JP2018124221A - Magnetic measuring method and magnetic measuring device - Google Patents

Magnetic measuring method and magnetic measuring device Download PDF

Info

Publication number
JP2018124221A
JP2018124221A JP2017018137A JP2017018137A JP2018124221A JP 2018124221 A JP2018124221 A JP 2018124221A JP 2017018137 A JP2017018137 A JP 2017018137A JP 2017018137 A JP2017018137 A JP 2017018137A JP 2018124221 A JP2018124221 A JP 2018124221A
Authority
JP
Japan
Prior art keywords
signal
amplitude
magnetic
noise
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017018137A
Other languages
Japanese (ja)
Other versions
JP6624099B2 (en
Inventor
児玉 俊文
Toshibumi Kodama
俊文 児玉
佑司 西澤
Yuji Nishizawa
佑司 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017018137A priority Critical patent/JP6624099B2/en
Publication of JP2018124221A publication Critical patent/JP2018124221A/en
Application granted granted Critical
Publication of JP6624099B2 publication Critical patent/JP6624099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic measuring method and a magnetic measuring device capable of accurately detecting amplitude of a secondary-side AC signal, without increasing the device or wiring cost and without being affected by noise or a ground drift.SOLUTION: In an analysis processing as one embodiment of the present invention, a waveform signal that has the same frequency as that of a secondary-side AC signal and has a phase 90 degrees different from that of the secondary-side AC signal is generated from the secondary-side AC signal, and amplitude of the secondary-side AC signal using the secondary-side AC signal and a waveform signal is calculated. Thus, the amplitude of the secondary-side AC signal can be accurately detected without increasing a device or wiring cost and without being affected by noise or a ground drift.SELECTED DRAWING: Figure 3

Description

本発明は、交流信号によって被検体を励磁するのに伴い被検体の近傍に発生する誘導電流又は磁場を2次側交流信号として検出する磁気計測方法及び磁気計測装置に関する。   The present invention relates to a magnetic measurement method and a magnetic measurement apparatus for detecting an induced current or a magnetic field generated in the vicinity of a subject as the subject is excited by an AC signal as a secondary AC signal.

鋼板や鋼材に存在する疵や内部の介在物等の異物を検査する方法、あるいは材料の磁気特性を測定する方法として、渦流探傷法あるいは漏洩磁束探傷法が知られている。なお、透磁率等の磁気特性の測定は探傷ではないが、当業者の呼称上の習慣より以下でも「探傷」と呼ぶこととする。   As a method for inspecting foreign matter such as a flaw existing in a steel plate or steel material, or inclusions inside, or a method for measuring magnetic properties of a material, an eddy current flaw detection method or a leakage magnetic flux flaw detection method is known. Note that the measurement of magnetic properties such as magnetic permeability is not flaw detection, but it will be referred to as “flaw detection” in the following because of the naming convention of those skilled in the art.

渦流探傷法は、被検体に誘導した渦電流が、被検体の表面に存在する疵や表面近くの内部に存在する介在物等の異物、あるいは導電率や透磁率等の電気磁気特性の不均一さに起因して乱れる現象を、被検体近傍に誘導用コイルとは別の検出用コイルを設置して検出するか、誘導用コイル自身の特性変化として検出する。換言すれば、渦流探傷法は、誘導用コイルと検出用コイルが別の場合は相互誘導現象を利用し、誘導用コイルと検出用コイルが同一の場合には自己誘導現象を利用する。   In the eddy current flaw detection method, the eddy current induced in the subject is caused by foreign matter such as wrinkles present on the surface of the subject and inclusions present in the vicinity of the surface, or inhomogeneous electromagnetic characteristics such as conductivity and permeability. The phenomenon that is disturbed due to this is detected by installing a detection coil that is different from the induction coil in the vicinity of the subject, or is detected as a characteristic change of the induction coil itself. In other words, the eddy current flaw detection method uses the mutual induction phenomenon when the induction coil and the detection coil are different, and uses the self-induction phenomenon when the induction coil and the detection coil are the same.

これに対して、漏洩磁束探傷法は、被検体が磁性体である場合、被検体に磁界を作用させて磁化(励磁)させた際に被検体の表面に存在する疵や表面近くの内部に存在する介在物等の異物、あるいは透磁率等の電気磁気特性の不均一さに起因して被検体表面に漏洩する磁束の量が変化することを利用して探傷する。この漏洩磁束探傷法では、従来は直流励磁が多用されていたが、近年では測定感度や応答速度を高めるために交流励磁や直流励磁と交流励磁とを併用した方法が用いられるようになってきている。   On the other hand, when the subject is a magnetic substance, the leakage magnetic flux flaw detection method is applied to the inside of the surface of the subject or near the surface when the subject is magnetized (excited) by applying a magnetic field to the subject. The flaw detection is performed by utilizing the change in the amount of magnetic flux that leaks to the surface of the subject due to the presence of foreign matter such as inclusions, or non-uniformity of the electromagnetic characteristics such as magnetic permeability. In this leakage magnetic flux flaw detection method, DC excitation has been frequently used in the past, but in recent years, AC excitation or a method using both DC excitation and AC excitation has come to be used in order to increase measurement sensitivity and response speed. Yes.

このような渦流探傷法や交流漏洩磁束探傷法で検出される信号は、既知の誘導又は励磁(以下ではこれらをまとめて「励起」と呼ぶ)周波数を有する交流信号(2次側交流信号)であり、その振幅や位相に疵の有無や材料の磁気特性等の情報が含まれているために、2次側交流信号の高精度な解析が必要になる。このため、公知の方法として、励起信号を参照信号とする直交検波であり、参照信号と、参照信号の位相を90度進めた信号を生成する位相器と、これら2つの信号に2次側交流信号を乗算する2つの乗算器と、乗算値の二乗和と商から2次側交流信号の振幅及び位相を算出する演算器と、を備える装置が提案されている。   A signal detected by such an eddy current flaw detection method or an AC leakage magnetic flux flaw detection method is an AC signal (secondary side AC signal) having a known induction or excitation (hereinafter collectively referred to as “excitation”) frequency. In addition, since the amplitude and phase include information such as the presence or absence of wrinkles and the magnetic characteristics of the material, it is necessary to analyze the secondary AC signal with high accuracy. For this reason, as a known method, quadrature detection using an excitation signal as a reference signal, a reference signal, a phase shifter that generates a signal obtained by advancing the phase of the reference signal by 90 degrees, and a secondary side alternating current between these two signals An apparatus has been proposed that includes two multipliers for multiplying signals and an arithmetic unit for calculating the amplitude and phase of the secondary AC signal from the square sum and quotient of the multiplication values.

また、以上の機能をまとめてロックインアンプとして市販されているものもあり、多くの先行発明では、ロックインアンプやそれと等価な位相検波装置を利用するものが提案されている(特許文献1〜3参照)。さらに、特許文献4には、直流磁場とそれと直交する成分を含む交流磁場とを同時に鋼板に印加して鋼板の内部エネルギーの大きさに比例する検出信号を測定し、その測定値に基づいて鋼板の結晶方位を算出する発明が記載されている。また、特許文献4には、検出信号の振幅の測定方法として、検出信号の実効値処理があると記載されている。   In addition, some of the above functions are commercially available as a lock-in amplifier, and many prior inventions have proposed using a lock-in amplifier or a phase detector equivalent to the lock-in amplifier (Patent Documents 1 to 3). 3). Furthermore, in Patent Document 4, a DC magnetic field and an AC magnetic field including a component orthogonal thereto are simultaneously applied to a steel plate, and a detection signal proportional to the magnitude of the internal energy of the steel plate is measured. An invention for calculating the crystal orientation of is described. Further, Patent Document 4 describes that there is effective value processing of a detection signal as a method for measuring the amplitude of the detection signal.

特許第4736811号公報Japanese Patent No. 47368811 特許第5293755号公報Japanese Patent No. 5293755 特開2013−160739号公報JP 2013-160739 A 特開2013−185902号公報JP 2013-185902 A

しかしながら、特許文献1〜3記載の方法では、2次側交流信号の振幅を検出するために、直交検波回路又はロックインアンプが必要であり、また2次側交流信号に加えて参照信号についても配線を行う必要があることから、コストが増大する。また、参照信号にノイズが混入した場合には、2次側交流信号の振幅の検出精度を確保することができない。一方、特許文献4に記載の方法によれば、検出信号にノイズやグラウンド(ゼロ点)ドリフトが発生した場合、検出信号の振幅の検出精度に影響が生じる。   However, the methods described in Patent Documents 1 to 3 require a quadrature detection circuit or a lock-in amplifier in order to detect the amplitude of the secondary AC signal, and also the reference signal in addition to the secondary AC signal. Since wiring is necessary, the cost increases. In addition, when noise is mixed in the reference signal, it is not possible to ensure the accuracy of detecting the amplitude of the secondary AC signal. On the other hand, according to the method described in Patent Document 4, when noise or ground (zero point) drift occurs in the detection signal, the detection accuracy of the amplitude of the detection signal is affected.

本発明は、上記課題に鑑みてなされたものであって、その目的は、装置や配線のコストを増大させることなく、且つ、ノイズやグラウンドドリフトの影響を受けることなく、2次側交流信号の振幅を精度よく検出可能な磁気計測方法及び磁気計測装置を提供することにある。   The present invention has been made in view of the above-described problems, and its purpose is to increase the cost of the apparatus and wiring, and to avoid the influence of noise and ground drift. An object of the present invention is to provide a magnetic measurement method and a magnetic measurement apparatus capable of accurately detecting an amplitude.

本発明に係る磁気計測方法は、交流信号によって被検体を励起するのに伴い該被検体の近傍に発生する誘導電流又は磁場を2次側交流信号として検出する磁気計測方法であって、前記2次側交流信号から該2次側交流信号の周波数と同一の周波数を有し、且つ、該2次側交流信号の位相に対して90度位相が異なる波形信号を生成し、前記2次側交流信号と前記波形信号とを用いて前記2次側交流信号の振幅を算出する振幅算出ステップを含むことを特徴とする。   The magnetic measurement method according to the present invention is a magnetic measurement method for detecting an induced current or a magnetic field generated in the vicinity of a subject as the subject is excited by an alternating current signal as a secondary side alternating current signal. A waveform signal having the same frequency as the frequency of the secondary AC signal from the secondary AC signal and having a phase difference of 90 degrees with respect to the phase of the secondary AC signal is generated. The method includes an amplitude calculating step of calculating an amplitude of the secondary AC signal using a signal and the waveform signal.

本発明に係る磁気計測方法は、上記発明において、前記振幅算出ステップは、前記2次側交流信号をヒルベルト変換することによって前記波形信号を生成するステップを含むことを特徴とする。   In the magnetic measurement method according to the present invention as set forth in the invention described above, the amplitude calculating step includes a step of generating the waveform signal by performing a Hilbert transform on the secondary AC signal.

本発明に係る磁気計測方法は、上記発明において、前記振幅算出ステップは、周波数解析を実行することによって前記2次側交流信号の振幅が最大となる周波数成分を抽出し、前記2次側交流信号から前記周波数成分のみを取り出した信号をノイズ除去信号として生成し、ノイズ除去信号と前記波形信号とを用いて前記2次側交流信号の振幅を算出するステップを含むことを特徴とする   In the magnetic measurement method according to the present invention as set forth in the invention described above, in the amplitude calculation step, the frequency component in which the amplitude of the secondary AC signal is maximized is extracted by executing frequency analysis, and the secondary AC signal is extracted. Generating a signal obtained by extracting only the frequency component from the signal as a noise removal signal, and calculating the amplitude of the secondary AC signal using the noise removal signal and the waveform signal.

本発明に係る磁気計測装置は、交流信号によって被検体を励起するのに伴い該被検体の近傍に発生する誘導電流又は磁場を2次側交流信号として検出する磁気計測装置であって、前記2次側交流信号から該2次側交流信号の周波数と同一の周波数を有し、且つ、該2次側交流信号の位相に対して90度位相が異なる波形信号を生成し、前記2次側交流信号と前記波形信号とを用いて前記2次側交流信号の振幅を算出する振幅算出手段を備えることを特徴とする。   The magnetic measurement device according to the present invention is a magnetic measurement device that detects an induced current or a magnetic field generated near the subject as the subject is excited by an AC signal as a secondary AC signal. A waveform signal having the same frequency as the frequency of the secondary AC signal from the secondary AC signal and having a phase difference of 90 degrees with respect to the phase of the secondary AC signal is generated. An amplitude calculating means is provided for calculating the amplitude of the secondary AC signal using the signal and the waveform signal.

本発明に係る磁気計測方法及び磁気計測装置によれば、装置や配線のコストを増大させることなく、且つ、ノイズやグラウンドドリフトの影響を受けることなく、2次側交流信号の振幅を精度よく検出することができる。   According to the magnetic measurement method and the magnetic measurement device according to the present invention, the amplitude of the secondary AC signal can be accurately detected without increasing the cost of the device or wiring and without being affected by noise or ground drift. can do.

図1は、本発明の一実施形態である磁気計測装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a magnetic measurement apparatus according to an embodiment of the present invention. 図2は、従来の磁気計測装置の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a conventional magnetic measurement apparatus. 図3は、本発明の一実施形態である振幅解析処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing the flow of amplitude analysis processing according to an embodiment of the present invention. 図4は、従来及び本発明の振幅解析処理によって算出された振幅の誤差の平均値の一例を示す図である。FIG. 4 is a diagram illustrating an example of an average value of amplitude errors calculated by the amplitude analysis processing according to the related art and the present invention. 図5は、従来及び本発明の振幅解析処理によって算出された振幅の誤差のばらつきの一例を示す図である。FIG. 5 is a diagram illustrating an example of variation in amplitude error calculated by the amplitude analysis processing according to the related art and the present invention. 図6は、2次側交流信号、ノイズを含まない2次側交流信号(復元信号)、及びノイズの一例を示す図である。FIG. 6 is a diagram illustrating an example of a secondary AC signal, a secondary AC signal (restoration signal) that does not include noise, and noise.

以下、図面を参照して、本発明の一実施形態である磁気計測装置の構成及び動作について説明する。   Hereinafter, the configuration and operation of a magnetic measurement apparatus according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態である磁気計測装置の構成を示すブロック図である。図1に示すように、本発明の一実施形態である磁気計測装置1は、渦流探傷法を利用して、鋼板Sに存在する疵や内部の介在物等の異物の検査、又は、鋼板Sの磁気特性の測定を行う装置であり、励起信号発生装置2、励起コイル3、検出センサ4、増幅器5、及び解析回路6を主な構成要素として備えている。なお、本実施形態では、渦流探傷法を利用して検査又は測定を行うこととしたが、励起コイル3を交流磁化器に置き換え、漏洩磁束探傷法を利用して検査又は測定を行うこととしてもよい。   FIG. 1 is a block diagram showing a configuration of a magnetic measurement apparatus according to an embodiment of the present invention. As shown in FIG. 1, a magnetic measuring device 1 according to an embodiment of the present invention uses a eddy current flaw detection method to inspect foreign matter such as wrinkles and internal inclusions in a steel plate S, or a steel plate S. The apparatus includes an excitation signal generator 2, an excitation coil 3, a detection sensor 4, an amplifier 5, and an analysis circuit 6 as main components. In this embodiment, the inspection or measurement is performed using the eddy current flaw detection method. However, the excitation coil 3 may be replaced with an AC magnetizer, and the inspection or measurement may be performed using the leakage magnetic flux flaw detection method. Good.

励起信号発生装置2は、所定の励起周波数fを有する正弦波信号を励起信号として励起コイル3に出力する装置である。 The excitation signal generator 2 is a device that outputs a sine wave signal having a predetermined excitation frequency f 0 to the excitation coil 3 as an excitation signal.

励起コイル3は、励起信号発生装置2から出力された励起信号により処理対象の鋼板Sを励起する装置である。   The excitation coil 3 is an apparatus that excites the steel plate S to be processed by the excitation signal output from the excitation signal generator 2.

検出センサ4は、励磁コイル3により励起されるのに伴い鋼板Sの近傍に発生する誘導電流又は磁場を検出し、検出された誘導電流又は磁場を増幅器5に出力する装置である。   The detection sensor 4 is a device that detects an induced current or magnetic field generated in the vicinity of the steel sheet S as it is excited by the excitation coil 3 and outputs the detected induced current or magnetic field to the amplifier 5.

増幅器5は、検出センサ4によって検出された誘導電流又は磁場を適切な振幅を有する信号に増幅し、増幅された信号を2次側交流信号として解析回路6に出力する装置である。   The amplifier 5 is a device that amplifies the induced current or magnetic field detected by the detection sensor 4 into a signal having an appropriate amplitude and outputs the amplified signal to the analysis circuit 6 as a secondary AC signal.

解析回路6は、増幅器5から出力された2次側交流信号から鋼板Sの異物や磁気特性に関する情報を抽出する。   The analysis circuit 6 extracts information on the foreign matter and magnetic characteristics of the steel sheet S from the secondary AC signal output from the amplifier 5.

このような構成を有する磁気計測装置1は、以下に示す振幅解析処理を実行することによって、装置や配線のコストを増大させることなく、且つ、ノイズやゼロ点ドリフトの影響を受けることなく、2次側交流信号の振幅を精度よく検出することにより、鋼板Sの異物や磁気特性に関する情報を精度よく抽出する。以下、この振幅解析処理を実行する際の磁気計測装置1の動作について説明する。   The magnetic measuring device 1 having such a configuration can perform the following amplitude analysis processing without increasing the cost of the device and wiring, and without being affected by noise or zero point drift. By detecting the amplitude of the secondary AC signal with high accuracy, information regarding the foreign matter and magnetic characteristics of the steel sheet S is extracted with high accuracy. Hereinafter, the operation of the magnetic measurement apparatus 1 when executing the amplitude analysis process will be described.

〔振幅解析処理〕
一般に、増幅器5が出力する2次側交流信号x(t)は、以下の数式(1)に示すように、励起周波数fの正弦波信号Asin(2πft+ψ)に対してノイズ信号n(t)や測定回路のグラウンドドリフト信号dが重畳した信号になっている。この数式(1)に示す2次側交流信号x(t)から鋼板の異物や磁気特性に関する情報を含む振幅Aをノイズ信号n(t)やグラウンドドリフト信号dの影響を受けずに精度よく検出することが本発明の目的である。
[Amplitude analysis processing]
In general, the secondary AC signal x (t) output from the amplifier 5 is a noise signal n () with respect to a sine wave signal Asin (2πf 0 t + ψ) having an excitation frequency f 0 as shown in the following formula (1). t) and a ground drift signal d of the measurement circuit are superimposed on each other. The amplitude A including information related to the foreign matter and magnetic characteristics of the steel plate is accurately detected without being affected by the noise signal n (t) or the ground drift signal d from the secondary AC signal x (t) shown in the equation (1). It is an object of the present invention.

Figure 2018124221
Figure 2018124221

ここで、従来技術である直交検波においては、図2に示すように、励起信号発生装置11が発生した励起信号と直交検波回路15を用いて励起信号の位相を90度進めた信号とに対して増幅器14から出力された2次側交流信号x(t)を乗算する。すなわち、以下の数式(2),(3)に示す信号p(t),q(t)を得る。そして、数式(2),(3)に示す信号p(t),q(t)の第1項に三角関数の積和の公式を適用することによって以下に示す数式(4),(5)を得る。   Here, in the quadrature detection which is the prior art, as shown in FIG. 2, the excitation signal generated by the excitation signal generator 11 and the signal obtained by advancing the phase of the excitation signal by 90 degrees using the orthogonal detection circuit 15 are used. The secondary AC signal x (t) output from the amplifier 14 is multiplied. That is, signals p (t) and q (t) shown in the following mathematical formulas (2) and (3) are obtained. Then, by applying the product sum formula of the trigonometric function to the first term of the signals p (t) and q (t) shown in the equations (2) and (3), the following equations (4) and (5) Get.

Figure 2018124221
Figure 2018124221

Figure 2018124221
Figure 2018124221

Figure 2018124221
Figure 2018124221

Figure 2018124221
Figure 2018124221

ここで、数式(4),(5)に示す信号p(t),q(t)を励起周波数fの逆数に比べて大きな時間長で平均すると、sin及びcosが掛かった項は全て0になる。このため、数式(4),(5)に示す信号p(t),q(t)の平均値をそれぞれpav,qavとすると、2次側交流信号x(t)の振幅Aは以下に示す数式(6)により求められ、2次側交流信号x(t)の振幅Aを正確に検出することができる。しかしながら、この場合、2次側交流信号x(t)を検出する検出センサ毎にこれらの回路を設置する必要があり、コストが増加する。 Here, when the signals p (t) and q (t) shown in Equations (4) and (5) are averaged over a large time length compared to the reciprocal of the excitation frequency f 0 , all the terms multiplied by sin and cos are 0. become. Therefore, if the average values of the signals p (t) and q (t) shown in the equations (4) and (5) are p av and q av , the amplitude A of the secondary AC signal x (t) is The amplitude A of the secondary AC signal x (t) can be accurately detected. However, in this case, it is necessary to install these circuits for each detection sensor that detects the secondary AC signal x (t), and the cost increases.

Figure 2018124221
Figure 2018124221

一方、別の従来技術では、以下に示す数式(7)を用いた実効値演算処理によって2次側交流信号x(t)の振幅a(t)を算出している。しかしながら、数式(7)の右辺の第2項は、演算処理の時間長を励起周波数fの逆数に比べて大きくとるとゼロになるが、数式(7)の右辺の第3項は、演算処理の時間長を励起周波数fの逆数に比べて大きくとってもゼロにならない。このため、振幅a(t)の演算結果にノイズ信号n(t)やグラウンドドリフト信号dに起因するバイアスが残存してしまう。 On the other hand, in another conventional technique, the amplitude a (t) of the secondary AC signal x (t) is calculated by an effective value calculation process using the following formula (7). However, the second term on the right side of equation (7), becomes zero when taking larger than the time length of the arithmetic processing to the inverse of the excitation frequency f 0, the third term of the right side of equation (7), the operation very not zero larger than the time length of the processing to the inverse of the excitation frequency f 0. For this reason, the bias resulting from the noise signal n (t) or the ground drift signal d remains in the calculation result of the amplitude a (t).

Figure 2018124221
Figure 2018124221

そこで、本発明では、以下に示すようにして2次側交流信号x(t)の振幅Aを算出する。いま2次側交流信号x(t)にノイズ信号n(t)やグラウンドドリフト信号dが重畳している場合、2次側交流信号は以下に示す数式(8)のように表される。そして、数式(8)に示す2次側交流信号x(t)は、ヒルベルト変換によって位相が90度進んだ信号y(t)に変換することができる。ここで、ヒルベルト変換とは、位相を90度遅らせる変換としてよく知られている変換であり、その詳細は例えばOppenheim, Schafer. “Digital signal processing”, chapter7, Prentice-Hallに記載されている。 Therefore, in the present invention, the amplitude A of the secondary AC signal x (t) is calculated as follows. Now, when the noise signal n (t) and the ground drift signal d are superimposed on the secondary AC signal x (t), the secondary AC signal is expressed as the following formula (8). Then, the secondary AC signal x 0 (t) shown in Expression (8) can be converted into a signal y 0 (t) whose phase is advanced by 90 degrees by Hilbert transform. Here, the Hilbert transform is a well-known transform that delays the phase by 90 degrees, and details thereof are described in, for example, Oppenheim, Schafer. “Digital signal processing”, chapter 7, Prentice-Hall.

Figure 2018124221
Figure 2018124221

従って、2次側交流信号x(t)にノイズ波形信号n(t)やグラウンドドリフトdが重畳していない場合には、以下に示す数式(9)を用いた簡単な演算により2次側交流信号x(t)の振幅A(t)を算出することができる。   Therefore, when the noise waveform signal n (t) and the ground drift d are not superimposed on the secondary AC signal x (t), the secondary AC is obtained by a simple calculation using the following formula (9). The amplitude A (t) of the signal x (t) can be calculated.

Figure 2018124221
Figure 2018124221

また、2次側交流信号x(t)にノイズ信号n(t)やグラウンドドリフト信号dが重畳している場合であっても、2次側交流信号x(t)が単一の周波数で励起されていることから、周波数解析によって2次側交流信号x(t)の振幅が最大となる周波数成分のみを取り出したノイズ除去信号を用いて同様に解析を行うことによって、ノイズ信号n(t)やグラウンドドリフト信号dの影響を除去することができる。   Even if the noise signal n (t) or the ground drift signal d is superimposed on the secondary AC signal x (t), the secondary AC signal x (t) is excited at a single frequency. Therefore, the noise signal n (t) is similarly analyzed by using the noise removal signal obtained by extracting only the frequency component that maximizes the amplitude of the secondary AC signal x (t) by frequency analysis. And the influence of the ground drift signal d can be eliminated.

以上説明した本発明の一実施形態である振幅解析処理のフローをまとまると図3に示すようになる。すなわち、図3に示すように、本発明の一実施形態である振幅解析処理では、まず、2次側交流信号x(t)を検出し(ステップST1)、2次側交流信号x(t)に対して周波数解析を実行することにより(ステップST2)、2次側交流信号x(t)の振幅が最大となる周波数成分(ピーク成分)を検知する(ステップST3)。そして、2次側交流信号x(t)から検出されたピーク成分以外を除去したノイズ除去信号x(t)を求め(ステップST4)、ノイズ除去信号x(t)に対してヒルベルト変換を施すことによって位相が90度進んだ波形信号y(t)を算出する(ステップST5)。そして、数式(9)を用いてノイズ除去信号x(t)と波形信号y(t)との二乗和を2次側交流信号x(t)の振幅A(t)として算出する(ステップST6)。 The flow of the amplitude analysis process according to the embodiment of the present invention described above is summarized as shown in FIG. That is, as shown in FIG. 3, in the amplitude analysis processing according to an embodiment of the present invention, first, the secondary AC signal x (t) is detected (step ST1), and the secondary AC signal x (t). (Step ST2), the frequency component (peak component) that maximizes the amplitude of the secondary AC signal x (t) is detected (step ST3). Then, a noise removal signal x 0 (t) from which components other than the peak component detected from the secondary AC signal x (t) are removed is obtained (step ST4), and the Hilbert transform is performed on the noise removal signal x 0 (t). The waveform signal y 0 (t) whose phase is advanced by 90 degrees is calculated (step ST5). Then, the sum of squares of the noise removal signal x 0 (t) and the waveform signal y 0 (t) is calculated as the amplitude A (t) of the secondary AC signal x (t) using Equation (9) (step) ST6).

ここで、本発明の一実施形態である振幅解析処理の効果を比較するため、現場で得られる2次側交流信号を模擬した正弦波信号に人為的にホワイトノイズを様々な振幅(ノイズ振幅)で重ね合わせ、(1)直交検波、(2)実効値演算、及び(3)本発明による振幅解析処理の結果を比較した。本振幅解析処理では、正弦波信号の振幅を1.5V、正弦波信号の周波数を100kHz、ノイズ振幅を0〜0.5Vとし、各ノイズ振幅で100回演算を繰り返した際に算出された振幅の誤差の平均値及びばらつきを比較した。比較結果を表1,2及び図4,図5に示す。   Here, in order to compare the effects of the amplitude analysis processing according to the embodiment of the present invention, white noise is artificially changed to various amplitudes (noise amplitudes) in a sine wave signal simulating a secondary AC signal obtained in the field. (1) Quadrature detection, (2) RMS value calculation, and (3) Amplitude analysis processing results of the present invention were compared. In this amplitude analysis processing, the amplitude calculated when the amplitude of the sine wave signal is 1.5 V, the frequency of the sine wave signal is 100 kHz, the noise amplitude is 0 to 0.5 V, and the calculation is repeated 100 times with each noise amplitude. The average value and variation of the errors were compared. The comparison results are shown in Tables 1 and 2 and FIGS.

Figure 2018124221
Figure 2018124221

Figure 2018124221
Figure 2018124221

表1及び図4は、直交検波、実効値演算、及び本発明による振幅解析処理によって計測された振幅の誤差の平均値を示す表及び図である。表2及び図5は、直交検波、実効値演算、及び本発明による振幅解析処理によって計測された振幅の誤差のばらつきを示す及び図である。表1,2及び図4,図5に示すように、ノイズ振幅が増大すると、従来手法である直交検波及び実効値演算による振幅解析処理、特に実効値演算による振幅解析処理では、振幅の誤差の平均値及びばらつきが増大した。これに対して、本発明による振幅解析処理では、振幅の誤差の平均値及びばらつきが共に、ゼロ付近で安定した結果となった。以上のことから、本発明による振幅解析処理によれば、装置や配線のコストを増大させることなく、且つ、ノイズやグラウンドドリフトの影響を受けることなく、2次側交流信号の振幅を精度よく検出できることが確認された。   Tables 1 and 4 are tables and diagrams showing the average values of amplitude errors measured by quadrature detection, effective value calculation, and amplitude analysis processing according to the present invention. Table 2 and FIG. 5 are diagrams showing variations in amplitude errors measured by quadrature detection, effective value calculation, and amplitude analysis processing according to the present invention. As shown in Tables 1 and 2 and FIGS. 4 and 5, when the noise amplitude increases, the amplitude analysis processing by the quadrature detection and the effective value calculation, which is the conventional method, particularly the amplitude analysis processing by the effective value calculation, Mean values and variability increased. On the other hand, in the amplitude analysis processing according to the present invention, both the average value and the variation of the amplitude error were stabilized near zero. From the above, according to the amplitude analysis processing according to the present invention, the amplitude of the secondary AC signal can be accurately detected without increasing the cost of the apparatus and wiring and without being affected by noise and ground drift. It was confirmed that it was possible.

以上の説明から明らかなように、本発明の一実施形態である解析処理によれば、2次側交流信号から2次側交流信号の周波数と同一の周波数を有し、且つ、2次側交流信号の位相に対して90度位相が異なる波形信号を生成し、2次側交流信号と波形信号とを用いて2次側交流信号の振幅を算出するので、装置や配線のコストを増大させることなく、且つ、ノイズやグラウンドドリフトの影響を受けることなく、2次側交流信号の振幅を精度よく検出することができる。   As is clear from the above description, according to the analysis processing according to an embodiment of the present invention, the secondary side AC signal has the same frequency as the frequency of the secondary side AC signal and the secondary side AC signal. A waveform signal having a phase difference of 90 degrees with respect to the phase of the signal is generated, and the amplitude of the secondary AC signal is calculated using the secondary AC signal and the waveform signal. Without being affected by noise and ground drift, the amplitude of the secondary AC signal can be accurately detected.

最後に、本発明の実施例について説明する。実施例において用いた磁気計測装置の構成は図1に示す磁気計測装置と同様の構成であり、設置場所に応じて励起手段やセンサの配置や配線長等を適切に選択した。すなわち、励起信号は励起周波数100kHzの正弦波、励起コイルは上置きコイル、検出センサは中空コイル2個による差分構成とした。また、センサと検査対象である鋼板との間の距離(リフトオフ)は1mmとし、鋼板のばたつきがないように鋼板が非磁性ロールに巻き付けられている位置で測定を行った。   Finally, examples of the present invention will be described. The configuration of the magnetic measurement device used in the examples is the same as that of the magnetic measurement device shown in FIG. 1, and the arrangement of the excitation means and sensors, the wiring length, and the like were appropriately selected according to the installation location. That is, the excitation signal is a sine wave with an excitation frequency of 100 kHz, the excitation coil is a top coil, and the detection sensor is a differential configuration with two hollow coils. Further, the distance (lift-off) between the sensor and the steel plate to be inspected was set to 1 mm, and the measurement was performed at a position where the steel plate was wound around the non-magnetic roll so that there was no flapping of the steel plate.

図6は、検出信号(2次側交流信号)、本発明により検出されたノイズを含まない信号成分(復元信号)、及び抽出したノイズを示す図である。図6に示すように、検出信号は、目でみてわかる程度にノイズによって歪んでいるために振幅を精度高く求めることができなかった。これに対して、本発明によれば、ノイズを含まない復元信号を抽出できるので、復元信号から検出信号の振幅を精度高く求めることができた。また、この検査を1000mの鋼板に対して行い、ノイズの影響無く連続的に検査を行うことができた。   FIG. 6 is a diagram illustrating a detection signal (secondary AC signal), a signal component that does not include noise detected by the present invention (restoration signal), and extracted noise. As shown in FIG. 6, since the detection signal is distorted by noise to the extent that it can be seen with the eyes, the amplitude cannot be obtained with high accuracy. On the other hand, according to the present invention, since a restored signal that does not contain noise can be extracted, the amplitude of the detection signal can be obtained with high accuracy from the restored signal. Further, this inspection was performed on a 1000 m steel plate, and the inspection could be continuously performed without the influence of noise.

以上、本発明者らによってなされた発明を適用した実施形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。例えば、このように、本実施形態に基づいて当業者等によりなされる他の実施形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。   As mentioned above, although the embodiment to which the invention made by the present inventors was applied has been described, the present invention is not limited by the description and the drawings that constitute a part of the disclosure of the present invention according to this embodiment. For example, as described above, other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1 磁気計測装置
2 励起信号発生装置
3 励起コイル
4 検出センサ
5 増幅器
6 解析回路
S 鋼板
DESCRIPTION OF SYMBOLS 1 Magnetic measuring device 2 Excitation signal generator 3 Excitation coil 4 Detection sensor 5 Amplifier 6 Analysis circuit S Steel plate

Claims (4)

交流信号によって被検体を励起するのに伴い該被検体の近傍に発生する誘導電流又は磁場を2次側交流信号として検出する磁気計測方法であって、
前記2次側交流信号から該2次側交流信号の周波数と同一の周波数を有し、且つ、該2次側交流信号の位相に対して90度位相が異なる波形信号を生成し、前記2次側交流信号と前記波形信号とを用いて前記2次側交流信号の振幅を算出する振幅算出ステップを含むことを特徴とする磁気計測方法。
A magnetic measurement method for detecting an induced current or a magnetic field generated in the vicinity of a subject as the subject is excited by an AC signal as a secondary AC signal,
Generating a waveform signal having the same frequency as the secondary AC signal from the secondary AC signal and having a phase difference of 90 degrees with respect to the phase of the secondary AC signal; A magnetic measurement method comprising an amplitude calculating step of calculating an amplitude of the secondary AC signal using a side AC signal and the waveform signal.
前記振幅算出ステップは、前記2次側交流信号をヒルベルト変換することによって前記波形信号を生成するステップを含むことを特徴とする請求項1に記載の磁気計測方法。   The magnetic measurement method according to claim 1, wherein the amplitude calculating step includes a step of generating the waveform signal by performing a Hilbert transform on the secondary AC signal. 前記振幅算出ステップは、周波数解析を実行することによって前記2次側交流信号の振幅が最大となる周波数成分を抽出し、前記2次側交流信号から前記周波数成分のみを取り出した信号をノイズ除去信号として生成し、ノイズ除去信号と前記波形信号とを用いて前記2次側交流信号の振幅を算出するステップを含むことを特徴とする請求項1又は2に記載の磁気計測方法。   The amplitude calculating step extracts a frequency component that maximizes the amplitude of the secondary AC signal by performing frequency analysis, and a signal obtained by extracting only the frequency component from the secondary AC signal is a noise removal signal. The magnetic measurement method according to claim 1, further comprising: calculating the amplitude of the secondary AC signal using a noise removal signal and the waveform signal. 交流信号によって被検体を励起するのに伴い該被検体の近傍に発生する誘導電流又は磁場を2次側交流信号として検出する磁気計測装置であって、
前記2次側交流信号から該2次側交流信号の周波数と同一の周波数を有し、且つ、該2次側交流信号の位相に対して90度位相が異なる波形信号を生成し、前記2次側交流信号と前記波形信号とを用いて前記2次側交流信号の振幅を算出する振幅算出手段を備えることを特徴とする磁気計測装置。
A magnetic measurement device that detects an induced current or a magnetic field generated in the vicinity of a subject as the subject is excited by an AC signal as a secondary AC signal,
Generating a waveform signal having the same frequency as the secondary AC signal from the secondary AC signal and having a phase difference of 90 degrees with respect to the phase of the secondary AC signal; A magnetic measuring device comprising amplitude calculating means for calculating the amplitude of the secondary AC signal using a side AC signal and the waveform signal.
JP2017018137A 2017-02-03 2017-02-03 Magnetic measuring method and magnetic measuring device Active JP6624099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017018137A JP6624099B2 (en) 2017-02-03 2017-02-03 Magnetic measuring method and magnetic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017018137A JP6624099B2 (en) 2017-02-03 2017-02-03 Magnetic measuring method and magnetic measuring device

Publications (2)

Publication Number Publication Date
JP2018124221A true JP2018124221A (en) 2018-08-09
JP6624099B2 JP6624099B2 (en) 2019-12-25

Family

ID=63110149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017018137A Active JP6624099B2 (en) 2017-02-03 2017-02-03 Magnetic measuring method and magnetic measuring device

Country Status (1)

Country Link
JP (1) JP6624099B2 (en)

Also Published As

Publication number Publication date
JP6624099B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
US20200003729A1 (en) Method and device for detecting and evaluating defect
CN102027364B (en) Magnetic flaw detecting method and magnetic flaw detection device
WO2011001771A1 (en) Leakage magnetic flux flaw inspection method and device
JP4998821B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
US9453817B2 (en) Nondestructive inspection device using alternating magnetic field, and nondestructive inspection method
CN101311715A (en) Method and apparatus for digital measurement of an eddy current signal
Janousek et al. Novel insight into swept frequency eddy-current non-destructive evaluation of material defects
JP4835995B2 (en) Magnetic flux leakage flaw detection method and magnetic flux leakage inspection device
Nguyen et al. Improved signal interpretation for cast iron thickness assessment based on pulsed eddy current sensing
JP2011196863A (en) Leakage magnetic flux flaw detection method, and leakage magnetic flux flaw detection apparatus
JP6551885B2 (en) Nondestructive inspection device and nondestructive inspection method
Zhang et al. Mechanism study for directivity of TR probe when applying Eddy current testing to ferro-magnetic structural materials
JP6624099B2 (en) Magnetic measuring method and magnetic measuring device
CN105737728B (en) A kind of metal layer impulse eddy current thickness measuring method
JP2016057225A (en) Eddy current flaw detection sensor device
JP2000266727A (en) Carburized depth measuring method
JP2000227422A (en) Eddy current examination
KR101151536B1 (en) Demodulation module of eddy current signal and eddy current detection device including thereof
US10775347B2 (en) Material inspection using eddy currents
Yu et al. Research on quality inspection and sorting on-line system for bearing steel ball
Zheng et al. Method for detecting and locating cracks in aluminum plates based on balanced field electromagnetic technique
JP2013205023A (en) Electromagnetic induction inspection device and inspection method of the same
JP6299485B2 (en) Inspection apparatus and inspection method
JPH09166582A (en) Electromagnetic flaw detection method
CN106443527A (en) Method and system for measuring magnetization curve of ferromagnetic conductor based on skin effect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R150 Certificate of patent or registration of utility model

Ref document number: 6624099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250