6L,6Rの先端部開口6a側で第1流路23と第2流路24とを連通させる接続流路25とを備えるので、大気を燃料ノズル6L,6Rの長さ方向に第2流路24から第1流路23へ亘って流通させて往復で冷却作用を確保できて、効率よく冷却することができると共に、冷却用の大気を炉5内へ放出しないので、炉内雰囲気が変動されることを防ぐことができる。   The communication portion 22 and the opening 21 of the cooling tubes 8L and 8R are formed on the base end 6b side opposite to the tip opening 6a of the fuel nozzles 6L and 6R. A first flow path 23 that surrounds the outer periphery of the nozzles 6L and 6R and is formed in the length direction from the distal end opening 6a side to the base end 6b side, and communicates with the communication portion 22, and a first flow path A second flow path 24 that surrounds the outer periphery of the fuel nozzle 6 and is formed in the length direction of the fuel nozzles 6L and 6R from the front end opening 6a side to the base end portion 6b side and communicates with the opening 21; Since the first flow path 23 and the second flow path 24 are connected to each other at the tip end opening 6a side of the 6L and 6R, the second flow path is formed in the length direction of the fuel nozzles 6L and 6R. Circulates from 24 to the first flow path 23 to ensure a cooling effect by reciprocation Can be, it is possible to efficiently cool and does not emit air for cooling into the furnace 5, it is possible to prevent the furnace atmosphere is varied.

一方が燃焼モードのときに他方が排気モードで運転される一対のリジェネレイティブバーナ1L,1Rを備え、これらリジェネレイティブバーナ1L,1Rの排気系16は互いに排気合流部16bで合流され、排気合流部16bの下流に単一の排気ブロア14が備えられるので、一対のリジェネレイティブバーナ1L,1Rで稼働される炉5であっても、単一の排気ブロア14で、双方の燃料ノズル6L,6Rを冷却しつつ交番燃焼運転を確保することができる。   A pair of regenerative burners 1L and 1R are operated such that when one is in the combustion mode and the other is operated in the exhaust mode. The exhaust systems 16 of these regenerative burners 1L and 1R are joined together at the exhaust merging section 16b. Since the single exhaust blower 14 is provided downstream of the merging portion 16b, even in the furnace 5 operated by the pair of regenerative burners 1L and 1R, both the fuel nozzles 6L are provided by the single exhaust blower 14. , 6R can be cooled and the alternate combustion operation can be ensured.

また、本実施形態の説明では、一対のリジェネレイティブバーナ1L,1Rへの適用について説明したが、一対に限らず、リジェネレイティブバーナが単体であっても、上記作用効果を得ることができる。   In the description of the present embodiment, the application to the pair of regenerative burners 1L and 1R has been described. However, the present invention is not limited to a pair, and the above-described effects can be obtained even if the regenerative burner is a single unit. .

図2は、第2実施形態に係るリジェネレイティブバーナの燃料ノズル冷却構造を示す構成図である。第2実施形態は、上記第1実施形態と比較して、排気系16に対する接続管26L,26Rの接続位置が異なり、これによって作用が相違する。   FIG. 2 is a configuration diagram showing a fuel nozzle cooling structure of the regenerative burner according to the second embodiment. The second embodiment differs from the first embodiment in the connection positions of the connection pipes 26L and 26R with respect to the exhaust system 16, and thus the operation is different.

第1実施形態では、連通部22からの接続管17L,17Rは、排気本管16cに接続されているが、第2実施形態では、連通部22からの接続管26L,26Rは、各リジェネレイティブバーナ1L,1Rそれぞれにおいて、バーナ本体3L,3Rに隣接して直結して設けられる蓄熱部4L,4Rと排気弁15L,15Rとの中間位置に接続される。その他の構成は、上記第1実施形態と同様である。   In the first embodiment, the connection pipes 17L and 17R from the communication part 22 are connected to the exhaust main pipe 16c. In the second embodiment, the connection pipes 26L and 26R from the communication part 22 are connected to each regeneration unit. In each of the burners 1L and 1R, it is connected to an intermediate position between the heat storage portions 4L and 4R and the exhaust valves 15L and 15R which are provided directly adjacent to the burner main bodies 3L and 3R. Other configurations are the same as those in the first embodiment.

第2実施形態にかかるリジェネレイティブバーナの燃料ノズル冷却構造の作用について説明する。上述したように、リジェネレイティブバーナ1L,1Rは、燃焼モードでは、火炎Fが生成される火口2L,2Rに臨む燃料ノズル6L,6Rの先端部開口6a近辺が、当該燃料ノズル6L,6Rの他の部分に比して高温となり、他方、排気モードでは、火炎Fは消火されるものの、燃料ノズル6L,6Rの外回りに高温な排気Eが流通する。   The operation of the fuel nozzle cooling structure of the regenerative burner according to the second embodiment will be described. As described above, in the regenerative burner 1L, 1R, in the combustion mode, the vicinity of the tip opening 6a of the fuel nozzle 6L, 6R facing the crater 2L, 2R where the flame F is generated is located in the fuel nozzle 6L, 6R. On the other hand, in the exhaust mode, although the flame F is extinguished, the hot exhaust E flows around the fuel nozzles 6L and 6R.

このため、冷却用チューブ8L,8Rによる燃料ノズル6L,6Rの冷却については、燃焼モードでは、内管19側を低温とし、他方、排気モードでは、外管20側を低温とすることが好ましい。   For this reason, with respect to cooling of the fuel nozzles 6L, 6R by the cooling tubes 8L, 8R, it is preferable that the temperature in the inner tube 19 side is low in the combustion mode, while the temperature in the outer tube 20 side is low in the exhaust mode.

第2実施形態では、接続管26L,26Rの排気系16に対する接続位置を、蓄熱部4L,4Rと排気弁15L,15Rとの中間位置に接続するようにしたので、排気モード(図中、左側のリジェネレイティブバーナ1Lの運転で示す)では、上記第1実施形態と同様に、接続管26Lを介する排気系16の排気吸引作用で、開口部21を通じて連通部22に向かって流通する大気が最初外管20を流れ、その後内管19を流れることにより、より低温の大気によって排気Eに晒される外管20をより効率良く冷却して燃料ノズル6Lが過熱されないように適切に冷却することができる。   In the second embodiment, the connection position of the connection pipes 26L, 26R with respect to the exhaust system 16 is connected to an intermediate position between the heat storage units 4L, 4R and the exhaust valves 15L, 15R. As shown in the operation of the regenerative burner 1L), the air flowing toward the communication portion 22 through the opening portion 21 by the exhaust suction action of the exhaust system 16 via the connection pipe 26L is the same as in the first embodiment. By flowing first through the outer pipe 20 and then through the inner pipe 19, the outer pipe 20 exposed to the exhaust E by the cooler air can be cooled more efficiently and appropriately cooled so that the fuel nozzle 6L is not overheated. it can.

他方、燃焼モード(図中、右側のリジェネレイティブバーナ1Rの運転で示す)では、上記第1実施形態とは異なり、給気ブロア11を有する給気系13の給気作用で供給されて蓄熱部4Rへ向かう燃焼空気のうち、その一部が蓄熱部4Rを迂回して、排気弁15Rが閉じられている排気系16(排気管16a)を経由して接続管26Rに流入し、そして、接続管26Rを介し連通部22を通じて開口部21に向かって流通する燃焼空気は、最初内管19を流れて、その後外管20を流れることにより、より低温の燃焼空気によって火炎Fに晒される内管19をより効率良く冷却して燃料ノズル6Rが過熱されないように適切に冷却することができる。   On the other hand, in the combustion mode (shown by the operation of the regenerative burner 1R on the right side in the figure), unlike the first embodiment, the heat is supplied by the air supply action of the air supply system 13 having the air supply blower 11. A part of the combustion air toward the part 4R bypasses the heat storage part 4R, flows into the connection pipe 26R via the exhaust system 16 (exhaust pipe 16a) in which the exhaust valve 15R is closed, and The combustion air flowing toward the opening 21 through the communication portion 22 through the connection pipe 26R first flows through the inner pipe 19 and then flows through the outer pipe 20, thereby being exposed to the flame F by the lower temperature combustion air. It is possible to cool the pipe 19 more efficiently so that the fuel nozzle 6R is not overheated.

すなわち、燃焼モードや排気モードという運転状況の切り替えに対し、冷却用チューブ8L,8R内の流れ方向が変わり、燃料ノズル6L,6Rの良好な冷却効果を確保することができる。   That is, the flow direction in the cooling tubes 8L and 8R changes with respect to the switching of the operation state such as the combustion mode and the exhaust mode, and a good cooling effect of the fuel nozzles 6L and 6R can be ensured.

また、接続管26L,26Rは、互いに隣接して直結されているバーナ本体3L,3Rと蓄熱部4L,4Rとの間に配設すればよいので、第1実施形態のように接続管17L,17Rを、少なくとも排気弁15L,15Rの下流側まで延設する必要がなく、パイプのスペースを削減することができ、設備費用の削減及び設備レイアウトのコンパクト化を達成することができる。   Further, since the connecting pipes 26L, 26R may be disposed between the burner bodies 3L, 3R and the heat storage parts 4L, 4R that are directly connected adjacent to each other, the connecting pipes 17L, It is not necessary to extend 17R to at least the downstream side of the exhaust valves 15L and 15R, the pipe space can be reduced, and the equipment cost can be reduced and the equipment layout can be made compact.

第2実施形態にあっても、一対のリジェネレイティブバーナ1L,1Rへの適用のみならず、リジェネレイティブバーナが単体であっても、上記作用効果を得ることができる。また、第2実施形態にあっても、第1実施形態が奏するその他の作用効果を奏することはもちろんである。   Even in the second embodiment, not only the application to the pair of regenerative burners 1L and 1R but also the above-described effects can be obtained even if the regenerative burner is a single unit. Moreover, even if it exists in 2nd Embodiment, of course, there exists another effect which 1st Embodiment has.

1L,1R リジェネレイティブバーナ
2L,2R 火口
3L,3R バーナ本体
3a バーナ本体の他端
4L,4R 蓄熱部
4a 蓄熱部の一端
4b 蓄熱部の他端
5 炉
6L,6R 燃料ノズル
6a 燃料ノズルの先端部開口
6b 燃料ノズルの基端
8L,8R 冷却用チューブ
9L,9R 燃料用開閉弁
10 燃料供給系
11 給気ブロア
12L,12R 給気弁
13 給気系
13a 燃焼空気供給管
13b 燃焼空気合流部
13c 燃焼空気供給本管
14 排気ブロア
15L,15R 排気弁
16 排気系
16a 排気管
16b 排気合流部
16c 排気本管
17L,17R 接続管
19 内管
19a 封鎖端板
20 外管
20a 第1封止端板
20b 第2封止端板
21 開口部
22 連通部
23 第1流路
24 第2流路
25 接続流路
26L,26R 接続管
E 排気
F 火炎
1L, 1R Regenerative burner 2L, 2R crater 3L, 3R burner body 3a other end of burner body 4L, 4R heat storage section 4a one end of heat storage section 4b other end of heat storage section 5 furnace 6L, 6R fuel nozzle 6a tip of fuel nozzle Part opening 6b Base end of fuel nozzle 8L, 8R Cooling tube 9L, 9R Fuel on-off valve 10 Fuel supply system 11 Supply air blower 12L, 12R Supply valve 13 Supply system 13a Combustion air supply pipe 13b Combustion air confluence 13c Combustion air supply main pipe 14 Exhaust blower 15L, 15R Exhaust valve 16 Exhaust system 16a Exhaust pipe 16b Exhaust merge part 16c Exhaust main pipe 17L, 17R Connection pipe 19 Inner pipe 19a Sealed end plate 20 Outer pipe 20a First sealed end plate 20b 2nd sealing end plate 21 Opening part 22 Communication part 23 1st flow path 24 2nd flow path 25 Connection flow path 26L, 26R Contact Tube E exhaust F flame

Claims (4)

排気ブロアを有する排気系の排気吸引作用でバーナ本体の火口から吸引される炉内排気を蓄熱部に流通させて排熱を蓄熱させる排気モードと、該蓄熱部に流通されて加熱される燃焼空気で生成される火炎が該バーナ本体の火口から炉内へ噴出される燃焼モードとを交互に繰り返すリジェネレイティブバーナであって、
上記バーナ本体内部に設けられ、燃焼空気と混合されて火炎を生成する燃料をその先端部から噴射する中空筒体状の燃料ノズルと、上記燃料ノズルの外周囲を包囲して設けられ、上記排気系に連通させるための連通部及び大気開放される開口部を有する冷却用チューブと、上記連通部を上記排気系に接続する接続管とを備え、
該接属管を介する上記排気系の排気吸引作用で、上記開口部を通じて上記連通部に向かって流通する大気により上記燃料ノズルを冷却するようにしたことを特徴とするリジェネレイティブバーナの燃料ノズル冷却構造。
An exhaust mode in which the exhaust in the furnace sucked from the crater of the burner body by the exhaust suction action of the exhaust system having the exhaust blower is distributed to the heat storage part to store the exhaust heat, and the combustion air that is distributed and heated to the heat storage part A regenerative burner that alternately repeats the combustion mode in which the flame generated in is burned into the furnace from the crater of the burner body,
A hollow cylindrical fuel nozzle that is provided inside the burner body and injects fuel that is mixed with combustion air to generate a flame from its tip, and is provided to surround the outer periphery of the fuel nozzle, and the exhaust A cooling tube having a communicating part for communicating with the system and an opening opened to the atmosphere, and a connecting pipe for connecting the communicating part to the exhaust system,
A fuel nozzle for a regenerative burner characterized in that the fuel nozzle is cooled by the air flowing toward the communication portion through the opening by the exhaust suction action of the exhaust system through the connection pipe. Cooling structure.
排気ブロアを有する排気系を開閉する排気弁が開かれかつ給気ブロアを有する給気系を開閉する給気弁が閉じられて、該排気系の排気吸引作用でバーナ本体の火口から吸引される炉内排気を、蓄熱部に流通させて排熱を蓄熱させ、該排気弁を介して該排気系へ排出する排気モードと、該排気弁が閉じられかつ該給気弁が開かれて、該給気系の給気作用で該バーナ本体へ給気される燃焼空気を、該蓄熱部に流通させて加熱し、加熱された燃焼空気で生成される火炎が該バーナ本体の火口から炉内へ噴出される燃焼モードとを交互に繰り返すリジェネレイティブバーナであって、
上記バーナ本体内部に設けられ、燃焼空気と混合されて火炎を生成する燃料をその先端部から噴射する中空筒体状の燃料ノズルと、上記燃料ノズルの外周囲を包囲して設けられ、上記排気系に連通させるための連通部及び大気開放される開口部を有する冷却用チューブと、上記蓄熱部と上記排気弁との中間位置で、上記連通部を上記排気系に接続する接続管とを備え、
排気モード時には、上記接続管を介する上記排気系の排気吸引作用で、上記開口部を通じて上記連通部に向かって流通する大気により上記燃料ノズルを冷却し、燃焼モード時には、上記給気系の給気作用で、該蓄熱部を迂回して、該接続管を介し該連通部を通じて該開口部に向かって流通する燃焼空気により該冷却ノズルを冷却するようにしたことを特徴とするリジェネレイティブバーナの燃料ノズル冷却構造。
The exhaust valve for opening and closing the exhaust system having the exhaust blower is opened and the air supply valve for opening and closing the air supply system having the air supply blower is closed and sucked from the crater of the burner body by the exhaust suction action of the exhaust system An exhaust mode in which the exhaust in the furnace is circulated through the heat storage section to store the exhaust heat and is discharged to the exhaust system through the exhaust valve, the exhaust valve is closed and the supply valve is opened, Combustion air supplied to the burner main body by the air supply operation of the air supply system is circulated through the heat accumulator and heated, and a flame generated by the heated combustion air is transferred from the crater of the burner main body into the furnace. A regenerative burner that alternately repeats the combustion mode to be ejected,
A hollow cylindrical fuel nozzle that is provided inside the burner body and injects fuel that is mixed with combustion air to generate a flame from its tip, and is provided to surround the outer periphery of the fuel nozzle, and the exhaust A cooling tube having a communication part for communicating with the system and an opening opened to the atmosphere, and a connecting pipe for connecting the communication part to the exhaust system at an intermediate position between the heat storage part and the exhaust valve. ,
In the exhaust mode, the exhaust nozzle of the exhaust system through the connection pipe cools the fuel nozzle by the atmosphere flowing toward the communication portion through the opening, and in the combustion mode, the air supply of the supply system The regenerative burner is characterized in that the cooling nozzle is cooled by the combustion air that circulates toward the opening through the communication pipe and bypassing the heat storage section by the action. Fuel nozzle cooling structure.
前記冷却用チューブの前記連通部及び前記開口部は、前記燃料ノズル先端部と反対側の基端部側に形成され、上記冷却用チューブには、上記燃料ノズルの外回りを取り囲んで、その長さ方向に先端部側から基端部側に亘って形成され、上記連通部に連通される第1流路と、該第1流路の外回りを取り囲んで、上記燃料ノズルの長さ方向に先端部側から基端部側へ亘って形成され、上記開口部に連通される第2流路と、上記燃料ノズルの先端部側で上記第1流路と上記第2流路とを連通させる接続流路とを備えることを特徴とする請求項1または2に記載のリジェネレイティブバーナの燃料ノズル冷却構造。   The communication portion and the opening of the cooling tube are formed on the base end side opposite to the fuel nozzle tip, and the cooling tube surrounds the outer periphery of the fuel nozzle and has a length thereof. A first flow path formed from the front end side to the base end side in the direction and communicating with the communication section; and surrounding the outer periphery of the first flow path, the front end section in the length direction of the fuel nozzle The second flow path formed from the side to the base end side and communicated with the opening, and the connection flow for communicating the first flow path and the second flow path on the distal end side of the fuel nozzle A fuel nozzle cooling structure for a regenerative burner according to claim 1 or 2, further comprising a passage. 一方が燃焼モードのときに他方が排気モードで運転される一対の前記リジェネレイティブバーナを備え、これらリジェネレイティブバーナの前記排気系は互いに合流部で合流され、該合流部の下流に単一の前記排気ブロアが備えられることを特徴とする請求項1〜3いずれかの項に記載のリジェネレイティブバーナの冷却構造。   A pair of the regenerative burners operated when one is in the combustion mode and the other is operated in the exhaust mode, and the exhaust systems of these regenerative burners are joined together at a junction, and a single unit is provided downstream of the junction. The regenerative burner cooling structure according to any one of claims 1 to 3, wherein the exhaust blower is provided.
JP2017024772A 2017-02-14 2017-02-14 Regenerative burner fuel nozzle cooling structure Active JP6483169B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017024772A JP6483169B2 (en) 2017-02-14 2017-02-14 Regenerative burner fuel nozzle cooling structure
TW106138458A TWI755441B (en) 2017-02-14 2017-11-07 Fuel nozzle cooling system in regenerative burner
CN201711212217.9A CN108426247B (en) 2017-02-14 2017-11-27 Fuel nozzle cooling structure of heat accumulation combustor
KR1020170183912A KR102344215B1 (en) 2017-02-14 2017-12-29 Fuel Nozzle Cooling System In Regenerative Burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017024772A JP6483169B2 (en) 2017-02-14 2017-02-14 Regenerative burner fuel nozzle cooling structure

Publications (2)

Publication Number Publication Date
JP2018132222A true JP2018132222A (en) 2018-08-23
JP6483169B2 JP6483169B2 (en) 2019-03-13

Family

ID=63155804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017024772A Active JP6483169B2 (en) 2017-02-14 2017-02-14 Regenerative burner fuel nozzle cooling structure

Country Status (4)

Country Link
JP (1) JP6483169B2 (en)
KR (1) KR102344215B1 (en)
CN (1) CN108426247B (en)
TW (1) TWI755441B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147462A (en) * 1992-11-02 1994-05-27 Chugai Ro Co Ltd Method for contrtolling combution of heat accumulative burner system
JP2001182915A (en) * 1999-12-28 2001-07-06 Rozai Kogyo Kaisha Ltd Cooler of fuel nozzle tube of regenerative burner
JP2004020091A (en) * 2002-06-18 2004-01-22 Chugai Ro Co Ltd Regeneration burner for connecting passage for introducing inert gas to fuel supply passage and its operation method
JP2007003036A (en) * 2005-06-21 2007-01-11 Chugai Ro Co Ltd Regenerative burner installed-furnace
JP2016133255A (en) * 2015-01-19 2016-07-25 中外炉工業株式会社 Industrial furnace, energy saving operation method of the same, and modification method of the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625012A (en) * 1985-06-28 1987-01-12 Chugai Ro Kogyo Kaisha Ltd Exhaust heat recovery burner
TW278124B (en) * 1994-10-14 1996-06-11 Toyota Motor Co Ltd
JPH08312910A (en) * 1995-05-23 1996-11-26 Daido Steel Co Ltd Cooling method of heat storage type radiant tube burner
JP3590495B2 (en) 1996-12-26 2004-11-17 住友金属工業株式会社 Low NOx burner for high temperature air
JP2003185129A (en) * 2001-12-17 2003-07-03 Tokyo Gas Co Ltd Heat reserved combustion type flat frame burner
JP3883885B2 (en) * 2002-03-04 2007-02-21 中外炉工業株式会社 Single-ended regenerative radiant tube burner device and combustion method thereof
RU2278325C1 (en) * 2004-12-14 2006-06-20 Общество С Ограниченной Ответственностью Научно-Производственная Фирма "Горелочный Центр" Method of heating furnaces
JP4832501B2 (en) * 2008-12-11 2011-12-07 中外炉工業株式会社 Combustion control method of heat storage combustion type heat treatment furnace
JP4638947B2 (en) * 2009-01-16 2011-02-23 中外炉工業株式会社 Combustion control method for regenerative combustion furnace
JP5554259B2 (en) * 2011-02-09 2014-07-23 中外炉工業株式会社 Recuperator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147462A (en) * 1992-11-02 1994-05-27 Chugai Ro Co Ltd Method for contrtolling combution of heat accumulative burner system
JP2001182915A (en) * 1999-12-28 2001-07-06 Rozai Kogyo Kaisha Ltd Cooler of fuel nozzle tube of regenerative burner
JP2004020091A (en) * 2002-06-18 2004-01-22 Chugai Ro Co Ltd Regeneration burner for connecting passage for introducing inert gas to fuel supply passage and its operation method
JP2007003036A (en) * 2005-06-21 2007-01-11 Chugai Ro Co Ltd Regenerative burner installed-furnace
JP2016133255A (en) * 2015-01-19 2016-07-25 中外炉工業株式会社 Industrial furnace, energy saving operation method of the same, and modification method of the same

Also Published As

Publication number Publication date
CN108426247B (en) 2020-09-01
KR102344215B1 (en) 2021-12-29
TW201829964A (en) 2018-08-16
CN108426247A (en) 2018-08-21
TWI755441B (en) 2022-02-21
JP6483169B2 (en) 2019-03-13
KR20180093790A (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP6483169B2 (en) Regenerative burner fuel nozzle cooling structure
US20140158108A1 (en) Combustion device
JPH11257613A (en) Burner
JP4007835B2 (en) Thermal storage radiant tube combustion device
KR200402470Y1 (en) Boiler
JP6821274B2 (en) Recuperator and radiant tube type heating device
JP2007278693A (en) Regenerative radiant tube combustion device
KR101107466B1 (en) Single end type regenerative radiant tube burner
JP2007046901A (en) Combustion method for regenerative type radiant tube burner
JP2007101129A (en) Heat storage type burner device and its operation method
JP4184304B2 (en) Direct fire type hot air generator
JP2019196855A5 (en)
JP3320624B2 (en) Supply / exhaust guide device for radiant tube burner device
JP3736694B2 (en) Regenerative burner
JPH0665705U (en) Thermal storage radiant tube system
JP4643385B2 (en) High temperature air flow generator
US10760790B2 (en) Booster burner
TWI746691B (en) Regenerative burner system
JPH10253047A (en) Alternative combustion heating furnace
JPH0774693B2 (en) Combustion control method for regenerative burner system
JP2002048333A (en) High temperature gas emission equipment provided with heat absorption path
KR200276858Y1 (en) Temperature homogenizer for regenerative burner_
TW201907123A (en) Heat treatment furnace
JPH0774696B2 (en) Combustion control method for regenerative burner system
JP2001141233A (en) Regenerative burner system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190213

R150 Certificate of patent or registration of utility model

Ref document number: 6483169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250