JP2018121486A - Energy management system - Google Patents

Energy management system Download PDF

Info

Publication number
JP2018121486A
JP2018121486A JP2017012748A JP2017012748A JP2018121486A JP 2018121486 A JP2018121486 A JP 2018121486A JP 2017012748 A JP2017012748 A JP 2017012748A JP 2017012748 A JP2017012748 A JP 2017012748A JP 2018121486 A JP2018121486 A JP 2018121486A
Authority
JP
Japan
Prior art keywords
power
facility
conversion efficiency
converter
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017012748A
Other languages
Japanese (ja)
Inventor
義人 西田
Yoshito Nishida
義人 西田
岩田 雅史
Masafumi Iwata
雅史 岩田
大西 宏明
Hiroaki Onishi
宏明 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017012748A priority Critical patent/JP2018121486A/en
Publication of JP2018121486A publication Critical patent/JP2018121486A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve calculation of an optimum output value with a conversion efficiency of each power converter in developing a control plan of a dispersed power supply provided at a facility of a power consumer.SOLUTION: In developing a control plan of a dispersed power supply provided at a power consumer facility, an energy management system acquires a conversion efficiency of a power converter in addition to facility information and status information of the dispersed power supply and calculates a control plan of the optimum dispersed power supply using the facility information and the status information of the dispersed power supply and the conversion efficiency of each power converter.SELECTED DRAWING: Figure 1

Description

この発明は、電力需要に対して、蓄電池、発電機、太陽光発電や風力発電などの分散型電源を連携制御するエネルギーマネジメントシステムに関するものである。   The present invention relates to an energy management system that performs coordinated control of distributed power sources such as storage batteries, generators, solar power generation, and wind power generation in response to power demand.

近年、電力需要家施設において、太陽光発電や風力発電などの再生可能エネルギーや蓄電池などの分散型電源の導入が進み、それらを連携制御するためのエネルギーマネジメントシステムが開発されている。また、分散型電源からの電力を負荷設備などに供給するため、DC/DC変換やDC/AC変換などの電力変換器(パワーコンディショナ)が用いられている。
例えば、特許文献1では、分散型電源から出力される電力を電力変換器によって変換するものにおいて、出力される電力が固定損失以下の場合、その電力変換を行わないように制御する電力制御装置が提案されている。
In recent years, the introduction of renewable power sources such as solar power generation and wind power generation and distributed power sources such as storage batteries has been advanced in power consumer facilities, and energy management systems for controlling them in cooperation have been developed. Also, power converters (power conditioners) such as DC / DC conversion and DC / AC conversion are used to supply power from a distributed power source to a load facility or the like.
For example, in Patent Document 1, in a case where power output from a distributed power source is converted by a power converter, when the output power is equal to or less than a fixed loss, a power control device that performs control so as not to perform power conversion is provided. Proposed.

特開2014−217185号公報JP 2014-217185 A

上述した特許文献1に記載された電力制御装置においては、電力変換器によって変換された電力を考慮して分散型電源の制御を行っているが、電力変換器の効率を考慮した最適な分散型電源の出力値を算出している訳ではない。   In the power control apparatus described in Patent Document 1 described above, the distributed power source is controlled in consideration of the power converted by the power converter, but the optimum distributed type in consideration of the efficiency of the power converter. The power supply output value is not calculated.

この発明は、上述したような問題点を解決するためになされたもので、各分散型電源の制御値の算出において、各電力変換器の変換効率を考慮し、最適な制御値を算出することによって高効率な電力制御を実現するエネルギーマネジメントシステムを提供するものである。   The present invention has been made to solve the above-described problems. In calculating the control value of each distributed power source, the optimum control value is calculated in consideration of the conversion efficiency of each power converter. It provides an energy management system that realizes highly efficient power control.

この発明に係るエネルギーマネジメントシステムは、電力会社から電力が供給される電力需要家施設に設けられたものであって、複数の負荷設備と、これらの負荷設備に電力を供給する分散型電源と、前記各負荷設備および前記分散型電源の間にそれぞれ設けられた複数の電力変換器と、前記各負荷設備、前記分散型電源および前記複数の電力変換器の動作を管理する電力管理装置とを備えたエネルギーマネジメントシステムにおいて、前記電力管理装置は、前記分散型電源の設備情報および状況情報を取得する設備情報取得部と、前記電力変換器の変換効率の情報を取得する変換効率取得部と、前記分散型電源の設備情報および状況情報、前記電力変換器の変換効率に基づいて前記分散型電源の制御計画を作成する制御計画作成部と、この制御計画作成部により作成した制御計画値を基に制御指令値を算出する制御指令部とを備えたことを特徴とするものである。   The energy management system according to the present invention is provided in a power consumer facility to which power is supplied from an electric power company, and includes a plurality of load facilities, a distributed power source that supplies power to these load facilities, A plurality of power converters provided between each of the load facilities and the distributed power source, and a power management device for managing operations of the load facilities, the distributed power source and the plurality of power converters. In the energy management system, the power management device includes a facility information acquisition unit that acquires facility information and status information of the distributed power source, a conversion efficiency acquisition unit that acquires information of conversion efficiency of the power converter, A control plan creation unit for creating a control plan for the distributed power source based on the facility information and status information of the distributed power source and the conversion efficiency of the power converter; It is characterized in that a control command unit for calculating a control command value based on the control plan value created by our planning unit.

この発明に係るエネルギーマネジメントシステムによれば、各分散型電源から出力される電力を算出する際に、電力変換器の変換効率を考慮した制御値を算出するため、高効率な電力制御を行うことが可能となる。   According to the energy management system of the present invention, when calculating the power output from each distributed power source, a highly efficient power control is performed in order to calculate a control value that takes into account the conversion efficiency of the power converter. Is possible.

本発明の実施の形態1に係るエネルギーマネジメントシステムを含む電力需給システム全体の構成を示す概略図である。It is the schematic which shows the structure of the whole electric power supply-and-demand system including the energy management system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1におけるエネルギーマネジメントシステムのシステム構成を概略的に示すブロック図である。It is a block diagram which shows roughly the system configuration | structure of the energy management system in Embodiment 1 of this invention. 本発明の実施の形態1に係るエネルギーマネジメントシステムにおける電力変換器の変換効率の例を示す図である。It is a figure which shows the example of the conversion efficiency of the power converter in the energy management system which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るエネルギーマネジメントシステムを含む電力需給システム全体の構成を示す概略図である。It is the schematic which shows the structure of the whole electric power supply-and-demand system containing the energy management system which concerns on Embodiment 2 of this invention. 本発明の実施の形態2におけるエネルギーマネジメントシステムのシステム構成を概略的に示すブロック図である。It is a block diagram which shows roughly the system configuration | structure of the energy management system in Embodiment 2 of this invention. 本発明の実施の形態3に係るエネルギーマネジメントシステムを含む電力需給システム全体の構成を示す概略図である。It is the schematic which shows the structure of the whole electric power supply-and-demand system containing the energy management system which concerns on Embodiment 3 of this invention.

実施の形態1
以下、この発明を実施の形態である図を参照して説明する。
なお、各図中、同一符号は、同一あるいは相当部分を示すものとする。
図1は、本発明の実施の形態1に係るエネルギーマネジメントシステムを含む電力需給システム全体の構成を示す概略図である。
図において、電力需給システム100は、200ボルトなどの商用電力を供給する電力会社1と、電力会社1からの電力供給を受けて電力を消費する住宅、工場、ビルなどの電力需要家施設10とによって構成され、電力需要家施設10にはエネルギーマネジメントシステムが設定されている。
Embodiment 1
Hereinafter, the present invention will be described with reference to the drawings which are embodiments.
In addition, in each figure, the same code | symbol shall show the same or an equivalent part.
FIG. 1 is a schematic diagram showing the configuration of the entire power supply and demand system including the energy management system according to Embodiment 1 of the present invention.
In the figure, an electric power supply and demand system 100 includes an electric power company 1 that supplies commercial electric power such as 200 volts, and electric power consumer facilities 10 such as houses, factories, and buildings that receive electric power from the electric power company 1 and consume electric power. An energy management system is set in the electric power consumer facility 10.

この電力需要家施設10内には、照明、冷蔵庫、空調などの各種負荷設備11が設けられ、この各種負荷設備11に対して電力会社1からの電力が変圧器12を介して供給されている。また、近年、電力需要家施設10内には、太陽光による発電装置13(以下、PVと称す)、風力による発電装置14(以下、WTと称す)などの再生可能エネルギー設備が設けられ、この再生可能エネルギー設備による電力がDC/DC変換器13a、14aを介して各種負荷設備11に供給されるとともにDC/DC変換器13b、14bを介して蓄電池15(以下、BATと称す)に供給され、充電される。また、このBAT15は、その出力電力がDC/AC変換器15bを介して各種負荷設備11に供給されるとともに、電力会社1から変圧器12およびAC/DC変換器15aを介して充電されるように構成されており、このような電力需要家施設10内の各種装置は、電力管理装置20によって管理、制御され、これらによりエネルギーマネジメントシステムが形成されている。
なお、電力需要家施設10に設けられた各設備の内、再生可能エネルギー設備である発電装置13、14およびBAT15からなる分散型電源は、直流(DC)電力を扱い、各種負荷設備11は、交流(AC)電力を取り扱うものとして説明する。
Various types of load equipment 11 such as lighting, a refrigerator, and an air conditioner are provided in the electric power consumer facility 10, and electric power from the electric power company 1 is supplied to the various types of load equipment 11 through a transformer 12. . In recent years, renewable energy facilities such as a solar power generation device 13 (hereinafter referred to as PV) and a wind power generation device 14 (hereinafter referred to as WT) are provided in the power consumer facility 10. Electric power from the renewable energy facility is supplied to the various load facilities 11 through the DC / DC converters 13a and 14a and supplied to the storage battery 15 (hereinafter referred to as BAT) through the DC / DC converters 13b and 14b. Will be charged. Further, the output power of the BAT 15 is supplied to the various load facilities 11 through the DC / AC converter 15b and is charged from the power company 1 through the transformer 12 and the AC / DC converter 15a. The various devices in such a power consumer facility 10 are managed and controlled by the power management device 20, thereby forming an energy management system.
In addition, among the facilities provided in the power customer facility 10, the distributed power source including the power generation devices 13 and 14 and the BAT 15 which are renewable energy facilities handles direct current (DC) power, and the various load facilities 11 It is assumed that alternating current (AC) power is handled.

図2は、電力管理装置20の具体的なシステム構成を示している。
図において、電力管理装置20は、各種のデータを記憶するデータベース21と、このデータベース21に記録された各分散型電源(PV13,WT14,BAT15)の設備情報や現在状態および各種負荷設備11の現在状態を示すデータを取得する設備情報取得部22と、データベース21に記録された各電力変換器(13a,14a,13b,14b,15a,15b)における変換効率を取得する変換効率取得部23と、データベース21から取得した各分散型電源(PV13,WT14,BAT15)の設備情報、状態情報および各電力変換器(13a,14a,13b,14b,15a,15b)の変換効率に基づいて各分散型電源(PV13,WT14,BAT15)の制御計画を作成する制御計画作成部24と、この制御計画作成部24により作成した分散型電源(PV13,WT14,BAT15)の制御計画と電力需要家施設10の各種負荷設備11や分散型電源(PV13,WT14,BAT15)の現在状態を基に制御指令値を算出して出力する制御指令部25とから構成される。
なお、この電力管理装置20の各部は、各装置を制御し、かつデータを処理する中央処理装置(Central Processing Unit)と、プログラムを記憶するROM(Read Only Memory)と、プログラムを実行する際にデータを一次記憶し、プログラムを実行する際の作業領域として使用するRAM(Random Access Memory)とを有するマイクロコンピュータによって形成されている。
FIG. 2 shows a specific system configuration of the power management apparatus 20.
In the figure, the power management apparatus 20 includes a database 21 for storing various data and the facility information and current state of each distributed power source (PV 13, WT 14, BAT 15) recorded in the database 21 and the current state of various load facilities 11. A facility information acquisition unit 22 that acquires data indicating a state; a conversion efficiency acquisition unit 23 that acquires conversion efficiency in each power converter (13a, 14a, 13b, 14b, 15a, 15b) recorded in the database 21; Each distributed power source based on the facility information, status information, and conversion efficiency of each power converter (13a, 14a, 13b, 14b, 15a, 15b) of each distributed power source (PV13, WT14, BAT15) acquired from the database 21 A control plan creation unit 24 for creating a control plan of (PV13, WT14, BAT15); Control command values based on the control plan of the distributed power source (PV13, WT14, BAT15) created by the creation unit 24 and the current state of the various load equipment 11 and the distributed power source (PV13, WT14, BAT15) of the power consumer facility 10 It is comprised from the control command part 25 which calculates and outputs.
Each unit of the power management device 20 controls each device and processes data, a central processing unit (ROM) that stores data, a read only memory (ROM) that stores a program, and a program. It is formed by a microcomputer having a RAM (Random Access Memory) used as a work area for temporarily storing data and executing a program.

次に、このような構成におけるエネルギーマネジメントシステムの動作について説明する。
まず、変換効率取得部23は、データベース21に設定された各電力変換器(13a,14a,13b,14b,15a,15b)の変換効率を取得する。なお、この変換効率は、以下の関数の形(式1)で定義され、変換効率の関数の例を図3に示している。
Next, operation | movement of the energy management system in such a structure is demonstrated.
First, the conversion efficiency acquisition unit 23 acquires the conversion efficiency of each power converter (13a, 14a, 13b, 14b, 15a, 15b) set in the database 21. This conversion efficiency is defined by the following function form (formula 1), and an example of the conversion efficiency function is shown in FIG.

Figure 2018121486
ここで、fは、変換効率の関数、xは、分散型電源から出力される電力値、a,b,cは、電力変換器の固有の係数をそれぞれ表す。
Figure 2018121486
Here, f is a function of conversion efficiency, x is a power value output from the distributed power source, and a, b, and c are specific coefficients of the power converter, respectively.

次に、設備情報取得部22は、データベース21に設定された各分散型電源(PV13,WT14,BAT15)の設備情報や現在状態を示す情報、各種負荷設備11の設備情報や現在状態を示す情報、電力会社1との契約情報などを取得する。
具体的には、各種負荷設備11の電力需要予測値、PV13の発電予測値、WT14の発電予測値、BAT15の現在の蓄電量、使用可能な蓄電量の最小値・最大値、充放電電力量の最大値・最小値、BAT15の充放電効率、電力会社1との契約情報である電力購入量の購入可能最大値や各時刻における電力購入単価などを取得する。
なお、電力需要予測値については、予め算出されているものであり、算出方法としては、季節および曜日などに応じて作成してもよく、また、過去の各種負荷設備11により使用された電力量から作成する場合、例えば、時間帯ごとの過去の電力量の平均値を用いる方法などが考えられる。
また、PV13やWT14の発電予測値についても、予め算出されているものであり、過去の発電量と天気の情報から予測用のモデルを作成して、そのモデルと天気予報の情報から算出する方法がある。
Next, the facility information acquisition unit 22 includes facility information and information indicating the current state of each distributed power source (PV13, WT14, BAT15) set in the database 21, and information indicating facility information and the current state of various load facilities 11. The contract information with the electric power company 1 is acquired.
Specifically, predicted power demand values of various load facilities 11, predicted power generation values of PV13, predicted power generation values of WT14, current power storage amount of BAT15, minimum / maximum values of usable power storage amount, charge / discharge power amount The maximum value / minimum value, the charging / discharging efficiency of the BAT 15, the maximum purchaseable power purchase amount, which is contract information with the power company 1, and the power purchase unit price at each time are acquired.
The predicted power demand value is calculated in advance, and may be created according to the season, day of the week, etc., and the amount of power used by various past load facilities 11 For example, a method using an average value of past power consumption for each time zone can be considered.
Further, the predicted power generation values of PV 13 and WT 14 are also calculated in advance, and a method for creating a prediction model from past power generation amount and weather information and calculating from the model and weather forecast information There is.

次に、制御計画作成部24は、電力変換器(13a,14a,13b,14b,15a,15b)の変換効率と分散型電源(PV13,WT14,BAT15)の設備情報や現在情報を基に各分散型電源(PV13,WT14,BAT15)の制御計画値を算出する。このとき、取得した情報を基に制約条件と目的関数を作成し、最適化問題を解くことで制御計画値を作成する。
なお、制約条件と目的関数の例として、図1の分散型電源(PV13,WT14,BAT15)と電力変換器(13a,14a,13b,14b,15a,15b)の構成の場合、最適化問題の制約条件は、以下のように定義することができる。
Next, the control plan creation unit 24 performs each conversion based on the conversion efficiency of the power converters (13a, 14a, 13b, 14b, 15a, 15b) and the facility information and the current information of the distributed power sources (PV13, WT14, BAT15). The control plan value of the distributed power source (PV13, WT14, BAT15) is calculated. At this time, a constraint condition and an objective function are created based on the acquired information, and a control plan value is created by solving an optimization problem.
As an example of the constraint condition and the objective function, in the case of the configuration of the distributed power source (PV13, WT14, BAT15) and the power converter (13a, 14a, 13b, 14b, 15a, 15b) in FIG. The constraint condition can be defined as follows.

まず、需給バランス制約の制約条件を式(2)に示す。   First, the constraint condition of the supply and demand balance constraint is shown in Equation (2).

Figure 2018121486
Figure 2018121486

ここで、EDは、時刻tにおける電力需要予測値、E_BUYは、時刻tにおける電力購入量、E_PVcomは、時刻tにおけるPV13が発電する発電予測値の内、負荷設備11に供給される電力のDC/AC変換器13aを通った後の電力量、E_WTcomは、時刻tにおけるWT14が発電する発電予測値の内、各種負荷設備11に供給される電力のDC/AC変換器14aを通った後の電力量、E_BAT_INPUTchargeは、時刻tにおける電力購入量の内、BAT15に充電する電力のAC/DC変換器15aを通る前の充電電力量、E_BATdischargeは、時刻tにおけるBAT15から各種負荷設備11に供給される電力のDC/AC変換器15aを通った後の放電電力量を表す。なお、BAT15の充放電電力量は、プラス値が放電電力量で、マイナス値が充電電力量である。     Here, ED is a predicted power demand value at time t, E_BUY is a power purchase amount at time t, and E_PVcom is a power generation predicted value generated by the PV 13 at time t, DC of power supplied to the load facility 11 The amount of power after passing through the AC converter 13a, E_WTcom, is the power generation predicted value generated by the WT 14 at time t, and the power supplied to the various load facilities 11 after passing through the DC / AC converter 14a. The amount of power, E_BAT_INPUTcharge, is the amount of power purchased before passing through the AC / DC converter 15a for charging the BAT 15 out of the amount of power purchased at time t, and E_BATdischarge is supplied from the BAT 15 at time t to the various load facilities 11 The amount of electric power discharged after passing through the DC / AC converter 15a. As for the charge / discharge power amount of the BAT 15, a positive value is a discharge power amount and a negative value is a charge power amount.

次に、電力購入量の制約条件を式(3)に示す。   Next, the constraint condition of the power purchase amount is shown in Expression (3).

Figure 2018121486
Figure 2018121486

ここで、E_BUY_MINは、電力購入量の購入可能最小値、E_BUY_MAXは、電力購入量の購入可能最大値を表す。なお、最小値、最大値は、予め決められた値であり、設備情報取得部22によって取得する。また、購入可能最小値は、主に「0」であり、購入可能最大値は電力会社1との契約で決められた契約電力である。   Here, E_BUY_MIN represents the minimum purchaseable value of the power purchase amount, and E_BUY_MAX represents the maximum purchaseable value of the power purchase amount. The minimum value and the maximum value are predetermined values and are acquired by the facility information acquisition unit 22. The minimum purchaseable value is mainly “0”, and the maximum purchaseable value is contract power determined by a contract with the electric power company 1.

次に、BAT15の制約条件を式(4)に示す。   Next, the constraint condition of BAT15 is shown in Expression (4).

Figure 2018121486
Figure 2018121486

ここで、SOCは、時刻tにおけるBAT15の蓄電量、EFFは、BAT15の充放電効率、SOC_MINは、BAT15の使用可能な蓄電量の最小値、SOC_MAXは、BAT15の使用可能な蓄電量の最大値、E_BAT_MINは、BAT15の充放電電力量の最小値、E_BAT_MATは、BAT15の充放電電力量の最大値を表す。E_BATchargeは、時刻tにおける電力会社1から供給される電力購入量の内、BAT15に充電するAC/DC変換器15aを通った後の充電電力量、E_BAT_INPUTdischargeは、時刻tにおけるBAT15から各種負荷設備11に供給される電力のDC/AC変換器15aを通る前の放電電力量、E_BATcharge_PVは、時刻tにおけるPV13が発電する発電予測値の内、BAT15に充電するDC/DC変換器13bを通った後の充電電力量、E_BATcharge_WTは、WT14が発電する発電予測値の内、BAT15に充電するDC/DC変換器14bを通った後の充電電力量を表す。なお、充放電効率、蓄電量の最小値・最大値、充放電電力量の最小値・最大値は,予め設定された値であり、設備情報取得部22によって取得する。また、充電量は、マイナス値、放電量は、プラス値で表現する。 Here, SOC is the amount of power stored in BAT 15 at time t, EFF is the charge / discharge efficiency of BAT 15, SOC_MIN is the minimum value of power stored in BAT 15, and SOC_MAX is the maximum value of power stored in BAT 15 , E_BAT_MIN represents the minimum value of the charge / discharge power amount of BAT 15, and E_BAT_MAT represents the maximum value of the charge / discharge power amount of BAT 15. E_BATcharge is the amount of electric power charged after passing through the AC / DC converter 15a that charges the BAT 15 out of the amount of electric power purchased from the electric power company 1 at time t, and E_BAT_INPUTdischarge is calculated from the BAT 15 at time t to various load facilities 11 E_BATcharge_PV of the power supplied to the battery before passing through the DC / AC converter 15a passes through the DC / DC converter 13b that charges the BAT 15 among the power generation predicted values generated by the PV 13 at time t. charging power amount after, E_BATcharge _WT, of generating predicted values WT14 to generate electricity, indicative of a charged electric energy after passing through the DC / DC converter 14b for charging the BAT15. Note that the charge / discharge efficiency, the minimum / maximum value of the amount of electricity stored, and the minimum / maximum value of the charge / discharge power amount are preset values, and are acquired by the facility information acquisition unit 22. The charge amount is expressed as a negative value, and the discharge amount is expressed as a positive value.

次に、PV13の発電量の制約条件を式(5)に示す。 Next, the constraint condition of the power generation amount of PV13 is shown in Expression (5).

Figure 2018121486
Figure 2018121486

ここで、E_PVは、時刻tにおける PV13が発電する発電量の予測値、E_PV_INPUTcomは、時刻tにおけるPV13の発電予測値の内、各種負荷設備11に供給される電力のDC/AC変換器13aを通る前の電力量、E_PV_INPUTchargeは、時刻tにおけるPV13の発電予測値の内、BAT15に充電するDC/DC変換器13bを通る前の電力量を表す。   Here, E_PV is a predicted value of the power generation amount generated by the PV 13 at time t, and E_PV_INPUTcom is a DC / AC converter 13a of the power supplied to the various load facilities 11 among the predicted power generation values of the PV 13 at time t. The amount of power before passing, E_PV_INPUTcharge, represents the amount of power before passing through the DC / DC converter 13b that charges the BAT 15 in the predicted power generation value of the PV 13 at time t.

次に、WT14の発電量の制約条件を式(6)に示す。   Next, the constraint condition of the power generation amount of the WT 14 is shown in Expression (6).

Figure 2018121486
Figure 2018121486

ここで、E_WTは、時刻tにおけるWT14が発電する発電量の予測値、E_WT_INPUTcomは、時刻tにおけるWT14の発電予測値の内、各種負荷設備11に供給される電力のDC/AC変換器14aを通る前の電力量、E_WT_INPUTchargeは、時刻tにおけるWT14の発電予測値の内、BAT15に充電する電力のDC/DC変換器14bを通る前の電力量を表す。   Here, E_WT is a predicted value of the amount of power generated by the WT 14 at time t, and E_WT_INPUTcom is a DC / AC converter 14a of power supplied to the various load facilities 11 among the predicted power generation values of the WT 14 at time t. The electric energy before passing, E_WT_INPUTcharge, represents the electric energy before passing through the DC / DC converter 14b of the electric power charged in the BAT 15 in the power generation predicted value of the WT 14 at time t.

次に、電力変換器(13a,14a,13b,14b,15a,15b)における変換効率の制約条件を式(7)に示す。   Next, the constraint condition of the conversion efficiency in the power converters (13a, 14a, 13b, 14b, 15a, 15b) is shown in Expression (7).

Figure 2018121486
Figure 2018121486

ここで、EFF_PVDC/ACは、PV13の電力が通るDC/AC変換器13aの変換効率、EFF_WTDC/ACは、WT14の電力が通るDC/AC変換器14aの変換効率、EFF_BATAC/DCは、BAT15の充電電力が通るAC/DC変換器15bの変換効率、EFF_BATDC/ACは、BAT15の放電電力が通るDC/AC変換器15aの変換効率、EFF_PVDC/DCは、PV13の電力が通るDC/DC変換器13bの変換効率、EFF_WTDC/DCは、WT14の電力が通るDC/DC変換器14bの変換効率をそれぞれ表す。なお、これらの変換効率については、予め設定された値であり、変換効率取得部23によって取得する。   Here, EFF_PVDC / AC is the conversion efficiency of the DC / AC converter 13a through which the power of PV13 passes, EFF_WTDC / AC is the conversion efficiency of the DC / AC converter 14a through which the power of WT14 passes, and EFF_BATAC / DC is the BAT15 The conversion efficiency of the AC / DC converter 15b through which the charging power passes, EFF_BATDC / AC is the conversion efficiency of the DC / AC converter 15a through which the discharge power of the BAT 15 passes, and EFF_PVDC / DC is the DC / DC converter through which the power of the PV 13 passes. The conversion efficiency 13b, EFF_WTDC / DC, represents the conversion efficiency of the DC / DC converter 14b through which the power of the WT 14 passes. Note that these conversion efficiencies are values set in advance, and are acquired by the conversion efficiency acquisition unit 23.

さらに、目的関数としては、例えば、電力購入コストを最小化する制御計画値を作成する場合、式(8)を目的関数とする。   Furthermore, as the objective function, for example, when creating a control plan value that minimizes the power purchase cost, Equation (8) is used as the objective function.

Figure 2018121486
Figure 2018121486

ここで、C_BUYは、時刻tにおける電力購入コスト、E_BUY_COSTは、時刻tにおける電力購入単価を表す。
なお、電力購入単価については、予め設定された値であり、設備情報取得部22によって取得し、電力会社1との契約によって決まるものとする。また、電力購入コストを最小化する際に合計値を算出する算出期間(T)は、電力需要家によって決められるものであり、例えば、1日の24時間先までの計画を30分刻みにするなどの設定値が考えられる。
Here, C_BUY represents the power purchase cost at time t, and E_BUY_COST represents the power purchase unit price at time t.
The power purchase unit price is a preset value, is acquired by the facility information acquisition unit 22, and is determined by a contract with the power company 1. In addition, the calculation period (T) for calculating the total value when minimizing the power purchase cost is determined by the power consumer. For example, the plan for 24 hours a day is made every 30 minutes. A setting value such as

次に、制御指令部25では、制御計画作成部24で算出された分散型電源(PV13,WT14,BAT15)の制御計画値と、各分散型電源(PV13,WT14,BAT15)の現在情報(出力値、停止状態、BAY15の蓄電量、電力会社1からの購入電力など)から制御計画値を補正し、分散型電源(PV13,WT14,BAT15)の制御指令値を算出し、出力する。   Next, in the control command unit 25, the control plan value of the distributed power source (PV13, WT14, BAT15) calculated by the control plan creation unit 24 and the current information (output) of each distributed power source (PV13, WT14, BAT15). The control plan value is corrected from the value, the stop state, the amount of power stored in the BAY 15, the purchased power from the power company 1, etc., and the control command value of the distributed power source (PV13, WT14, BAT15) is calculated and output.

なお、制御指令値の算出方法としては、PID制御などのフィードバック制御により、制御指令値を算出する。そして、算出された補正値を基に各分散型電源(PV13,WT14,BAT15)の指令値を算出するが、このとき、各電力変換器(13a,13b,14a,14b,15a,15b)の変換効率を考慮して、補正を按分することによって指令値を算出する。   As a method for calculating the control command value, the control command value is calculated by feedback control such as PID control. And the command value of each distributed power source (PV13, WT14, BAT15) is calculated based on the calculated correction value. At this time, each power converter (13a, 13b, 14a, 14b, 15a, 15b) The command value is calculated by apportioning the correction in consideration of the conversion efficiency.

以上のように、実施の形態1による電力管理装置20によれば、電力変換器(13a,13b,14a,14b,15a,15b)の変換効率を考慮した出力値を算出し、各分散型電源(PV13,WT14,BAT15)から出力される電力を算出する際に、補正を加えることによって、高効率な電力制御を行うことができる。   As described above, according to the power management apparatus 20 according to the first embodiment, the output value considering the conversion efficiency of the power converters (13a, 13b, 14a, 14b, 15a, 15b) is calculated, and each distributed power source is calculated. When calculating the power output from (PV13, WT14, BAT15), high-efficiency power control can be performed by adding correction.

実施の形態2
上述の実施の形態1においては、予め設定された各電力変換器(13a,13b,14a,14b,15a,15b)の変換効率に基づいて、各分散型電源(PV13,WT14,BAT15)の制御計画値を補正し、分散型電源(PV13,WT14,BAT15)の制御を行うように構成したが、電力変換器(13a,13b,14a,14b,15a,15b)の変換効率は、それぞれの経年劣化や周囲の温度、湿度によって常に変化するため、設定された変換効率を使用し続けると、実際の変換効率との間で誤差が発生し、効率的な電力供給を行うことができなくなる。
このため、実施の形態2におけるエネルギーマネジメントシステムでは、電力変換器(13a,13b,14a,14b,15a,15b)の変換効率を常に算出して補正するように構成したもので、より効率的な電力供給を行うことが可能となる。
Embodiment 2
In the first embodiment described above, the control of each distributed power source (PV13, WT14, BAT15) is performed based on the preset conversion efficiency of each power converter (13a, 13b, 14a, 14b, 15a, 15b). The plan value is corrected and the distributed power source (PV13, WT14, BAT15) is controlled. The conversion efficiency of the power converters (13a, 13b, 14a, 14b, 15a, 15b) Since it constantly changes depending on deterioration, ambient temperature, and humidity, if the set conversion efficiency is continuously used, an error occurs between the actual conversion efficiency and efficient power supply cannot be performed.
For this reason, the energy management system according to the second embodiment is configured to always calculate and correct the conversion efficiency of the power converters (13a, 13b, 14a, 14b, 15a, 15b). Electric power can be supplied.

図4は、本発明の実施の形態2に係る電力管理装置20を含むエネルギーマネジメントシステム全体の構成を示す概略図である。
図4において、図1と同一または相当する構成には同じ符号を付し、その説明を省略する。
この実施の形態2においては、各種負荷設備11にそれぞれ電力の使用状況を計測する計測器16を設けるとともに、各分散型電源(PV13,WT14,BAT15)と各種負荷設備11との間の各電力変換器(13a,14a,15a,15b)の前後に、それぞれ計測器17,18を設け、さらに、PV13およびWT14とBAT15との間の各電力変換器(13b,14b)の前後に計測器19を設け、各電力変換器(13a,13b,14a,14b,15a,15b)を通る電力の変換前と変換後の電力量を計測して電力管理装置20に供給するように構成されている。
FIG. 4 is a schematic diagram showing a configuration of the entire energy management system including the power management apparatus 20 according to Embodiment 2 of the present invention.
4, the same reference numerals are given to the same or corresponding components as in FIG. 1, and the description thereof is omitted.
In the second embodiment, each load facility 11 is provided with a measuring device 16 for measuring the power usage status, and each power between each distributed power source (PV13, WT14, BAT15) and each load facility 11 is provided. Measuring instruments 17 and 18 are provided before and after the converters (13a, 14a, 15a, and 15b), respectively, and measuring instruments 19 are provided before and after the power converters (13b and 14b) between the PV 13 and the WT 14 and the BAT 15, respectively. And the power amount before and after the conversion of the power passing through each power converter (13a, 13b, 14a, 14b, 15a, 15b) is measured and supplied to the power management apparatus 20.

図5は、実施の形態2における電力管理装置20の具体的なシステム構成を示すものである。
図において、電力管理装置20は、各電力変換器(13a,13b,14a,14b,15a,15b)の動作状態を計測する計測器16、17,18からデータを取得し、データベース21に記録する実績値取得部26と、この実績値取得部26により取得したデータをデータベース21から取り出し、各電力変換器(13a,13b,14a,14b,15a,15b)の変換効率を算出する変換効率算出部23とを備えて構成されている。他の構成は、図2の構成と同一であり、その説明を省略する。
FIG. 5 shows a specific system configuration of the power management apparatus 20 according to the second embodiment.
In the figure, the power management apparatus 20 acquires data from measuring instruments 16, 17, and 18 that measure the operating state of each power converter (13 a, 13 b, 14 a, 14 b, 15 a, 15 b), and records the data in the database 21. The actual value acquisition unit 26 and the conversion efficiency calculation unit that extracts the data acquired by the actual value acquisition unit 26 from the database 21 and calculates the conversion efficiency of each power converter (13a, 13b, 14a, 14b, 15a, 15b) 23. The other configuration is the same as the configuration of FIG.

次に、このような構成におけるエネルギーマネジメントシステムの動作を説明する。
まず、実績値取得部26では、各電力変換器(13a,13b,14a,14b,15a,15b)の前後に設けられた計測器17,18,19と各種負荷設備11に設けられた計測器16とによって計測された各電力量を実績値として取得し、取得した時刻を追記してデータベース21に格納する。
Next, the operation of the energy management system in such a configuration will be described.
First, in the actual value acquisition unit 26, measuring instruments 17, 18, 19 provided before and after each power converter (13a, 13b, 14a, 14b, 15a, 15b) and measuring instruments provided in various load facilities 11 are used. 16 is acquired as an actual value, and the acquired time is added and stored in the database 21.

次に、変換効率算出部23では、各電力変換器(13a,13b,14a,14b,15a,15b)によって変換される電力の変換前と変換後の電力を計測器17,18,19により計測し、過去の計測値を基に変換効率を算出する。この変換効率は、実施の形態1と同様に式(1)で表される関数である。また、係数a,b,cは、予め計測器17,18,19が計測した計測値を基に算出されたものであり、最小ニ乗法などにより算出することができる。   Next, the conversion efficiency calculation unit 23 measures the power before and after the conversion of the power converted by each power converter (13a, 13b, 14a, 14b, 15a, 15b) by the measuring devices 17, 18, and 19. Then, the conversion efficiency is calculated based on the past measurement values. This conversion efficiency is a function represented by the equation (1) as in the first embodiment. The coefficients a, b, and c are calculated based on the measurement values previously measured by the measuring instruments 17, 18, and 19, and can be calculated by the least-squares method or the like.

なお、その際に、使用する計測値としては、データベース21に蓄積されている過去の全ての計測値を使用して算出してもよく、前日の計測値のみを用いて算出してもよく、同一時刻帯の計測値を用いて算出してもよく、過去15日前などの取得期間を絞った期間の計測値を用いて算出してもよく、さらに、これらの組み合わせを用いてもよい。   At that time, the measurement values to be used may be calculated using all the past measurement values accumulated in the database 21, or may be calculated using only the measurement values of the previous day, It may be calculated using the measurement value of the same time zone, may be calculated using the measurement value of a period narrowed down in the acquisition period such as the past 15 days, or a combination thereof.

次に、制御計画作成部24では、変換効率算出部23によって算出された各電力変換器(13a,13b,14a,14b,15a,15b)の変換効率を用いて各分散型電源13,14,15の制御計画値を算出し、制御指令部25から出力する。
このようなエネルギーマネジメントシステムによって、経年劣化や周囲の気温や湿度によって常に変化する各電力変換器(13a,13b,14a,14b,15a,15b)の変換効率を反映した各分散型電源13,14,15の制御計画値を作成することができる。
Next, the control plan creation unit 24 uses the conversion efficiencies of the power converters (13a, 13b, 14a, 14b, 15a, 15b) calculated by the conversion efficiency calculation unit 23 to use the distributed power sources 13, 14, 15 control plan values are calculated and output from the control command unit 25.
With such an energy management system, each of the distributed power sources 13, 14 reflecting the conversion efficiency of each power converter (13a, 13b, 14a, 14b, 15a, 15b) constantly changing according to aging, ambient temperature and humidity. , 15 control plan values can be created.

実施の形態3.
上述の実施の形態1と実施の形態2では、基本的に各種負荷設備を動かすために分散型電源をどのように制御すればよいかを算出しているが、発生した電力を売電することを考慮した分散型電源の制御計画値を算出することができない。一方、近年の再生可能エネルギー固定価格買取制度などのように電力需要家施設10で発生した電力を売電することができるように電力需給システムが構築されてきており、実施の形態3においては、このような電力の売電も考慮した制御計画値を算出することによって、より効率的な電力の需給を行うことが可能となる。
Embodiment 3 FIG.
In the first embodiment and the second embodiment described above, it is basically calculated how to control the distributed power source in order to move various load facilities, but the generated power is sold. It is not possible to calculate the control plan value of the distributed power source in consideration of the above. On the other hand, a power supply and demand system has been constructed so that the power generated at the power consumer facility 10 can be sold, such as a recent renewable energy feed-in tariff system, and in Embodiment 3, By calculating a control plan value that also takes into account such power sales, it is possible to more efficiently supply and demand power.

図6は本発明の実施の形態3に係る電力管理装置20を含むエネルギーマネジメントシステム全体の構成を示す概略図である。ここで、図1または図4と同一または相当する構成には同じ符号を付し、その説明を省略する。
図において、PV13、WT14などの分散型電源から電力変換器13c、4cを介して電力会社1への売電が可能となるように構成している。
なお、実施の形態3に係る電力管理装置20の構成は、図2に示すものと同等であるが、電力変換器(13a,13b,13c,14a,14b,14c,15a,15,)の変換効率を基づいて分散型電源13,14,15の制御計画を作成する制御計画作成部24においては、実施の形態1および実施の形態2と異なり、解く最適化問題の目的関数と制約条件が式(9)から式(16)で表されるようになる。
FIG. 6 is a schematic diagram showing the overall configuration of the energy management system including the power management apparatus 20 according to Embodiment 3 of the present invention. Here, the same or corresponding components as those in FIG. 1 or FIG.
In the figure, power is sold to a power company 1 from distributed power sources such as PV13 and WT14 via power converters 13c and 4c.
The configuration of the power management apparatus 20 according to the third embodiment is equivalent to that shown in FIG. 2, but the conversion of the power converters (13a, 13b, 13c, 14a, 14b, 14c, 15a, 15) is performed. Unlike the first and second embodiments, the control plan creation unit 24 that creates control plans for the distributed power sources 13, 14, and 15 based on efficiency differs from the first and second embodiments in that the objective function and constraint conditions of the optimization problem to be solved are expressed by equations. From (9) to Expression (16).

まず、実施の形態3における最適化問題の目的関数を式(9)に示す。   First, the objective function of the optimization problem in the third embodiment is shown in Expression (9).

Figure 2018121486
Figure 2018121486

ここで、C_BUYは、時刻tの電力購入コスト、C_SELLは、時刻tの電力売電コスト、E_BUYは、時刻tの電力購入量、E_SELLは、時刻tの電力売電量、E_BUY_COSTは、時刻tの電力購入単価、E_SELL_COSTは、時刻tの電力売電単価を表す。
なお、電力購入単価および電力売電単価については、電力会社1との契約によって決まる予め設定された値であり、設備情報取得部22によって取得する。また、電力購入コストを最小化する際に合計値を算出期間(T)は、電力需要家によって決められるものであり、例えば、1日の24時間先までの計画を30分刻みなどが設定値として考えられる。
Here, C_BUY is the power purchase cost at time t, C_SELL is the power purchase cost at time t, E_BUY is the power purchase amount at time t, E_SELL is the power purchase amount at time t, and E_BUY_COST is the power purchase cost at time t. The power purchase unit price, E_SELL_COST, represents the power sales unit price at time t.
The power purchase unit price and the power sale unit price are preset values determined by a contract with the power company 1 and are acquired by the facility information acquisition unit 22. In addition, the total value calculation period (T) when minimizing the power purchase cost is determined by the power consumer. For example, the plan for 24 hours a day is set in increments of 30 minutes. Is considered.

次に、実施の形態3における需給バランス制約の制約条件を式(10)に示す。   Next, the constraint condition of the supply and demand balance constraint in Embodiment 3 is shown in Expression (10).

Figure 2018121486
Figure 2018121486

ここで、EDは、時刻tの電力需要予測値、E_BUYは、時刻tの購入電力量、E_PVcomは、時刻tのPV13の発電予測値の内、負荷設備11で消費される電力の変換器13aを通った後の電力量、E_WTcomは、時刻tのWT14の発電予測値の内、負荷設備11で消費される電力の変換器14aを通った後の電力量、E_BATdischargeは、時刻tの蓄電池15から負荷設備11に供給される電力の変換器15aを通った後の放電電力量、E_BAT_INPUTchargeは、時刻tの電力会社1から供給される電力購入量の内、蓄電池15に充電する電力の変換器15bを通る前の充電電力量を表す。   Here, ED is the predicted power demand value at time t, E_BUY is the amount of purchased power at time t, and E_PVcom is the power converter 13a of the power consumed by the load facility 11 among the predicted power generation value of PV 13 at time t. E_WTcom is the amount of power after passing through the converter 14a of power consumed by the load facility 11 among the predicted power generation value of the WT 14 at time t, E_WTcom is the storage battery 15 at time t. E_BAT_INPUTcharge is a power converter for charging the storage battery 15 out of the amount of power purchased from the power company 1 at time t. It represents the amount of charge power before passing through 15b.

次に、実施の形態3における売電バランス制約の制約条件を式(11)に示す。   Next, the constraint condition of the power sale balance constraint in the third embodiment is shown in Expression (11).

Figure 2018121486
Figure 2018121486

ここで、E_PVsellは、時刻tのPV13の発電量の内、電力会社1に売電する電力の変換器13cを通った後の電力量、E_WTsellは、時刻tのWT14の発電量の内、電力会社1に売電する電力の変換器14cを通った後の電力量を表す。   Here, E_PVcell is the amount of electric power after passing through the converter 13c of the electric power sold to the electric power company 1 among the electric power generation amount of the PV 13 at time t, and E_WTcell is the electric power amount of the electric power generation amount of the WT 14 at time t. It represents the amount of power after passing through the power converter 14c for selling power to the company 1.

次に、実施の形態3における買い電、売り電の制約条件を式(12)に示す。   Next, the constraint conditions for buying and selling power in the third embodiment are shown in Expression (12).

Figure 2018121486
Figure 2018121486

ここで、E_BUY_MINは、電力購入量の購入可能最小値、E_BUY_MAXは、電力購入量の購入可能最大値、E_SELL_MINは、電力売電量の売電可能最小値、E_SELL_MAXは、電力売電量の売電可能最大値を表す。なお、最小値、最大値は予め決められた値である。
次に、実施の形態3における蓄電池15の制約条件を式(13)に示す。
Here, E_BUY_MIN is the minimum purchaseable value of the power purchase amount, E_BUY_MAX is the maximum purchaseable value of the power purchase amount, E_SELL_MIN is the minimum sellable value of the power sale amount, and E_SELL_MAX is the saleable amount of the power sale amount Represents the maximum value. The minimum value and the maximum value are predetermined values.
Next, the constraint condition of the storage battery 15 in the third embodiment is shown in Expression (13).

Figure 2018121486
Figure 2018121486

ここで、SOCは、時刻tの蓄電池15の蓄電量、EFFは、蓄電池15の充放電効率、SOC_MINは、蓄電池15の使用可能な蓄電量の最小値、SOC_MAXは、蓄電池15の使用可能な蓄電量の最大値、E_BAT_MINは、蓄電池15の充放電電力量の最小値、E_BAT_MATは、蓄電池15の充放電電力量の最大値を表す。また、E_BATchargeは、時刻tに電力会社1から供給される電力購入量の内、蓄電池15に充電する電力の変換器15bを通った後の充電電力量、E_BAT_INPUTdischargeは、時刻tに蓄電池15から負荷設備11に供給される電力の変換器15aを通った後の放電電力量、E_BATcharge_pvは、時刻tのPV13が発電する発電予測値の内、蓄電池15に充電する電力の変換器13bを通った後の充電電力量、E_BATcharge_WTは、WT14が発電する発電予測値の内、蓄電池15に充電する電力の変換器14bを通った後の充電電力量を表す。なお、充放電効率、蓄電量の最小値・最大値、充放電電力量の最小値・最大値は予め設定された値であり、設備情報取得部22によって取得する。 Here, SOC is the storage amount of the storage battery 15 at time t, EFF is the charge / discharge efficiency of the storage battery 15, SOC_MIN is the minimum value of the storage amount that can be used by the storage battery 15, and SOC_MAX is the storage amount that can be used by the storage battery 15. E_BAT_MIN represents the minimum value of the charge / discharge power amount of the storage battery 15, and E_BAT_MAT represents the maximum value of the charge / discharge power amount of the storage battery 15. E_BATcharge is the amount of power purchased after passing through the power converter 15b for charging the storage battery 15 among the amount of power purchased from the power company 1 at time t, and E_BAT_INPUTdischarge is the load from the storage battery 15 at time t. The amount of discharge power E_BATcharge_pv after passing through the power converter 15a supplied to the facility 11 is the power generation predicted value generated by the PV 13 at time t after passing through the power converter 13b charging the storage battery 15. E_BATcharge_WT represents the amount of charging power after passing through the power converter 14b for charging the storage battery 15 among the predicted power generation values generated by the WT 14. Note that the charging / discharging efficiency, the minimum / maximum value of the charged amount, and the minimum / maximum value of the charging / discharging power amount are preset values, and are acquired by the facility information acquisition unit 22.

次に、実施の形態3のPVの発電量の制約条件を式(14)に示す。   Next, the constraint condition of the PV power generation amount according to the third embodiment is shown in Expression (14).

Figure 2018121486
Figure 2018121486

ここで、E_PVは、時刻tにPV13が発電する発電量の予測値、E_PV_INPUTcomは、時刻tにPV13が発電する発電予測値の内、負荷設備11に供給される電力の変換器13aを通る前の電力量、E_PV_INPUTchargeは,時刻tにPV13が発電する発電予測値の内、蓄電池11への充電に供給される電力の変換器13bを通る前の電力量、E_PV_INPUTsellは、時刻tにPV13が発電する発電予測値の内、電力会社1に売電する電力の変換器13cを通る前の電力量を表す。
次に、実施の形態3におけるWT14の発電量の制約条件を式(15)に示す。
Here, E_PV is a predicted value of the power generation amount generated by the PV 13 at time t, and E_PV_INPUTcom is a predicted power generation value generated by the PV 13 at time t before passing through the converter 13a of the power supplied to the load facility 11. E_PV_INPUTcharge is the predicted power generation value generated by the PV 13 at time t, the power amount before passing through the converter 13b of the power supplied for charging the storage battery 11, and E_PV_INPUT cell is generated by the PV 13 at time t. Of the predicted power generation value, the amount of power before passing through the converter 13c for power sold to the power company 1 is represented.
Next, the constraint condition of the power generation amount of the WT 14 in the third embodiment is shown in Expression (15).

Figure 2018121486
Figure 2018121486

ここで、E_WTは、時刻tに14が発電する発電量の予測値、E_WT_INPUTcomは、時刻tにWT14が発電する発電予測値の内、負荷設備11に供給される電力の変換器14aを通る前の電力量、E_WT_INPUTchargeは,時刻tにWT14が発電する発電予測値の内、蓄電池11への充電に供給される電力の変換器14bを通る前の電力量、E_WT_INPUTsellは、時刻tにWT14が発電する発電予測値の内、売電する電力の変換器14cを通る前の電力量を表す。   Here, E_WT is a predicted value of the amount of power generated by 14 at time t, and E_WT_INPUTcom is a predicted value of power generated by WT 14 at time t before passing through the converter 14a of power supplied to the load facility 11. E_WT_INPUTcharge is the power generation predicted value generated by the WT 14 at time t, and the amount of power before passing through the converter 14b for power supplied to the storage battery 11, and E_WT_INPUT cell is generated by the WT 14 at time t. This represents the amount of power before passing through the converter 14c for the power to be sold, among the predicted power generation values to be sold.

次に、実施の形態3における変換器の制約条件を式(16)に示す。   Next, the constraint condition of the converter in Embodiment 3 is shown in Expression (16).

Figure 2018121486
Figure 2018121486

ここで、EFF_PVDC/AC_comは、PV13の電力が通るDC/AC変換器13aの変換効率、EFF_WTDC/AC_comは、WT14の電力が通るDC/AC変換器14aの変換効率、EFF_BATAC/DCは、蓄電池15の充電電力が通るAC/DC変換器15bの変換効率、EFF_BATDC/ACは、蓄電池15の放電電力が通るDC/AC変換器15aの変換効率、蓄電池15に充電される時刻tのPV13の電力量、EFF_PVDC/DCは、PV13の電力が通るDC/DC変換器13cの変換効率、EFF_WTDC/DCは、WT14の電力が通るDC/DC変換器14bの変換効率、EFF_PVDC/AC_sellは、PV13の売電電力が通るDC/AC変換器13cの変換効率、EFF_WTDC/AC_sellは、WT14の売電電力が通るDC/AC変換器14cの変換効率を表す。なお、これらの変換効率については、予め設定された値であり、変換効率取得部23によって取得する。
以上説明したように、実施の形態3によれば、電力の売電も考慮した制御計画値を算出することが可能となり、売電電力においても電力変換器の変換効率を考慮した制御を行うことができ、より効果的なエネルギーマネジメントシステムを得ることができる。
Here, EFF_PV DC / AC_com is the conversion efficiency of the DC / AC converter 13a through which the power of PV13 passes, EFF_WT DC / AC_com is the conversion efficiency of the DC / AC converter 14a through which the power of WT14 passes, and EFF_BAT AC / DC is The conversion efficiency of the AC / DC converter 15b through which the charging power of the storage battery 15 passes, EFF_BAT DC / AC is the conversion efficiency of the DC / AC converter 15a through which the discharging power of the storage battery 15 passes, and the time t when the storage battery 15 is charged The power amount of PV13, EFF_PV DC / DC is the conversion efficiency of DC / DC converter 13c through which the power of PV13 passes, EFF_WT DC / DC is the conversion efficiency of DC / DC converter 14b through which the power of WT14 passes, EFF_PV DC / DC AC_cell is the conversion efficiency of the DC / AC converter 13c through which the selling power of the PV 13 passes, EFF_WT DC / AC_cell represents the conversion efficiency of the DC / AC converter 14c through which the electric power sold by the WT 14 passes. Note that these conversion efficiencies are values set in advance, and are acquired by the conversion efficiency acquisition unit 23.
As described above, according to the third embodiment, it is possible to calculate a control plan value that also considers the power sale, and to perform the control considering the conversion efficiency of the power converter in the power sale power as well. Can obtain a more effective energy management system.

なお、上述の実施例においては、分散型電源として太陽光発電装置、風力発電装置、蓄電池を用いたシステムについて説明したが、太陽光発電装置または風力発電装置と蓄電池とによって構成してもよく、地熱発電装置などの他の発電装置を併用してもよい。
また、この発明は、上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜、変更、省略することが可能である。
In the above-described embodiment, a solar power generation device, a wind power generation device, and a system using a storage battery as a distributed power source have been described. However, the system may be configured by a solar power generation device or a wind power generation device and a storage battery. Other power generation devices such as a geothermal power generation device may be used in combination.
Moreover, this invention is not limited to the above-mentioned embodiment, It can change and abbreviate | omit suitably in the range which does not deviate from the summary.

1:電力会社、 10:電力需要家施設、 11:負荷設備、 13:太陽光発電装置、
14:風力発電装置、15:蓄電池、
13a,13b,14a,14b,15a,15b:電力変換器、
16,17,18,19:計測器、 20:電力管理装置、 21:データベース、
22:設備情報取得部、 23:変換効率取得部、 24:制御計画作成部、
25:制御指令部、 26:実績値取得部
1: Electric power company, 10: Electric power customer facility, 11: Load facility, 13: Solar power generation device,
14: Wind power generator, 15: Storage battery,
13a, 13b, 14a, 14b, 15a, 15b: power converter,
16, 17, 18, 19: measuring instrument, 20: power management device, 21: database,
22: Facility information acquisition unit, 23: Conversion efficiency acquisition unit, 24: Control plan creation unit,
25: Control command part, 26: Actual value acquisition part

Claims (4)

電力会社から電力が供給される電力需要家施設に設けられたものであって、複数の負荷設備と、これらの負荷設備に電力を供給する分散型電源と、前記各負荷設備および前記分散型電源の間にそれぞれ設けられた複数の電力変換器と、前記各負荷設備、前記分散型電源および前記複数の電力変換器の動作を管理する電力管理装置とを備えたエネルギーマネジメントシステムにおいて、
前記電力管理装置は、前記分散型電源の設備情報および状況情報を取得する設備情報取得部と、前記電力変換器の変換効率の情報を取得する変換効率取得部と、前記分散型電源の設備情報および状況情報、前記電力変換器の変換効率に基づいて前記分散型電源の制御計画を作成する制御計画作成部と、この制御計画作成部により作成した制御計画値を基に制御指令値を算出する制御指令部とを備えたことを特徴とするエネルギーマネジメントシステム。
Provided in a power customer facility to which power is supplied from an electric power company, a plurality of load facilities, a distributed power source that supplies power to these load facilities, each of the load facilities, and the distributed power source In an energy management system comprising a plurality of power converters respectively provided between and a power management device that manages the operation of each load facility, the distributed power source and the plurality of power converters,
The power management device includes a facility information acquisition unit that acquires facility information and status information of the distributed power source, a conversion efficiency acquisition unit that acquires information of conversion efficiency of the power converter, and facility information of the distributed power source And a control plan creation unit for creating a control plan for the distributed power source based on the status information and the conversion efficiency of the power converter, and a control command value is calculated based on the control plan value created by the control plan creation unit An energy management system comprising a control command unit.
請求項1記載のエネルギーマネジメントシステムにおいて、前記分散型電源は、太陽光発電設備、風力発電設備および蓄電池であることを特徴とするエネルギーマネジメントシステム。   The energy management system according to claim 1, wherein the distributed power source is a solar power generation facility, a wind power generation facility, and a storage battery. 請求項2記載のエネルギーマネジメントシステムにおいて、前記分散型電源による電力を電力会社へ売電するように構成し、その際に、前記電力変換器の変換効率も考慮して制御計画を作成することを特徴とするエネルギーマネジメントシステム。   3. The energy management system according to claim 2, wherein the power generated by the distributed power source is configured to be sold to an electric power company, and at that time, a control plan is created in consideration of conversion efficiency of the power converter. A featured energy management system. 電力会社から電力が供給される電力需要家施設に設けられたものであって、複数の負荷設備と、これらの負荷設備に電力を供給する分散型電源と、前記各負荷設備および前記分散型電源の間に設けられた複数の電力変換器と、前記各負荷設備、前記分散型電源および前記複数の電力変換器の動作を管理する電力管理装置とを備えたエネルギーマネジメントシステムにおいて、
さらに、前記各電力変換器を通る電力の変換前、変換後の電力量をそれぞれ計測する複数の計測器を備え、
前記電力管理装置は、前記各計測器が計測した各設備の実績値を取得する実績値取得部と、前記分散型電源の設備情報および状況情報を取得する設備情報取得部と、前記実績値取得部が取得した各設備の計測値に基づいて前記電力変換器の変換効率を算出する変換効率算出部と、前記分散型電源の設備情報および状況情報、前記電力変換器の変換効率に基づいて分散型電源の制御計画を作成する制御計画作成部と、作成した制御計画値を基に制御指令値を算出する制御指令部とを備えたことを特徴とするエネルギーマネジメントシステム。
Provided in a power customer facility to which power is supplied from an electric power company, a plurality of load facilities, a distributed power source that supplies power to these load facilities, each of the load facilities, and the distributed power source In an energy management system comprising a plurality of power converters provided between and a power management device that manages the operation of each load facility, the distributed power source, and the plurality of power converters,
Furthermore, before the conversion of the power passing through each power converter, comprising a plurality of measuring instruments for measuring the amount of power after the conversion,
The power management apparatus includes an actual value acquisition unit that acquires an actual value of each facility measured by each measuring instrument, an equipment information acquisition unit that acquires facility information and status information of the distributed power source, and the actual value acquisition A conversion efficiency calculation unit that calculates the conversion efficiency of the power converter based on the measured value of each facility acquired by the unit, the facility information and status information of the distributed power source, and the dispersion based on the conversion efficiency of the power converter An energy management system comprising: a control plan creation unit that creates a control plan for a type power supply; and a control command unit that calculates a control command value based on the created control plan value.
JP2017012748A 2017-01-27 2017-01-27 Energy management system Pending JP2018121486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017012748A JP2018121486A (en) 2017-01-27 2017-01-27 Energy management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012748A JP2018121486A (en) 2017-01-27 2017-01-27 Energy management system

Publications (1)

Publication Number Publication Date
JP2018121486A true JP2018121486A (en) 2018-08-02

Family

ID=63044111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012748A Pending JP2018121486A (en) 2017-01-27 2017-01-27 Energy management system

Country Status (1)

Country Link
JP (1) JP2018121486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6849154B1 (en) * 2020-01-27 2021-03-24 三菱電機株式会社 Power supply management device and power supply management method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244841A (en) * 2002-02-18 2003-08-29 Hitachi Ltd Method and system for providing information of hybrid system using secondary battery for power storage
JP2008141918A (en) * 2006-12-05 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> Device, method, and program for evaluating photovoltaic power generation system
JP2014217185A (en) * 2013-04-25 2014-11-17 京セラ株式会社 Power control unit, power control method, and power control system
JP2016063629A (en) * 2014-09-18 2016-04-25 積水化学工業株式会社 Storage battery control device, storage battery control method and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244841A (en) * 2002-02-18 2003-08-29 Hitachi Ltd Method and system for providing information of hybrid system using secondary battery for power storage
JP2008141918A (en) * 2006-12-05 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> Device, method, and program for evaluating photovoltaic power generation system
JP2014217185A (en) * 2013-04-25 2014-11-17 京セラ株式会社 Power control unit, power control method, and power control system
JP2016063629A (en) * 2014-09-18 2016-04-25 積水化学工業株式会社 Storage battery control device, storage battery control method and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6849154B1 (en) * 2020-01-27 2021-03-24 三菱電機株式会社 Power supply management device and power supply management method
WO2021152667A1 (en) * 2020-01-27 2021-08-05 三菱電機株式会社 Power supply management apparatus and power supply management method

Similar Documents

Publication Publication Date Title
JP5677975B2 (en) Control device, power storage system, control method, and computer program
Hambridge et al. Solid State Transformer (SST) as an energy router: Economic dispatch based energy routing strategy
JP5095495B2 (en) Electric power system and control method thereof
WO2016113925A1 (en) Electrical power management device
US10298056B2 (en) Power control system, power control method, and recording medium
WO2011118607A1 (en) Power supply device, power storage device, and power control device
JP6543145B2 (en) Peak power prediction device, power management system and peak power prediction method
JP6069738B2 (en) Charge / discharge control system, charge / discharge control method, and charge / discharge control program
WO2020153443A1 (en) Energy management system and method for controlling same
JP5793572B2 (en) Peak cut control device
JP2022050126A (en) Distributed energy resource management device, distributed energy resource management method, and distributed energy resource management program
JP6230055B2 (en) Electric power demand prediction apparatus and electric power demand prediction method
JP2003244841A (en) Method and system for providing information of hybrid system using secondary battery for power storage
JP2017220354A (en) Operation planning device, fuel cell device, operation planning method, and operation planning program
JP2020129962A (en) Power distribution control system, power distribution control method
JP2021184682A (en) Storage battery management device, storage battery management method, and storage battery management program
JP2021141778A (en) Planning device, planning method, and computer program
JP7032248B2 (en) Power management equipment and programs
Chen et al. Transshipment model-based linear programming formulation for targeting hybrid power systems with power loss considerations
JP6698371B2 (en) Electric charge management device, electric charge management method and program
JP2018121486A (en) Energy management system
JP6280736B2 (en) Energy management system and energy management method
JP2020198696A (en) Power supply system and power management method
JP2020089200A (en) Device and method for charge/discharge control
WO2016158027A1 (en) Management device, management system, control method for management device, and control program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210202