JP2018124168A - Temperature detection device - Google Patents

Temperature detection device Download PDF

Info

Publication number
JP2018124168A
JP2018124168A JP2017016254A JP2017016254A JP2018124168A JP 2018124168 A JP2018124168 A JP 2018124168A JP 2017016254 A JP2017016254 A JP 2017016254A JP 2017016254 A JP2017016254 A JP 2017016254A JP 2018124168 A JP2018124168 A JP 2018124168A
Authority
JP
Japan
Prior art keywords
temperature
magnetic
sensitive
magnetic field
magnetic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017016254A
Other languages
Japanese (ja)
Other versions
JP6907562B2 (en
Inventor
小林 浩
Hiroshi Kobayashi
浩 小林
徹雄 波多
Tetsuo Hata
徹雄 波多
泰 寺園
Yasushi Terasono
泰 寺園
健太郎 潮田
Kentaro Ushioda
健太郎 潮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2017016254A priority Critical patent/JP6907562B2/en
Publication of JP2018124168A publication Critical patent/JP2018124168A/en
Application granted granted Critical
Publication of JP6907562B2 publication Critical patent/JP6907562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature detection device that can improve the accuracy in temperature detection even in an environment where the relative position of a temperature sensitive magnetic substance cannot be accurately fixed.SOLUTION: A temperature detection device 1 comprises: magnetic field generation means 10; a temperature sensitive magnetic substance 13; first and fourth magnetic sensors 15 to 18; and an operation part 20. The first to fourth magnetic sensors 15 to 18 are arranged such that a plurality of measured values can be obtained changing differently from each other for a change in temperature of the temperature sensitive magnetic substance 13 and a change in position in an arbitrary direction of the temperature sensitive magnetic substance 13. The operation part 20 detects the temperature of the temperature sensitive magnetic substance 13 on the basis of the plurality of measured values obtained from the first to fourth magnetic sensors 15 to 18.SELECTED DRAWING: Figure 1

Description

本発明は、感温磁性体を利用した温度検出装置に関する。   The present invention relates to a temperature detection device using a temperature-sensitive magnetic material.

温度をワイヤレスで検出する温度検出装置として、任意のキュリー点を有する感温磁性体を被計測部に配置するとともに、被計測部から離れた場所に設置された磁場発生源から磁場を発生させ、感温磁性体の温度に依存する、磁場の磁束ベクトルの変化を、磁気センサで検出することによって、被計測部の温度を計測するものが知られている。   As a temperature detection device that detects temperature wirelessly, a temperature-sensitive magnetic body having an arbitrary Curie point is arranged in the measurement target part, and a magnetic field is generated from a magnetic field generation source installed at a location away from the measurement target part. A device that measures the temperature of a measurement target part by detecting a change in a magnetic flux vector of a magnetic field, which depends on the temperature of a temperature-sensitive magnetic body, with a magnetic sensor is known.

特許5263894号公報Japanese Patent No. 5263894

特許文献1の構成において、磁気センサの検出する磁束ベクトルは、被計測部の温度変化により変化するが、磁場発生源と磁気センサに対する感温磁性体の相対位置の変化によっても変化する。そのため、感温磁性体の相対位置を高精度に固定できないと、正確な温度測定ができないという課題があった。   In the configuration of Patent Document 1, the magnetic flux vector detected by the magnetic sensor changes due to a temperature change of the measurement target part, but also changes due to a change in the relative position of the temperature-sensitive magnetic body with respect to the magnetic field generation source and the magnetic sensor. For this reason, there has been a problem that accurate temperature measurement cannot be performed unless the relative position of the temperature-sensitive magnetic body can be fixed with high accuracy.

本発明はこうした状況を認識してなされたものであり、その目的は、感温磁性体の相対位置を高精度に固定できない環境においても温度検出の正確性を向上させることの可能な温度検出装置を提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a temperature detection device capable of improving the accuracy of temperature detection even in an environment where the relative position of the temperature-sensitive magnetic body cannot be fixed with high accuracy. Is to provide.

本発明のある態様は、温度検出装置である。この温度検出装置は、
磁場発生手段と、感温磁性体と、複数の磁気センサと、を備え、
前記複数の磁気センサは、前記感温磁性体の温度変化と、前記感温磁性体の任意方向の位置変化と、に対して互いに異なる変化をする複数の測定値が得られる配置であり、
前記複数の磁気センサから得られる複数の測定値を基に、前記感温磁性体の温度を検出する。
One embodiment of the present invention is a temperature detection device. This temperature detector is
A magnetic field generation means, a temperature-sensitive magnetic body, and a plurality of magnetic sensors;
The plurality of magnetic sensors are arranged to obtain a plurality of measurement values that change differently with respect to a temperature change of the temperature-sensitive magnetic body and a position change of the temperature-sensitive magnetic body in an arbitrary direction,
The temperature of the temperature-sensitive magnetic body is detected based on a plurality of measured values obtained from the plurality of magnetic sensors.

前記複数の磁気センサは、前記磁場発生手段と前記感温磁性体とを結ぶ仮想直線からの距離が互いに同一という第1条件と、前記磁場発生手段又は前記感温磁性体からの距離が互いに等しいという第2条件と、の双方を満たす位置関係とならないように配置されてもよい。   In the plurality of magnetic sensors, the first condition that distances from virtual lines connecting the magnetic field generation means and the temperature-sensitive magnetic body are the same as each other, and distances from the magnetic field generation means or the temperature-sensitive magnetic body are equal to each other. It may be arranged so as not to satisfy the positional relationship satisfying both of the second condition.

本発明のもう1つの態様は、温度検出装置である。この温度検出装置は、
磁場発生手段と、感温磁性体と、複数の磁気センサと、を備え、
前記複数の磁気センサは、前記磁場発生手段と前記感温磁性体とを結ぶ仮想直線からの距離が互いに同一という第1条件と、前記磁場発生手段又は前記感温磁性体からの距離が互いに等しいという第2条件と、の双方を満たす位置関係とならないように配置され、
前記複数の磁気センサから得られる複数の測定値を基に、前記感温磁性体の温度を検出する。
Another aspect of the present invention is a temperature detection device. This temperature detector is
A magnetic field generation means, a temperature-sensitive magnetic body, and a plurality of magnetic sensors;
In the plurality of magnetic sensors, the first condition that distances from virtual lines connecting the magnetic field generation means and the temperature-sensitive magnetic body are the same as each other, and distances from the magnetic field generation means or the temperature-sensitive magnetic body are equal to each other. It is arranged so as not to have a positional relationship that satisfies both the second condition and
The temperature of the temperature-sensitive magnetic body is detected based on a plurality of measured values obtained from the plurality of magnetic sensors.

前記磁場発生手段と、前記複数の磁気センサとが、同一直線上に存在しなくてもよい。   The magnetic field generation unit and the plurality of magnetic sensors may not be on the same straight line.

複数の磁場発生手段を備え、前記複数の磁場発生手段から一つずつ磁場を発生させた各々の場合の複数の測定値を基に、前記感温磁性体の温度を検出してもよい。   A plurality of magnetic field generation means may be provided, and the temperature of the thermosensitive magnetic material may be detected based on a plurality of measured values in each case where a magnetic field is generated one by one from the plurality of magnetic field generation means.

前記感温磁性体は、感温フェライトであってもよい。   The temperature sensitive magnetic material may be a temperature sensitive ferrite.

前記磁場発生手段は、コイルであってもよい。   The magnetic field generating means may be a coil.

前記磁場発生手段の発生する磁場は、交流であってもよい。   The magnetic field generated by the magnetic field generating means may be an alternating current.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements, and those obtained by converting the expression of the present invention between methods and systems are also effective as aspects of the present invention.

本発明によれば、感温磁性体の相対位置を高精度に固定できない環境においても温度検出の正確性を向上させることの可能な温度検出装置を提供することができる。   According to the present invention, it is possible to provide a temperature detection device capable of improving the accuracy of temperature detection even in an environment where the relative position of the temperature-sensitive magnetic body cannot be fixed with high accuracy.

本発明の実施の形態1に係る温度検出装置1の概略構成図。1 is a schematic configuration diagram of a temperature detection device 1 according to Embodiment 1 of the present invention. 図1の感温磁性体13の温度と比透磁率μiとの関係(温度特性)の一例を示すグラフ。The graph which shows an example of the relationship (temperature characteristic) of the temperature of the temperature-sensitive magnetic body 13 of FIG. 1, and relative permeability (mu) i. 図4及び図5のシミュレーション結果の前提となる、磁場発生手段10、感温磁性体13、第1磁気センサ15、及び第2磁気センサ16、の配置説明図。FIG. 6 is a layout explanatory diagram of the magnetic field generation means 10, the temperature-sensitive magnetic body 13, the first magnetic sensor 15, and the second magnetic sensor 16, which are the premise of the simulation results of FIG. 4 and FIG. 図4(A)及び図4(B)は、図3の配置における、感温磁性体13の比透磁率μi及び温度Tと、感温磁性体13のY方向の位置(位置ずれ量)と、の組合せによって特定される、第1磁気センサ15の出力電圧V1及び第2磁気センサ16の出力電圧V2の表。4 (A) and 4 (B) show the relative permeability μi and temperature T of the temperature-sensitive magnetic body 13 and the position of the temperature-sensitive magnetic body 13 in the Y direction (displacement amount) in the arrangement of FIG. Table of the output voltage V1 of the first magnetic sensor 15 and the output voltage V2 of the second magnetic sensor 16 specified by the combination of. 図5(A)及び図5(B)は、図3の配置における、第1磁気センサ15の出力電圧V1及び第2磁気センサ16の出力電圧V2からそれぞれ導かれる、感温磁性体13の温度Tと、感温磁性体13のY方向の位置(位置ずれ量)と、の組合せを、等値線として描いたグラフ。5A and 5B show the temperature of the temperature-sensitive magnetic body 13 derived from the output voltage V1 of the first magnetic sensor 15 and the output voltage V2 of the second magnetic sensor 16 in the arrangement of FIG. The graph which plotted the combination of T and the position (position shift | offset | difference amount) of the Y direction of the thermosensitive magnetic body 13 as an isoline. 本発明の実施の形態2に係る温度検出装置2の概略構成図。The schematic block diagram of the temperature detection apparatus 2 which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る温度検出装置3の概略構成図。The schematic block diagram of the temperature detection apparatus 3 which concerns on Embodiment 3 of this invention.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

(実施の形態1)
図1は、本発明の実施の形態1に係る温度検出装置1の概略構成図である。図1において、直交3軸であるXYZ軸を定義する。温度検出装置1は、磁場発生手段10、感温磁性体13、第1磁気センサ15、第2磁気センサ16、第3磁気センサ17、第4磁気センサ18、及び演算部20、を備える。磁場発生手段10は、ここでは電磁石(コイル)である。なお、図1において、磁場発生手段10への通電回路の図示は省略している。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a temperature detection device 1 according to Embodiment 1 of the present invention. In FIG. 1, XYZ axes that are three orthogonal axes are defined. The temperature detection device 1 includes a magnetic field generation unit 10, a temperature-sensitive magnetic body 13, a first magnetic sensor 15, a second magnetic sensor 16, a third magnetic sensor 17, a fourth magnetic sensor 18, and a calculation unit 20. Here, the magnetic field generating means 10 is an electromagnet (coil). In FIG. 1, an energization circuit for the magnetic field generation means 10 is not shown.

感温磁性体13は、例えば感温フェライトであり、検出対象物(被検出部)5の内部に設けられる。検出対象物5は、樹脂やゴムのような変形するものであってもよいし、油などの液体であってもよいし、磁場発生手段10及び各磁気センサのいずれか又は両方と壁部によって仕切られた(隔てられた)空間であってもよい。図2は、感温磁性体13の温度と比透磁率μiとの関係(温度特性)の一例を示すグラフである。図2に示す温度特性は、周波数が1kHzで振幅が0.4A/mの磁場を印加した場合のものである。図2に示す温度特性では、横軸の温度Tが210℃〜230℃の範囲において、温度上昇に伴い比透磁率μiが急激に低下しており、感温磁性体13は、当該温度範囲の温度検出に好適に利用することができる。ここで、温度上昇に伴い比透磁率μiが急激に低下する温度範囲は、感温磁性体13の材質によって様々であり、検出対象とする温度範囲に応じて感温磁性体13の材質を選定すればよい。また、感温磁性体13は、温度上昇に伴い比透磁率μiが緩やかに上昇する温度範囲(図2の例では200℃以下の温度範囲)の温度検出にも利用可能である。   The temperature-sensitive magnetic body 13 is, for example, a temperature-sensitive ferrite, and is provided inside the detection target (detected portion) 5. The detection object 5 may be a deformable material such as resin or rubber, or may be a liquid such as oil, or may be one or both of the magnetic field generation means 10 and each magnetic sensor and a wall. It may be a partitioned (separated) space. FIG. 2 is a graph showing an example of the relationship (temperature characteristic) between the temperature of the temperature-sensitive magnetic body 13 and the relative permeability μi. The temperature characteristics shown in FIG. 2 are obtained when a magnetic field having a frequency of 1 kHz and an amplitude of 0.4 A / m is applied. In the temperature characteristics shown in FIG. 2, the relative permeability μi rapidly decreases as the temperature rises when the temperature T on the horizontal axis is in the range of 210 ° C. to 230 ° C., and the temperature-sensitive magnetic body 13 is in the temperature range. It can be suitably used for temperature detection. Here, the temperature range in which the relative permeability μi rapidly decreases as the temperature rises varies depending on the material of the temperature-sensitive magnetic body 13, and the material of the temperature-sensitive magnetic body 13 is selected according to the temperature range to be detected. do it. The temperature-sensitive magnetic body 13 can also be used for temperature detection in a temperature range (in the example of FIG. 2, a temperature range of 200 ° C. or lower) in which the relative permeability μi gradually increases as the temperature rises.

第1磁気センサ15、第2磁気センサ16、第3磁気センサ17、及び第4磁気センサ18(以下「第1〜第4磁気センサ15〜18」とも表記)は、それぞれ所定方向(ここではY方向)の磁束密度の大きさ(スカラー値)を測定(検出)するものであり、検出対象物5を挟んで磁場発生手段10の反対側に設けられる。第1〜第4磁気センサ15〜18は、感温磁性体13の温度変化と、感温磁性体13の任意方向の位置変化と、に対して互いに異なる変化をする複数の出力電圧(磁気測定値)が得られる配置である。具体的には、第1〜第4磁気センサ15〜18は、磁場発生手段10と感温磁性体13とを結ぶ仮想直線Lからの距離が互いに同一という第1条件と、磁場発生手段10又は感温磁性体13からの距離が互いに等しいという第2条件と、の双方を満たす位置関係とならないように配置される。その理由は、第1及び第2条件が共に満たされると、仮想直線Lに沿って感温磁性体13の位置が変化した場合に、第1〜第4磁気センサ15〜18の出力電圧の変化が同じになるためである。また、磁場発生手段10と、第1〜第4磁気センサ15〜18とは、同一直線上に存在しない。それらが同一直線状に存在すると、当該直線を軸とする軸周り方向に感温磁性体13の位置が変化した場合に、第1〜第4磁気センサ15〜18の出力電圧が変化しないためである。   The first magnetic sensor 15, the second magnetic sensor 16, the third magnetic sensor 17, and the fourth magnetic sensor 18 (hereinafter also referred to as “first to fourth magnetic sensors 15 to 18”) each have a predetermined direction (here, Y Direction) magnetic flux density magnitude (scalar value) is measured (detected), and is provided on the opposite side of the magnetic field generation means 10 with the detection target 5 interposed therebetween. The first to fourth magnetic sensors 15 to 18 have a plurality of output voltages (magnetic measurement) that change differently with respect to a temperature change of the temperature-sensitive magnetic body 13 and a position change of the temperature-sensitive magnetic body 13 in an arbitrary direction. Value). Specifically, the first to fourth magnetic sensors 15 to 18 have the first condition that the distances from the virtual straight line L connecting the magnetic field generating means 10 and the temperature-sensitive magnetic body 13 are the same, and the magnetic field generating means 10 or It arrange | positions so that it may not become the positional relationship which satisfy | fills both the 2nd conditions that the distance from the temperature-sensitive magnetic body 13 is mutually equal. The reason is that when both the first and second conditions are satisfied, when the position of the temperature-sensitive magnetic body 13 changes along the imaginary straight line L, the output voltages of the first to fourth magnetic sensors 15 to 18 change. Is the same. Further, the magnetic field generation means 10 and the first to fourth magnetic sensors 15 to 18 do not exist on the same straight line. If they exist in the same straight line, the output voltages of the first to fourth magnetic sensors 15 to 18 do not change when the position of the temperature-sensitive magnetic body 13 changes around the axis about the straight line. is there.

演算部20は、感温磁性体13の温度、並びに感温磁性体13のX方向位置、Y方向位置、及びZ方向位置、の4つの組合せによって特定される、第1〜第4磁気センサ15〜18の出力電圧を、予めテーブルとして記憶しており、第1〜第4磁気センサ15〜18の出力電圧を基に、感温磁性体13の温度、すなわち検出対象物5の温度を検出(特定)する。なお、図1において、演算部20と第1〜第4磁気センサ15〜18との間の接続配線の図示は省略している。感温磁性体13の温度検出のために4つの磁気センサ(第1〜第4磁気センサ15〜18)の出力電圧(磁気測定値)を利用するのは、以下の理由による。   The computing unit 20 is specified by four combinations of the temperature of the temperature-sensitive magnetic body 13 and the X-direction position, the Y-direction position, and the Z-direction position of the temperature-sensitive magnetic body 13. -18 are stored in advance as a table, and the temperature of the temperature-sensitive magnetic body 13, that is, the temperature of the detection object 5 is detected based on the output voltages of the first to fourth magnetic sensors 15-18 ( Identify. In addition, in FIG. 1, illustration of the connection wiring between the calculating part 20 and the 1st-4th magnetic sensors 15-18 is abbreviate | omitted. The reason why the output voltages (magnetic measurement values) of the four magnetic sensors (first to fourth magnetic sensors 15 to 18) are used to detect the temperature of the temperature-sensitive magnetic body 13 is as follows.

第1〜第4磁気センサ15〜18の各出力電圧は、感温磁性体13の温度変化(検出対象物5の温度変化)によって変化するが、磁場発生手段10及び第1〜第4磁気センサ15〜18に対する感温磁性体13の相対位置の変化によっても変化する。そのため、仮に第1〜第4磁気センサ15〜18のうち1つしか存在しないとすると、感温磁性体13の位置が振動等により変動する環境下では、当該1つの磁気センサの出力電圧の変化が、感温磁性体13の温度変化によるものなのか、感温磁性体13の相対位置の変化によるものなのか、を特定することができず、結果として感温磁性体13の温度検出(検出対象物5の温度検出)ができない。   The output voltages of the first to fourth magnetic sensors 15 to 18 change according to the temperature change of the temperature-sensitive magnetic body 13 (temperature change of the detection target 5), but the magnetic field generating means 10 and the first to fourth magnetic sensors. It changes also with the change of the relative position of the temperature sensitive magnetic body 13 with respect to 15-18. Therefore, assuming that only one of the first to fourth magnetic sensors 15 to 18 is present, the change in the output voltage of the one magnetic sensor under an environment in which the position of the temperature-sensitive magnetic body 13 fluctuates due to vibration or the like. However, it is not possible to specify whether the temperature is due to a temperature change of the temperature-sensitive magnetic body 13 or a change in the relative position of the temperature-sensitive magnetic body 13. The temperature of the object 5 cannot be detected).

ここで、感温磁性体13の相対位置の変化が三次元的に発生する場合、感温磁性体13の、温度、X方向位置、Y方向位置、及びZ方向位置、の4つが未知数となる。このため本実施の形態では、第1〜第4磁気センサ15〜18から得られる4つの出力電圧を利用することで、上記4つの未知数(感温磁性体13の温度と三次元的な位置)を求め、感温磁性体13の温度を検出可能としている。なお、感温磁性体13の相対位置の変化が二次元的な場合、未知数が3つになるため、感温磁性体13の温度検出には3つの磁気センサで足りる。同様に、感温磁性体13の相対位置の変化が一次元的な場合、未知数が2つになるため、感温磁性体13の温度検出には2つの磁気センサで足りる。   Here, when a change in the relative position of the temperature-sensitive magnetic body 13 occurs three-dimensionally, the temperature, the X-direction position, the Y-direction position, and the Z-direction position of the temperature-sensitive magnetic body 13 are unknown. . For this reason, in this embodiment, the four unknowns (the temperature of the temperature-sensitive magnetic body 13 and the three-dimensional position) are obtained by using the four output voltages obtained from the first to fourth magnetic sensors 15 to 18. And the temperature of the temperature-sensitive magnetic body 13 can be detected. In addition, when the relative position change of the temperature-sensitive magnetic body 13 is two-dimensional, since there are three unknowns, three magnetic sensors are sufficient to detect the temperature of the temperature-sensitive magnetic body 13. Similarly, when the change in the relative position of the temperature-sensitive magnetic body 13 is one-dimensional, since there are two unknowns, two magnetic sensors are sufficient to detect the temperature of the temperature-sensitive magnetic body 13.

図3は、図4及び図5のシミュレーション結果の前提となる、磁場発生手段10、感温磁性体13、第1磁気センサ15、及び第2磁気センサ16、の配置説明図である。ここでは、感温磁性体13の相対位置がY方向にのみ変動する(XZ方向位置は固定である)場合を例に、感温磁性体13の温度特定の原理を説明する。感温磁性体13の相対位置の変化が一次元的なため、磁気センサは2つ(第1磁気センサ15及び第2磁気センサ16)としている。   FIG. 3 is an explanatory diagram of the arrangement of the magnetic field generating means 10, the temperature-sensitive magnetic body 13, the first magnetic sensor 15, and the second magnetic sensor 16, which are the premise of the simulation results of FIGS. Here, the principle of specifying the temperature of the temperature-sensitive magnetic body 13 will be described by taking as an example a case where the relative position of the temperature-sensitive magnetic body 13 varies only in the Y direction (the position in the XZ direction is fixed). Since the change in the relative position of the temperature-sensitive magnetic body 13 is one-dimensional, the number of magnetic sensors is two (the first magnetic sensor 15 and the second magnetic sensor 16).

図4(A)及び図4(B)は、図3の配置における、感温磁性体13の比透磁率μi及び温度Tと、感温磁性体13のY方向の位置(位置ずれ量)と、の組合せによって特定される、第1磁気センサ15の出力電圧V1及び第2磁気センサ16の出力電圧V2の表である。これらの表の各電圧値は、シミュレーションによって算出され、予めテーブルとして演算部20(図1)に記憶されるものである。シミュレーションでは、周波数が1kHzの磁場を第1磁気センサ15及び第2磁気センサ16に印加した。なお、実際に記憶されるテーブルは、図4(A)及び図4(B)に示されるよりも、感温磁性体13の比透磁率μi及び温度Tと、感温磁性体13のY方向の位置(位置ずれ量)と、の刻み幅が遥かに細かい。   4 (A) and 4 (B) show the relative permeability μi and temperature T of the temperature-sensitive magnetic body 13 and the position of the temperature-sensitive magnetic body 13 in the Y direction (displacement amount) in the arrangement of FIG. Is a table of the output voltage V1 of the first magnetic sensor 15 and the output voltage V2 of the second magnetic sensor 16 specified by the combination of. Each voltage value in these tables is calculated by simulation and stored in advance in the calculation unit 20 (FIG. 1) as a table. In the simulation, a magnetic field having a frequency of 1 kHz was applied to the first magnetic sensor 15 and the second magnetic sensor 16. The table actually stored is the relative permeability μi and temperature T of the temperature-sensitive magnetic body 13 and the Y direction of the temperature-sensitive magnetic body 13 than those shown in FIGS. 4 (A) and 4 (B). The position (the amount of displacement) and the step size are much finer.

図5(A)及び図5(B)は、図3の配置における、第1磁気センサ15の出力電圧V1及び第2磁気センサ16の出力電圧V2からそれぞれ導かれる、感温磁性体13の温度Tと、感温磁性体13のY方向の位置(位置ずれ量)と、の組合せを、等値線として描いたグラフである。図5(A)は、第1磁気センサ15の出力電圧V1が106.57mVの場合における等値線を示しており、図4(A)の表を基に描かれる。図5(B)は、第2磁気センサ16の出力電圧V2が101.24mVの場合における等値線を示しており、図4(B)の表を基に描かれる。図5(A)及び図5(B)における星印は、図5(A)及び図5(B)に示す等値線同士が交差する点に付されている。ある時点において、第1磁気センサ15の出力電圧V1が106.57mVで第2磁気センサ16の出力電圧V2が101.24mVという測定値が得られた場合、星印を付した交点(T=229℃及びY=-1.5mm)が、当該時点における2つの未知数(感温磁性体13の温度TとY方向位置)の解となり、感温磁性体13の温度Tを一意に特定できる。   5A and 5B show the temperature of the temperature-sensitive magnetic body 13 derived from the output voltage V1 of the first magnetic sensor 15 and the output voltage V2 of the second magnetic sensor 16 in the arrangement of FIG. It is the graph which drawn the combination of T and the position (position shift amount) of the thermosensitive magnetic body 13 in the Y direction as an isoline. FIG. 5A shows an isoline when the output voltage V1 of the first magnetic sensor 15 is 106.57 mV, and is drawn based on the table of FIG. FIG. 5B shows an isoline when the output voltage V2 of the second magnetic sensor 16 is 101.24 mV, and is drawn based on the table of FIG. Stars in FIGS. 5A and 5B are attached to points where the isolines shown in FIGS. 5A and 5B intersect. At some point, when the measured value of the output voltage V1 of the first magnetic sensor 15 is 106.57 mV and the output voltage V2 of the second magnetic sensor 16 is 101.24 mV, an intersection with a star (T = 229 ° C and Y = −1.5 mm) is a solution of two unknowns (temperature T of the temperature-sensitive magnetic body 13 and position in the Y direction) at the time point, and the temperature T of the temperature-sensitive magnetic body 13 can be uniquely specified.

図3〜図5で説明した原理は、感温磁性体13の相対位置の変化が一次元的な場合を例にしたものであるが、感温磁性体13の相対位置の変化が二次元的あるいは三次元的な場合も、磁気センサの数を3つあるいは4つに増やすことで、同様の原理により感温磁性体13の温度検出が可能である(感温磁性体13の温度Tを一意に特定できる)。   The principle described with reference to FIGS. 3 to 5 is an example in which the change in the relative position of the temperature-sensitive magnetic body 13 is one-dimensional, but the change in the relative position of the temperature-sensitive magnetic body 13 is two-dimensional. Alternatively, even in a three-dimensional case, the temperature of the temperature-sensitive magnetic body 13 can be detected based on the same principle by increasing the number of magnetic sensors to three or four (the temperature T of the temperature-sensitive magnetic body 13 is uniquely set). Can be specified).

本実施の形態によれば、第1〜第4磁気センサ15〜18から得られる4つの測定値を基に、演算部20が感温磁性体13の温度(検出対象物5の温度)を検出するため、感温磁性体13の相対位置が三次元的に変化する場合であっても、感温磁性体13の温度を高精度に検出することができる。換言すれば、感温磁性体13の相対位置を高精度に固定できない環境においても温度検出の正確性を向上させることができる。   According to the present embodiment, the calculation unit 20 detects the temperature of the temperature-sensitive magnetic body 13 (the temperature of the detection object 5) based on the four measured values obtained from the first to fourth magnetic sensors 15-18. Therefore, even if the relative position of the temperature-sensitive magnetic body 13 changes three-dimensionally, the temperature of the temperature-sensitive magnetic body 13 can be detected with high accuracy. In other words, the accuracy of temperature detection can be improved even in an environment where the relative position of the temperature-sensitive magnetic body 13 cannot be fixed with high accuracy.

(実施の形態2)
図6は、本発明の実施の形態2に係る温度検出装置2の概略構成図である。本実施の形態の温度検出装置2は、実施の形態1のものと比較して、磁場発生手段11が追加された点で相違し、その他の点で一致する。磁場発生手段11は、電磁石(コイル)であり、検出対象物5に対して磁場発生手段10と同じ側に設けられる。温度検出装置2においては、磁場発生手段10から磁場を発生させ、磁場発生手段11から磁場を発生させない第1状態と、磁場発生手段10から磁場を発生させず、磁場発生手段11から磁場を発生させる第2状態と、の各々において、演算部20は、第1〜第4磁気センサ15〜18から得られる4つの測定値を基に、感温磁性体13の温度を検出する。これにより、温度検出の正確性を更に向上させることができる。なお、磁場発生手段11は、検出対象物5に対して第1〜第4磁気センサ15〜18と同じ側に設けられてもよい。
(Embodiment 2)
FIG. 6 is a schematic configuration diagram of a temperature detection device 2 according to Embodiment 2 of the present invention. The temperature detection device 2 according to the present embodiment is different from that according to the first embodiment in that a magnetic field generation unit 11 is added, and is identical in other points. The magnetic field generation means 11 is an electromagnet (coil) and is provided on the same side as the magnetic field generation means 10 with respect to the detection target 5. In the temperature detection device 2, a magnetic field is generated from the magnetic field generation unit 10, a first state where no magnetic field is generated from the magnetic field generation unit 11, and a magnetic field is generated from the magnetic field generation unit 11 without generating a magnetic field from the magnetic field generation unit 10. In each of the second states to be performed, the calculation unit 20 detects the temperature of the temperature-sensitive magnetic body 13 based on the four measurement values obtained from the first to fourth magnetic sensors 15 to 18. Thereby, the accuracy of temperature detection can be further improved. The magnetic field generation means 11 may be provided on the same side as the first to fourth magnetic sensors 15 to 18 with respect to the detection target 5.

(実施の形態3)
図7は、本発明の実施の形態3に係る温度検出装置3の概略構成図である。本実施の形態の温度検出装置3は、実施の形態1のものと比較して、磁場発生手段10が、検出対象物5に対して第1〜第4磁気センサ15〜18及び演算部20と同じ側に位置する点で相違し、その他の点で一致する。本実施の形態も、実施の形態1と同様の効果を奏することができる。
(Embodiment 3)
FIG. 7 is a schematic configuration diagram of a temperature detection device 3 according to Embodiment 3 of the present invention. In the temperature detection device 3 according to the present embodiment, the magnetic field generation unit 10 has the first to fourth magnetic sensors 15 to 18 and the arithmetic unit 20 with respect to the detection target 5 as compared with the first embodiment. It differs in that it is located on the same side, and it matches in other points. The present embodiment can achieve the same effects as those of the first embodiment.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。   The present invention has been described above by taking the embodiment as an example. However, it is understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. By the way. Hereinafter, modifications will be described.

磁場発生手段10は、永久磁石であってもよい。この場合、磁場発生手段10が発生する磁場は直流に限定されるが、原理的に温度検出は可能である。感温磁性体13は、フェライトに限定されず、珪素鋼板等の他の磁性体であってもよい。第1〜第4磁気センサ15〜18は、自身に印加された磁束密度の方向を検出する方向検知型であってもよい。   The magnetic field generating means 10 may be a permanent magnet. In this case, the magnetic field generated by the magnetic field generation means 10 is limited to DC, but in principle, temperature detection is possible. The temperature-sensitive magnetic body 13 is not limited to ferrite but may be other magnetic bodies such as a silicon steel plate. The first to fourth magnetic sensors 15 to 18 may be direction detection types that detect the direction of the magnetic flux density applied to the first to fourth magnetic sensors 15 to 18.

1〜3 温度検出装置、5 検出対象物(被検出部)、10,11 磁場発生手段、13 感温磁性体、15 第1磁気センサ、16 第2磁気センサ、17 第3磁気センサ、18 第4磁気センサ、20 演算部 1-3 Temperature detector, 5 Object to be detected (detected part), 10, 11 Magnetic field generating means, 13 Temperature-sensitive magnetic body, 15 First magnetic sensor, 16 Second magnetic sensor, 17 Third magnetic sensor, 18 4 magnetic sensors, 20 computing units

Claims (8)

磁場発生手段と、感温磁性体と、複数の磁気センサと、を備え、
前記複数の磁気センサは、前記感温磁性体の温度変化と、前記感温磁性体の任意方向の位置変化と、に対して互いに異なる変化をする複数の測定値が得られる配置であり、
前記複数の磁気センサから得られる複数の測定値を基に、前記感温磁性体の温度を検出する、温度検出装置。
A magnetic field generation means, a temperature-sensitive magnetic body, and a plurality of magnetic sensors;
The plurality of magnetic sensors are arranged to obtain a plurality of measurement values that change differently with respect to a temperature change of the temperature-sensitive magnetic body and a position change of the temperature-sensitive magnetic body in an arbitrary direction,
A temperature detection device that detects the temperature of the temperature-sensitive magnetic body based on a plurality of measurement values obtained from the plurality of magnetic sensors.
前記複数の磁気センサは、前記磁場発生手段と前記感温磁性体とを結ぶ仮想直線からの距離が互いに同一という第1条件と、前記磁場発生手段又は前記感温磁性体からの距離が互いに等しいという第2条件と、の双方を満たす位置関係とならないように配置される、請求項1に記載の温度検出装置。   In the plurality of magnetic sensors, the first condition that distances from virtual lines connecting the magnetic field generation means and the temperature-sensitive magnetic body are the same as each other, and distances from the magnetic field generation means or the temperature-sensitive magnetic body are equal to each other. The temperature detection device according to claim 1, wherein the temperature detection device is arranged so as not to satisfy a positional relationship satisfying both of the second condition. 磁場発生手段と、感温磁性体と、複数の磁気センサと、を備え、
前記複数の磁気センサは、前記磁場発生手段と前記感温磁性体とを結ぶ仮想直線からの距離が互いに同一という第1条件と、前記磁場発生手段又は前記感温磁性体からの距離が互いに等しいという第2条件と、の双方を満たす位置関係とならないように配置され、
前記複数の磁気センサから得られる複数の測定値を基に、前記感温磁性体の温度を検出する、温度検出装置。
A magnetic field generation means, a temperature-sensitive magnetic body, and a plurality of magnetic sensors;
In the plurality of magnetic sensors, the first condition that distances from virtual lines connecting the magnetic field generation means and the temperature-sensitive magnetic body are the same as each other, and distances from the magnetic field generation means or the temperature-sensitive magnetic body are equal to each other. It is arranged so as not to have a positional relationship that satisfies both the second condition and
A temperature detection device that detects the temperature of the temperature-sensitive magnetic body based on a plurality of measurement values obtained from the plurality of magnetic sensors.
前記磁場発生手段と、前記複数の磁気センサとが、同一直線上に存在しない、請求項1乃至3のいずれか一項に記載の温度検出装置。   The temperature detection device according to any one of claims 1 to 3, wherein the magnetic field generation unit and the plurality of magnetic sensors do not exist on the same straight line. 複数の磁場発生手段を備え、前記複数の磁場発生手段から一つずつ磁場を発生させた各々の場合の複数の測定値を基に、前記感温磁性体の温度を検出する、請求項1乃至4のいずれか一項に記載の温度検出装置。   2. The apparatus according to claim 1, further comprising a plurality of magnetic field generation units, wherein the temperature of the thermosensitive magnetic body is detected based on a plurality of measured values in each case where a magnetic field is generated one by one from the plurality of magnetic field generation units. The temperature detection device according to any one of 4. 前記感温磁性体は、感温フェライトである、請求項1乃至5のいずれか一項に記載の温度検出装置。   The temperature detection device according to claim 1, wherein the temperature-sensitive magnetic body is a temperature-sensitive ferrite. 前記磁場発生手段は、コイルである、請求項1乃至6のいずれか一項に記載の温度検出装置。   The temperature detection device according to any one of claims 1 to 6, wherein the magnetic field generation means is a coil. 前記磁場発生手段の発生する磁場は、交流である、請求項1乃至7のいずれか一項に記載の温度検出装置。   The temperature detection apparatus according to any one of claims 1 to 7, wherein the magnetic field generated by the magnetic field generation means is alternating current.
JP2017016254A 2017-01-31 2017-01-31 Temperature detector Active JP6907562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017016254A JP6907562B2 (en) 2017-01-31 2017-01-31 Temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017016254A JP6907562B2 (en) 2017-01-31 2017-01-31 Temperature detector

Publications (2)

Publication Number Publication Date
JP2018124168A true JP2018124168A (en) 2018-08-09
JP6907562B2 JP6907562B2 (en) 2021-07-21

Family

ID=63110160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016254A Active JP6907562B2 (en) 2017-01-31 2017-01-31 Temperature detector

Country Status (1)

Country Link
JP (1) JP6907562B2 (en)

Also Published As

Publication number Publication date
JP6907562B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
US11226211B2 (en) Inductive position detection
Zhang et al. A novel absolute angular position sensor based on electromagnetism
CN102870013B (en) Detection of a metal or magnetic object
US9689903B2 (en) Apparatus and methods for measuring current
JP6377817B2 (en) Non-contact magnetic linear position sensor
CN106197238B (en) For using inductosyn to determine moving parts along the method for the position of axis
JP2018072344A (en) Multi-dimensional measurement system using magnetic sensors, and related systems, methods, and integrated circuits
US11326868B2 (en) Magnetic position sensor system, device, magnet and method
JP2009069148A (en) Device for measuring magnetic field
CN110023791A (en) System for determining the position of pipe-line
CN107202966B (en) The measurement method and system of a kind of alternate magnetic flux leakage of transformer winding
CN109313006A (en) System, method and object for high accuracy magnetic potential sensing
TWI684776B (en) Magnetic sensor apparatus
CN113709452A (en) Three-axis position sensing for camera systems using hall sensors
CN113710997B (en) Magnetic sensing system, detection device and magnetic interference biasing method
JP6145467B2 (en) Position detection device
JP6907562B2 (en) Temperature detector
US10094340B2 (en) Sensor device for determining a displacement of a shaft
JP2014066623A (en) Current sensor
Procaházka Electromagnetic simulator of rotating machine blades for noncontact sensor dynamic testing
JP2016125940A (en) Position sensing device
JP2018124169A (en) Temperature detection device
JP2006527844A (en) Magnetic sensor for determining the position of a controlled magnetic leak
JP2019100848A (en) Magnetic sensor device
JP5191946B2 (en) Position detecting device using magnetoresistive effect element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

R150 Certificate of patent or registration of utility model

Ref document number: 6907562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250