JP2018131938A - Ammonia slip prevention device - Google Patents

Ammonia slip prevention device Download PDF

Info

Publication number
JP2018131938A
JP2018131938A JP2017024991A JP2017024991A JP2018131938A JP 2018131938 A JP2018131938 A JP 2018131938A JP 2017024991 A JP2017024991 A JP 2017024991A JP 2017024991 A JP2017024991 A JP 2017024991A JP 2018131938 A JP2018131938 A JP 2018131938A
Authority
JP
Japan
Prior art keywords
ammonia
catalyst
prevention device
storage material
slip prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017024991A
Other languages
Japanese (ja)
Inventor
耕平 岡
Kohei Oka
耕平 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2017024991A priority Critical patent/JP2018131938A/en
Publication of JP2018131938A publication Critical patent/JP2018131938A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ammonia slip prevention device, in place of an ammonia slip catalyst, capable of recycling residual ammonia and enlarging freedom of control in an urea selective catalyst reduction device.SOLUTION: The present invention relates to an ammonia slip prevention device 100 for preventing ammonia slip in an urea selective catalyst reduction device 102 which generates ammonia by ejecting urea water at an exhaust upstream side of a catalyst 101, reduces a nitric oxide contained in the exhaust air into nitride and water by a chemical reaction with the ammonia on the catalyst 101 and reduces the amount of the nitric oxide exhausted into atmospheric air as a result. The ammonia slip prevention device comprises: an ammonia suction material 109 which is installed at an exhaust downstream side of the catalyst 101 and sucks residual ammonia that cannot be chemically reacted with the nitric oxide on the catalyst 101; and a fuel cell 110 which is driven by using the ammonia that is sucked in the ammonia suction material, as a fuel.SELECTED DRAWING: Figure 1

Description

本発明は、一般に内燃機関の駆動に応じ大気中に排出される排気を浄化する排気浄化装置に係り、特に尿素水[CO(NH2)2+H2O]を触媒の排気上流側に於いて噴射しアンモニア[NH3]を生成すると共に排気中に含有されている窒素酸化物[NOX]を触媒上に於いてアンモニアと化学反応させる事によって窒素と水とに還元し結果的に大気中に排出される窒素酸化物の量を低減する尿素選択触媒還元装置と一緒に自動車に搭載する事が出来るアンモニアスリップ防止装置に関する。 The present invention generally relates to an exhaust gas purification device that purifies exhaust gas discharged into the atmosphere in response to driving of an internal combustion engine, and more particularly urea water [CO (NH 2 ) 2 + H 2 O] is exhausted upstream of a catalyst. To form ammonia [NH 3 ] and reduce nitrogen oxide [NO X ] contained in the exhaust gas to nitrogen and water by chemically reacting with ammonia on the catalyst, resulting in the atmosphere. The present invention relates to an ammonia slip prevention device that can be mounted on an automobile together with a urea selective catalytic reduction device that reduces the amount of nitrogen oxides discharged therein.

大半のディーゼル自動車は、尿素選択触媒還元(Selective Catalytic Reduction;SCR)装置を搭載している。尿素選択触媒還元装置に於いては、ディーゼルエンジンの運転状態に応じ尿素水を触媒の排気上流側に於いて噴射し加水分解する事によってアンモニアを生成する事が出来る。然し乍ら、ディーゼルエンジンの運転状態によっては、生成されるアンモニアの量が過剰と成る事が有る為、少なからずアンモニアスリップ(触媒上に於いて窒素酸化物と化学反応させる事が出来なかった余剰のアンモニアが大気中に排出される現象)が発生する虞が有る。従って、従来は、触媒の排気下流側にアンモニアスリップ触媒(Ammonia Slip Catalyst;ASC)を設置する事によってアンモニアスリップを防止している(例えば、特許文献1乃至4を参照)。   Most diesel vehicles are equipped with a selective catalytic reduction (SCR) device. In the urea selective catalytic reduction device, ammonia can be generated by injecting and hydrolyzing urea water on the exhaust upstream side of the catalyst according to the operating state of the diesel engine. However, depending on the operating condition of the diesel engine, the amount of ammonia produced may become excessive, so there is not a little ammonia slip (excess ammonia that could not be chemically reacted with nitrogen oxides on the catalyst). May occur in the atmosphere). Therefore, conventionally, ammonia slip is prevented by installing an ammonia slip catalyst (ASC) on the exhaust downstream side of the catalyst (see, for example, Patent Documents 1 to 4).

特開2006−219987号公報JP 2006-219987 A 特開2008−075646号公報JP 2008-075646 A 特開平05−071331号公報JP 05-071331 A 特表2008−512243号公報Special table 2008-512243 gazette

国立大学法人京都大学等、″アンモニアを直接燃料とした燃料電池による発電″、[online]、平成28年7月22日、[平成29年2月2日検索]、インターネット〈URL:http://www.kyoto-u.ac.jp/ja/research_results/2015/150722_2.html〉National University Corporation Kyoto University, etc., “Power generation by fuel cell using ammonia as direct fuel”, [online], July 22, 2016, [Search February 2, 2017], Internet <URL: http: / /www.kyoto-u.ac.jp/en/research_results/2015/150722_2.html>

然し乍ら、アンモニアスリップ触媒は、単に触媒上に於いて窒素酸化物と化学反応させる事が出来なかった余剰のアンモニアを捕集し酸化させる事によって最終的に窒素[N2]と水[H2O]とに分解する事が出来るのみであって、余剰のアンモニアを再利用する事迄は出来ない為、余剰のアンモニアを無駄にする事に成る。今迄の排気浄化技術の研究に於いては、余剰のアンモニアを如何に無害化するのかという点に焦点が当てられていた為、余剰のアンモニアを如何に再利用するのかという点に焦点が当てられる事は余り無かった。更に、アンモニアスリップ触媒を通じて酸化させる事が出来るアンモニアの量にも限度が有る為、尿素選択触媒還元装置に於いては、生成されるアンモニアの量が適量と成る様に、噴射する尿素水の量を精密に制御する必要が有り、制御の自由度が少なかった。具体的に言えば、触媒の温度が活性化温度を超えた時又は触媒の温度が活性化温度を超えると予測された時に尿素水を過剰に噴射し触媒の温度を低下させる事によって触媒の温度を活性化温度に維持する触媒温度維持制御を実現する事は困難であった。 However, the ammonia slip catalyst simply collects and oxidizes excess ammonia that could not be chemically reacted with nitrogen oxides on the catalyst, and finally, nitrogen [N 2 ] and water [H 2 O ], And it is impossible to recycle the surplus ammonia, so that surplus ammonia is wasted. Until now, research on exhaust gas purification technology has focused on how to make surplus ammonia harmless, so focus on how to reuse surplus ammonia. There was not much that was done. Furthermore, since there is a limit to the amount of ammonia that can be oxidized through the ammonia slip catalyst, in the urea selective catalytic reduction device, the amount of urea water to be injected is adjusted so that the amount of ammonia produced is appropriate. Need to be controlled precisely, and the degree of freedom of control was small. Specifically, when the temperature of the catalyst exceeds the activation temperature or when the temperature of the catalyst is predicted to exceed the activation temperature, the temperature of the catalyst is reduced by excessively injecting urea water to lower the temperature of the catalyst. It was difficult to realize catalyst temperature maintenance control for maintaining the temperature at the activation temperature.

従って、本発明は、余剰のアンモニアを再利用する事が出来ると共に尿素選択触媒還元装置に於ける制御の自由度を大きくする事が出来る、アンモニアスリップ触媒に代わるアンモニアスリップ防止装置を提供する事を目的としている。   Therefore, the present invention provides an ammonia slip prevention device that can replace the ammonia slip catalyst, which can reuse excess ammonia and increase the degree of freedom of control in the urea selective catalyst reduction device. It is aimed.

本発明は、尿素水を触媒の排気上流側に於いて噴射しアンモニアを生成すると共に排気中に含有されている窒素酸化物を前記触媒上に於いてアンモニアと化学反応させる事によって窒素と水とに還元し結果的に大気中に排出される窒素酸化物の量を低減する尿素選択触媒還元装置に於けるアンモニアスリップを防止するアンモニアスリップ防止装置であって、前記触媒の排気下流側に設置されると共に前記触媒上に於いて窒素酸化物と化学反応させる事が出来なかった余剰のアンモニアを吸蔵するアンモニア吸蔵材と、前記アンモニア吸蔵材に吸蔵されているアンモニアを燃料とし駆動される燃料電池と、を備えているアンモニアスリップ防止装置を提供する。   In the present invention, urea water is injected upstream of the catalyst to generate ammonia, and nitrogen oxides contained in the exhaust are chemically reacted with ammonia on the catalyst to generate nitrogen and water. An ammonia slip prevention device for preventing ammonia slip in a urea selective catalyst reduction device that reduces the amount of nitrogen oxides reduced to the atmosphere and eventually discharged into the atmosphere, and is installed on the exhaust downstream side of the catalyst. And an ammonia occlusion material that occludes excess ammonia that could not be chemically reacted with nitrogen oxides on the catalyst, and a fuel cell that is driven by using the ammonia occluded in the ammonia occlusion material as fuel. An ammonia slip prevention device is provided.

前記燃料電池は、前記アンモニア吸蔵材の排気下流側に設置されている事が望ましい。   The fuel cell is preferably installed on the exhaust downstream side of the ammonia storage material.

前記アンモニア吸蔵材は、塩化カルシウム吸蔵材料、臭化カルシウム吸蔵材料、又は塩化カルシウム−臭化カルシウム系吸蔵材料によって形成されている事が望ましい。   The ammonia storage material is preferably formed of a calcium chloride storage material, a calcium bromide storage material, or a calcium chloride-calcium bromide storage material.

本発明によれば、余剰のアンモニアを再利用する事が出来ると共に尿素選択触媒還元装置に於ける制御の自由度を大きくする事が出来る、アンモニアスリップ触媒に代わるアンモニアスリップ防止装置を提供する事が出来る。   According to the present invention, it is possible to provide an ammonia slip prevention device in place of an ammonia slip catalyst, which can reuse surplus ammonia and increase the degree of freedom of control in a urea selective catalyst reduction device. I can do it.

アンモニアスリップ防止装置の構造を説明する概略図である。It is the schematic explaining the structure of an ammonia slip prevention apparatus.

以下、本発明の実施の形態を添付図面に順って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1に示す様に、本発明の実施の形態に係るアンモニアスリップ防止装置100は、尿素水を触媒101の排気上流側に於いて噴射しアンモニアを生成すると共に排気中に含有されている窒素酸化物を触媒101上に於いてアンモニアと化学反応させる事によって窒素と水とに還元し結果的に大気中に排出される窒素酸化物の量を低減する尿素選択触媒還元装置102に於けるアンモニアスリップを防止する。尚、アンモニアスリップ防止装置100は、ディーゼル自動車に好適に搭載する事が出来るものの、勿論、ガソリン自動車に搭載する事も出来る。   As shown in FIG. 1, an ammonia slip prevention apparatus 100 according to an embodiment of the present invention generates urea by injecting urea water on the exhaust upstream side of a catalyst 101, and oxidizes nitrogen contained in the exhaust. Ammonia slip in the urea selective catalytic reduction device 102 that reduces the amount of nitrogen oxides that are reduced to nitrogen and water by chemical reaction of ammonia on the catalyst 101 and consequently discharged into the atmosphere To prevent. Although the ammonia slip prevention device 100 can be suitably mounted on a diesel vehicle, it can of course be mounted on a gasoline vehicle.

触媒101は、内燃機関(例えば、ディーゼルエンジン又はガソリンエンジン)の排気管103の途中に設置されている。触媒101の排気上流側に尿素水噴射器104が設置されている。尿素水噴射器104は、尿素水噴射制御装置(Dosing Control Unit;DCU)105によって制御されている。尿素選択触媒還元装置102に於いては、内燃機関の運転状態に応じ尿素水を触媒101の排気上流側に於いて噴射し加水分解する事によってアンモニアを生成する事が出来る。触媒101の排気上流側に排気温度検出器106と第一窒素酸化物濃度検出器107とが設置されている。排気温度検出器106に於いては、触媒101の入口側に於ける排気温度を検出する事が出来る。第一窒素酸化物濃度検出器107に於いては、触媒101の入口側に於ける窒素酸化物濃度を検出する事が出来る。触媒101の排気下流側に第二窒素酸化物濃度検出器108が設置されている。第二窒素酸化物濃度検出器108に於いては、触媒101の出口側に於ける窒素酸化物濃度を検出する事が出来る。尿素水噴射制御装置105は、排気温度検出器106によって検出した排気温度と第一窒素酸化物濃度検出器107及び第二窒素酸化物濃度検出器108によって検出した窒素酸化物濃度に基づいて、尿素水噴射器104を通じて噴射する尿素水の量を適量に制御している。   The catalyst 101 is installed in the middle of an exhaust pipe 103 of an internal combustion engine (for example, a diesel engine or a gasoline engine). A urea water injector 104 is installed on the exhaust upstream side of the catalyst 101. The urea water injector 104 is controlled by a urea water injection control device (DCU) 105. In the urea selective catalytic reduction device 102, ammonia can be generated by injecting and hydrolyzing urea water on the exhaust upstream side of the catalyst 101 in accordance with the operating state of the internal combustion engine. An exhaust temperature detector 106 and a first nitrogen oxide concentration detector 107 are installed on the exhaust upstream side of the catalyst 101. The exhaust gas temperature detector 106 can detect the exhaust gas temperature on the inlet side of the catalyst 101. The first nitrogen oxide concentration detector 107 can detect the nitrogen oxide concentration on the inlet side of the catalyst 101. A second nitrogen oxide concentration detector 108 is installed on the exhaust downstream side of the catalyst 101. The second nitrogen oxide concentration detector 108 can detect the nitrogen oxide concentration on the outlet side of the catalyst 101. The urea water injection control device 105 is configured to generate urea based on the exhaust gas temperature detected by the exhaust gas temperature detector 106 and the nitrogen oxide concentration detected by the first nitrogen oxide concentration detector 107 and the second nitrogen oxide concentration detector 108. The amount of urea water injected through the water injector 104 is controlled to an appropriate amount.

アンモニアスリップ防止装置100は、触媒101の排気下流側に設置されると共に触媒101上に於いて窒素酸化物と化学反応させる事が出来なかった余剰のアンモニアを吸蔵するアンモニア吸蔵材109と、アンモニア吸蔵材109に吸蔵されているアンモニアを燃料とし駆動される燃料電池110と、を備えている。アンモニア吸蔵材109は、塩化カルシウム吸蔵材料、臭化カルシウム吸蔵材料、又は塩化カルシウム−臭化カルシウム系吸蔵材料によって形成されている。勿論、アンモニア吸蔵材109は、他の吸蔵材料によって形成されていても構わない。アンモニアスリップ防止装置100に於いては、アンモニア吸蔵材109の温度又は圧力を変化させる事によってアンモニアの吸蔵と放出とを制御する事も出来る。アンモニア吸蔵材109の温度は、例えば、内燃機関制御装置(Engine Control Unit;ECU)を通じて内燃機関の運転状態を制御すると共に排気温度を調整する事によって変化させる事が出来る。更に、アンモニア吸蔵材109の圧力は、アンモニア吸蔵材109を加圧又は減圧させる圧力調整機構を別途設置すると共に内燃機関制御装置を通じて圧力調整機構を制御する事によって変化させる事が出来る。従って、電力を必要とする時のみアンモニア吸蔵材109に吸蔵されているアンモニアを放出する事によって燃料電池110を効率的に駆動させる事が出来る。換言すれば、余剰のアンモニアを無駄にする事無く効率的に利用する事が出来る。尚、燃料電池110を通じて生成される電力は、自動車に搭載されている各種電装品の駆動に利用する事が出来る為、各種電装品に電力を供給する為にオルタネータを駆動する頻度を減少させる事が出来る。結果的に燃料の消費を抑制する事が出来る為、燃費を改善する事が出来る。燃料電池110は、アンモニア吸蔵材109の排気下流側に設置されている事が望ましい。燃料電池110をアンモニア吸蔵材109の排気下流側に設置する事によって、アンモニア吸蔵材109に吸蔵されているアンモニアを放出した時にアンモニアを排気に乗せ燃料電池110に自然と供給する事が出来る。従って、アンモニアを燃料電池110に供給する為に何等かの機構を追加する必要が無い為、自動車の設計を大幅に変更する事無くアンモニアスリップ防止装置100を搭載する事が出来る。尚、燃料電池110は、例えば、非特許文献1に記載された燃料電池によって構成する事が出来る。   The ammonia slip prevention device 100 is installed on the exhaust downstream side of the catalyst 101, and stores an ammonia storage material 109 that stores excess ammonia that could not be chemically reacted with nitrogen oxides on the catalyst 101, and ammonia storage. And a fuel cell 110 driven by using ammonia stored in the material 109 as a fuel. The ammonia storage material 109 is made of a calcium chloride storage material, a calcium bromide storage material, or a calcium chloride-calcium bromide storage material. Of course, the ammonia storage material 109 may be formed of other storage materials. In the ammonia slip prevention device 100, the storage and release of ammonia can be controlled by changing the temperature or pressure of the ammonia storage material 109. The temperature of the ammonia storage material 109 can be changed, for example, by controlling the operating state of the internal combustion engine through an internal combustion engine control unit (ECU) and adjusting the exhaust temperature. Further, the pressure of the ammonia storage material 109 can be changed by separately installing a pressure adjustment mechanism for pressurizing or depressurizing the ammonia storage material 109 and controlling the pressure adjustment mechanism through an internal combustion engine control device. Therefore, the fuel cell 110 can be efficiently driven by releasing ammonia stored in the ammonia storage material 109 only when electric power is required. In other words, excess ammonia can be efficiently used without wasting it. In addition, since the electric power generated through the fuel cell 110 can be used to drive various electric components mounted on the automobile, the frequency of driving the alternator to supply electric power to the various electric components can be reduced. I can do it. As a result, fuel consumption can be suppressed, and fuel consumption can be improved. The fuel cell 110 is preferably installed on the exhaust downstream side of the ammonia storage material 109. By installing the fuel cell 110 on the exhaust gas downstream side of the ammonia storage material 109, when the ammonia stored in the ammonia storage material 109 is released, the ammonia can be put on the exhaust gas and supplied to the fuel cell 110 naturally. Accordingly, since it is not necessary to add any mechanism for supplying ammonia to the fuel cell 110, the ammonia slip prevention device 100 can be mounted without significantly changing the design of the automobile. In addition, the fuel cell 110 can be comprised by the fuel cell described in the nonpatent literature 1, for example.

以上に説明した様に、アンモニアスリップ防止装置100に於いては、余剰のアンモニアをアンモニア吸蔵材109に於いて吸蔵する事によってアンモニアスリップを防止する事が出来る。更に、余剰のアンモニアの量がアンモニア吸蔵材109に於いて吸蔵する事が出来るアンモニアの量を超える場合であっても、その超えた分のアンモニアを燃料電池110に於いて消費する事が出来る為、アンモニア吸蔵材109の容量を大きくしなくても、想定し得る範囲の余剰のアンモニアを全て処理し大気中に排出される排気を十分に浄化する事が出来る。更に、アンモニア吸蔵材109に於けるアンモニアの吸蔵と放出とを制御する事によって、例えば電力が必要な時に、アンモニア吸蔵材109からアンモニアを放出させ、このアンモニアにより燃料電池110を駆動させる事も出来る。従って、アンモニアスリップ防止装置100は、アンモニアスリップを防止しながら、余剰のアンモニアを燃料電池110の燃料に再利用する事が出来る。更に、噴射する尿素水の量に実質的に限度が無くなる為、尿素選択触媒還元装置102に於ける制御の自由度を大きくする事が出来る。即ち、触媒101の温度が活性化温度を超えた時又は触媒101の温度が活性化温度を超えると予測された時に尿素水を過剰に噴射し触媒101の温度を低下させる事によって触媒101の温度を活性化温度に維持する触媒温度維持制御をも実現する事が出来る。触媒101の温度は、排気温度検出器106の検出値や内燃機関の運転状態に基づいて推定又は予測する事が出来る。触媒温度維持制御は、例えば、尿素水噴射制御装置105によって実施する事が出来る。尚、燃料電池110を通じて生成される電力を、触媒101を加熱するヒータ111の駆動に使用する事によって、排気温度が触媒101の活性化温度に満たない運転状態に於いても、オルタネータを駆動させる事無く、触媒101を加熱する事が出来る為、触媒101の温度を更に効果的に活性化温度に維持する事が出来る。よって、触媒101の性能を最大限に発揮させる事が出来る為、大気中に排出される窒素酸化物の量を今迄以上に低減する事が出来る。尚、燃料電池110を通じて生成される電力に余剰が有る場合は、バッテリに充電し後々の為に電力を蓄えておく事も出来る。   As described above, in the ammonia slip prevention device 100, ammonia slip can be prevented by storing excess ammonia in the ammonia storage material 109. Furthermore, even when the amount of surplus ammonia exceeds the amount of ammonia that can be stored in the ammonia storage material 109, the excess ammonia can be consumed in the fuel cell 110. Even if the capacity of the ammonia storage material 109 is not increased, it is possible to sufficiently purify the exhaust gas discharged into the atmosphere by treating all surplus ammonia in the possible range. Further, by controlling the occlusion and release of ammonia in the ammonia occlusion material 109, for example, when electricity is required, the ammonia occlusion material 109 can be released and the fuel cell 110 can be driven by this ammonia. . Therefore, the ammonia slip prevention device 100 can reuse surplus ammonia as fuel for the fuel cell 110 while preventing ammonia slip. Furthermore, since there is substantially no limit on the amount of urea water to be injected, the degree of freedom of control in the urea selective catalytic reduction device 102 can be increased. That is, when the temperature of the catalyst 101 exceeds the activation temperature or when the temperature of the catalyst 101 is predicted to exceed the activation temperature, the temperature of the catalyst 101 is decreased by excessively injecting urea water to lower the temperature of the catalyst 101. It is also possible to realize catalyst temperature maintenance control for maintaining the catalyst at the activation temperature. The temperature of the catalyst 101 can be estimated or predicted based on the detection value of the exhaust temperature detector 106 and the operating state of the internal combustion engine. The catalyst temperature maintenance control can be performed by the urea water injection control device 105, for example. The electric power generated through the fuel cell 110 is used to drive the heater 111 that heats the catalyst 101, thereby driving the alternator even in an operating state where the exhaust temperature does not reach the activation temperature of the catalyst 101. Since the catalyst 101 can be heated without any problems, the temperature of the catalyst 101 can be more effectively maintained at the activation temperature. Therefore, since the performance of the catalyst 101 can be maximized, the amount of nitrogen oxides discharged into the atmosphere can be reduced more than ever. If there is a surplus in the power generated through the fuel cell 110, the battery can be charged and stored for later use.

100 アンモニアスリップ防止装置
101 触媒
102 尿素選択触媒還元装置
103 排気管
104 尿素水噴射器
105 尿素水噴射制御装置
106 排気温度検出器
107 第一窒素酸化物濃度検出器
108 第二窒素酸化物濃度検出器
109 アンモニア吸蔵材
110 燃料電池
111 ヒータ
100 Ammonia slip prevention device 101 Catalyst 102 Urea selective catalytic reduction device 103 Exhaust pipe 104 Urea water injector 105 Urea water injection control device 106 Exhaust temperature detector 107 First nitrogen oxide concentration detector 108 Second nitrogen oxide concentration detector 109 Ammonia storage material 110 Fuel cell 111 Heater

Claims (3)

尿素水を触媒の排気上流側に於いて噴射しアンモニアを生成すると共に排気中に含有されている窒素酸化物を前記触媒上に於いてアンモニアと化学反応させる事によって窒素と水とに還元し結果的に大気中に排出される窒素酸化物の量を低減する尿素選択触媒還元装置に於けるアンモニアスリップを防止するアンモニアスリップ防止装置であって、
前記触媒の排気下流側に設置されると共に前記触媒上に於いて窒素酸化物と化学反応させる事が出来なかった余剰のアンモニアを吸蔵するアンモニア吸蔵材と、
前記アンモニア吸蔵材に吸蔵されているアンモニアを燃料とし駆動される燃料電池と、
を備えている
事を特徴とするアンモニアスリップ防止装置。
Urea water is injected upstream of the exhaust of the catalyst to produce ammonia, and nitrogen oxides contained in the exhaust are reduced to nitrogen and water by chemical reaction with ammonia on the catalyst. An ammonia slip prevention device for preventing ammonia slip in a urea selective catalytic reduction device that reduces the amount of nitrogen oxides emitted to the atmosphere,
An ammonia occlusion material that is installed on the exhaust downstream side of the catalyst and occludes excess ammonia that could not be chemically reacted with nitrogen oxides on the catalyst;
A fuel cell driven by using ammonia stored in the ammonia storage material as a fuel;
An ammonia slip prevention device characterized by comprising:
前記燃料電池は、前記アンモニア吸蔵材の排気下流側に設置されている
請求項1に記載のアンモニアスリップ防止装置。
The ammonia slip prevention device according to claim 1, wherein the fuel cell is installed on an exhaust downstream side of the ammonia storage material.
前記アンモニア吸蔵材は、塩化カルシウム吸蔵材料、臭化カルシウム吸蔵材料、又は塩化カルシウム−臭化カルシウム系吸蔵材料によって形成されている
請求項1又は2に記載のアンモニアスリップ防止装置。
The ammonia slip prevention device according to claim 1 or 2, wherein the ammonia storage material is formed of a calcium chloride storage material, a calcium bromide storage material, or a calcium chloride-calcium bromide storage material.
JP2017024991A 2017-02-14 2017-02-14 Ammonia slip prevention device Pending JP2018131938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017024991A JP2018131938A (en) 2017-02-14 2017-02-14 Ammonia slip prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017024991A JP2018131938A (en) 2017-02-14 2017-02-14 Ammonia slip prevention device

Publications (1)

Publication Number Publication Date
JP2018131938A true JP2018131938A (en) 2018-08-23

Family

ID=63247531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017024991A Pending JP2018131938A (en) 2017-02-14 2017-02-14 Ammonia slip prevention device

Country Status (1)

Country Link
JP (1) JP2018131938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098759A (en) * 2018-12-17 2020-06-25 株式会社Ihi Fuel cell system and method for operating fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060059892A1 (en) * 2004-09-17 2006-03-23 Eaton Corporation Clean power system
JP2014047721A (en) * 2012-08-31 2014-03-17 Toyota Industries Corp Exhaust purifying device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060059892A1 (en) * 2004-09-17 2006-03-23 Eaton Corporation Clean power system
JP2014047721A (en) * 2012-08-31 2014-03-17 Toyota Industries Corp Exhaust purifying device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098759A (en) * 2018-12-17 2020-06-25 株式会社Ihi Fuel cell system and method for operating fuel cell system
JP7234663B2 (en) 2018-12-17 2023-03-08 株式会社Ihi FUEL CELL SYSTEM AND METHOD OF OPERATION OF FUEL CELL SYSTEM

Similar Documents

Publication Publication Date Title
EP1785606B1 (en) Exhaust gas purifier
JP4888480B2 (en) Control device for exhaust purification system
JP6114305B2 (en) Exhaust aftertreatment system and method for operating the system
KR101114816B1 (en) Exhaust gas purifying system
JP3883974B2 (en) Exhaust purification device
US20070289291A1 (en) Apparatus and Method for NOx Reduction
JP2015152010A (en) internal combustion engine
US9181835B2 (en) Supervisory model predictive selective catalytic reduction control method
JP2010065581A (en) Exhaust emission control system of internal combustion engine
JPWO2012108059A1 (en) Exhaust gas purification device for internal combustion engine
JP5136694B2 (en) Exhaust gas purification device for internal combustion engine
JP2023055656A (en) Eats for converting nox emission in exhaust gas from engine
JP4500698B2 (en) Exhaust gas treatment equipment
JP2018131938A (en) Ammonia slip prevention device
CN106988843B (en) Method and device for exhaust gas aftertreatment of an internal combustion engine
CN105074155A (en) Exhaust purification device for internal combustion engine
JP2015086848A (en) Exhaust emission control system of internal combustion engine
JP6122283B2 (en) Ammonia generator and exhaust purification device using the same
JP6070402B2 (en) Chemical heat storage device
JP2004108185A (en) Exhaust emission control device for diesel engine
JP2015017515A (en) Control system of exhaust emission control device
JP7063016B2 (en) Post-processing equipment
JP2020148140A (en) Exhaust emission control device
JP2011226402A (en) Exhaust emission control device
US20220259998A1 (en) Device and method for exhaust gas post treatment and use thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210706