JP2018125268A - Method of manufacturing all solid state battery and all solid state battery - Google Patents

Method of manufacturing all solid state battery and all solid state battery Download PDF

Info

Publication number
JP2018125268A
JP2018125268A JP2017019084A JP2017019084A JP2018125268A JP 2018125268 A JP2018125268 A JP 2018125268A JP 2017019084 A JP2017019084 A JP 2017019084A JP 2017019084 A JP2017019084 A JP 2017019084A JP 2018125268 A JP2018125268 A JP 2018125268A
Authority
JP
Japan
Prior art keywords
electrode layer
current collector
positive electrode
negative electrode
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017019084A
Other languages
Japanese (ja)
Other versions
JP6895761B2 (en
Inventor
剛 杉生
Takeshi Sugio
剛 杉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2017019084A priority Critical patent/JP6895761B2/en
Publication of JP2018125268A publication Critical patent/JP2018125268A/en
Application granted granted Critical
Publication of JP6895761B2 publication Critical patent/JP6895761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily prevent reduction of battery energy density of an all solid state battery.SOLUTION: In a method of manufacturing an all solid state battery, a step of forming a single cell unit (2) including an electrode layer body (3) in which a positive electrode layer (4), a solid electrolyte layer (5), and a negative electrode layer (6) are laminated, a positive electrode current collector (7), and a negative electrode current collector (8) includes a step of forming a bending prevention part (9) for preventing the electrode layer body (3) to be bent is formed on the outer edge of the positive electrode current collector (7) and the negative electrode current collector (8).SELECTED DRAWING: Figure 1

Description

本発明は、正極層、固体電解質層、及び負極層の湾曲を防止する湾曲防止部を備えた全固体電池の製造方法及び全固体電池に関する。   The present invention relates to a method for manufacturing an all-solid battery and an all-solid battery including a cathode layer, a solid electrolyte layer, and an anti-bending portion that prevents the anode layer from bending.

近年、リチウムイオン伝導性の固体電解質を電池の電解質として用いた全固体二次電池が知られている。この全固体二次電池は、正極層と負極層との間に固体電解質層が配置されるように積層された電極層体と、正極層の固体電解質層と反対側に配置された正極集電体と、負極層の固体電解質層と反対側に配置された負極集電体とを備える。   In recent years, all-solid secondary batteries using a lithium ion conductive solid electrolyte as the battery electrolyte are known. The all-solid-state secondary battery includes an electrode layer body laminated so that a solid electrolyte layer is disposed between a positive electrode layer and a negative electrode layer, and a positive electrode current collector disposed on the side of the positive electrode layer opposite to the solid electrolyte layer. And a negative electrode current collector disposed on the side of the negative electrode layer opposite to the solid electrolyte layer.

ここで、正極層は、正極活物質とリチウムイオン伝導性の固体電解質とを含む。負極層は、負極活物質とリチウムイオン伝導性の固体電解質とを含む。固体電解質層は、これらの正極層と負極層との間に配置されている。正極集電体は、金属製であって、正極層の表面に設けられている。負極集電体は、金属製であって、負極層の表面に設けられている。   Here, the positive electrode layer includes a positive electrode active material and a lithium ion conductive solid electrolyte. The negative electrode layer includes a negative electrode active material and a lithium ion conductive solid electrolyte. The solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer. The positive electrode current collector is made of metal and is provided on the surface of the positive electrode layer. The negative electrode current collector is made of metal and is provided on the surface of the negative electrode layer.

この全固体二次電池は例えば以下のように製造される。まず、正極集電体上に粉体状の正極層を成膜する。その後、粉体状の固体電解質層を正極層上に成膜する。次に、粉体状の負極層を固体電解質層上に成膜する。そして、成膜したこれらの層を油圧プレス等により高圧力で加圧成型することにより全固体二次電池を製造する。   This all solid state secondary battery is manufactured as follows, for example. First, a powdery positive electrode layer is formed on the positive electrode current collector. Thereafter, a powdery solid electrolyte layer is formed on the positive electrode layer. Next, a powdery negative electrode layer is formed on the solid electrolyte layer. Then, these layers thus formed are pressure-molded at a high pressure with a hydraulic press or the like to produce an all-solid-state secondary battery.

しかしながら上述のような製造方法では、粉体状の正極層、粉体状の固体電解質層、及び、粉体状の負極層により構成される電極層体の内部に生じる内部応力、粉体の流動性の悪さ、及び、粉体間の摩擦力等により、電極層体に作用する圧力にムラが生じる。また、電極層体の周囲に樹脂等からなる壁が存在すれば、電極層体と壁との間の壁面摩擦により、電極層体に作用する圧力にムラが生じる。さらに、正極集電体又は負極集電体と電極層体との間の摩擦力により、電極層体に作用する圧力にムラが生じる。そして、このような圧力ムラにより電極層体に密度ムラが生じ、電極層体が湾曲するという問題がある。   However, in the manufacturing method as described above, internal stress generated in the electrode layer body constituted by the powdery positive electrode layer, the powdery solid electrolyte layer, and the powdery negative electrode layer, the flow of the powder Due to the poor nature and the frictional force between the powders, the pressure acting on the electrode layer body is uneven. Further, if there is a wall made of resin or the like around the electrode layer body, unevenness occurs in the pressure acting on the electrode layer body due to wall friction between the electrode layer body and the wall. Further, the pressure acting on the electrode layer body becomes uneven due to the frictional force between the positive electrode current collector or the negative electrode current collector and the electrode layer body. And there is a problem that density unevenness occurs in the electrode layer body due to such pressure unevenness, and the electrode layer body is curved.

このような電極層体の湾曲の問題を解決する手段として、特許文献1が知られている。特許文献1に記載の二次電池は、前述した全固体二次電池と同様に、正極層と負極層との間に固体電解質層が配置されるように積層された電極層体と、正極層の固体電解質層と反対側に配置された正極集電体と、負極層の固体電解質層と反対側に配置された負極集電体とを備える。そして、正極集電体の正極層と反対側に電極層体の湾曲を防止する湾曲防止部(補強層)を接着し、負極集電体の負極層と反対側にも上記湾曲防止部を接着している。   Patent Document 1 is known as a means for solving such a problem of bending of the electrode layer body. Similar to the all-solid secondary battery described above, the secondary battery described in Patent Document 1 includes an electrode layer body laminated such that a solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer, and a positive electrode layer. A positive electrode current collector disposed on the opposite side of the solid electrolyte layer, and a negative electrode current collector disposed on the negative electrode layer on the opposite side of the solid electrolyte layer. Then, an anti-bending part (reinforcing layer) for preventing the electrode layer body from being bent is bonded to the side opposite to the positive electrode layer of the positive electrode current collector, and the above-mentioned anti-bending part is also bonded to the side opposite to the negative electrode layer of the negative electrode current collector. doing.

特開2012−59472号公報(2012年3月22日公開)JP 2012-59472 A (published on March 22, 2012)

上述のような特許文献1に記載の技術では、電極層体の湾曲を防止する湾曲防止部を、正極集電体の正極層と反対側の面に接着し、負極集電体の負極層と反対側の面に接着する。このため、完成した二次電池の重量及び体積を減少させて電池エネルギ密度の低下を防止するために、湾曲防止部を二次電池から除去しようとすると、正極集電体の正極層と反対側の面に接着する湾曲防止部を剥がす作業が必要になり、負極集電体の負極層と反対側の面に接着する湾曲防止部を剥がす作業が必要になる。   In the technique described in Patent Document 1 as described above, a bending prevention portion for preventing the bending of the electrode layer body is bonded to the surface of the positive electrode current collector opposite to the positive electrode layer, and the negative electrode current collector Adhere to the opposite side. For this reason, in order to reduce the weight and volume of the completed secondary battery and prevent the battery energy density from being lowered, if the anti-bending part is removed from the secondary battery, the side opposite to the positive electrode layer of the positive electrode current collector Therefore, it is necessary to remove the anti-bending part that adheres to the surface of the negative electrode, and to remove the anti-bending part that adheres to the surface of the negative electrode current collector opposite to the negative electrode layer.

しかしながら、正極集電体、負極集電体、及び、湾曲防止部はいずれも薄膜であるから、正極集電体の正極層と反対側の面に接着された湾曲防止部、及び、負極集電体の負極層と反対側の面に接着された湾曲防止部を剥がす作業を実施することは容易ではない。従って、完成した二次電池の重量及び体積を減少させて電池エネルギ密度の低下を防止することが困難であるという問題がある。   However, since the positive electrode current collector, the negative electrode current collector, and the anti-bending part are all thin films, the anti-bending part adhered to the surface of the positive electrode current collector opposite to the positive electrode layer, and the negative electrode current collector It is not easy to perform the work of peeling off the anti-bending part adhered to the surface of the body opposite to the negative electrode layer. Therefore, there is a problem that it is difficult to reduce the battery energy density by reducing the weight and volume of the completed secondary battery.

また、電極層体を積層する際には、湾曲防止部を剥がすことができないという問題がある。あるいは、積層前に湾曲防止部を剥がさねばならず、積層時には電極層体が湾曲してしまうという問題がある。   Moreover, when laminating an electrode layer body, there exists a problem that a curve prevention part cannot be peeled off. Alternatively, the anti-bending part must be peeled off before stacking, and there is a problem that the electrode layer body is bent during stacking.

本発明の一態様は、電極層体の湾曲を低減しながら、完成した全固体電池の重量及び体積を容易に減少させて電池エネルギ密度の低下を容易に防止することができる全固体電池の製造方法及び全固体電池を実現することを目的とする。   One aspect of the present invention is to manufacture an all-solid battery that can easily reduce the weight and volume of a completed all-solid battery and easily prevent a decrease in battery energy density while reducing the curvature of the electrode layer body. The object is to realize a method and an all-solid-state battery.

上記の課題を解決するために、本発明の一態様に係る全固体電池の製造方法は、正極層、固体電解質層、及び負極層が、前記正極層と前記負極層との間に前記固体電解質層が配置されるように積層された電極層体と、前記正極層の前記固体電解質層と反対側に配置されて前記電極層体よりも面積が広い正極集電体と、前記負極層の前記固体電解質層と反対側に配置されて前記電極層体よりも面積が広い負極集電体とを含む単電池ユニットの形成工程を包含し、前記単電池ユニットの形成工程が、前記電極層体の湾曲を防止する湾曲防止部を、前記正極集電体と前記負極集電体との少なくとも一方の外縁に形成する湾曲防止部形成工程と、前記湾曲防止部形成工程により湾曲防止部が形成された単電池ユニットを前記電極層体の積層方向に沿って加圧する加圧工程とを含むことを特徴とする。   In order to solve the above-described problem, the method for manufacturing an all-solid battery according to one embodiment of the present invention includes a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, wherein the solid electrolyte is between the positive electrode layer and the negative electrode layer. An electrode layer body laminated so that a layer is disposed, a positive electrode current collector disposed on the opposite side of the positive electrode layer from the solid electrolyte layer and having a larger area than the electrode layer body, and the negative electrode layer A step of forming a unit cell unit including a negative electrode current collector that is disposed on the opposite side of the solid electrolyte layer and has a larger area than the electrode layer body, and the step of forming the unit cell unit includes the step of forming the unit cell unit The anti-bending part is formed by the anti-bending part forming step of forming an anti-bending part for preventing the bending at the outer edge of at least one of the positive electrode current collector and the negative electrode current collector, and the anti-bending part forming step. Unit cell unit along the stacking direction of the electrode layer body Characterized in that it comprises a pressing step of pressing.

上記の課題を解決するために、本発明の一態様に係る他の全固体電池の製造方法は、正極層、固体電解質層、及び負極層が、前記正極層と前記負極層との間に前記固体電解質層が配置されるように積層された電極層体と、前記正極層の前記固体電解質層と反対側に配置されて前記電極層体よりも面積が広い正極集電体と、前記負極層の前記固体電解質層と反対側に配置されて前記電極層体よりも面積が広い負極集電体とを含む単電池ユニットを複数個形成する単電池ユニット複数形成工程を包含し、前記単電池ユニット複数形成工程が、前記電極層体の湾曲を防止する湾曲防止部を、前記複数個の単電池ユニットの前記正極集電体と前記負極集電体との少なくとも一方の外縁に形成する湾曲防止部形成工程と、前記複数個の単電池ユニットを積層した積層電池ユニットを形成する積層工程と、前記積層工程により積層された積層電池ユニットを前記電極層体の積層方向に沿って加圧する加圧工程とを含むことを特徴とする。   In order to solve the above-described problem, another method for producing an all-solid battery according to one embodiment of the present invention includes a positive electrode layer, a solid electrolyte layer, and a negative electrode layer that are disposed between the positive electrode layer and the negative electrode layer. An electrode layer body laminated such that a solid electrolyte layer is disposed; a positive electrode current collector disposed on a side opposite to the solid electrolyte layer of the positive electrode layer and having a larger area than the electrode layer body; and the negative electrode layer Including a unit cell unit forming step of forming a plurality of unit cell units including a negative electrode current collector disposed on the opposite side of the solid electrolyte layer and having a larger area than the electrode layer body. A plurality of forming steps forms an anti-bending portion that prevents the electrode layer body from bending at an outer edge of at least one of the positive electrode current collector and the negative electrode current collector of the plurality of unit cell units. Forming step and the plurality of unit cell units Characterized in that it comprises a laminating step of forming a laminate battery unit to which a layer, a pressing step of pressing along the laminated cell unit is stacked by the stacking step in the stacking direction of the electrode layers thereof.

上記の課題を解決するために、本発明の一態様に係る全固体電池は、正極層、固体電解質層、及び負極層が、前記正極層と前記負極層との間に前記固体電解質層が配置されるように積層された電極層体と、前記正極層の前記固体電解質層と反対側に配置され、前記電極層体よりも面積が広い正極集電体と、前記負極層の前記固体電解質層と反対側に配置され、前記電極層体よりも面積が広い負極集電体と、前記電極層体の湾曲を防止するために、前記正極集電体と前記負極集電体との少なくとも一方の外縁に形成された湾曲防止部とを備えたことを特徴とする。   In order to solve the above problems, an all solid state battery according to one embodiment of the present invention includes a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, wherein the solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer. The electrode layer body laminated as described above, the positive electrode current collector disposed on the opposite side of the positive electrode layer from the solid electrolyte layer and having a larger area than the electrode layer body, and the solid electrolyte layer of the negative electrode layer A negative electrode current collector having a larger area than the electrode layer body, and at least one of the positive electrode current collector and the negative electrode current collector to prevent the electrode layer body from being bent And an anti-bending portion formed on the outer edge.

本発明の一態様によれば、電極層体の湾曲を低減しながら、完成した全固体電池の重量及び体積を容易に減少させて電池エネルギ密度の低下を容易に防止することができるという効果を奏する。   According to one aspect of the present invention, it is possible to easily reduce the weight and volume of the completed all-solid battery and easily prevent the battery energy density from being lowered while reducing the curvature of the electrode layer body. Play.

実施形態1に係る全固体リチウムイオン二次電池の単電池ユニットの構成を示す断面図である。3 is a cross-sectional view showing a configuration of a unit cell unit of an all solid lithium ion secondary battery according to Embodiment 1. FIG. 図1に示される面AAに沿った平面断面図である。FIG. 2 is a plan sectional view taken along a plane AA shown in FIG. 1. 実施形態3に係る全固体リチウムイオン二次電池の製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the all-solid-state lithium ion secondary battery which concerns on Embodiment 3. FIG. 実施形態4に係る単電池ユニットに設けられた湾曲防止部を示す断面図である。FIG. 6 is a cross-sectional view showing a bending prevention part provided in a single battery unit according to Embodiment 4.

以下、本発明の実施の形態に係る全固体二次電池について、詳細に説明する。本実施形態では全固体二次電池の一例として、リチウムイオン伝導性を有する固体電解質を備えた全固体二次電池、即ち、全固体リチウムイオン二次電池について説明する。   Hereinafter, the all solid state secondary battery according to the embodiment of the present invention will be described in detail. In this embodiment, as an example of an all-solid secondary battery, an all-solid secondary battery including a solid electrolyte having lithium ion conductivity, that is, an all-solid lithium ion secondary battery will be described.

(実施形態1)
図1は実施形態1に係る全固体リチウムイオン二次電池1(全固体電池)の単電池ユニット2の構成を示す断面図である。まず、全固体リチウムイオン二次電池1の基本構成を説明する。全固体リチウムイオン二次電池1は、正極層4と、負極層6と、正極層4と負極層6との間に配置されたリチウムイオン伝導性固体電解質からなる固体電解質層5とを含む電極層体3を備える。正極層4の固体電解質層5と反対側の表面に電極層体3よりも面積が広い正極集電体7が積層される。負極層6の固体電解質層5と反対側の表面に電極層体3よりも面積が広い負極集電体8が積層される。正極層4及び負極層6は全固体リチウムイオン二次電池1の電極として作用する。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a configuration of a unit cell unit 2 of an all-solid-state lithium ion secondary battery 1 (all-solid-state battery) according to Embodiment 1. First, the basic configuration of the all solid lithium ion secondary battery 1 will be described. The all solid lithium ion secondary battery 1 includes an electrode including a positive electrode layer 4, a negative electrode layer 6, and a solid electrolyte layer 5 made of a lithium ion conductive solid electrolyte disposed between the positive electrode layer 4 and the negative electrode layer 6. A layer body 3 is provided. A positive electrode current collector 7 having a larger area than the electrode layer body 3 is laminated on the surface of the positive electrode layer 4 opposite to the solid electrolyte layer 5. A negative electrode current collector 8 having a larger area than the electrode layer body 3 is laminated on the surface of the negative electrode layer 6 opposite to the solid electrolyte layer 5. The positive electrode layer 4 and the negative electrode layer 6 function as electrodes of the all solid lithium ion secondary battery 1.

これらの正極集電体7、正極層4、固体電解質層5、負極層6、及び負極集電体8の構成物を、本明細書では「単電池ユニット」と呼ぶ。正極集電体7又は負極集電体8(以下、総括して「集電体」と呼ぶ場合がある。)の表面及び裏面の双方に正極層4又は負極層6(以下、総括して「電極層」と呼ぶ場合がある。)が配置されたバイセル型あるいはバイポーラ型と呼ばれる電池では、一つの集電体の表面に配置された電極層と裏面に配置された電極層とが当該集電体を共有する。バイセル型電池はこのように構成されるため、単電池ユニットに切り出すことはできないが、バイセル型電池の積層構造の繰り返し単位を「単電池ユニット」と呼ぶことにする。バイセル型あるいはバイポーラ型電池に対しても本発明を適用することができる。   The components of the positive electrode current collector 7, the positive electrode layer 4, the solid electrolyte layer 5, the negative electrode layer 6, and the negative electrode current collector 8 are referred to as “unit cell unit” in this specification. The positive electrode layer 4 or the negative electrode layer 6 (hereinafter collectively referred to as “collector”) is formed on both the front and back surfaces of the positive electrode current collector 7 or negative electrode current collector 8 (hereinafter sometimes collectively referred to as “current collector”). In a battery called a bi-cell type or bipolar type in which the electrode layer is disposed), an electrode layer disposed on the surface of one current collector and an electrode layer disposed on the back surface are connected to the current collector. Share your body. Since the bi-cell type battery is configured in this way, it cannot be cut out into a single cell unit, but the repeating unit of the stacked structure of the bi-cell type battery is referred to as a “single cell unit”. The present invention can also be applied to a bi-cell or bipolar battery.

正極層4には、正極活物質と固体電解質との混合物、又は、正極活物質のみが用いられる。上記混合物の正極活物質と固体電解質との間の重量比は例えば7:3である。ここで上記正極活物質には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)等、リチウムイオン電池分野において正極活物質に通常用いられている材料を用いることができる。 For the positive electrode layer 4, a mixture of a positive electrode active material and a solid electrolyte or only a positive electrode active material is used. The weight ratio between the positive electrode active material and the solid electrolyte in the mixture is, for example, 7: 3. Here, for the positive electrode active material, lithium cobalt acid (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and other materials that are usually used for the positive electrode active material in the lithium ion battery field are used. Can be used.

負極層6には、負極活物質と固体電解質との混合物、又は、負極活物質のみが用いられる。上記負極活物質における負極活物質と固体電解質との間の重量比は例えば6:4である。ここで上記負極活物質には、天然黒鉛、人造黒鉛、黒鉛炭素繊維、又は、樹脂焼成炭素等によって代表される炭素材料、錫、リチウム、酸化物、硫化物、窒化物、合金等、粉体及び箔等の形状にかかわらず、リチウムイオン電池分野において負極活物質に通常用いられている材料を用いることができる。   For the negative electrode layer 6, a mixture of a negative electrode active material and a solid electrolyte or only a negative electrode active material is used. The weight ratio between the negative electrode active material and the solid electrolyte in the negative electrode active material is, for example, 6: 4. Here, as the negative electrode active material, natural graphite, artificial graphite, graphite carbon fiber, carbon material represented by resin-fired carbon, tin, lithium, oxide, sulfide, nitride, alloy, etc., powder Regardless of the shape of the foil and the like, a material usually used for the negative electrode active material in the lithium ion battery field can be used.

正極層4、固体電解質層5、及び、負極層6に用いられる固体電解質には、有機化合物からなる材料、無機化合物からなる材料、有機化合物及び無機化合物からなる材料、又は、リチウムイオン電池分野で通常用いられている材料等が用いられる。上記無機化合物のうち、例えば、LiS−P等の硫化物は、他の無機化合物と比べてイオン伝導性に優れる。 Solid electrolytes used for the positive electrode layer 4, the solid electrolyte layer 5, and the negative electrode layer 6 include materials made of organic compounds, materials made of inorganic compounds, materials made of organic compounds and inorganic compounds, or lithium ion batteries. Commonly used materials are used. Among the inorganic compounds, for example, sulfides such as Li 2 S—P 2 S 5 are superior in ion conductivity compared to other inorganic compounds.

正極集電体7及び負極集電体8には、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、インジウム、リチウム、錫、若しくは、これらの合金等からなる板状体、箔状体、粉体、又は、成膜体が用いられる。   The positive electrode current collector 7 and the negative electrode current collector 8 include a plate made of copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, indium, lithium, tin, or an alloy thereof. A sheet, a foil, a powder, or a film-formed body is used.

正極集電体7と負極集電体8との少なくとも一方の表面粗さは、Rz=1.0μm以上であることが好ましい。   The surface roughness of at least one of the positive electrode current collector 7 and the negative electrode current collector 8 is preferably Rz = 1.0 μm or more.

正極層4、固体電解質層5、及び負極層6の形成方法は、特に限定されるものではない。例えば、静電スプレー、乾式によるスキージ成膜、又は、静電塗装等の乾式成膜により正極層4、固体電解質層5、及び負極層6を積層してもよい。また、正極層4、固体電解質層5、及び負極層6の各種材料を溶媒及びバインダと混合させ、スラリー状又は溶液状にして塗布・乾燥することによって正極層4、固体電解質層5、及び負極層6を構成する粉体膜を形成してもよい。但し、正極層4、固体電解質層5、及び負極層6を構成する粉体膜の界面を無くして接触抵抗を低減するため、全固体リチウムイオン二次電池1を完成させるまでには、正極層4、固体電解質層5、及び負極層6を積層方向に沿って加圧する加圧工程を実施する必要がある。   The formation method of the positive electrode layer 4, the solid electrolyte layer 5, and the negative electrode layer 6 is not specifically limited. For example, the positive electrode layer 4, the solid electrolyte layer 5, and the negative electrode layer 6 may be stacked by electrostatic spraying, dry squeegee film formation, or dry film formation such as electrostatic coating. Moreover, the positive electrode layer 4, the solid electrolyte layer 5, and the negative electrode layer 6 are mixed with a solvent and a binder, and are applied in a slurry or solution to be applied and dried, thereby drying the positive electrode layer 4, the solid electrolyte layer 5, and the negative electrode. A powder film constituting the layer 6 may be formed. However, in order to reduce the contact resistance by eliminating the interface of the powder film constituting the positive electrode layer 4, the solid electrolyte layer 5, and the negative electrode layer 6, the positive electrode layer is required until the all solid lithium ion secondary battery 1 is completed. 4. It is necessary to perform the pressurization process which pressurizes the solid electrolyte layer 5 and the negative electrode layer 6 along the lamination direction.

本実施形態では、正極集電体7と負極集電体8との少なくとも一方の外縁に、電極層体3の湾曲を防止する湾曲防止部9が形成される。湾曲防止部9は、正極集電体7と負極集電体8とを短絡させない限り、樹脂、金属、セラミック、木材、又は、その他任意の材料により構成することができる。図1及び図2に示す例では、正極集電体7と負極集電体8とを連結するように湾曲防止部9が形成される。   In the present embodiment, an anti-bending portion 9 that prevents the electrode layer body 3 from bending is formed on at least one outer edge of the positive electrode current collector 7 and the negative electrode current collector 8. As long as the positive electrode current collector 7 and the negative electrode current collector 8 are not short-circuited, the bending prevention unit 9 can be made of resin, metal, ceramic, wood, or any other material. In the example shown in FIGS. 1 and 2, the bending preventing portion 9 is formed so as to connect the positive electrode current collector 7 and the negative electrode current collector 8.

湾曲防止部9を設ける場所は、図1及び図2に示すように、電極層体3を囲むように正極集電体7と負極集電体8との間に形成されたシール部11の外側とする。   As shown in FIGS. 1 and 2, the bending prevention portion 9 is provided outside the seal portion 11 formed between the positive electrode current collector 7 and the negative electrode current collector 8 so as to surround the electrode layer body 3. And

その後、湾曲防止部9が形成された単電池ユニット2を電極層体3の積層方向に沿って加圧する。次に、湾曲防止部9とシール部11との間に設定された平面Bに沿って単電池ユニット2を切断し、湾曲防止部9、並びに、正極集電体7及び負極集電体8の外縁を除去する。   Thereafter, the unit cell unit 2 on which the bending prevention portion 9 is formed is pressurized along the stacking direction of the electrode layer body 3. Next, the unit cell unit 2 is cut along the plane B set between the bending prevention portion 9 and the seal portion 11, and the bending prevention portion 9, the positive electrode current collector 7 and the negative electrode current collector 8 are separated. Remove the outer edge.

このように、湾曲防止部9を単電池ユニット2に設けるが、単電池ユニット2の完成前に、平面Bに沿って単電池ユニット2を切断して平面Bよりも内側を切り出し、湾曲防止部9を除去することにより、単電池ユニット2の完成品を得る。   As described above, the cell unit 2 is provided with the bending prevention unit 9. Before the cell unit 2 is completed, the cell unit 2 is cut along the plane B so as to cut out the inner side of the plane B, thereby preventing the bending unit. By removing 9, a finished product of the unit cell unit 2 is obtained.

従って、特許文献1のように、二次電池の重量及び体積を減少させて電池エネルギ密度の低下を防止するために、正極集電体、負極集電体に接着された湾曲防止部を剥がす作業が不要であり、加圧工程により加圧された単電池ユニットの正極集電体7と負極集電体8とを電極層体3の積層方向に沿って切断するという簡易な工程により、二次電池の重量及び体積を減少させて電池エネルギ密度の低下を防止することができる。   Therefore, as in Patent Document 1, in order to reduce the weight and volume of the secondary battery and prevent the battery energy density from being lowered, the work of peeling the positive electrode current collector and the anti-bending portion bonded to the negative electrode current collector is performed. Is not necessary, and the secondary battery is separated by a simple process of cutting the positive electrode current collector 7 and the negative electrode current collector 8 of the unit cell unit pressurized in the pressurizing process along the stacking direction of the electrode layer body 3. The battery energy density can be prevented from decreasing by reducing the weight and volume of the battery.

単電池ユニット2を加圧する際、加圧による荷重が湾曲防止部9にかかってしまい、電極層体3への加圧力が低下してしまうおそれがある。このため、加圧範囲を湾曲防止部9よりも内側としておくことが好ましい。また、電極層体3を構成する粉体への摩擦力によって電極層体3への圧力ムラが加圧時に発生することを防止するため、電極層体3の周縁を強圧することができるように、加圧部材の表面の形状を凹型とすることが好ましい。   When the unit cell unit 2 is pressurized, a load due to the pressure is applied to the curving prevention unit 9 and the pressure applied to the electrode layer body 3 may be reduced. For this reason, it is preferable that the pressurization range is set inside the curving prevention unit 9. Moreover, in order to prevent the pressure non-uniformity to the electrode layer body 3 from being generated due to the frictional force on the powder constituting the electrode layer body 3, the peripheral edge of the electrode layer body 3 can be strongly pressurized. The shape of the surface of the pressure member is preferably a concave shape.

このようにして加圧された単電池ユニット2では、正極集電体7及び負極集電体8の外縁に形成された湾曲防止部9により、加圧後も電極層体3の湾曲が抑えられる。この状態のまま単電池ユニット2を数時間程度放置することにより、電極層体3の粉体内部の残留応力が減少する。このため、面Bに沿って単電池ユニット2を切断して湾曲防止部9を単電池ユニット2から除去した後も、単電池ユニット2の電極層体3の湾曲が抑えられる。   In the unit cell unit 2 thus pressed, the bending of the electrode layer body 3 can be suppressed even after being pressed by the bending preventing portion 9 formed on the outer edges of the positive electrode current collector 7 and the negative electrode current collector 8. . By leaving the unit cell unit 2 in this state for several hours, the residual stress inside the powder of the electrode layer body 3 is reduced. For this reason, even after cutting the unit cell unit 2 along the surface B and removing the anti-bending portion 9 from the unit cell unit 2, the electrode layer body 3 of the unit cell unit 2 can be prevented from bending.

例えば、厚み約20μm、外形が1辺120mmの正方形の集電体と、合計厚み約200μm、外径が1辺100mmの正方形の電極層体3との積層体を加圧したところ、湾曲防止部9を設けない場合は、電極層体3の全体に10〜20mm程度の湾曲が発生した。   For example, when a laminate of a square current collector having a thickness of about 20 μm and an outer shape of 120 mm on a side and a square electrode layer body 3 having a total thickness of about 200 μm and an outer diameter of 100 mm on a side is pressed, a bending preventing portion When 9 was not provided, the entire electrode layer body 3 was bent by about 10 to 20 mm.

しかしながら、集電体の外形を1辺120mmから1辺160mmに大きくし、この集電体の外縁に幅20mm、厚み約200μmのロの字形状をした樹脂(例えば、PET(Poly Ethylene Terephthalate、ポリエチレンテレフタレート))を接着しておくことにより、電極層体3の湾曲を約3〜4mmに低減することができた。
(実施形態2)
実施形態1と同様の単電池ユニット2に湾曲防止部9を設けて加圧した後、単電池ユニット2に湾曲防止部9を設けた状態のまま、例えば、2〜10時間程度単電池ユニット2を保管(放置)すると、その後、湾曲防止部9を単電池ユニット2から除去しても、電極層体3の湾曲は約3〜4mm程度のままとすることができた。湾曲防止部9を除去するために単電池ユニット2を切断する位置は、図1及び図2に示すように、シール部11の外側である必要はあるが、電極層体3になるべく近づけることが好ましい。
However, the outer shape of the current collector is increased from 120 mm on one side to 160 mm on one side, and a resin (for example, PET (Poly Ethylene Terephthalate, polyethylene, PET) having a width of 20 mm and a thickness of about 200 μm is formed on the outer edge of the current collector. By adhering terephthalate)), the curvature of the electrode layer body 3 could be reduced to about 3 to 4 mm.
(Embodiment 2)
The cell unit 2 similar to that of the first embodiment is provided with the anti-bending portion 9 and pressurized, and then the cell unit 2 is provided with the anti-bending portion 9 in the unit cell unit 2, for example, for about 2 to 10 hours. Was stored (leaved), and then the curvature of the electrode layer body 3 could be maintained at about 3 to 4 mm even if the bending prevention portion 9 was removed from the unit cell unit 2. As shown in FIGS. 1 and 2, the position where the unit cell unit 2 is cut to remove the anti-bending portion 9 needs to be outside the seal portion 11, but may be as close as possible to the electrode layer body 3. preferable.

電極層体3の湾曲量は、電極層体3に用いる粉体、集電体、及び、加圧力に基づく条件によって変化する。このため、このような条件に適合するように湾曲防止部9を変更することが必要になる。   The amount of bending of the electrode layer body 3 varies depending on the powder, current collector, and conditions based on the applied pressure used for the electrode layer body 3. For this reason, it is necessary to change the bending prevention part 9 so that it may meet such conditions.

湾曲防止部9は、上記条件に適合するように、幅、形状、厚み、材質等のうちの少なくとも一つを変更することができる。湾曲防止部9の形状は、例えば、ロの字形状とするか、四辺形状の集電体の一辺のみに形成される形状とするか、隅部のみに形成される形状とするか、二辺のみに形成される形状とするか、三辺のみに形成される形状とするか等を選択することができる。   The curving prevention unit 9 can change at least one of width, shape, thickness, material, and the like so as to meet the above conditions. The shape of the anti-bending portion 9 is, for example, a square shape, a shape formed only on one side of a quadrilateral current collector, a shape formed only on a corner, or two sides It is possible to select whether the shape is formed only on the three sides, the shape formed only on the three sides, or the like.

但し、実施形態2の方法では、湾曲量を低減するために湾曲防止部9を形成して製造した単電池ユニット2を、すべて数時間ずつ放置してから、湾曲防止部9を除去する必要がある。   However, in the method of the second embodiment, in order to reduce the amount of bending, it is necessary to leave all the cell units 2 manufactured by forming the bending prevention portion 9 for several hours, and then remove the bending prevention portion 9. is there.

(実施形態3)
図3は実施形態3に係る全固体リチウムイオン二次電池1Bの製造方法を示す斜視図である。全固体リチウムイオン二次電池1Bは、積層電池ユニット10とパッケージ部材12とを備える。積層電池ユニット10は積層された複数枚の単電池ユニット2を含む。
(Embodiment 3)
FIG. 3 is a perspective view showing a method for manufacturing the all-solid-state lithium ion secondary battery 1B according to the third embodiment. The all solid lithium ion secondary battery 1 </ b> B includes a laminated battery unit 10 and a package member 12. The stacked battery unit 10 includes a plurality of unit cell units 2 stacked.

実施形態3では、実施形態1で作成した湾曲が小さい単電池ユニット2を複数枚積層した積層電池ユニット10をU字状に形成されたパッケージ部材12により挟み込んで保持する。パッケージ部材12は、仮パッケージ又は製品パッケージである。   In the third embodiment, the laminated battery unit 10 formed by laminating a plurality of unit cell units 2 having a small curvature created in the first embodiment is sandwiched and held by the package member 12 formed in a U shape. The package member 12 is a temporary package or a product package.

そして、積層電池ユニット10をパッケージ部材12により挟み込んだ状態で、湾曲防止部9が形成されたカット部13を切断により除去する。このように、パッケージ部材12により単電池ユニット2を物理的に拘束した状態で湾曲防止部9が除去される。このため、単電池ユニット2の電極層体3の湾曲が、パッケージ部材12の形状及び強度により基本的に抑えられる。   Then, in a state where the laminated battery unit 10 is sandwiched between the package members 12, the cut portion 13 in which the bending prevention portion 9 is formed is removed by cutting. In this way, the bending preventing portion 9 is removed in a state where the battery unit 2 is physically restrained by the package member 12. For this reason, the curvature of the electrode layer body 3 of the unit cell unit 2 is basically suppressed by the shape and strength of the package member 12.

実施形態3では、図3に示すように、四辺形状の単電池ユニット2の三辺のみに湾曲防止部9が形成される。そして、三辺のみに湾曲防止部9が形成された単電池ユニット2が複数積層される。湾曲防止部9は、幅30mm、厚み200μmである。図3では、構成を容易に理解できるように、単電池ユニット2は3枚しか描かれていない。しかしながら、実際には例えば20枚の単電池ユニット2が積層されてパッケージ部材12により挟み込まれる。パッケージ部材12の形状は、図3に描かれるような単電池ユニット2間の隙間及びパッケージ部材12と単電池ユニット2との間の隙間が極力狭くなるように決定される。   In the third embodiment, as shown in FIG. 3, the bending prevention portions 9 are formed only on the three sides of the quadrilateral unit cell unit 2. A plurality of unit cell units 2 each having the anti-bending portion 9 formed on only three sides are stacked. The curving prevention unit 9 has a width of 30 mm and a thickness of 200 μm. In FIG. 3, only three unit cell units 2 are drawn so that the configuration can be easily understood. However, actually, for example, 20 unit cell units 2 are stacked and sandwiched between the package members 12. The shape of the package member 12 is determined so that the gap between the single battery units 2 and the gap between the package member 12 and the single battery unit 2 as illustrated in FIG.

図3に示す例では、湾曲防止部9が単電池ユニット2の三辺に形成され、パッケージ部材12の形状がU字型形状である例を示したが、本発明はこれに限定されない。湾曲防止部9は単電池ユニット2の集電体の二辺以上に形成されれば問題ない。また、湾曲防止部9は、集電体の周縁に沿って連続的に形成されてもよいし、断続的に(破線状に)形成されてもよい。   In the example shown in FIG. 3, the bending prevention portion 9 is formed on three sides of the single battery unit 2 and the package member 12 has a U-shaped shape. However, the present invention is not limited to this. There is no problem as long as the anti-bending portion 9 is formed on two or more sides of the current collector of the single battery unit 2. Moreover, the bending prevention part 9 may be formed continuously along the periphery of the current collector, or may be formed intermittently (in a broken line shape).

図3に示されるようにパッケージ部材12がU字形状である場合は、矢印14により示される単電池ユニット2の積層方向に沿って数g/cm〜数百g/cm程度の低荷重をパッケージ部材12に加えた状態で、湾曲防止部9を切断により除去する。そして、電極取り出し部の集電体への接続等の処理が行われる。その後、六面体を形成するように、U字形状のパッケージ部材12が他のU字形状のパッケージ部材と組み合わせられる。次に、パッケージ部材12と他のパッケージ部材とがレーザ溶接等により接続されることにより全固定電池のパッケージが完成する。 When the package member 12 is U-shaped as shown in FIG. 3, a low load of about several g / cm 2 to several hundred g / cm 2 along the stacking direction of the unit cell unit 2 indicated by the arrow 14. Is added to the package member 12, and the bend preventing portion 9 is removed by cutting. Then, processing such as connection of the electrode extraction unit to the current collector is performed. Thereafter, the U-shaped package member 12 is combined with other U-shaped package members so as to form a hexahedron. Next, the package member 12 and another package member are connected by laser welding or the like, thereby completing the package of the all fixed battery.

図3ではパッケージ部材12がU字形状である例を挙げたが、本発明はこれに限定されない。パッケージ部材12の形状は、最終的に積層電池ユニット10を密封することができる形状であれば、どのような形状でもよい。   In FIG. 3, an example in which the package member 12 is U-shaped has been described, but the present invention is not limited to this. The shape of the package member 12 may be any shape as long as it can finally seal the laminated battery unit 10.

積層電池ユニット10をパッケージ部材12と他のパッケージ部材とにより密封した後は、パッケージ部材12と他のパッケージ部材との剛性により単電池ユニット2の湾曲が抑制される。このため、パッケージ部材12に加えていた低荷重は、積層電池ユニット10を密封した後は除去してもよい。   After the stacked battery unit 10 is sealed by the package member 12 and another package member, the bending of the unit cell unit 2 is suppressed by the rigidity of the package member 12 and the other package member. For this reason, the low load applied to the package member 12 may be removed after the laminated battery unit 10 is sealed.

実施形態1から3で説明した湾曲防止部9を除去するための切断方法は、特定の切断方法に限定されない。当該切断方法には、打ち抜き、レーザ切断、又は、その他のカッティング等を適用することができる。   The cutting method for removing the curving prevention unit 9 described in the first to third embodiments is not limited to a specific cutting method. For the cutting method, punching, laser cutting, other cutting, or the like can be applied.

(実施形態4)
前述した実施形態1から3では、湾曲防止部9が正極集電体7と負極集電体8とを連結するように形成される例を示した。しかしながら本発明はこれに限定されない。湾曲防止部9は、正極集電体7と負極集電体8との少なくとも一方の外縁を折り曲げることにより形成してもよい。
(Embodiment 4)
In the first to third embodiments described above, an example in which the bending prevention portion 9 is formed so as to connect the positive electrode current collector 7 and the negative electrode current collector 8 has been described. However, the present invention is not limited to this. The bending prevention portion 9 may be formed by bending at least one outer edge of the positive electrode current collector 7 and the negative electrode current collector 8.

図4は、単電池ユニット2に設けられた湾曲防止部9Aを示す断面図である。図4に示す例では、正極集電体7の外縁が負極集電体8側に折り曲げられることにより湾曲防止部9Aが形成される。なお、折り曲げ回数は1回でなくてもよい。例えば、正極集電体7の外縁を折り曲げた湾曲防止部9Aをさらに折り曲げてもよい。これにより、正極集電体7の強度が向上する。このため、電極層体3の湾曲がより一層抑制される。湾曲防止部9Aは、負極集電体8の外縁が正極集電体7側に折り曲げられることにより形成されてもよい。   FIG. 4 is a cross-sectional view showing a bending prevention portion 9A provided in the single battery unit 2. As shown in FIG. In the example shown in FIG. 4, the outer edge of the positive electrode current collector 7 is bent toward the negative electrode current collector 8, thereby forming the bending preventing portion 9 </ b> A. In addition, the frequency | count of bending may not be 1 time. For example, the anti-bending part 9A obtained by bending the outer edge of the positive electrode current collector 7 may be further bent. Thereby, the strength of the positive electrode current collector 7 is improved. For this reason, the curvature of the electrode layer body 3 is further suppressed. The bending preventing portion 9A may be formed by bending the outer edge of the negative electrode current collector 8 toward the positive electrode current collector 7 side.

このように実施形態1から4は、正極層4と負極層6との間に固体電解質層5が配置された全固体リチウムイオン二次電池1・1A・1Bの製造方法であって、加圧成形工程を含む。そして、正極層4と負極層6とを含む電極層よりも面積の広い集電体が形成される。この集電体の外縁に湾曲防止部9・9Aが形成されることにより、加圧成形工程後の電極層の湾曲が抑制される。次に、この後の工程で、集電体の外縁に形成された湾曲防止部9・9Aが切断により除去され、全固体電池の製品が完成する。湾曲防止部9・9Aは、正極集電体7と負極集電体8との少なくとも一方の外縁に形成される。   As described above, Embodiments 1 to 4 are methods for manufacturing all solid lithium ion secondary batteries 1, 1 A, and 1 B in which the solid electrolyte layer 5 is disposed between the positive electrode layer 4 and the negative electrode layer 6. Includes a molding process. A current collector having a larger area than the electrode layer including the positive electrode layer 4 and the negative electrode layer 6 is formed. By forming the bending preventing portions 9 and 9A on the outer edge of the current collector, the bending of the electrode layer after the pressure forming step is suppressed. Next, in the subsequent process, the curving prevention portions 9 and 9A formed on the outer edge of the current collector are removed by cutting, and the product of the all-solid battery is completed. The bending preventing portions 9 and 9A are formed on at least one outer edge of the positive electrode current collector 7 and the negative electrode current collector 8.

湾曲防止部9・9Aの切断による除去は、単電池ユニット2の加圧成形から一定時間経過後に実施するか、又は、加圧成形後の単電池ユニット2を複数枚積層した積層電池ユニット10を保持できるパッケージ部材12で積層電池ユニット10を挟んだ状態で実施することが好ましい。   The removal of the curving prevention portions 9 and 9A by cutting is performed after a certain time has elapsed since the pressure molding of the unit cell unit 2, or the stacked battery unit 10 in which a plurality of unit cell units 2 after the pressure molding are stacked is stacked. It is preferable that the stacked battery unit 10 be sandwiched between package members 12 that can be held.

以上で説明した実施形態1から4を用いることにより、特に、積層された電極層体3の形状が平坦な全固体リチウムイオン二次電池1・1A・1Bを製造する際に、正極層4、固体電解質層5、及び負極層6の湾曲が抑えられた状態で正極層4、固体電解質層5、及び負極層6を積層することができる。このため、エネルギ密度が高く、湾曲が抑制された全固体リチウムイオン二次電池1・1A・1Bを製造することができる。   By using the first to fourth embodiments described above, in particular, when manufacturing the all-solid lithium ion secondary batteries 1, 1 A, 1 B in which the shape of the laminated electrode layer body 3 is flat, the positive electrode layer 4, The positive electrode layer 4, the solid electrolyte layer 5, and the negative electrode layer 6 can be laminated in a state where the curvature of the solid electrolyte layer 5 and the negative electrode layer 6 is suppressed. For this reason, the all-solid-state lithium ion secondary battery 1 * 1A * 1B whose energy density is high and curving was suppressed can be manufactured.

(まとめ)
以上のように実施形態1及び4に係る全固体電池(全固体リチウムイオン二次電池1・1A)の製造方法は、正極層4、固体電解質層5、及び負極層6が、正極層4と負極層6との間に固体電解質層5が配置されるように積層された電極層体3と、前記正極層4の前記固体電解質層5と反対側に配置されて前記電極層体3よりも面積が広い正極集電体7と、前記負極層6の前記固体電解質層5と反対側に配置されて前記電極層体3よりも面積が広い負極集電体8とを含む単電池ユニット2の形成工程を包含し、前記単電池ユニット2の形成工程が、前記電極層体3の湾曲を防止する湾曲防止部9・9Aを、前記正極集電体7と前記負極集電体8との少なくとも一方の外縁に形成する湾曲防止部形成工程と、前記湾曲防止部形成工程により湾曲防止部9・9Aが形成された単電池ユニット2を前記電極層体3の積層方向に沿って加圧する加圧工程とを含む。
(Summary)
As described above, the manufacturing method of the all solid state batteries (all solid state lithium ion secondary batteries 1 and 1A) according to Embodiments 1 and 4 includes the positive electrode layer 4, the solid electrolyte layer 5, and the negative electrode layer 6. The electrode layer body 3 laminated so that the solid electrolyte layer 5 is disposed between the anode layer 6 and the electrode layer body 3 disposed on the opposite side of the positive electrode layer 4 from the solid electrolyte layer 5. A single battery unit 2 including a positive electrode current collector 7 having a large area and a negative electrode current collector 8 disposed on the opposite side of the negative electrode layer 6 from the solid electrolyte layer 5 and having a larger area than the electrode layer body 3. Including the forming step, and the step of forming the unit cell unit 2 includes the anti-curvature portions 9 and 9A for preventing the electrode layer body 3 from bending, at least of the positive electrode current collector 7 and the negative electrode current collector 8. Bending prevention part forming process formed on one outer edge and bending by the bending preventing part forming process And a pressurizing step of pressurizing along a single cell unit 2 to stop unit 9 · 9A is formed in the stacking direction of the electrode layer body 3.

この構成によれば、前記電極層体3の湾曲を防止する湾曲防止部9・9Aが形成される位置が、前記正極集電体7と前記負極集電体8との少なくとも一方の外縁である。このため、完成した二次電池の重量及び体積を減少させて電池エネルギ密度の低下を防止するために、正極集電体の正極層と反対側の面に接着された湾曲防止部、及び、負極集電体の負極層と反対側の面に接着された湾曲防止部を剥がす作業が必要な従来技術と比較して、湾曲防止部を除去することが容易である。従って、電極層体の湾曲を低減しながら、完成した全固体電池の重量及び体積を容易に減少させて電池エネルギ密度の低下を容易に防止することができる。   According to this configuration, the position where the anti-bending portions 9, 9 A for preventing the electrode layer body 3 from bending is the outer edge of at least one of the positive electrode current collector 7 and the negative electrode current collector 8. . Therefore, in order to reduce the weight and volume of the completed secondary battery and prevent the battery energy density from being lowered, the anti-curvature portion bonded to the surface of the positive electrode current collector opposite to the positive electrode layer, and the negative electrode It is easier to remove the anti-bending portion than the prior art that requires the work of peeling off the anti-bending portion adhered to the surface of the current collector opposite to the negative electrode layer. Therefore, while reducing the curvature of the electrode layer body, the weight and volume of the completed all-solid battery can be easily reduced to easily prevent the battery energy density from being lowered.

実施形態3に係る全固体電池(全固体リチウムイオン二次電池1B)の製造方法は、正極層4、固体電解質層5、及び負極層6が、正極層4と負極層6との間に固体電解質層5が配置されるように積層された電極層体3と、前記正極層4の前記固体電解質層5と反対側に配置されて前記電極層体3よりも面積が広い正極集電体7と、前記負極層6の前記固体電解質層5と反対側に配置されて前記電極層体3よりも面積が広い負極集電体8とを含む単電池ユニット2を複数個形成する単電池ユニット複数形成工程を包含し、前記単電池ユニット複数形成工程が、前記電極層体3の湾曲を防止する湾曲防止部9・9Aを、前記複数個の単電池ユニット2の前記正極集電体7と前記負極集電体8との少なくとも一方の外縁に形成する湾曲防止部形成工程と、前記複数個の単電池ユニット2を積層した積層電池ユニット10を形成する積層工程と、前記積層工程により積層された積層電池ユニット10を前記電極層体3の積層方向に沿って加圧する加圧工程とを含む。   In the manufacturing method of the all-solid battery (all-solid lithium ion secondary battery 1B) according to Embodiment 3, the positive electrode layer 4, the solid electrolyte layer 5, and the negative electrode layer 6 are solid between the positive electrode layer 4 and the negative electrode layer 6. The electrode layer body 3 laminated so that the electrolyte layer 5 is disposed, and the positive electrode current collector 7 disposed on the opposite side of the positive electrode layer 4 from the solid electrolyte layer 5 and having a larger area than the electrode layer body 3. A plurality of unit cell units 2 including a plurality of unit cell units 2 disposed on the opposite side of the negative electrode layer 6 from the solid electrolyte layer 5 and having a larger area than the electrode layer body 3. Including a forming step, wherein the step of forming a plurality of unit cell units prevents the electrode layer body 3 from bending, the bending preventing portions 9 and 9A, the positive electrode current collectors 7 of the plurality of unit cell units 2 and the Formation of a curving prevention portion formed on at least one outer edge of the negative electrode current collector 8 The stacking step of forming the stacked battery unit 10 in which the plurality of unit cell units 2 are stacked, and the stacked battery unit 10 stacked in the stacking step are pressurized along the stacking direction of the electrode layer body 3. Pressurizing step.

この構成によれば、前記電極層体3の湾曲を防止する湾曲防止部9・9Aが形成される位置が、前記正極集電体7と前記負極集電体8との少なくとも一方の外縁である。このため、完成した二次電池の重量及び体積を減少させて電池エネルギ密度の低下を防止するために、正極集電体の正極層と反対側の面に接着された湾曲防止部、及び、負極集電体の負極層と反対側の面に接着された湾曲防止部を剥がす作業が必要な従来技術と比較して、湾曲防止部を除去することが容易である。従って、電極層体の湾曲を低減しながら、完成した全固体電池の重量及び体積を容易に減少させて電池エネルギ密度の低下を容易に防止することができる。   According to this configuration, the position where the anti-bending portions 9, 9 A for preventing the electrode layer body 3 from bending is the outer edge of at least one of the positive electrode current collector 7 and the negative electrode current collector 8. . Therefore, in order to reduce the weight and volume of the completed secondary battery and prevent the battery energy density from being lowered, the anti-curvature portion bonded to the surface of the positive electrode current collector opposite to the positive electrode layer, and the negative electrode It is easier to remove the anti-bending portion than the prior art that requires the work of peeling off the anti-bending portion adhered to the surface of the current collector opposite to the negative electrode layer. Therefore, while reducing the curvature of the electrode layer body, the weight and volume of the completed all-solid battery can be easily reduced to easily prevent the battery energy density from being lowered.

上記全固体電池の製造方法では、前記加圧工程により加圧された単電池ユニット2又は積層電池ユニット10の前記正極集電体7と前記負極集電体8との少なくとも一方を前記電極層体3の積層方向に沿って切断することにより前記湾曲防止部9・9Aを除去する除去工程をさらに包含してもよい。   In the all-solid-state battery manufacturing method, at least one of the positive electrode current collector 7 and the negative electrode current collector 8 of the single battery unit 2 or the stacked battery unit 10 pressurized in the pressurizing step is used as the electrode layer body. 3 may further include a removing step of removing the anti-bending portions 9 and 9A by cutting along the stacking direction 3.

この構成によれば、電極層体の積層方向に沿って切断するという簡素な構成により湾曲防止部を除去することができる。   According to this configuration, the bending prevention portion can be removed with a simple configuration of cutting along the stacking direction of the electrode layer body.

上記全固体電池の製造方法では、前記加圧工程により加圧された単電池ユニット2又は積層電池ユニット10の前記電極層体3の内部に発生する残留応力を減少させるために前記単電池ユニット2又は前記積層電池ユニット10を所定時間放置した後、前記湾曲防止部9・9Aを除去してもよい。   In the manufacturing method of the all-solid-state battery, in order to reduce the residual stress generated in the electrode layer body 3 of the single battery unit 2 or the laminated battery unit 10 pressurized in the pressurizing step, the single battery unit 2 Alternatively, after the stacked battery unit 10 is allowed to stand for a predetermined time, the bending preventing portions 9 and 9A may be removed.

この構成によれば、電極層体3の内部に発生する残留応力が減少するため、電極層体3の湾曲をより一層低減することができる。   According to this configuration, since the residual stress generated inside the electrode layer body 3 is reduced, the curvature of the electrode layer body 3 can be further reduced.

上記全固体電池の製造方法では、前記正極集電体7と前記負極集電体8とが前記積層方向から見て四辺形状を有しており、前記正極集電体7と前記負極集電体8との少なくとも一方の少なくとも二辺に前記湾曲防止部9を形成してもよい。   In the all-solid-state battery manufacturing method, the positive electrode current collector 7 and the negative electrode current collector 8 have a quadrilateral shape when viewed from the stacking direction, and the positive electrode current collector 7 and the negative electrode current collector are The bend preventing portion 9 may be formed on at least two sides of at least one of 8.

この構成によれば、湾曲防止部が四辺形の少なくとも二辺に形成されるので、電極層体3の湾曲を有効に低減することができる。   According to this configuration, since the bending preventing portion is formed on at least two sides of the quadrilateral, the bending of the electrode layer body 3 can be effectively reduced.

上記全固体電池の製造方法では、前記正極集電体7と前記負極集電体8とを連結するように前記湾曲防止部9・9Aを形成し、又は、前記正極集電体7と前記負極集電体8との少なくとも一方の外縁を折り曲げることにより前記湾曲防止部9を形成してもよい。   In the manufacturing method of the all-solid-state battery, the curving prevention portions 9 and 9A are formed so as to connect the positive electrode current collector 7 and the negative electrode current collector 8, or the positive electrode current collector 7 and the negative electrode The bending preventing portion 9 may be formed by bending at least one outer edge of the current collector 8.

この構成によれば、電極層体3の湾曲を防止するために前記正極集電体7と前記負極集電体8との少なくとも一方の外縁に配置される湾曲防止部9・9Aを簡単な構成で形成することができる。   According to this structure, in order to prevent the electrode layer body 3 from bending, the bending preventing portions 9 and 9A disposed on the outer edge of at least one of the positive electrode current collector 7 and the negative electrode current collector 8 are simply configured. Can be formed.

上記全固体電池の製造方法では、前記正極集電体7と前記負極集電体8との少なくとも一方の表面粗さが、Rz=1.0μm以上であってもよい。   In the all solid state battery manufacturing method, the surface roughness of at least one of the positive electrode current collector 7 and the negative electrode current collector 8 may be Rz = 1.0 μm or more.

この構成によれば、表面粗さが大きい前記正極集電体7と前記負極集電体8との少なくとも一方により電極層体3に発生する湾曲を低減することができる。   According to this structure, the curvature which generate | occur | produces in the electrode layer body 3 by at least one of the said positive electrode collector 7 and the said negative electrode collector 8 with large surface roughness can be reduced.

実施形態1から3に係る全固体電池(全固体リチウムイオン二次電池1・1A・1B)は、正極層4、固体電解質層5、及び負極層6が、正極層4と負極層6との間に固体電解質層5が配置されるように積層された電極層体3と、前記正極層4の前記固体電解質層5と反対側に配置され、前記電極層体3よりも面積が広い正極集電体7と、前記負極層6の前記固体電解質層5と反対側に配置され、前記電極層体3よりも面積が広い負極集電体8と、前記電極層体3の湾曲を防止するために、前記正極集電体7と前記負極集電体8との少なくとも一方の外縁に形成された湾曲防止部9・9Aとを備える。   In the all solid state batteries (all solid state lithium ion secondary batteries 1, 1 A, 1 B) according to the first to third embodiments, the positive electrode layer 4, the solid electrolyte layer 5, and the negative electrode layer 6 include the positive electrode layer 4 and the negative electrode layer 6. The electrode layer body 3 laminated so that the solid electrolyte layer 5 is disposed therebetween, and the positive electrode assembly disposed on the opposite side of the positive electrode layer 4 from the solid electrolyte layer 5 and having a larger area than the electrode layer body 3 In order to prevent bending of the electrode layer body 3, the negative electrode current collector 8, the negative electrode current collector 8 disposed on the opposite side of the negative electrode layer 6 from the solid electrolyte layer 5 and having a larger area than the electrode layer body 3. In addition, an anti-bending portion 9, 9 A formed on at least one outer edge of the positive electrode current collector 7 and the negative electrode current collector 8 is provided.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

1・1A・1B 全固体リチウムイオン二次電池(全固体電池)
2 単電池ユニット
3 電極層体
4 正極層
5 固体電解質層
6 負極層
7 正極集電体
8 負極集電体
9・9A 湾曲防止部
10 積層電池ユニット
1 ・ 1A ・ 1B All-solid-state lithium ion secondary battery (all-solid-state battery)
2 unit cell unit 3 electrode layer body 4 positive electrode layer 5 solid electrolyte layer 6 negative electrode layer 7 positive electrode current collector 8 negative electrode current collector 9.

Claims (8)

正極層、固体電解質層、及び負極層が、前記正極層と前記負極層との間に前記固体電解質層が配置されるように積層された電極層体と、前記正極層の前記固体電解質層と反対側に配置されて前記電極層体よりも面積が広い正極集電体と、前記負極層の前記固体電解質層と反対側に配置されて前記電極層体よりも面積が広い負極集電体とを含む単電池ユニットの形成工程を包含し、
前記単電池ユニットの形成工程が、
前記電極層体の湾曲を防止する湾曲防止部を、前記正極集電体と前記負極集電体との少なくとも一方の外縁に形成する湾曲防止部形成工程と、
前記湾曲防止部形成工程により湾曲防止部が形成された単電池ユニットを前記電極層体の積層方向に沿って加圧する加圧工程とを含むことを特徴とする全固体電池の製造方法。
An electrode layer body in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are stacked such that the solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer; and the solid electrolyte layer of the positive electrode layer; A positive electrode current collector that is disposed on the opposite side and has a larger area than the electrode layer body; and a negative electrode current collector that is disposed on the opposite side of the negative electrode layer from the solid electrolyte layer and has a larger area than the electrode layer body; Including a step of forming a unit cell unit including:
The step of forming the unit cell unit includes
A curving prevention part forming step for forming a curving prevention part for preventing curving of the electrode layer body on at least one outer edge of the positive electrode current collector and the negative electrode current collector;
And a pressurizing step of pressurizing the unit cell unit in which the anti-curvature portion is formed by the anti-bend portion forming step along the stacking direction of the electrode layer body.
正極層、固体電解質層、及び負極層が、前記正極層と前記負極層との間に前記固体電解質層が配置されるように積層された電極層体と、前記正極層の前記固体電解質層と反対側に配置されて前記電極層体よりも面積が広い正極集電体と、前記負極層の前記固体電解質層と反対側に配置されて前記電極層体よりも面積が広い負極集電体とを含む単電池ユニットを複数個形成する単電池ユニット複数形成工程を包含し、
前記単電池ユニット複数形成工程が、
前記電極層体の湾曲を防止する湾曲防止部を、前記複数個の単電池ユニットの前記正極集電体と前記負極集電体との少なくとも一方の外縁に形成する湾曲防止部形成工程と、
前記複数個の単電池ユニットを積層した積層電池ユニットを形成する積層工程と、
前記積層工程により積層された積層電池ユニットを前記電極層体の積層方向に沿って加圧する加圧工程とを含むことを特徴とする全固体電池の製造方法。
An electrode layer body in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are stacked such that the solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer; and the solid electrolyte layer of the positive electrode layer; A positive electrode current collector that is disposed on the opposite side and has a larger area than the electrode layer body; and a negative electrode current collector that is disposed on the opposite side of the negative electrode layer from the solid electrolyte layer and has a larger area than the electrode layer body; Including a plurality of unit cell unit forming steps for forming a plurality of unit cell units including:
The unit cell unit forming step includes:
An anti-bending part forming step for forming an anti-bending part for preventing the electrode layer body from bending on at least one outer edge of the positive electrode current collector and the negative electrode current collector of the plurality of unit cell units;
A stacking step of forming a stacked battery unit in which the plurality of unit cell units are stacked;
And a pressurizing step of pressurizing the laminated battery unit laminated in the laminating step along the laminating direction of the electrode layer body.
前記加圧工程により加圧された単電池ユニット又は積層電池ユニットの前記正極集電体と前記負極集電体との少なくとも一方を前記電極層体の積層方向に沿って切断することにより前記湾曲防止部を除去する除去工程をさらに包含することを特徴とする請求項1又は2に記載の全固体電池の製造方法。 Preventing the bending by cutting at least one of the positive electrode current collector and the negative electrode current collector of the unit cell unit or the stacked battery unit pressed in the pressing step along the stacking direction of the electrode layer body. The method for producing an all solid state battery according to claim 1, further comprising a removing step of removing the portion. 前記加圧工程により加圧された単電池ユニット又は積層電池ユニットの前記電極層体の内部に発生する残留応力を減少させるために前記単電池ユニット又は前記積層電池ユニットを所定時間放置した後、前記湾曲防止部を除去することを特徴とする請求項1から3のいずれか一項に記載の全固体電池の製造方法。   After the unit cell unit or the laminated battery unit is left for a predetermined time in order to reduce the residual stress generated in the electrode layer body of the unit cell unit or the laminated battery unit pressurized by the pressurization step, The method for manufacturing an all-solid-state battery according to any one of claims 1 to 3, wherein the bending prevention portion is removed. 前記正極集電体と前記負極集電体とが前記積層方向から見て四辺形状を有しており、
前記正極集電体と前記負極集電体との少なくとも一方の少なくとも二辺に前記湾曲防止部を形成することを特徴とする請求項1から4のいずれか一項に記載の全固体電池の製造方法。
The positive electrode current collector and the negative electrode current collector have a quadrilateral shape when viewed from the stacking direction;
5. The all-solid-state battery production according to claim 1, wherein the bending prevention portion is formed on at least two sides of at least one of the positive electrode current collector and the negative electrode current collector. Method.
前記正極集電体と前記負極集電体とを連結するように前記湾曲防止部を形成し、又は、前記正極集電体と前記負極集電体との少なくとも一方の外縁を折り曲げることにより前記湾曲防止部を形成することを特徴とする請求項1から5のいずれか一項に記載の全固体電池の製造方法。   The curving prevention part is formed so as to connect the positive electrode current collector and the negative electrode current collector, or the bending is performed by bending an outer edge of at least one of the positive electrode current collector and the negative electrode current collector. The prevention part is formed, The manufacturing method of the all-solid-state battery as described in any one of Claim 1 to 5 characterized by the above-mentioned. 前記正極集電体と前記負極集電体との少なくとも一方の表面粗さが、Rz=1.0μm以上であることを特徴とする請求項1から6のいずれか一項に記載の全固体電池の製造方法。   7. The all-solid-state battery according to claim 1, wherein the surface roughness of at least one of the positive electrode current collector and the negative electrode current collector is Rz = 1.0 μm or more. Manufacturing method. 正極層、固体電解質層、及び負極層が、前記正極層と前記負極層との間に前記固体電解質層が配置されるように積層された電極層体と、
前記正極層の前記固体電解質層と反対側に配置され、前記電極層体よりも面積が広い正極集電体と、
前記負極層の前記固体電解質層と反対側に配置され、前記電極層体よりも面積が広い負極集電体と、
前記電極層体の湾曲を防止するために、前記正極集電体と前記負極集電体との少なくとも一方の外縁に形成された湾曲防止部とを備えたことを特徴とする全固体電池。
An electrode layer body in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are stacked such that the solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer;
A positive electrode current collector disposed on the side of the positive electrode layer opposite to the solid electrolyte layer and having a larger area than the electrode layer body;
A negative electrode current collector disposed on a side opposite to the solid electrolyte layer of the negative electrode layer, and having a larger area than the electrode layer body;
An all-solid-state battery comprising: a bend preventing portion formed at an outer edge of at least one of the positive electrode current collector and the negative electrode current collector in order to prevent the electrode layer body from being bent.
JP2017019084A 2017-02-03 2017-02-03 Manufacturing method of all-solid-state battery Active JP6895761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017019084A JP6895761B2 (en) 2017-02-03 2017-02-03 Manufacturing method of all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017019084A JP6895761B2 (en) 2017-02-03 2017-02-03 Manufacturing method of all-solid-state battery

Publications (2)

Publication Number Publication Date
JP2018125268A true JP2018125268A (en) 2018-08-09
JP6895761B2 JP6895761B2 (en) 2021-06-30

Family

ID=63111667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017019084A Active JP6895761B2 (en) 2017-02-03 2017-02-03 Manufacturing method of all-solid-state battery

Country Status (1)

Country Link
JP (1) JP6895761B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11594764B2 (en) 2019-12-27 2023-02-28 Taiyo Yuden Co., Ltd. All solid battery and manufacturing method of the same
WO2023224342A1 (en) * 2022-05-16 2023-11-23 주식회사 엘지에너지솔루션 All-solid-state battery and manufacturing method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059954A (en) * 2006-08-31 2008-03-13 Seiko Epson Corp Manufacturing method of secondary battery
WO2010131321A1 (en) * 2009-05-11 2010-11-18 トヨタ自動車株式会社 Solid‑state battery manufacturing method and solid state battery
JP2011216193A (en) * 2010-03-31 2011-10-27 Furukawa Battery Co Ltd:The Negative electrode for lithium battery, and lithium secondary battery using this
JP2012059472A (en) * 2010-09-07 2012-03-22 Toyota Motor Corp Method for manufacturing secondary battery electrode
JP2015041538A (en) * 2013-08-22 2015-03-02 トヨタ自動車株式会社 All-solid-state battery and method for manufacturing the same
JP2016192265A (en) * 2015-03-31 2016-11-10 日立造船株式会社 Manufacturing method of all-solid-state secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059954A (en) * 2006-08-31 2008-03-13 Seiko Epson Corp Manufacturing method of secondary battery
WO2010131321A1 (en) * 2009-05-11 2010-11-18 トヨタ自動車株式会社 Solid‑state battery manufacturing method and solid state battery
JP2011216193A (en) * 2010-03-31 2011-10-27 Furukawa Battery Co Ltd:The Negative electrode for lithium battery, and lithium secondary battery using this
JP2012059472A (en) * 2010-09-07 2012-03-22 Toyota Motor Corp Method for manufacturing secondary battery electrode
JP2015041538A (en) * 2013-08-22 2015-03-02 トヨタ自動車株式会社 All-solid-state battery and method for manufacturing the same
JP2016192265A (en) * 2015-03-31 2016-11-10 日立造船株式会社 Manufacturing method of all-solid-state secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11594764B2 (en) 2019-12-27 2023-02-28 Taiyo Yuden Co., Ltd. All solid battery and manufacturing method of the same
WO2023224342A1 (en) * 2022-05-16 2023-11-23 주식회사 엘지에너지솔루션 All-solid-state battery and manufacturing method therefor

Also Published As

Publication number Publication date
JP6895761B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
KR102508379B1 (en) All-solid-state secondary battery and production method therefor
US10686213B2 (en) Battery
JP5679748B2 (en) Manufacturing method of all solid state battery
KR102350322B1 (en) All-solid-state secondary battery
WO2017150354A1 (en) All-solid state secondary battery and method for manufacturing same
CN209312928U (en) Electrode assembly
JP7082142B2 (en) All-solid-state battery, its manufacturing method and processing equipment
JP2012038425A (en) Method of manufacturing electrode body, and electrode body
JP7148600B2 (en) solid state battery
JP7046185B2 (en) Positive electrode for solid-state battery, method for manufacturing positive electrode for solid-state battery, and solid-state battery
JP2015162353A (en) Method for manufacturing all-solid battery
KR20200134688A (en) High energy density all-solid state battery and process for preparing thereof
JP6324296B2 (en) All solid state secondary battery
WO2017187494A1 (en) All-solid-state secondary battery
JP2012146512A (en) Method for manufacturing battery
JP6895761B2 (en) Manufacturing method of all-solid-state battery
JP2017157271A (en) All-solid type secondary battery and method for manufacturing the same
JP2012059472A (en) Method for manufacturing secondary battery electrode
JPWO2018116983A1 (en) Manufacturing method and manufacturing apparatus for all solid state battery
US20200112063A1 (en) Manufacturing method of solid-state battery
JP2018147621A (en) Manufacturing method of all-solid battery
KR102065736B1 (en) Method for preparing crude cell for lithium secondary battery
CN111886742B (en) Solid-state battery
JP2018107008A (en) Manufacturing method of all-solid battery
JP2020095852A (en) All-solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210608

R150 Certificate of patent or registration of utility model

Ref document number: 6895761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250