JP2018127897A - Thermal energy recovery system - Google Patents

Thermal energy recovery system Download PDF

Info

Publication number
JP2018127897A
JP2018127897A JP2017019368A JP2017019368A JP2018127897A JP 2018127897 A JP2018127897 A JP 2018127897A JP 2017019368 A JP2017019368 A JP 2017019368A JP 2017019368 A JP2017019368 A JP 2017019368A JP 2018127897 A JP2018127897 A JP 2018127897A
Authority
JP
Japan
Prior art keywords
working medium
expander
flow path
power recovery
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017019368A
Other languages
Japanese (ja)
Other versions
JP6751031B2 (en
Inventor
足立 成人
Shigeto Adachi
成人 足立
裕 成川
Yutaka Narukawa
成川  裕
和真 西村
Kazuma Nishimura
和真 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017019368A priority Critical patent/JP6751031B2/en
Priority to EP17208350.3A priority patent/EP3358155A1/en
Priority to US15/855,778 priority patent/US10385734B2/en
Priority to KR1020180011105A priority patent/KR102227428B1/en
Priority to CN201810117676.7A priority patent/CN108397244B/en
Publication of JP2018127897A publication Critical patent/JP2018127897A/en
Application granted granted Critical
Publication of JP6751031B2 publication Critical patent/JP6751031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/12Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
    • F01C1/14Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F01C1/16Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/001Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/04Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/06Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/02Arrangements or modifications of condensate or air pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/06Control of, monitoring of, or safety arrangements for, machines or engines specially adapted for stopping, starting, idling or no-load operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal energy recovery system capable of suppressing occurrence of insufficient lubrication of a bearing during operation of an expander.SOLUTION: A thermal energy recovery system includes: an evaporator (10); an expander (20); a power recovery machine (30); a condenser (40); a pump (50); a circulation flow passage (60); a cooling flow passage (70) for supplying a part of a liquid-phase working medium flowing out from the pump (50) to the power recovery machine (30); an on-off valve (V1) provided in the cooling flow passage (70); and a control section (80). The expander (20) includes a rotor (21), a bearing (22) and a main casing (23). The power recovery machine (30) includes a power recovery section (31) and an auxiliary casing (35). The control section (80) closes the on-off valve (V1) when receiving a stop signal for stopping recovery of power in the power recovery machine (30).SELECTED DRAWING: Figure 1

Description

本発明は、熱エネルギー回収装置に関する。   The present invention relates to a thermal energy recovery device.

従来、工場等の各種設備の排熱から動力を回収する熱エネルギー回収装置が知られている。例えば、特許文献1には、蒸発器と、密閉式発電機と、凝縮器と、流体供給ポンプと、蒸発器、密閉式発電機、凝縮器及び流体供給ポンプをこの順に接続する循環流路と、冷却用配管と、を備える発電システム(熱エネルギー回収装置)が開示されている。蒸発器は、作動媒体を蒸発させる。密閉式発電機は、蒸発器から流出した作動媒体の膨張エネルギーから電力を取り出す。具体的に、密閉式発電機は、作動媒体を膨張させるスクリュータービンと、出力軸を介してスクリュータービンに接続された発電機と、スクリュータービン、出力軸及び発電機を収容する収納容器と、を有している。凝縮器は、密閉式発電機から流出した作動媒体を凝縮させる。流体供給ポンプは、凝縮器から流出した作動媒体を蒸発器へ送出する。冷却用配管は、流体供給ポンプから吐出された液相の作動媒体の一部が収納容器内に供給されるように、循環流路のうち流体供給ポンプの下流側の部位と収納容器とを接続している。   2. Description of the Related Art Conventionally, a thermal energy recovery device that recovers power from exhaust heat of various facilities such as factories is known. For example, Patent Document 1 includes an evaporator, a sealed generator, a condenser, a fluid supply pump, a circulation channel that connects the evaporator, the sealed generator, the condenser, and the fluid supply pump in this order. A power generation system (thermal energy recovery device) including a cooling pipe is disclosed. The evaporator evaporates the working medium. The hermetic generator extracts electric power from the expansion energy of the working medium flowing out of the evaporator. Specifically, the sealed generator includes a screw turbine that expands a working medium, a generator connected to the screw turbine via an output shaft, and a storage container that houses the screw turbine, the output shaft, and the generator. Have. The condenser condenses the working medium flowing out from the hermetic generator. The fluid supply pump delivers the working medium flowing out of the condenser to the evaporator. The cooling pipe connects the part of the circulation channel downstream of the fluid supply pump and the storage container so that a part of the liquid-phase working medium discharged from the fluid supply pump is supplied into the storage container. doing.

この熱エネルギー回収装置では、当該装置の運転中に流体供給ポンプから吐出された液相の作動媒体の一部が冷却用配管を通じて収納容器内に供給されるので、当該装置の運転時に発電機が有効に冷却される。   In this thermal energy recovery device, a part of the liquid-phase working medium discharged from the fluid supply pump during operation of the device is supplied into the storage container through the cooling pipe. Effectively cooled.

特開2012−97725号公報JP 2012-97725 A

特許文献1に記載されるような熱エネルギー回収装置では、当該装置の停止後の再始動時に、スクリュータービンの軸受の潤滑が不足する懸念がある。具体的に、熱エネルギー回収装置の運転が停止動作に入ると、ポンプの回転数が低下し始める。この状態において冷却用配管を通じて液相の作動媒体が膨張機内に供給され続けると、例えば蒸発器内に存在していた液相の作動媒体であって加熱媒体から熱を受けることによって蒸発した後に膨張機に流入した作動媒体が、冷却用配管を通じて供給された液相の作動媒体に冷却されることよって凝縮し、これにより、当該膨張機内に液相の作動媒体が溜まる場合がある。そして、この液相の作動媒体の蓄積によってスクリュータービンの軸受が当該液相の作動媒体に浸った場合、当該装置の再始動時(スクリュータービンの駆動時)に、軸受の潤滑不足が生じる懸念がある。   In the thermal energy recovery apparatus as described in Patent Document 1, there is a concern that the lubrication of the bearings of the screw turbine is insufficient when the apparatus is restarted after being stopped. Specifically, when the operation of the thermal energy recovery device enters a stop operation, the rotational speed of the pump starts to decrease. In this state, if the liquid-phase working medium continues to be supplied into the expander through the cooling pipe, for example, the liquid-phase working medium present in the evaporator expands after being evaporated by receiving heat from the heating medium. The working medium that has flowed into the machine is condensed by being cooled by the liquid-phase working medium supplied through the cooling pipe, whereby the liquid-phase working medium may accumulate in the expander. When the screw turbine bearing is immersed in the liquid phase working medium due to the accumulation of the liquid phase working medium, there is a concern that the bearing may be insufficiently lubricated when the apparatus is restarted (when the screw turbine is driven). is there.

本発明の目的は、膨張機の駆動時における軸受の潤滑不足の発生を抑制可能な熱エネルギー回収装置を提供することである。   An object of the present invention is to provide a thermal energy recovery device capable of suppressing the occurrence of insufficient lubrication of a bearing during driving of an expander.

前記の目的を達成するため、本発明は、加熱媒体と作動媒体とを熱交換させることによって前記作動媒体を蒸発させる蒸発器と、前記蒸発器から流出した作動媒体を膨張させる膨張機と、前記膨張機に接続された動力回収機と、前記膨張機から流出した作動媒体を凝縮させる凝縮器と、前記凝縮器から流出した作動媒体を前記蒸発器へ送るポンプと、前記蒸発器、前記膨張機、前記凝縮器及び前記ポンプをこの順に接続する循環流路と、前記ポンプから流出した液相の作動媒体の一部を前記動力回収機に供給する冷却流路と、前記冷却流路に設けられた開閉弁と、制御部と、を備え、前記膨張機は、前記作動媒体の膨張エネルギーにより回転駆動されるロータと、前記ロータが回転可能となるように当該ロータを受ける軸受と、前記ロータ及び軸受を収容する主ケーシングと、を有し、前記動力回収機は、前記ロータに接続されており当該ロータとともに回転することにより動力を回収する動力回収部と、前記動力回収部を収容するとともに前記主ケーシング内と連通する形状を有する副ケーシングと、を有し、前記制御部は、前記動力回収機での動力の回収を停止する停止信号を受信すると、前記開閉弁を閉じる、熱エネルギー回収装置を提供する。   In order to achieve the above object, the present invention provides an evaporator that evaporates the working medium by exchanging heat between the heating medium and the working medium, an expander that expands the working medium flowing out of the evaporator, A power recovery machine connected to the expander, a condenser for condensing the working medium flowing out from the expander, a pump for sending the working medium flowing out from the condenser to the evaporator, the evaporator, and the expander A circulation passage for connecting the condenser and the pump in this order, a cooling passage for supplying a part of the liquid-phase working medium flowing out from the pump to the power recovery machine, and the cooling passage. The expander includes a rotor that is rotationally driven by the expansion energy of the working medium, a bearing that receives the rotor so that the rotor can rotate, the rotor and A main casing for housing a bearing, and the power recovery machine is connected to the rotor and recovers power by rotating together with the rotor; A thermal energy recovery device that closes the on-off valve when the control unit receives a stop signal for stopping recovery of power in the power recovery machine. I will provide a.

本熱エネルギー回収装置では、制御部は、動力回収機での動力の回収を停止する停止信号を受信すると(動力回収部の冷却の必要性が低くなると)、冷却流路に設けられた開閉弁を閉じるので、副ケーシング内及び主ケーシング内における液相の作動媒体の蓄積が抑制される。よって、膨張機の軸受が液相の作動媒体に浸ることが抑制され、これにより、熱エネルギー回収装置の再始動時における軸受の潤滑不足の発生が抑制される。   In this thermal energy recovery apparatus, when the control unit receives a stop signal for stopping the recovery of power in the power recovery machine (when the necessity for cooling of the power recovery unit becomes low), the on-off valve provided in the cooling flow path Therefore, accumulation of the liquid-phase working medium in the sub casing and the main casing is suppressed. Therefore, it is suppressed that the bearing of the expander is immersed in the liquid-phase working medium, thereby suppressing the occurrence of insufficient lubrication of the bearing when the thermal energy recovery device is restarted.

この場合において、前記副ケーシングは、前記冷却流路に接続可能でかつ前記冷却流路から供給される液相の作動媒体を当該副ケーシング内に導入可能な導入部を有していてもよい。   In this case, the sub-casing may have an introduction portion that can be connected to the cooling flow path and can introduce a liquid-phase working medium supplied from the cooling flow path into the sub-casing.

この態様では、冷却流路から副ケーシング内に供給される液相の作動媒体によって動力回収部が有効に冷却される。   In this aspect, the power recovery unit is effectively cooled by the liquid-phase working medium supplied from the cooling flow path into the sub casing.

あるいは、前記動力回収機は、前記副ケーシングに設けられたジャケットであって当該ジャケットと前記副ケーシングとの間に液相の作動媒体が流れるのを許容する冷却空間を形成するジャケットをさらに有し、前記ジャケットは、前記冷却流路に接続可能でかつ前記冷却流路から供給される液相の作動媒体を前記冷却空間内に導入可能な導入部を有していてもよい。   Alternatively, the power recovery machine further includes a jacket that is provided in the sub casing and forms a cooling space that allows a liquid-phase working medium to flow between the jacket and the sub casing. The jacket may have an introduction portion that can be connected to the cooling flow path and can introduce a liquid-phase working medium supplied from the cooling flow path into the cooling space.

この態様では、冷却流路から冷却空間に供給される液相の作動媒体によって副ケーシングを介して動力回収部が有効に冷却される。   In this aspect, the power recovery unit is effectively cooled via the sub casing by the liquid-phase working medium supplied from the cooling flow path to the cooling space.

また、本発明は、加熱媒体と作動媒体とを熱交換させることによって前記作動媒体を蒸発させる蒸発器と、前記蒸発器から流出した作動媒体を膨張させる膨張機と、前記膨張機に接続された動力回収機と、前記膨張機から流出した作動媒体を凝縮させる凝縮器と、前記凝縮器から流出した作動媒体を前記蒸発器へ送るポンプと、前記蒸発器、前記膨張機、前記凝縮器及び前記ポンプをこの順に接続する循環流路と、前記作動媒体とは異なる冷却媒体を前記動力回収機に供給することによって当該動力回収機を冷却する冷却流路と、前記冷却流路に設けられた開閉弁と、制御部と、を備え、前記膨張機は、前記作動媒体の膨張エネルギーにより回転駆動されるロータと、前記ロータが回転可能となるように当該ロータを受ける軸受と、前記ロータ及び軸受を収容する主ケーシングと、を有し、前記動力回収機は、前記ロータに接続されており当該ロータとともに回転することにより動力を回収する動力回収部と、前記動力回収部を収容するとともに前記主ケーシング内と連通する形状を有する副ケーシングと、を有し、前記制御部は、前記動力回収機での動力の回収を停止させる停止信号を受信すると、前記開閉弁を閉じる、熱エネルギー回収装置を提供する。   In addition, the present invention is connected to the evaporator that evaporates the working medium by exchanging heat between the heating medium and the working medium, the expander that expands the working medium that has flowed out of the evaporator, and the expander. A power recovery machine, a condenser for condensing the working medium flowing out from the expander, a pump for sending the working medium flowing out from the condenser to the evaporator, the evaporator, the expander, the condenser, and the A circulation flow path connecting the pumps in this order, a cooling flow path for cooling the power recovery machine by supplying a cooling medium different from the working medium to the power recovery machine, and an opening / closing provided in the cooling flow path A valve, a control unit, and the expander includes a rotor that is rotationally driven by the expansion energy of the working medium, a bearing that receives the rotor so that the rotor can rotate, And a main casing that accommodates the bearing, and the power recovery machine is connected to the rotor and recovers power by rotating together with the rotor, and houses the power recovery part. A sub-casing having a shape communicating with the inside of the main casing, and the control unit closes the on-off valve when receiving a stop signal for stopping the recovery of power in the power recovery machine. Providing the device.

この熱エネルギー回収装置においても、当該装置の駆動時(運転開始時)における膨張機の軸受の潤滑不足の発生が抑制される。   Also in this thermal energy recovery device, the occurrence of insufficient lubrication of the expander bearing when the device is driven (at the start of operation) is suppressed.

また、前記熱エネルギー回収装置において、前記主ケーシング内又は前記副ケーシング内の液相の作動媒体を前記膨張機の下流側でかつ前記ポンプの上流側に戻す液抜流路をさらに備えることが好ましい。   The thermal energy recovery device preferably further includes a liquid drainage channel that returns the liquid-phase working medium in the main casing or the sub-casing to the downstream side of the expander and the upstream side of the pump. .

このようにすれば、主ケーシング内又は副ケーシング内の液相の作動媒体が液抜流路を通じて当該主ケーシング内又は副ケーシング内から有効に排出されるので、軸受が液相の作動媒体に浸ることがより確実に抑制される。   By doing so, the liquid-phase working medium in the main casing or the sub-casing is effectively discharged from the main casing or the sub-casing through the liquid drainage channel, so that the bearing is immersed in the liquid-phase working medium. Is more reliably suppressed.

この場合において、前記液抜流路に設けられた液抜弁と、前記膨張機をバイパスするバイパス流路と、前記バイパス流路に設けられたバイパス弁と、前記循環流路のうち、当該循環流路と前記バイパス流路の上流側の端部との接続部と、前記膨張機と、の間の部位に設けられた遮断弁と、をさらに備え、前記制御部は、前記動力回収機での動力の回収を停止させる停止信号を受信すると、前記ポンプの回転数を低下させることと、前記遮断弁を閉じかつ前記バイパス弁を開くことと、前記開閉弁を閉じることと、を行い、前記ポンプが停止した後に前記液抜弁を開くことが好ましい。   In this case, a liquid drain valve provided in the liquid drain flow path, a bypass flow path that bypasses the expander, a bypass valve provided in the bypass flow path, and the circulation flow among the circulation flow paths. A shutoff valve provided at a site between the passage and the upstream end of the bypass flow path, and the expander, and the control unit is a power recovery machine When receiving a stop signal for stopping the recovery of power, the pump reduces the rotational speed of the pump, closes the shut-off valve and opens the bypass valve, and closes the open / close valve. It is preferable to open the liquid drain valve after stopping.

このようにすれば、主ケーシング内又は副ケーシング内の液相の作動媒体が当該ケーシング内から有効に排出され、しかも、ポンプが停止するまでの間における作動媒体の主ケーシング内への流入が抑制される。具体的に、ポンプが停止する前に液抜弁が開かれた場合、ポンプから吐出された後にバイパス流路を経て膨張機の下流側に至った作動媒体が、当該膨張機の下流側から循環流路を逆流することによって膨張機の主ケーシング内に流入し、主ケーシング内で液化するおそれがある。これに対し、本熱エネルギー回収装置では、制御部は、ポンプが停止した後に液抜弁を開くので、上記のような不具合の発生が抑制される。   In this way, the liquid-phase working medium in the main casing or sub-casing is effectively discharged from the casing, and the inflow of the working medium into the main casing until the pump stops is suppressed. Is done. Specifically, when the drain valve is opened before the pump stops, the working medium that has been discharged from the pump and reaches the downstream side of the expander via the bypass flow path is circulated from the downstream side of the expander. By flowing backward in the path, there is a risk of flowing into the main casing of the expander and liquefying in the main casing. On the other hand, in this thermal energy recovery device, the control unit opens the drain valve after the pump is stopped, so that the occurrence of the above-described problems is suppressed.

以上のように、本発明によれば、膨張機の駆動時における軸受の潤滑不足の発生を抑制可能な熱エネルギー回収装置を提供することができる。   As described above, according to the present invention, it is possible to provide a thermal energy recovery device capable of suppressing the occurrence of insufficient lubrication of a bearing during driving of an expander.

本発明の第1実施形態の熱エネルギー回収装置の構成を概略的に示す図である。It is a figure showing roughly the composition of the thermal energy recovery device of a 1st embodiment of the present invention. 制御部の制御内容を示すフローチャートである。It is a flowchart which shows the control content of a control part. 本発明の第2実施形態の熱エネルギー回収装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the thermal energy recovery apparatus of 2nd Embodiment of this invention. 本発明の第3実施形態の熱エネルギー回収装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the thermal energy recovery apparatus of 3rd Embodiment of this invention.

以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態の熱エネルギー回収装置の構成を示している。この熱エネルギー回収装置は、蒸発器10と、膨張機20と、動力回収機30と、凝縮器40と、ポンプ50と、蒸発器10、膨張機20、凝縮器40及びポンプ50をこの順に接続する循環流路60と、冷却流路70と、制御部80と、を備えている。
(First embodiment)
FIG. 1 shows the configuration of the thermal energy recovery apparatus according to the first embodiment of the present invention. This thermal energy recovery device connects the evaporator 10, the expander 20, the power recovery machine 30, the condenser 40, the pump 50, the evaporator 10, the expander 20, the condenser 40, and the pump 50 in this order. The circulation channel 60, the cooling channel 70, and the control unit 80 are provided.

蒸発器10は、作動媒体と加熱媒体とを熱交換させることによって作動媒体を蒸発させる。   The evaporator 10 evaporates the working medium by exchanging heat between the working medium and the heating medium.

膨張機20は、循環流路60のうち蒸発器10の下流側の部位に設けられている。膨張機20は、蒸発器10から流出した気相の作動媒体を膨張させる。本実施形態では、膨張機20として、気相の作動媒体の膨張エネルギーにより回転駆動されるロータを有する容積式のスクリュ膨張機が用いられている。具体的に、膨張機20は、作動媒体の膨張エネルギーにより回転駆動する雌雄一対のスクリュロータ(ロータ)21と、スクリュロータ21が回転可能となるように当該スクリュロータ21を受ける軸受22と、一対のスクリュロータ21及び軸受22をまとめて収容する主ケーシング23と、を有している。主ケーシング23は、蒸発器10から流出した作動媒体を吸い込む吸込口23aと、膨張後(一対のスクリュロータ21を回転駆動させた後)の作動媒体を循環流路60へ排出する排出口23bと、を有している。本実施形態では、排出口23bが水平を向く姿勢で主ケーシング23が設置されている。軸受22は、主ケーシング23に保持されている。   The expander 20 is provided in a portion of the circulation channel 60 on the downstream side of the evaporator 10. The expander 20 expands the gas phase working medium flowing out of the evaporator 10. In this embodiment, a positive displacement screw expander having a rotor that is rotationally driven by the expansion energy of a gas phase working medium is used as the expander 20. Specifically, the expander 20 includes a pair of male and female screw rotors (rotors) 21 that are rotationally driven by the expansion energy of the working medium, a bearing 22 that receives the screw rotor 21 so that the screw rotor 21 can be rotated, and a pair. And a main casing 23 that collectively accommodates the screw rotor 21 and the bearing 22. The main casing 23 includes a suction port 23a for sucking the working medium flowing out from the evaporator 10, and a discharge port 23b for discharging the working medium after expansion (after the pair of screw rotors 21 are driven to rotate) to the circulation channel 60. ,have. In the present embodiment, the main casing 23 is installed with the discharge port 23b facing horizontally. The bearing 22 is held by the main casing 23.

動力回収機30は、膨張機20に接続されている。具体的に、動力回収機30は、動力回収部31と、副ケーシング35と、を有している。   The power recovery machine 30 is connected to the expander 20. Specifically, the power recovery machine 30 includes a power recovery unit 31 and a sub casing 35.

動力回収機30は、一対のスクリュロータ21のうちの一方のスクリュロータ21に接続されており、当該スクリュロータ21とともに回転することにより動力を回収する。本実施形態では、動力回収機30として発電機が用いられている。すなわち、動力回収部31は、一対のスクリュロータ21の一方のスクリュロータ21に接続された回転軸32と、回転軸32に固定されたロータ33と、ロータ33の周囲に配置されたステータ34と、を有する。なお、動力回収機30として、圧縮機等が用いられてもよい。   The power recovery machine 30 is connected to one screw rotor 21 of the pair of screw rotors 21 and recovers power by rotating together with the screw rotor 21. In the present embodiment, a power generator is used as the power recovery machine 30. That is, the power recovery unit 31 includes a rotating shaft 32 connected to one screw rotor 21 of the pair of screw rotors 21, a rotor 33 fixed to the rotating shaft 32, and a stator 34 disposed around the rotor 33. Have. Note that a compressor or the like may be used as the power recovery machine 30.

副ケーシング35は、動力回収部31を収容する。副ケーシング35は、主ケーシング23に固定されている。副ケーシング35内は、主ケーシング23内と連通している。このため、主ケーシング23内において膨張した作動媒体の一部は、副ケーシング35内に至る。   The sub casing 35 accommodates the power recovery unit 31. The sub casing 35 is fixed to the main casing 23. The inside of the sub casing 35 communicates with the inside of the main casing 23. For this reason, a part of the working medium expanded in the main casing 23 reaches the sub casing 35.

凝縮器40は、循環流路60のうち膨張機20の下流側の部位に設けられている。凝縮器40は、膨張機20から流出した作動媒体と冷却媒体(冷却水等)とを熱交換させることによって作動媒体を凝縮させる。   The condenser 40 is provided in a portion of the circulation channel 60 on the downstream side of the expander 20. The condenser 40 condenses the working medium by exchanging heat between the working medium flowing out from the expander 20 and a cooling medium (cooling water or the like).

本実施形態では、循環流路60のうち凝縮器40の下流側の部位に、液相の作動媒体を貯留する貯留部(レシーバ)45が設けられている。ただし、この貯留部45は、循環流路60の一部により構成されてもよいし、省略されてもよい。   In the present embodiment, a storage part (receiver) 45 that stores a liquid-phase working medium is provided in a portion of the circulation channel 60 on the downstream side of the condenser 40. However, the storage unit 45 may be configured by a part of the circulation channel 60 or may be omitted.

ポンプ50は、循環流路60における凝縮器40の下流側の部位(凝縮器40と蒸発器10との間の部位)に設けられている。ポンプ50は、凝縮器40から流出した液相の作動媒体を所定の圧力で蒸発器10に送る。   The pump 50 is provided at a site downstream of the condenser 40 in the circulation channel 60 (a site between the condenser 40 and the evaporator 10). The pump 50 sends the liquid-phase working medium flowing out of the condenser 40 to the evaporator 10 at a predetermined pressure.

冷却流路70は、ポンプ50から流出した液相の作動媒体の一部を動力回収機30に供給する。本実施形態では、冷却流路70は、循環流路60のうちポンプ50と蒸発器10との間の部位、副ケーシング35と、を接続している。具体的に、副ケーシング35は、液相の作動媒体を当該副ケーシング35内に導入可能な導入部35aを有しており、冷却流路70の下流側の端部は、導入部35aに接続されている。このため、ポンプ50から吐出された液相の作動媒体の一部は、冷却流路70を経由して副ケーシング35内に供給される。これにより、動力回収部31が有効に冷却される。   The cooling flow path 70 supplies a part of the liquid-phase working medium that has flowed out of the pump 50 to the power recovery machine 30. In the present embodiment, the cooling flow path 70 connects a portion of the circulation flow path 60 between the pump 50 and the evaporator 10 and the sub casing 35. Specifically, the sub casing 35 has an introduction portion 35a capable of introducing a liquid-phase working medium into the sub casing 35, and the downstream end of the cooling flow path 70 is connected to the introduction portion 35a. Has been. For this reason, a part of the liquid-phase working medium discharged from the pump 50 is supplied into the auxiliary casing 35 via the cooling flow path 70. Thereby, the power recovery unit 31 is effectively cooled.

本実施形態の熱エネルギー回収装置は、液抜流路71をさらに備えている。液抜流路71は、主ケーシング23内又は副ケーシング35内の液相の作動媒体Rを、膨張機20の下流側でかつポンプ50の上流側、すなわち、作動媒体が液相で存在する領域に戻す。具体的に、液抜流路71は、主ケーシング23に形成された導出部23cと、循環流路60のうち貯留部45とポンプ50との間の部位と、を接続している。導出部23cは、主ケーシング23のうち最も下方に位置する底部25に設けられている。なお、液抜流路71の下流側の端部は、循環流路60のうち膨張機20と凝縮器40との間の部位、凝縮器40内、あるいは、貯留部45に接続されてもよい。   The thermal energy recovery device of this embodiment further includes a liquid drainage channel 71. The liquid drainage flow channel 71 is a region where the liquid-phase working medium R in the main casing 23 or the sub-casing 35 exists on the downstream side of the expander 20 and the upstream side of the pump 50, that is, the working medium exists in the liquid phase. Return to. Specifically, the liquid drainage channel 71 connects the lead-out part 23 c formed in the main casing 23 and a part of the circulation channel 60 between the storage part 45 and the pump 50. The lead-out portion 23 c is provided on the bottom portion 25 located on the lowermost side of the main casing 23. Note that the downstream end of the liquid drainage channel 71 may be connected to a portion of the circulation channel 60 between the expander 20 and the condenser 40, the condenser 40, or the storage unit 45. .

本実施形態の熱エネルギー回収装置は、膨張機20をバイパスするバイパス流路62と、冷却流路70に設けられた開閉弁V1と、循環流路60に設けられた遮断弁V2と、バイパス流路62に設けられたバイパス弁V3と、液抜流路71に設けられた液抜弁V4と、をさらに備えている。各弁V1〜V4は、開閉可能に構成されている。   The thermal energy recovery device of the present embodiment includes a bypass flow path 62 that bypasses the expander 20, an on-off valve V1 provided in the cooling flow path 70, a shutoff valve V2 provided in the circulation flow path 60, and a bypass flow. A bypass valve V3 provided in the passage 62 and a liquid drain valve V4 provided in the liquid drain passage 71 are further provided. Each valve V1-V4 is comprised so that opening and closing is possible.

バイパス流路62の上流側の端部は、循環流路60のうち蒸発器10と膨張機20との間の部位に接続されている。バイパス流路62の下流側の端部は、循環流路60のうち膨張機20と凝縮器40との間の部位に接続されている。   An upstream end of the bypass flow path 62 is connected to a portion of the circulation flow path 60 between the evaporator 10 and the expander 20. The downstream end of the bypass channel 62 is connected to a portion of the circulation channel 60 between the expander 20 and the condenser 40.

遮断弁V2は、循環流路60のうち、当該循環流路60とバイパス流路62の上流側の端部との接続部と、膨張機20と、の間の部位に設けられている。   The shutoff valve V <b> 2 is provided in a portion between the expansion channel 20 and the connection between the circulation channel 60 and the upstream end of the bypass channel 62 in the circulation channel 60.

制御部80は、動力回収機30での動力(本実施形態では電力)の回収中(膨張機20、動力回収機30及びポンプ50の駆動中)において、動力回収機30での動力の回収を停止する停止信号を受信すると、動力回収部31の冷却、つまり、ポンプ50から吐出された液相の作動媒体の一部の冷却流路70を通じた動力回収機30への供給を停止する。以下、図2を参照しながら、制御部80の制御内容について説明する。なお、本装置の駆動中は、開閉弁V1及び遮断弁V2が開かれており、バイパス弁V3及び液抜弁V4は閉じられている。   The control unit 80 collects power in the power recovery machine 30 during recovery of power (electric power in this embodiment) in the power recovery machine 30 (while the expander 20, the power recovery machine 30, and the pump 50 are being driven). When the stop signal to be stopped is received, the cooling of the power recovery unit 31, that is, the supply to the power recovery machine 30 through a part of the cooling flow path 70 of the liquid phase working medium discharged from the pump 50 is stopped. Hereinafter, the control content of the control unit 80 will be described with reference to FIG. During the operation of this apparatus, the on-off valve V1 and the shutoff valve V2 are opened, and the bypass valve V3 and the liquid drain valve V4 are closed.

制御部80は、前記停止信号を受信すると、ポンプ50、膨張機20及び動力回収機30の回転数を低下させるとともに、遮断弁V2を閉じ、バイパス弁V3を開く(ステップS11)。これにより、蒸発器10から流出した気相の作動媒体は、バイパス流路62を経由して(膨張機20をバイパスして)凝縮器40へ向かう。   When the control unit 80 receives the stop signal, the controller 80 decreases the rotational speeds of the pump 50, the expander 20, and the power recovery machine 30, closes the shutoff valve V2, and opens the bypass valve V3 (step S11). Thereby, the gas phase working medium flowing out of the evaporator 10 is directed to the condenser 40 via the bypass flow path 62 (bypassing the expander 20).

膨張機20及び動力回収機30の回転数の低下により、動力回収部31の冷却の必要性が低くなるので、制御部80は、開閉弁V1を閉じる(ステップS12)。この結果、冷却流路70を通じた副ケーシング35内への液相の作動媒体の供給が停止される。よって、動力回収部31が過度に冷却されること、換言すれば、副ケーシング35内及び主ケーシング23内への液相の作動媒体Rの蓄積が抑制される。   Since the necessity for cooling of the power recovery unit 31 is reduced due to the decrease in the rotation speed of the expander 20 and the power recovery unit 30, the control unit 80 closes the on-off valve V1 (step S12). As a result, the supply of the liquid-phase working medium into the sub casing 35 through the cooling channel 70 is stopped. Therefore, the power recovery unit 31 is excessively cooled, in other words, accumulation of the liquid-phase working medium R in the sub casing 35 and the main casing 23 is suppressed.

その後、制御部80は、ポンプ50が停止した後に、液抜弁V4を開く(ステップS13)。これにより、主ケーシング23内又は副ケーシング35内の液相の作動媒体Rが当該ケーシング23,35内から有効に排出される。   Thereafter, the controller 80 opens the liquid drain valve V4 after the pump 50 is stopped (step S13). As a result, the liquid-phase working medium R in the main casing 23 or the sub-casing 35 is effectively discharged from the casings 23 and 35.

以上のように、本熱エネルギー回収装置では、制御部80は、前記停止信号を受信すると(動力回収部31の冷却の必要性が低くなると)、ポンプ50から吐出された液相の作動媒体の一部の冷却流路70を通じた動力回収機30への供給を停止する。具体的に、制御部80は、前記停止信号を受信すると、冷却流路70に設けられた開閉弁V1を閉じる。このため、副ケーシング35内及び主ケーシング23内における液相の作動媒体の蓄積が抑制される。よって、膨張機20の軸受22が液相の作動媒体Rに浸ることが抑制され、これにより、熱エネルギー回収装置の再始動時における軸受22の潤滑不足の発生が抑制される。   As described above, in the present thermal energy recovery apparatus, when the control unit 80 receives the stop signal (when the necessity of cooling the power recovery unit 31 becomes low), the control unit 80 of the liquid-phase working medium discharged from the pump 50 Supply to the power recovery machine 30 through some cooling flow paths 70 is stopped. Specifically, when receiving the stop signal, the controller 80 closes the on-off valve V1 provided in the cooling flow path 70. For this reason, accumulation of the liquid-phase working medium in the sub casing 35 and the main casing 23 is suppressed. Therefore, it is suppressed that the bearing 22 of the expander 20 is immersed in the liquid-phase working medium R, thereby suppressing the occurrence of insufficient lubrication of the bearing 22 when the thermal energy recovery device is restarted.

また、制御部80は、ステップS13において、ポンプ50が停止した後に液抜弁V4を開くので、主ケーシング23内又は副ケーシング35内の液相の作動媒体Rが当該ケーシング23,35内から有効に排出され、しかも、ポンプ50が停止するまでの間における作動媒体の主ケーシング23内への流入が抑制される。具体的に、ポンプ50が停止する前に液抜弁V4が開かれた場合、ポンプ50から吐出された後にバイパス流路62を経て膨張機20の下流側に至った作動媒体が、当該膨張機20の下流側から循環流路60を逆流することによって膨張機20の主ケーシング23内に流入し、主ケーシング23内で液化するおそれがある。これに対し、本実施形態では、制御部80は、ポンプ50が停止した後に液抜弁V4を開くので、上記のような不具合の発生が抑制される。   In step S13, the control unit 80 opens the liquid drain valve V4 after the pump 50 is stopped, so that the liquid-phase working medium R in the main casing 23 or the sub-casing 35 is effective from the casings 23 and 35. Further, the inflow of the working medium into the main casing 23 until the pump 50 is stopped is suppressed. Specifically, when the drain valve V4 is opened before the pump 50 is stopped, the working medium that has been discharged from the pump 50 and then reaches the downstream side of the expander 20 via the bypass flow path 62 becomes the expander 20. By flowing backward through the circulation flow path 60 from the downstream side, the air flows into the main casing 23 of the expander 20 and may be liquefied in the main casing 23. On the other hand, in this embodiment, since the control part 80 opens the drain valve V4 after the pump 50 stops, generation | occurrence | production of the above malfunctions is suppressed.

(第2実施形態)
次に、図3を参照しながら、本発明の第2実施形態の熱エネルギー回収装置について説明する。なお、第2実施形態では、第1実施形態と異なる部分についてのみ説明を行い、第1実施形態と同じ構造、作用及び効果の説明は省略する。
(Second Embodiment)
Next, a thermal energy recovery device according to a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, only parts different from the first embodiment will be described, and the description of the same structure, operation, and effect as in the first embodiment will be omitted.

本実施形態では、動力回収機30は、ジャケット36を有しており、冷却流路70の下流側の端部は、ジャケット36に接続されている。   In the present embodiment, the power recovery machine 30 has a jacket 36, and the downstream end of the cooling flow path 70 is connected to the jacket 36.

ジャケット36は、当該ジャケット36と副ケーシング35との間に液相の作動媒体が流れるのを許容する冷却空間Sが形成されるように副ケーシング35に設けられている。ジャケット36は、副ケーシング35の外周面の外側に配置されている。つまり、冷却空間Sは、副ケーシング35の外周面とジャケット36の内周面との間に形成されている。このジャケット36は、冷却流路70の下流側の端部に接続可能でかつ冷却流路70から供給される液相の作動媒体を冷却空間S内に導入可能な導入部36aを有している。   The jacket 36 is provided in the sub casing 35 so as to form a cooling space S that allows the liquid-phase working medium to flow between the jacket 36 and the sub casing 35. The jacket 36 is disposed outside the outer peripheral surface of the sub casing 35. That is, the cooling space S is formed between the outer peripheral surface of the sub casing 35 and the inner peripheral surface of the jacket 36. The jacket 36 has an introduction portion 36 a that can be connected to the downstream end of the cooling flow path 70 and can introduce the liquid-phase working medium supplied from the cooling flow path 70 into the cooling space S. .

また、冷却空間Sを通過することにより副ケーシング35を介して動力回収部31を冷却した冷却媒体は、排出流路72を通じて循環流路60に流入する。排出流路72の上流側の端部は、ジャケット36に形成された排出部36bに接続されており、排出流路72の下流側の端部は、循環流路60のうち膨張機20と凝縮器40との間の部位に接続されている。   In addition, the cooling medium that has cooled the power recovery unit 31 through the sub casing 35 by passing through the cooling space S flows into the circulation channel 60 through the discharge channel 72. An upstream end portion of the discharge flow path 72 is connected to a discharge portion 36 b formed in the jacket 36, and a downstream end portion of the discharge flow path 72 is condensed with the expander 20 in the circulation flow path 60. It is connected to the part between the container 40.

以上のように、本実施形態においても、膨張機20の軸受22が液相の作動媒体Rに浸ることが抑制され、これにより、熱エネルギー回収装置の再始動時における軸受22の潤滑不足の発生が抑制される。   As described above, also in the present embodiment, the bearing 22 of the expander 20 is suppressed from being immersed in the liquid-phase working medium R, thereby causing insufficient lubrication of the bearing 22 when the thermal energy recovery device is restarted. Is suppressed.

(第3実施形態)
次に、図4を参照しながら、本発明の第3実施形態の熱エネルギー回収装置について説明する。なお、第3実施形態では、第1実施形態と異なる部分についてのみ説明を行い、第1実施形態と同じ構造、作用及び効果の説明は省略する。
(Third embodiment)
Next, a thermal energy recovery device according to a third embodiment of the present invention will be described with reference to FIG. In the third embodiment, only parts different from the first embodiment will be described, and the description of the same structure, operation, and effect as in the first embodiment will be omitted.

本実施形態では、動力回収機30がジャケット36を有していることは第2実施形態と共通しているものの、冷却空間Sには、作動媒体とは異なる冷却媒体(冷却水等)が供給される。   In the present embodiment, the power recovery machine 30 has the jacket 36 in common with the second embodiment, but a cooling medium (cooling water or the like) different from the working medium is supplied to the cooling space S. Is done.

ジャケット36には、冷却媒体を供給する冷却媒体供給ラインL1から分岐した冷却流路73が接続されている。このため、本実施形態では、冷却空間Sを通過する冷却媒体によって副ケーシング35を介して動力回収部31が冷却される。冷却空間Sを通過した冷却媒体は、ジャケット36に接続された冷却媒体回収流路74を通じて、冷却媒体を排出する冷却媒体排出ラインL2に戻される。   The jacket 36 is connected to a cooling flow path 73 branched from a cooling medium supply line L1 for supplying a cooling medium. For this reason, in this embodiment, the power recovery unit 31 is cooled via the sub casing 35 by the cooling medium passing through the cooling space S. The cooling medium that has passed through the cooling space S is returned to the cooling medium discharge line L <b> 2 that discharges the cooling medium through the cooling medium recovery passage 74 connected to the jacket 36.

以上のように、本実施形態においても、上記各実施形態と同様の効果が得られる。   As described above, also in this embodiment, the same effects as those in the above embodiments can be obtained.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

例えば、冷却空間Sを形成する副ケーシング35及びジャケット36は、それぞれ別の部材であってもよく、鋳造により一体成型された部材であってもよい。   For example, the sub casing 35 and the jacket 36 that form the cooling space S may be separate members, or may be members integrally formed by casting.

10 蒸発器
20 膨張機
21 ロータ(スクリュロータ)
22 軸受
23 主ケーシング
30 動力回収機
31 動力回収部
35 副ケーシング
36 ジャケット
40 凝縮器
50 ポンプ
60 循環流路
62 バイパス流路
70 冷却流路
71 液抜流路
73 冷却流路
80 制御部
S 冷却空間
V1 開閉弁
V2 遮断弁
V3 バイパス弁
V4 液抜弁
DESCRIPTION OF SYMBOLS 10 Evaporator 20 Expander 21 Rotor (screw rotor)
DESCRIPTION OF SYMBOLS 22 Bearing 23 Main casing 30 Power recovery machine 31 Power recovery part 35 Subcasing 36 Jacket 40 Condenser 50 Pump 60 Circulation flow path 62 Bypass flow path 70 Cooling flow path 71 Drain flow path 73 Cooling flow path 80 Control part S Cooling space V1 On-off valve V2 Shut-off valve V3 Bypass valve V4 Liquid drain valve

Claims (6)

加熱媒体と作動媒体とを熱交換させることによって前記作動媒体を蒸発させる蒸発器と、
前記蒸発器から流出した作動媒体を膨張させる膨張機と、
前記膨張機に接続された動力回収機と、
前記膨張機から流出した作動媒体を凝縮させる凝縮器と、
前記凝縮器から流出した作動媒体を前記蒸発器へ送るポンプと、
前記蒸発器、前記膨張機、前記凝縮器及び前記ポンプをこの順に接続する循環流路と、
前記ポンプから流出した液相の作動媒体の一部を前記動力回収機に供給する冷却流路と、
前記冷却流路に設けられた開閉弁と、
制御部と、を備え、
前記膨張機は、
前記作動媒体の膨張エネルギーにより回転駆動されるロータと、
前記ロータが回転可能となるように当該ロータを受ける軸受と、
前記ロータ及び軸受を収容する主ケーシングと、を有し、
前記動力回収機は、
前記ロータに接続されており当該ロータとともに回転することにより動力を回収する動力回収部と、
前記動力回収部を収容するとともに前記主ケーシング内と連通する形状を有する副ケーシングと、を有し、
前記制御部は、前記動力回収機での動力の回収を停止する停止信号を受信すると、前記開閉弁を閉じる、熱エネルギー回収装置。
An evaporator that evaporates the working medium by exchanging heat between the heating medium and the working medium;
An expander that expands the working medium flowing out of the evaporator;
A power recovery machine connected to the expander;
A condenser for condensing the working medium flowing out of the expander;
A pump for sending the working medium flowing out of the condenser to the evaporator;
A circulation flow path connecting the evaporator, the expander, the condenser and the pump in this order;
A cooling flow path for supplying a part of the liquid-phase working medium flowing out of the pump to the power recovery machine;
An on-off valve provided in the cooling flow path;
A control unit,
The expander is
A rotor that is rotationally driven by the expansion energy of the working medium;
A bearing for receiving the rotor such that the rotor is rotatable;
A main casing that houses the rotor and the bearing,
The power recovery machine is
A power recovery unit connected to the rotor and recovering power by rotating together with the rotor;
A secondary casing having a shape that accommodates the power recovery unit and communicates with the inside of the main casing;
The said control part is a thermal energy recovery apparatus which closes the said on-off valve, if the stop signal which stops the collection | recovery of the motive power in the said power recovery machine is received.
請求項1に記載の熱エネルギー回収装置において、
前記副ケーシングは、前記冷却流路に接続可能でかつ前記冷却流路から供給される液相の作動媒体を当該副ケーシング内に導入可能な導入部を有している、熱エネルギー回収装置。
The thermal energy recovery device according to claim 1,
The sub-casing is a thermal energy recovery device having an introduction part that can be connected to the cooling flow path and can introduce a liquid-phase working medium supplied from the cooling flow path into the sub-casing.
請求項1に記載の熱エネルギー回収装置において、
前記動力回収機は、前記副ケーシングに設けられたジャケットであって当該ジャケットと前記副ケーシングとの間に液相の作動媒体が流れるのを許容する冷却空間を形成するジャケットをさらに有し、
前記ジャケットは、前記冷却流路に接続可能でかつ前記冷却流路から供給される液相の作動媒体を前記冷却空間内に導入可能な導入部を有している、熱エネルギー回収装置。
The thermal energy recovery device according to claim 1,
The power recovery machine further includes a jacket provided in the sub casing and forming a cooling space that allows a liquid-phase working medium to flow between the jacket and the sub casing.
The thermal energy recovery apparatus, wherein the jacket has an introduction portion that can be connected to the cooling flow path and can introduce a liquid-phase working medium supplied from the cooling flow path into the cooling space.
加熱媒体と作動媒体とを熱交換させることによって前記作動媒体を蒸発させる蒸発器と、
前記蒸発器から流出した作動媒体を膨張させる膨張機と、
前記膨張機に接続された動力回収機と、
前記膨張機から流出した作動媒体を凝縮させる凝縮器と、
前記凝縮器から流出した作動媒体を前記蒸発器へ送るポンプと、
前記蒸発器、前記膨張機、前記凝縮器及び前記ポンプをこの順に接続する循環流路と、
前記作動媒体とは異なる冷却媒体を前記動力回収機に供給することによって当該動力回収機を冷却する冷却流路と、
前記冷却流路に設けられた開閉弁と、
制御部と、を備え、
前記膨張機は、
前記作動媒体の膨張エネルギーにより回転駆動されるロータと、
前記ロータが回転可能となるように当該ロータを受ける軸受と、
前記ロータ及び軸受を収容する主ケーシングと、を有し、
前記動力回収機は、
前記ロータに接続されており当該ロータとともに回転することにより動力を回収する動力回収部と、
前記動力回収部を収容するとともに前記主ケーシング内と連通する形状を有する副ケーシングと、を有し、
前記制御部は、前記動力回収機での動力の回収を停止させる停止信号を受信すると、前記開閉弁を閉じる、熱エネルギー回収装置。
An evaporator that evaporates the working medium by exchanging heat between the heating medium and the working medium;
An expander that expands the working medium flowing out of the evaporator;
A power recovery machine connected to the expander;
A condenser for condensing the working medium flowing out of the expander;
A pump for sending the working medium flowing out of the condenser to the evaporator;
A circulation flow path connecting the evaporator, the expander, the condenser and the pump in this order;
A cooling flow path for cooling the power recovery machine by supplying a cooling medium different from the working medium to the power recovery machine;
An on-off valve provided in the cooling flow path;
A control unit,
The expander is
A rotor that is rotationally driven by the expansion energy of the working medium;
A bearing for receiving the rotor such that the rotor is rotatable;
A main casing that houses the rotor and the bearing,
The power recovery machine is
A power recovery unit connected to the rotor and recovering power by rotating together with the rotor;
A secondary casing having a shape that accommodates the power recovery unit and communicates with the inside of the main casing;
The said control part is a thermal energy recovery apparatus which closes the said on-off valve, if the stop signal which stops the collection | recovery of the motive power in the said power recovery machine is received.
請求項1ないし4のいずれかに記載の熱エネルギー回収装置において、
前記主ケーシング内又は前記副ケーシング内の液相の作動媒体を前記膨張機の下流側でかつ前記ポンプの上流側に戻す液抜流路をさらに備える、熱エネルギー回収装置。
In the thermal energy recovery device according to any one of claims 1 to 4,
A thermal energy recovery device further comprising a liquid drainage passage for returning a liquid-phase working medium in the main casing or the sub-casing to the downstream side of the expander and the upstream side of the pump.
請求項5に記載の熱エネルギー回収装置において、
前記液抜流路に設けられた液抜弁と、
前記膨張機をバイパスするバイパス流路と、
前記バイパス流路に設けられたバイパス弁と、
前記循環流路のうち、当該循環流路と前記バイパス流路の上流側の端部との接続部と、前記膨張機と、の間の部位に設けられた遮断弁と、をさらに備え、
前記制御部は、前記動力回収機での動力の回収を停止させる停止信号を受信すると、前記ポンプの回転数を低下させることと、前記遮断弁を閉じかつ前記バイパス弁を開くことと、前記開閉弁を閉じることと、を行い、前記ポンプが停止した後に前記液抜弁を開く、熱エネルギー回収装置。
In the thermal energy recovery device according to claim 5,
A liquid drain valve provided in the liquid drain passage;
A bypass flow path for bypassing the expander;
A bypass valve provided in the bypass channel;
Of the circulation flow path, further comprising a shutoff valve provided at a portion between the circulation flow path and the upstream end of the bypass flow path, and the expander,
When the control unit receives a stop signal for stopping the recovery of power in the power recovery machine, the control unit decreases the rotation speed of the pump, closes the shut-off valve and opens the bypass valve, A thermal energy recovery device that closes the valve and opens the drain valve after the pump stops.
JP2017019368A 2017-02-06 2017-02-06 Thermal energy recovery device Active JP6751031B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017019368A JP6751031B2 (en) 2017-02-06 2017-02-06 Thermal energy recovery device
EP17208350.3A EP3358155A1 (en) 2017-02-06 2017-12-19 Thermal energy recovery device
US15/855,778 US10385734B2 (en) 2017-02-06 2017-12-27 Thermal energy recovery device
KR1020180011105A KR102227428B1 (en) 2017-02-06 2018-01-30 Thermal energy recovery device
CN201810117676.7A CN108397244B (en) 2017-02-06 2018-02-06 Heat energy recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017019368A JP6751031B2 (en) 2017-02-06 2017-02-06 Thermal energy recovery device

Publications (2)

Publication Number Publication Date
JP2018127897A true JP2018127897A (en) 2018-08-16
JP6751031B2 JP6751031B2 (en) 2020-09-02

Family

ID=60673950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017019368A Active JP6751031B2 (en) 2017-02-06 2017-02-06 Thermal energy recovery device

Country Status (5)

Country Link
US (1) US10385734B2 (en)
EP (1) EP3358155A1 (en)
JP (1) JP6751031B2 (en)
KR (1) KR102227428B1 (en)
CN (1) CN108397244B (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916126B1 (en) * 1970-07-14 1974-04-19
US5743094A (en) * 1994-02-22 1998-04-28 Ormat Industries Ltd. Method of and apparatus for cooling a seal for machinery
JP2004353571A (en) * 2003-05-29 2004-12-16 Ebara Corp Power generating device and power generating method
JP2005264863A (en) * 2004-03-19 2005-09-29 Ebara Corp Power generating device
WO2007020707A1 (en) * 2005-08-19 2007-02-22 Saga University Thermal energy conversion generator
JP2008175212A (en) * 2008-04-09 2008-07-31 Ebara Corp Turbine generator
JP2012097725A (en) * 2010-10-07 2012-05-24 Kobe Steel Ltd Power generation system
JP2013057264A (en) * 2011-09-07 2013-03-28 Kobe Steel Ltd Generator
JP2013083169A (en) * 2011-10-06 2013-05-09 Kobe Steel Ltd Power generating apparatus
JP2013169029A (en) * 2012-02-14 2013-08-29 Kobe Steel Ltd Power generator
JP2013172474A (en) * 2012-02-17 2013-09-02 Kobe Steel Ltd Power generator
JP2015050778A (en) * 2013-08-29 2015-03-16 ヤンマー株式会社 Operational method of electric power generator
JP2015533981A (en) * 2012-09-11 2015-11-26 コンセプツ・イーティーアイ・インコーポレーテッド Overhang turbine and generator system with turbine cartridge
JP2015214922A (en) * 2014-05-09 2015-12-03 株式会社神戸製鋼所 Thermal energy recovery device and start method of the same
JP2017020396A (en) * 2015-07-09 2017-01-26 株式会社神戸製鋼所 Thermal energy recovery device and pump replacement method of the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7948105B2 (en) * 2007-02-01 2011-05-24 R&D Dynamics Corporation Turboalternator with hydrodynamic bearings
EP2604815A4 (en) * 2010-08-09 2014-07-09 Toyota Jidoshokki Kk Waste heat utilization apparatus
US8664785B2 (en) * 2010-09-13 2014-03-04 Ebara International Corporation Power recovery system using a rankine power cycle incorporating a two-phase liquid-vapor expander with electric generator
JP5866819B2 (en) * 2011-06-27 2016-02-24 株式会社Ihi Waste heat generator
WO2014017943A1 (en) * 2012-07-26 2014-01-30 Siemens Aktiengesellschaft Hermetically sealed turbo expander system for use in organic rankine cycles and organic rankine cycle plant
JP6198673B2 (en) * 2014-05-15 2017-09-20 株式会社神戸製鋼所 Thermal energy recovery device and control method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916126B1 (en) * 1970-07-14 1974-04-19
US5743094A (en) * 1994-02-22 1998-04-28 Ormat Industries Ltd. Method of and apparatus for cooling a seal for machinery
JP2004353571A (en) * 2003-05-29 2004-12-16 Ebara Corp Power generating device and power generating method
JP2005264863A (en) * 2004-03-19 2005-09-29 Ebara Corp Power generating device
WO2007020707A1 (en) * 2005-08-19 2007-02-22 Saga University Thermal energy conversion generator
JP2008175212A (en) * 2008-04-09 2008-07-31 Ebara Corp Turbine generator
JP2012097725A (en) * 2010-10-07 2012-05-24 Kobe Steel Ltd Power generation system
JP2013057264A (en) * 2011-09-07 2013-03-28 Kobe Steel Ltd Generator
JP2013083169A (en) * 2011-10-06 2013-05-09 Kobe Steel Ltd Power generating apparatus
JP2013169029A (en) * 2012-02-14 2013-08-29 Kobe Steel Ltd Power generator
JP2013172474A (en) * 2012-02-17 2013-09-02 Kobe Steel Ltd Power generator
JP2015533981A (en) * 2012-09-11 2015-11-26 コンセプツ・イーティーアイ・インコーポレーテッド Overhang turbine and generator system with turbine cartridge
JP2015050778A (en) * 2013-08-29 2015-03-16 ヤンマー株式会社 Operational method of electric power generator
JP2015214922A (en) * 2014-05-09 2015-12-03 株式会社神戸製鋼所 Thermal energy recovery device and start method of the same
JP2017020396A (en) * 2015-07-09 2017-01-26 株式会社神戸製鋼所 Thermal energy recovery device and pump replacement method of the same

Also Published As

Publication number Publication date
KR20180091717A (en) 2018-08-16
CN108397244B (en) 2020-12-04
US20180223698A1 (en) 2018-08-09
CN108397244A (en) 2018-08-14
JP6751031B2 (en) 2020-09-02
KR102227428B1 (en) 2021-03-12
EP3358155A1 (en) 2018-08-08
US10385734B2 (en) 2019-08-20

Similar Documents

Publication Publication Date Title
KR101482879B1 (en) Power generating apparatus and operation method thereof
JP7266707B2 (en) Power generation system and method of generating power by operation of such power generation system
JP4457138B2 (en) Compressor and heat pump system
KR101325350B1 (en) Power generating apparatus
CN102859195A (en) Freezing machine
KR20150128575A (en) Thermal energy recovery device and start-up method of thermal energy recovery device
JP5326900B2 (en) Turbo compressor and refrigerator
JP5721676B2 (en) Auxiliary power generation device and method of operating this device
US10234183B2 (en) Compressing device
US10626754B2 (en) Compression device
US10605123B2 (en) Thermal energy recovery device and operating method of the same
JP2018127897A (en) Thermal energy recovery system
JP2007218507A (en) Heat pump device and control method thereof
JP6815911B2 (en) Thermal energy recovery device
JP6403282B2 (en) Thermal energy recovery device
JP5819796B2 (en) Rotating machine drive system
JP4952599B2 (en) Turbo refrigerator
JP2014231820A (en) Binary driving device
CN113661307A (en) Power generation system and method of generating power by operating such a power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200813

R150 Certificate of patent or registration of utility model

Ref document number: 6751031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150