JP2018131806A - Slope protection system - Google Patents

Slope protection system Download PDF

Info

Publication number
JP2018131806A
JP2018131806A JP2017025940A JP2017025940A JP2018131806A JP 2018131806 A JP2018131806 A JP 2018131806A JP 2017025940 A JP2017025940 A JP 2017025940A JP 2017025940 A JP2017025940 A JP 2017025940A JP 2018131806 A JP2018131806 A JP 2018131806A
Authority
JP
Japan
Prior art keywords
pressure receiving
receiving plate
slope
protection system
connecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017025940A
Other languages
Japanese (ja)
Other versions
JP6847444B2 (en
Inventor
伸吉 大岡
Shinkichi Ooka
伸吉 大岡
張 満良
Mitsuyoshi Cho
満良 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshika Engineering Co Ltd
Original Assignee
Yoshika Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshika Engineering Co Ltd filed Critical Yoshika Engineering Co Ltd
Priority to JP2017025940A priority Critical patent/JP6847444B2/en
Publication of JP2018131806A publication Critical patent/JP2018131806A/en
Application granted granted Critical
Publication of JP6847444B2 publication Critical patent/JP6847444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slope protection system in which netted bodies, pressure plates and anchors are used, and in which it is possible to increase a pressing area of the pressure plate without increasing the size of the pressure plate and to prevent damage to the netted body.SOLUTION: A slope protection system 10 has anchors 12 installed so that they are dispersed on a slope 102 of a natural ground, netted bodies 14 installed so as to extend on the slope 102, and pressure plates 16 that are mounted on the anchors 12 from above the netted bodies 14 and that press the netted bodies 14 to the slope side. The pressure plate 16 has at least three main skeleton parts extending by predetermined lengths in directions different from each other outwards in a plane direction from the center of the pressure plate 16, and a connection member that spans a space between the tips of the main skeleton parts so as to connect the tips. The connection member is inserted into a mesh of the netted body 14 in the space between the tips.SELECTED DRAWING: Figure 1

Description

本発明は、斜面保護システムに関する。   The present invention relates to a slope protection system.

我が国は、四方を海に囲まれた島国であり、雨量が多い気候帯に属する。したがって、我が国の地山の斜面は、繰り返される雨により表層の風化が進みやすく、1m〜数mの風化した不安定層(表層)と、その下に存在する岩盤等の安定地層(深層)と、から形成されるものが多いという特徴がある。   Japan is an island country surrounded by the sea on all sides, and belongs to a climatic zone with heavy rainfall. Therefore, the slopes of natural rocks in Japan are prone to weathering of the surface layer due to repeated rain, and 1 to several meters of weathered unstable layer (surface layer) and the stable layer (deep layer) such as the bedrock underneath There is a feature that many are formed from.

上記風化した不安定層を放置すると、この不安定層から斜面が崩壊して砂礫や岩石が下方へと落下し、被害が及ぶおそれがある。この不安定層からの斜面の崩壊は、主に2つのパターンに分けられる。1つは、地山の表層と深層の境界面(すべり面)に沿って上記表層(不安定層)が崩落する現象(いわゆる表層すべり)であり、もう1つは、境界面は維持されているものの、表層の中の一部が表層中から抜け落ちる局部崩壊現象(いわゆる中抜け)である。また、表層すべりと中抜けが同時に発生する斜面の崩壊現象も生じ得る。   If the weathered unstable layer is left unattended, the slope collapses from this unstable layer, and gravel and rocks may fall downward, causing damage. The slope collapse from this unstable layer is mainly divided into two patterns. One is the phenomenon that the above surface layer (unstable layer) collapses along the boundary surface (slip surface) between the surface layer and deep layer of the natural ground, and the other is that the boundary surface is maintained. However, it is a local collapse phenomenon (so-called hollowing out) in which a part of the surface layer falls out of the surface layer. In addition, a slope collapse phenomenon in which surface slip and voids occur simultaneously may occur.

これら地山の斜面の表層すべりや中抜けを防止するために、従来から種々の方法が提案されている。例えば、グラウンドアンカーやロックボルト等の緊張部材を地山の斜面の表層から不動層まで貫通させて設け、緊張部材の地山表面側端部に斜面を広くカバーできる平面視略十字形状や矩形の重量あるコンクリートブロック製の受圧板を取り付け、この受圧板に所定の緊張力を与えて緊張部材の地山表面側端部と受圧板とを係止させる斜面の保護方法が提案されている。   Various methods have been proposed in the past to prevent surface slip and voids on the slopes of these natural grounds. For example, a tension member such as a ground anchor or a rock bolt is provided so as to penetrate from the surface layer to the stationary layer of the slope of the natural ground, and a planar cross-shaped or rectangular shape in plan view that can cover the slope widely at the end of the natural ground surface side of the tension member There has been proposed a slope protecting method in which a pressure receiving plate made of a heavy concrete block is attached, and a predetermined tension force is applied to the pressure receiving plate to lock the end of the tension member on the ground surface side and the pressure receiving plate.

この斜面の保護方法によれば、複数の受圧板を斜面全体を覆うように設けることで斜面全体がコンクリートブロック製の受圧板によって押え付けられ、斜面の表層すべりや表層の中抜けを抑制することができる。   According to this slope protection method, by providing a plurality of pressure receiving plates so as to cover the entire slope, the entire slope is pressed down by the pressure receiving plate made of concrete block, and it suppresses slippage of the slope and surface omission. Can do.

しかしながら、重量のあるコンクリートブロック製の受圧板を斜面全体に配置することは、重機の使用に伴うコスト増や、施工期間の長期化につながり、全体として工費も高いものとなる。   However, placing a heavy pressure block made of a concrete block on the entire slope leads to an increase in costs associated with the use of heavy machinery and a prolonged construction period, and the construction cost is high as a whole.

そこで、重量のあるコンクリートブロックの代わりに、網状体を用いて斜面保護を行う技術が開発されている。網状体を用いる斜面保護システムは、図8に示すように、地山100の斜面102に点在させて設置されたアンカー112と、斜面102上に展設された網状体114と、網状体114の上方からアンカー112に取り付けられて網状体114を斜面102側に押圧する受圧板116とを有する。受圧板116及び受圧板116により斜面102側に押圧された網状体114全体により斜面102の保護を行うものである。   Therefore, a technique for protecting slopes using a mesh body instead of a heavy concrete block has been developed. As shown in FIG. 8, the slope protection system using a net-like body includes anchors 112 installed on the slope 102 of the natural ground 100, a net-like body 114 spread on the slope 102, and a net-like body 114. And a pressure receiving plate 116 that is attached to the anchor 112 from above and presses the mesh body 114 toward the inclined surface 102 side. The slope 102 is protected by the pressure plate 116 and the entire mesh body 114 pressed to the slope 102 side by the pressure plate 116.

このような斜面保護システムにおいて使用する受圧板としては、取扱いや設置作業を容易にするために重量がそれほど大きくなく、斜面の植生・緑化を阻害しない程度に斜面をなるべく多く覆うことができるものが好ましく用いられている。したがって、受圧板としては、サイズがそれほど大きくない(例えば、50cm〜1m)十字状の受圧板や*字状の受圧板が好ましく用いられている。   As a pressure receiving plate used in such a slope protection system, there is a pressure plate that is not so heavy in weight for facilitating handling and installation work and can cover as many slopes as possible without hindering vegetation / greening of slopes. It is preferably used. Therefore, as the pressure receiving plate, a cross-shaped pressure receiving plate or a * -shaped pressure receiving plate that is not so large (for example, 50 cm to 1 m) is preferably used.

特開2001−011863号公報JP 2001-011863 A

しかしながら、上記の十字状の受圧板を用いた場合は、受圧板自体による斜面に対する押圧力は十字状の受圧板に接する部分の斜面にしか伝えられないという状況がある。そのため、上記の植生や重量の点から受圧板のサイズを大きくすることなく、受圧板による押圧力をできるだけ斜面のより広い範囲に伝えることが望まれている。また、十字状の受圧板により網状体及び斜面を強力な力で斜面側に押圧するため、網状体の受圧板と接触する部分に負荷が生じ、網状体が損傷する場合があった。網状体が損傷すると網状体による斜面安定化効果が低下する恐れがある。   However, when the above-described cross-shaped pressure receiving plate is used, there is a situation in which the pressure applied to the inclined surface by the pressure receiving plate itself can be transmitted only to the inclined surface in contact with the cross-shaped pressure receiving plate. Therefore, it is desired to transmit the pressing force by the pressure receiving plate to a wider range of the slope as much as possible without increasing the size of the pressure receiving plate in terms of vegetation and weight. Further, since the mesh body and the inclined surface are pressed to the inclined surface side with a strong force by the cross-shaped pressure receiving plate, a load is generated in the portion of the mesh body that contacts the pressure receiving plate, and the mesh body may be damaged. If the mesh body is damaged, the slope stabilization effect by the mesh body may be reduced.

したがって、本発明の目的は、網状体と受圧板とアンカーとを用いる斜面保護システムであって、受圧板のサイズを大きくすることなく、受圧板による押圧面積を増やすことができ、且つ網状体の損傷を抑制することができる斜面保護システムを提供することにある。   Therefore, an object of the present invention is a slope protection system that uses a mesh body, a pressure receiving plate, and an anchor, and can increase the pressing area of the pressure receiving plate without increasing the size of the pressure receiving plate, and It is providing the slope protection system which can suppress damage.

上記目的を達成するための請求項1に記載の斜面保護システムは、地山の斜面に点在させて設置されたアンカーと、前記斜面上に展設された網状体と、前記網状体の上方から前記アンカーに取り付けられて前記網状体を斜面側に押圧する受圧板と、を有する斜面保護システムであって、前記受圧板は、該受圧板の中心から平面方向外方にそれぞれ異なる方向で所定長さ伸長する少なくとも3本の主骨格部と、該主骨格部の先端部間に架け渡されて該先端部間を連結する連結部材とを有し、前記連結部材は、前記先端部間において前記網状体の網目内に挿通されていることを特徴とする。   In order to achieve the above object, the slope protection system according to claim 1 is provided with anchors scattered on a slope of a natural ground, a mesh body extended on the slope, and an upper side of the mesh body. And a pressure receiving plate that is attached to the anchor and presses the mesh body toward the inclined surface, wherein the pressure receiving plate is predetermined in different directions outward from the center of the pressure receiving plate in the planar direction. And at least three main skeleton portions extending in length, and a connecting member that spans between the front end portions of the main skeleton portion and connects the front end portions, and the connecting member is disposed between the front end portions. It is inserted into the mesh of the mesh body.

この構成によれば、中心から平面方向外方に伸びる少なくとも3本の主骨格部を有する受圧板(十字状の受圧板の他、*字状やY字状の受圧板でもよい)のその主骨格部の先端同士に架け渡された連結部材により受圧板と網状体とを連結しているので、アンカーの引張力は受圧板の主骨格部だけでなく、その連結部材を介しても伝達される。その結果、受圧板により押圧される斜面の面積は従来よりも広くなるので、より安定的な斜面保護システムを構築することが可能となる。また、受圧板による押圧力は受圧板自体だけでなく連結部材に分散されるので、受圧板の主骨格部と網状体との接触部での応力集中を緩和することが可能となる。   According to this configuration, the main part of the pressure receiving plate (which may be a cross-shaped pressure receiving plate, or a * -shaped or Y-shaped pressure receiving plate) having at least three main skeleton portions extending outward in the plane direction from the center. Since the pressure receiving plate and the mesh body are connected by a connecting member that spans the ends of the skeleton, the tensile force of the anchor is transmitted not only through the main skeleton of the pressure receiving plate but also through the connecting member. The As a result, since the area of the slope pressed by the pressure receiving plate is larger than that of the conventional one, it is possible to construct a more stable slope protection system. Further, since the pressing force by the pressure receiving plate is distributed not only to the pressure receiving plate itself but also to the connecting member, it is possible to alleviate the stress concentration at the contact portion between the main skeleton portion of the pressure receiving plate and the net-like body.

請求項2に記載の斜面保護システムは、前記連結部材は、ワイヤーロープであることを特徴とする。設置する斜面の凹凸形状に追従させることができるワイヤーロープを使用することにより、斜面の凹凸形状に左右されることなく、本発明の効果を発揮することができる。   The slope protection system according to claim 2 is characterized in that the connecting member is a wire rope. By using a wire rope that can follow the uneven shape of the slope to be installed, the effect of the present invention can be exhibited without being influenced by the uneven shape of the slope.

請求項3に記載の斜面保護システムは。前記主骨格部の先端部には孔部が設けられ、前記主骨格部の先端部間の前記連結部材の架け渡しは、前記孔部に前記連結部材を挿通させることによりなされていることを特徴とする。   The slope protection system according to claim 3. A hole is provided at the tip of the main skeleton, and the connecting member is bridged between the tips of the main skeleton by inserting the connecting member through the hole. And

このように、主骨格部の先端部に形成された孔部に連結部材を挿通することだけで受圧板と網状体とが連結されており、連結部材は受圧板に対して固定されずに受圧板と網状体が連結されているので、設置する受圧板の斜面の凹凸形状に連結部材を追従させるように設置することができる。   Thus, the pressure receiving plate and the net-like body are connected only by inserting the connecting member into the hole formed in the tip portion of the main skeleton, and the connecting member is not fixed to the pressure receiving plate and receives the pressure. Since the plate and the net-like body are connected, the connecting member can be installed so as to follow the uneven shape of the slope of the pressure receiving plate to be installed.

請求項4に記載の斜面保護システムは、前記網状体を構成する線は、2〜4mmの太さ及び800〜2000N/mmの引張強度を有することを特徴とする。このような太さと高い引張強度を有する線を網状体を構成する線として使用することにより、斜面保護効果をより強力且つ安定的に得ることが可能となる。 The slope protection system according to claim 4 is characterized in that the lines constituting the mesh have a thickness of 2 to 4 mm and a tensile strength of 800 to 2000 N / mm 2 . By using a wire having such a thickness and high tensile strength as a wire constituting the net-like body, it is possible to obtain a slope protecting effect more powerfully and stably.

本発明によれば、受圧板のサイズを大きくすることなく、受圧板による押圧面積を増やすことができ、且つ網状体の損傷を抑制することができる斜面保護システムを提供することができる。したがって、本発明の斜面保護システムを用いることにより、より強力且つ安定的な斜面保護効果を得ることができるだけでなく、斜面の植生・緑化も十分に促すことが可能となる。   According to the present invention, it is possible to provide a slope protection system that can increase the pressing area of the pressure receiving plate without increasing the size of the pressure receiving plate and can suppress damage to the mesh body. Therefore, by using the slope protection system of the present invention, not only can a stronger and more stable slope protection effect be obtained, but also vegetation and greening of the slope can be sufficiently promoted.

本発明の斜面保護システムの実施の形態の一例を示す断面図(a)及び平面図(b)である。It is sectional drawing (a) and top view (b) which show an example of embodiment of the slope protection system of this invention. 受圧板と網状体との連結構造の一例を示す斜視図である。It is a perspective view which shows an example of the connection structure of a receiving plate and a net-like body. 網状体の一例を示す平面図(a)及び断面図(b)である。It is the top view (a) and sectional drawing (b) which show an example of a net-like body. 孔部の他の例を示す受圧板の一部断面図である。It is a partial cross section figure of the pressure receiving plate which shows the other example of a hole. 図2で示した受圧板の受圧板の部分断面図である。It is a fragmentary sectional view of the pressure receiving plate of the pressure receiving plate shown in FIG. 受圧板の他の例を示す平面図である。It is a top view which shows the other example of a pressure receiving plate. 本発明の斜面保護システムの他の実施の形態を示す部分斜視図である。It is a fragmentary perspective view which shows other embodiment of the slope protection system of this invention. 従来の斜面保護システムを示す斜視図及び全体図である。It is the perspective view and whole figure which show the conventional slope protection system.

以下、本発明を詳細に説明する。図1(a)は、本発明の斜面保護システムの実施の形態を示す断面図(a)であり、図1(b)はその平面図である。図2は受圧板と網状体の連結構造の一例を示す斜視図である。本発明の斜面保護システムが設置される地山100は一般に、岩盤等の安定化地層(深層)G1及び深層G1上の風化した不安定層(表層)G2の斜面に沿った断層を有する。地山100の表層G2の層の厚さは、一般に1〜3mである。これら表層G2と深層G1との間にはすべり面Sがあり、表層G2はこのすべり面Sに沿って崩落し、崩落方向にある道路、鉄道、建築物等に被害を及ぼす恐れがある。本発明の斜面保護システムはこのような地山100の斜面102に設置されるものである。   Hereinafter, the present invention will be described in detail. Fig.1 (a) is sectional drawing (a) which shows embodiment of the slope protection system of this invention, FIG.1 (b) is the top view. FIG. 2 is a perspective view showing an example of a connecting structure of the pressure receiving plate and the net-like body. The natural ground 100 in which the slope protection system of the present invention is installed generally has a fault along a slope of a stabilized formation (deep layer) G1 such as a bedrock and a weathered unstable layer (surface layer) G2 on the deep layer G1. The thickness of the surface layer G2 of the natural ground 100 is generally 1 to 3 m. There is a slip surface S between the surface layer G2 and the deep layer G1, and the surface layer G2 collapses along the slip surface S, possibly causing damage to roads, railways, buildings, and the like in the collapse direction. The slope protection system of the present invention is installed on the slope 102 of such natural ground 100.

本実施の形態の斜面保護システム10は、地山100の斜面102に点在させて設置されたアンカー12と、斜面102上に展設された網状体14と、網状体14の上方からアンカー12に取り付けられて網状体14を斜面100側に押圧する受圧板16とを有する。点在配置された複数の受圧板16と、複数の受圧板16により斜面102側に押圧される網状体14とによって斜面102の保護が行われることを基本的な効果とするものである。   The slope protection system 10 according to the present embodiment includes an anchor 12 that is scattered on the slope 102 of the natural ground 100, a mesh body 14 that is spread on the slope 102, and an anchor 12 from above the mesh body 14. And a pressure receiving plate 16 that presses the mesh body 14 toward the inclined surface 100 side. The basic effect is that the slope 102 is protected by the plurality of pressure receiving plates 16 arranged in a scattered manner and the mesh body 14 pressed to the side of the slope 102 by the plurality of pressure receiving plates 16.

図2に示されているように、受圧板16は、中心から平面方向外方に伸長する4本の主骨格部18を有する受圧板(即ち、十字型の受圧板)であり、主骨格部18の先端部には、連結部材20を挿通するための孔部19が設けられている。連結部材20は、環状の一本のワイヤーロープからなり、連結部材20は各主骨格部18の各孔部19に挿通されている。また、各主骨格部18の間において、連結部材20は網状体14の網目内にも挿通されている。これにより、受圧板16と網状体14とが連結部材20を介して連結されている。   As shown in FIG. 2, the pressure receiving plate 16 is a pressure receiving plate (that is, a cross-shaped pressure receiving plate) having four main skeleton portions 18 extending outward from the center in the plane direction. A hole 19 for inserting the connecting member 20 is provided at the tip of 18. The connecting member 20 is composed of an annular wire rope, and the connecting member 20 is inserted into each hole 19 of each main skeleton 18. Further, the connecting member 20 is also inserted into the mesh of the mesh body 14 between the main skeleton portions 18. Thereby, the pressure receiving plate 16 and the mesh body 14 are connected via the connecting member 20.

このようにして受圧板16と網状体14とを連結部材20で連結しているので、アンカー12の引張力は受圧板16だけでなく、連結部材20を介しても伝達される。その結果、受圧板16による押圧力がかかる面積は従来よりも広くなるので、より安定的な斜面保護システムを構築することが可能となる。また、受圧板16による押圧力は受圧板16自体だけでなく連結部材20に分散されるので、受圧板16の主骨格部18と網状体14との接触部での応力集中を緩和することが可能となり、網状体14の劣化が抑制される。   Since the pressure receiving plate 16 and the mesh body 14 are connected by the connecting member 20 in this way, the tensile force of the anchor 12 is transmitted not only through the pressure receiving plate 16 but also through the connecting member 20. As a result, the area to which the pressing force by the pressure receiving plate 16 is applied becomes wider than before, so that a more stable slope protection system can be constructed. Further, since the pressing force by the pressure receiving plate 16 is distributed not only to the pressure receiving plate 16 itself but also to the connecting member 20, stress concentration at the contact portion between the main skeleton 18 and the mesh body 14 of the pressure receiving plate 16 can be reduced. It becomes possible, and the deterioration of the mesh body 14 is suppressed.

連結部材20としてワイヤーロープを使用することにより、設置する斜面の凹凸形状に追従させることができるので、斜面の凹凸形状に左右され難く、本発明の効果が的確に発揮される。連結部材20としてのワイヤーロープの材質としては、網状体14に使用されている線と同様の材料(後述)を使用することができる。ワイヤーロープの太さは、例えば6〜15mmである。連結部材20は防食処理されていることが好ましい。防食処理としては、亜鉛メッキ、亜鉛アルミメッキ、樹脂による被覆、又はこれらの組み合わせが挙げられる。一本のワイヤーロープからなる連結部材20は端部同士が結合部20aにて固定される。また、連結部材20としては、ワイヤーロープだけでなく、金属製などの硬質部材からなる棒状部材でもよい。本実施の形態では、一本のワイヤーロープのみを使用しているが、これに限られず、各主骨格部間にそれぞれ1本、合計4本の連結部材を設ける形としてもよい。この場合には、主骨格部と連結部材とは主骨格部先端部にて固定される。連結部材としてはワイヤーロープだけでなく、棒状部材を用いてもよい。   By using a wire rope as the connecting member 20, it is possible to follow the uneven shape of the slope to be installed, so that it is difficult to be influenced by the uneven shape of the slope, and the effect of the present invention is accurately exhibited. As the material of the wire rope as the connecting member 20, the same material (described later) as the wire used for the mesh body 14 can be used. The thickness of the wire rope is, for example, 6 to 15 mm. The connecting member 20 is preferably subjected to anticorrosion treatment. Examples of the anticorrosion treatment include zinc plating, zinc aluminum plating, resin coating, or a combination thereof. The ends of the connecting member 20 made of a single wire rope are fixed at the connecting portion 20a. Moreover, as the connection member 20, not only a wire rope but the rod-shaped member which consists of hard members, such as metal, may be sufficient. In this embodiment, only one wire rope is used. However, the present invention is not limited to this, and one connecting rope may be provided between each main skeleton portion, for a total of four connecting members. In this case, the main skeleton part and the connecting member are fixed at the front end part of the main skeleton part. As the connecting member, not only a wire rope but also a rod-shaped member may be used.

上述した網状体14は、図3(a)に示すように、一定の間隔をおいて繰り返される直線部と屈曲部とにより図示左右方向に延在する線15を構成線として、この線15を隣り合う線と相互に屈曲部において連結してなる、菱形の網目14aを有する菱形金網である。網状体14の網目14aの内接円を描いたときのこの内接円の直径が好ましくは5〜15cm以下であり、特に好ましくは5〜10cmである。図3(b)に示すように、網状体14は所定の厚みIを有している。厚みは例えば10〜30mmである。   As shown in FIG. 3A, the above-described net-like body 14 has a line 15 extending in the left-right direction as shown in the figure by a straight portion and a bent portion that are repeated at a predetermined interval, and the line 15 is It is a rhombus wire mesh having rhombus meshes 14a, which are connected to adjacent lines at a bent portion. The diameter of the inscribed circle when the inscribed circle of the mesh 14a of the mesh body 14 is drawn is preferably 5 to 15 cm, particularly preferably 5 to 10 cm. As shown in FIG. 3 (b), the mesh body 14 has a predetermined thickness I. The thickness is, for example, 10 to 30 mm.

線15の引張強度は、800〜2000N/mmであることが好ましく、1000〜2000N/mmが特に好ましい。線15の直径φは、2〜4mmの範囲が好ましく、2.5〜4mmが特に好ましい。このような太さと高い引張強度を有する線を使用することにより、斜面保護効果をより強力且つ安定的に得ることが可能となる。線15は硬鋼製であることが好ましく、具体的にはJIS G 3506に規定される硬鋼線材から作製されたものであることが好ましい。硬鋼製の線は鉄線と比較して優れたバネ性(弾性変形性)を有し、塑性変形し難いので、斜面102を強力な力で押圧することが可能である。 The tensile strength of the lines 15 is preferably 800~2000N / mm 2, 1000~2000N / mm 2 is particularly preferred. The diameter φ of the wire 15 is preferably in the range of 2 to 4 mm, particularly preferably 2.5 to 4 mm. By using a wire having such a thickness and high tensile strength, it becomes possible to obtain a slope protecting effect more powerfully and stably. The wire 15 is preferably made of hard steel, and specifically made of a hard steel wire defined in JIS G 3506. Since the hard steel wire has superior spring properties (elastic deformation) compared to the iron wire and is difficult to be plastically deformed, the inclined surface 102 can be pressed with a strong force.

網状体14はこれに限定されるものではなく、従来から使用されているものでよい。例えば、亀甲金網や、環状の構成線材からなる多数のリング部材をそれぞれ隣り合うリング部材の内周側が接触するように繋ぎ合わせてなるリングネットなども使用することができる。   The net-like body 14 is not limited to this, and may be a conventionally used one. For example, a ring net obtained by connecting a large number of ring members made of a turtle shell metal mesh or an annular component wire so that the inner peripheral sides of adjacent ring members are in contact with each other can be used.

図2に示すように、受圧板16は十字状の受圧板である。具体的には、長方体状の中心部17と中心部17から平面方向外方に伸びる4つの主骨格部18とを有する。隣り合う主骨格部18の伸長方向の角度は直角である。主骨格部18は底板18aとリブ18bから構成されている。底板18は略長方形状の板部材からなり、リブ18bは底板18aの短手方向中央部において底板18の中心部17側端部から先端部に至るまで起立するように構成されている。リブ18bは主骨格部18の先端部から中心側端部に向かうに従いその高さが漸次高くなるように構成されている。底板18の主骨格部18先端部角部は面取り加工されている。受圧板16の大きさは、通常、隣り合う主骨格部18の先端同士間の長さが0.5〜1.5mとなる大きさである。受圧板の材質は鉄などが用いられる。   As shown in FIG. 2, the pressure receiving plate 16 is a cross-shaped pressure receiving plate. Specifically, it has a rectangular parallelepiped center portion 17 and four main skeleton portions 18 extending outward from the center portion 17 in the planar direction. The angle of the extension direction of the adjacent main skeleton parts 18 is a right angle. The main skeleton 18 includes a bottom plate 18a and ribs 18b. The bottom plate 18 is made of a substantially rectangular plate member, and the rib 18b is configured to stand up from the end on the center portion 17 side to the tip of the bottom plate 18 at the center in the short direction of the bottom plate 18a. The rib 18b is configured such that the height thereof gradually increases from the front end portion of the main skeleton portion 18 toward the center side end portion. The corner portion of the tip of the main skeleton 18 of the bottom plate 18 is chamfered. The size of the pressure receiving plate 16 is usually such that the length between the tips of the adjacent main skeleton portions 18 is 0.5 to 1.5 m. The pressure receiving plate is made of iron or the like.

リブ18bの先端領域には連結部材20を挿通するための孔部19が設けられている。本実施の形態では、孔部19の形成位置はリブ18bの先端近傍であるがこれに限られず、図4に示すように、リブ28bの先端にリング部29を設けてこのリンブ部29の穴を孔部としてもよい。   A hole 19 for inserting the connecting member 20 is provided in the tip end region of the rib 18b. In the present embodiment, the hole 19 is formed in the vicinity of the tip of the rib 18b. However, the present invention is not limited to this. As shown in FIG. May be a hole.

図5は、受圧板16の断面図である。主骨格部18の底板18aの裏面18abには、下方に突出する円筒状の突起21が複数個設けられている。突起21は、網状体14の網目14a内(図3参照)に挿入されて、網状体14の面広がり方向への移動を防止する働きを有する。突起21の長さは、網状体14に係止可能な長さを有していれば良く、例えば、10〜30mmの範囲である。隣り合う突起21の間隔は、網目の大きさに合わせて調整することができ、例えば、網目1個〜2個分の間隔に調整することができる。   FIG. 5 is a cross-sectional view of the pressure receiving plate 16. A plurality of cylindrical projections 21 projecting downward are provided on the back surface 18ab of the bottom plate 18a of the main skeleton 18. The protrusion 21 is inserted into the mesh 14a of the mesh body 14 (see FIG. 3) and has a function of preventing the mesh body 14 from moving in the surface spreading direction. The length of the protrusion 21 may be a length that can be locked to the mesh body 14 and is, for example, in the range of 10 to 30 mm. The interval between the adjacent protrusions 21 can be adjusted according to the size of the mesh, for example, can be adjusted to an interval of one or two meshes.

中心部17にはアンカーを挿通及び固定するための筒状の挿通孔17aが上下方向に形成されている。本発明において用いられる受圧板は上述したものだけでなく、中心から平面方向外方にそれぞれ異なる方向で所定長さ伸長する少なくとも3本の主骨格部を有していればどのような受圧板でもよい。図6(a)〜(c)は本発明に使用することができる受圧板の平面図の例を示している。図6(a)は、4本の主骨格部38a〜dを有する受圧板であり、各主骨格部38a〜dの伸長方向の角度の間隔は90°である。4本の主骨格部38a〜dのうち、相対する2本の主骨格部38b、38dは、他方の相対する2本の主骨格部38a、38cよりも短く形成されている。また、受圧板は、図6(b)に示したY字型状の受圧板や図6(c)に示した*状の受圧板でもよい。例示した受圧板は、角部の面取り加工が形成されていてもよく、中心部と主骨格部との接続部における補強構造が更に設けられていてもよい。使用する受圧板は、斜面の土質状況や凹凸形状等により適宜選択される。なお、これらの受圧板にも主骨格部の先端部には孔部が形成される(図示せず)。   A cylindrical insertion hole 17a for inserting and fixing the anchor is formed in the center portion 17 in the vertical direction. The pressure receiving plate used in the present invention is not limited to those described above, and any pressure receiving plate may be used as long as it has at least three main skeleton parts extending in a different direction from the center to the outside in the plane direction. Good. 6A to 6C show examples of plan views of pressure receiving plates that can be used in the present invention. FIG. 6A is a pressure receiving plate having four main skeleton portions 38a to 38d, and the angle interval in the extending direction of each main skeleton portion 38a to 38d is 90 °. Of the four main skeleton portions 38a to 38d, the two opposite main skeleton portions 38b and 38d are formed shorter than the other two opposite main skeleton portions 38a and 38c. The pressure receiving plate may be a Y-shaped pressure receiving plate shown in FIG. 6B or a * -shaped pressure receiving plate shown in FIG. The illustrated pressure receiving plate may be formed with chamfered corners, and may further be provided with a reinforcing structure at a connection portion between the central portion and the main skeleton portion. The pressure receiving plate to be used is appropriately selected depending on the soil condition of the slope, the uneven shape, and the like. These pressure receiving plates also have a hole (not shown) at the tip of the main skeleton.

アンカー12は従来から用いられているものでよく、ロックボルトが好ましく用いられる。アンカー12の長さは本発明の斜面保護システムを適用する斜面の状態や層の構造により適宜調節される。隣り合うアンカー12の間隔は、例えば、1.5〜4m、好ましくは2〜3mである。アンカー12の配置は、図1(b)に示されているような千鳥状配置でもよいし、縦横に整列させた矩形条配置でもよい。   The anchor 12 may be a conventionally used one, and a lock bolt is preferably used. The length of the anchor 12 is appropriately adjusted according to the state of the slope and the layer structure to which the slope protection system of the present invention is applied. The space | interval of the adjacent anchor 12 is 1.5-4m, for example, Preferably it is 2-3m. The arrangement of the anchors 12 may be a staggered arrangement as shown in FIG. 1 (b), or a rectangular strip arrangement that is aligned vertically and horizontally.

次に、本発明の斜面保護システムを構築する手順に図1及び2を参照して説明する。まず、まずアンカー12を斜面102に固定する。アンカー12は、斜面102に所定間隔をおいて穿設されたアンカー孔50に挿入された後に、セメントミルク52をアンカー孔50に注入し、アンカー12を斜面102に固定する。アンカー12の頭部12bは地表に露出せしめられた状態で維持されている。   Next, a procedure for constructing the slope protection system of the present invention will be described with reference to FIGS. First, the anchor 12 is first fixed to the slope 102. After the anchor 12 is inserted into the anchor hole 50 formed at a predetermined interval in the slope 102, cement milk 52 is injected into the anchor hole 50 to fix the anchor 12 to the slope 102. The head 12b of the anchor 12 is maintained in a state of being exposed to the ground surface.

次に、このアンカー12が点在する斜面上に、網状体14を展設する。網状体14は、網状体14の網目のひし形の2つの対角線のうち長い対角線が上下方向と一致又はほぼ一致するように配置される。   Next, the mesh body 14 is spread on the slope where the anchors 12 are scattered. The mesh body 14 is arranged such that a long diagonal line of two diagonal lines of the rhombus of the mesh body 14 coincides with or substantially coincides with the vertical direction.

次に、網状体14の上方からアンカー12に受圧板16を取り付ける。アンカー12への受圧板16の取り付けは、受圧板16の中心部17の挿通孔17a(図2参照)にアンカー12の頭部12bを挿通させることにより行う。なお、この際、図5に示した受圧板16の突起21が網状体14の網目に係止されるように受圧板16が取り付けられる。   Next, the pressure receiving plate 16 is attached to the anchor 12 from above the mesh body 14. The pressure receiving plate 16 is attached to the anchor 12 by inserting the head portion 12b of the anchor 12 through the insertion hole 17a (see FIG. 2) of the center portion 17 of the pressure receiving plate 16. At this time, the pressure receiving plate 16 is attached so that the protrusion 21 of the pressure receiving plate 16 shown in FIG.

次に、連結部材20(図2参照)を受圧板16の各孔部19に挿通させる。この挿通の際、主骨格部18間では、連結部材20を網状体14の網目内に挿通させる。異なる網目内を数回挿通させることが好ましい。その後、連結部材20の両端部を結合して無端化し、環状とする。各孔部19に連結部材20を挿通することだけで受圧板16と網状体14とが連結されており、連結部材20は受圧板16に対して固定されずに受圧板16と網状体14が連結される。したがって、斜面102の凹凸形状に連結部材20を追従させるように設置することができる。   Next, the connecting member 20 (see FIG. 2) is inserted through each hole 19 of the pressure receiving plate 16. During this insertion, the connecting member 20 is inserted into the mesh of the mesh body 14 between the main skeleton portions 18. It is preferable to insert several times in different meshes. Thereafter, both ends of the connecting member 20 are joined to make an endless shape. The pressure receiving plate 16 and the net-like body 14 are connected only by inserting the connecting member 20 into each hole 19. The connecting member 20 is not fixed to the pressure receiving plate 16, and the pressure-receiving plate 16 and the net-like body 14 are connected. Connected. Therefore, the connecting member 20 can be installed so as to follow the uneven shape of the slope 102.

その後、受圧板16を網状体14ごと斜面方向に押下げ、網状体14が斜面に押しつけられた状態でアンカー12の頭部12bにキャップナット30を螺入させ、受圧板16の本体部12のアンカー12への取付けが終了する。受圧板16を斜面102に押し付けることにより受圧板16が存在する斜面102の部分及びその近傍部分が周囲よりも凹んだ状態となる。以上により、本発明の斜面保護システムが完成する。   Thereafter, the pressure receiving plate 16 is pushed down together with the mesh body 14 in the inclined direction, and the cap nut 30 is screwed into the head 12b of the anchor 12 in a state where the mesh body 14 is pressed against the inclined surface. The attachment to the anchor 12 is completed. By pressing the pressure receiving plate 16 against the inclined surface 102, the portion of the inclined surface 102 where the pressure receiving plate 16 exists and the vicinity thereof are indented from the surroundings. Thus, the slope protection system of the present invention is completed.

次に、本発明の斜面保護システムの他の実施の形態について図7を用いて説明する。図示中、上述した実施の形態と同じ構成については同じ符号を用いて図示しており(図2参照)、説明を省略する。   Next, another embodiment of the slope protection system of the present invention will be described with reference to FIG. In the drawing, the same components as those in the above-described embodiment are illustrated using the same reference numerals (see FIG. 2), and description thereof is omitted.

本実施の形態で特徴的なことは、主骨格部18の先端18c近傍だけでなく、先端18cと受圧板16の中心部17との間に更に孔部29が形成されており、これらの孔部29に第2の連結部材30が挿通されていることである。連結部材30としては、連結部材20と同じものを使用することができ、連結部材20と同様にして設置され、主骨格部18間では網状体14の網目内に挿通される。このようにして更に連結部材で受圧板16と網状体14とを連結することにより上述した本発明の効果をより高めることができる。   What is characteristic in the present embodiment is that not only the vicinity of the tip 18c of the main skeleton 18 but also a hole 29 is formed between the tip 18c and the center portion 17 of the pressure receiving plate 16, and these holes That is, the second connecting member 30 is inserted into the portion 29. As the connecting member 30, the same member as the connecting member 20 can be used. The connecting member 30 is installed in the same manner as the connecting member 20, and is inserted into the mesh of the mesh body 14 between the main skeleton portions 18. Thus, the effect of the present invention described above can be further enhanced by further connecting the pressure receiving plate 16 and the mesh body 14 with the connecting member.

本発明は、上記実施の形態の構成に限定されるものではなく、発明の要旨の範囲内で種々の変形が可能である。   The present invention is not limited to the configuration of the above embodiment, and various modifications are possible within the scope of the gist of the invention.

10 斜面保護システム
12 アンカー
14 網状体
16 受圧板
18 主骨格部
20 連結部材
DESCRIPTION OF SYMBOLS 10 Slope protection system 12 Anchor 14 Net-like body 16 Pressure receiving plate 18 Main frame part 20 Connection member

Claims (4)

地山の斜面に点在させて設置されたアンカーと、前記斜面上に展設された網状体と、前記網状体の上方から前記アンカーに取り付けられて前記網状体を斜面側に押圧する受圧板と、を有する斜面保護システムであって、
前記受圧板は、該受圧板の中心から平面方向外方にそれぞれ異なる方向で所定長さ伸長する少なくとも3本の主骨格部を有し、
前記斜面保護システムは更に、該主骨格部の先端部間に架け渡されて該先端部間を連結する連結部材を有し、
前記連結部材は、前記先端部間において前記網状体の網目内に挿通されていることを特徴とする斜面保護システム。
Anchors scattered on the slopes of natural ground, a mesh body extended on the slopes, and a pressure receiving plate that is attached to the anchors from above the mesh bodies and presses the mesh bodies to the slope side A slope protection system comprising:
The pressure receiving plate has at least three main skeleton parts extending a predetermined length in different directions from the center of the pressure receiving plate to the outside in the plane direction,
The slope protection system further includes a connecting member that is bridged between the distal end portions of the main skeleton portion and connects the distal end portions.
The connecting member is inserted into a mesh of the mesh body between the tip portions, and the slope protection system is characterized by.
前記連結部材は、ワイヤーロープであることを特徴とする、請求項1に記載の斜面保護システム。   The slope protection system according to claim 1, wherein the connecting member is a wire rope. 前記主骨格部の先端部には孔部が設けられ、
前記主骨格部の先端部間の前記連結部材の架け渡しは、前記孔部に前記連結部材を挿通させることによりなされていることを特徴とする請求項2に記載の斜面保護システム。
A hole is provided at the tip of the main skeleton,
The slope protection system according to claim 2, wherein the connecting member is bridged between the distal end portions of the main skeleton portion by inserting the connecting member through the hole.
前記網状体を構成する線は、2〜4mmの太さ及び800〜2000N/mmの引張強度を有することを特徴とする請求項1又は2に記載の斜面保護システム。 The lines constituting the reticulated body, slope protection system according to claim 1 or 2, characterized in that it has a tensile strength of thickness and 800~2000N / mm 2 of 2-4 mm.
JP2017025940A 2017-02-15 2017-02-15 Slope protection system Active JP6847444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017025940A JP6847444B2 (en) 2017-02-15 2017-02-15 Slope protection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017025940A JP6847444B2 (en) 2017-02-15 2017-02-15 Slope protection system

Publications (2)

Publication Number Publication Date
JP2018131806A true JP2018131806A (en) 2018-08-23
JP6847444B2 JP6847444B2 (en) 2021-03-24

Family

ID=63249462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017025940A Active JP6847444B2 (en) 2017-02-15 2017-02-15 Slope protection system

Country Status (1)

Country Link
JP (1) JP6847444B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111042155A (en) * 2019-11-23 2020-04-21 铁汉生态建设有限公司 Same-root grass and wood slope protection net structure for water and soil loss treatment
CN111910657A (en) * 2020-08-03 2020-11-10 雍万民 Temporary protection structure of ramp for construction of water conservancy project with expandable protection area
JP2021067170A (en) * 2020-04-14 2021-04-30 国土防災技術株式会社 Rock bolt displacement detection tool and slope stabilization method using the displacement detection tool
JP2021066998A (en) * 2019-10-17 2021-04-30 国土防災技術株式会社 Rock bolt displacement detection tool and slope stabilization method using the displacement detection tool

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325706U (en) * 1976-08-12 1978-03-04
JPS62185746U (en) * 1986-05-15 1987-11-26
JP2002088765A (en) * 1998-02-25 2002-03-27 Fatzer Ag Wire gauze for shielding gravel or protecting surface earth layer
EP1728924A1 (en) * 2005-05-31 2006-12-06 Artigiana Costruzioni S.r.L. Device for holding sliding masses or bodies
WO2011117790A1 (en) * 2010-03-26 2011-09-29 Lasar S.R.L. Structure for the protection and/or consolidation of slopes
JP2013136888A (en) * 2011-12-28 2013-07-11 Okabe Co Ltd Slope stabilization method and bearing plate
CN203684240U (en) * 2014-01-13 2014-07-02 四川省交通运输厅交通勘察设计研究院 Broken rock slope anchorage pier type active protecting net structure
EP2848737A1 (en) * 2013-09-13 2015-03-18 Mair Wilfried GmbH / Srl Protection shield
JP2016056506A (en) * 2014-09-05 2016-04-21 吉佳エンジニアリング株式会社 Wire net for slope protection and slope protection method using the wire net for slope protection

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325706U (en) * 1976-08-12 1978-03-04
JPS62185746U (en) * 1986-05-15 1987-11-26
JP2002088765A (en) * 1998-02-25 2002-03-27 Fatzer Ag Wire gauze for shielding gravel or protecting surface earth layer
EP1728924A1 (en) * 2005-05-31 2006-12-06 Artigiana Costruzioni S.r.L. Device for holding sliding masses or bodies
WO2011117790A1 (en) * 2010-03-26 2011-09-29 Lasar S.R.L. Structure for the protection and/or consolidation of slopes
JP2013136888A (en) * 2011-12-28 2013-07-11 Okabe Co Ltd Slope stabilization method and bearing plate
EP2848737A1 (en) * 2013-09-13 2015-03-18 Mair Wilfried GmbH / Srl Protection shield
CN203684240U (en) * 2014-01-13 2014-07-02 四川省交通运输厅交通勘察设计研究院 Broken rock slope anchorage pier type active protecting net structure
JP2016056506A (en) * 2014-09-05 2016-04-21 吉佳エンジニアリング株式会社 Wire net for slope protection and slope protection method using the wire net for slope protection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021066998A (en) * 2019-10-17 2021-04-30 国土防災技術株式会社 Rock bolt displacement detection tool and slope stabilization method using the displacement detection tool
CN111042155A (en) * 2019-11-23 2020-04-21 铁汉生态建设有限公司 Same-root grass and wood slope protection net structure for water and soil loss treatment
JP2021067170A (en) * 2020-04-14 2021-04-30 国土防災技術株式会社 Rock bolt displacement detection tool and slope stabilization method using the displacement detection tool
CN111910657A (en) * 2020-08-03 2020-11-10 雍万民 Temporary protection structure of ramp for construction of water conservancy project with expandable protection area

Also Published As

Publication number Publication date
JP6847444B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
JP2018131806A (en) Slope protection system
JP6681681B2 (en) Pressure plate
KR20120105093A (en) Fence prop fixing structure concrete for fence installation
JP2016056506A (en) Wire net for slope protection and slope protection method using the wire net for slope protection
KR101055635B1 (en) The bio-stone structure for protecting slope and the construction method thereof
JP6942334B2 (en) Pressure receiving plate set and slope protection method using this
JP6901125B2 (en) Slope protection method and slope protection system with existing legal frame
JP4514523B2 (en) Slope protection method
KR101786471B1 (en) The shoe for pile
KR101413255B1 (en) Key-stone net building in the river bottom and slope face and construction method of the same
KR101345575B1 (en) Stone bonded mat type river protection
JP4256545B2 (en) Slope protection method and reverse winding construction slope protection method
KR100466491B1 (en) Rock bolt linking reinforcement equipment
KR101669891B1 (en) Stone net structure
JP4713277B2 (en) Pile foundation reinforcement structure
JP2015042820A (en) Foundation structure
KR101790249B1 (en) Stone net structure using stone net fixing member
JP6516986B2 (en) Pressure receiving plate and slope protection system
KR101248761B1 (en) Revetment structure for slopes rock face of rock
PH12016500770B1 (en) Protective mesh, in particular for securing slopes, and associated spike plate
JP5551943B2 (en) Foundation structure using ground improvement body
JP2011094322A (en) Method for stabilizing slope, and pressure receiver
JP2020165098A (en) Station platform reinforcement structure
CN211690367U (en) Chair type double-row pile
JP4074532B2 (en) Slope protection method and protective structure used in the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210224

R150 Certificate of patent or registration of utility model

Ref document number: 6847444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250