JP2020198696A - Power supply system and power management method - Google Patents

Power supply system and power management method Download PDF

Info

Publication number
JP2020198696A
JP2020198696A JP2019103264A JP2019103264A JP2020198696A JP 2020198696 A JP2020198696 A JP 2020198696A JP 2019103264 A JP2019103264 A JP 2019103264A JP 2019103264 A JP2019103264 A JP 2019103264A JP 2020198696 A JP2020198696 A JP 2020198696A
Authority
JP
Japan
Prior art keywords
power
power supply
charge
electricity
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019103264A
Other languages
Japanese (ja)
Other versions
JP7259558B2 (en
Inventor
彰彦 佐野
Akihiko Sano
彰彦 佐野
齋藤 宏
Hiroshi Saito
宏 齋藤
公平 冨田
Kohei Tomita
公平 冨田
船本 昭宏
Akihiro Funamoto
昭宏 船本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2019103264A priority Critical patent/JP7259558B2/en
Publication of JP2020198696A publication Critical patent/JP2020198696A/en
Priority to JP2021040362A priority patent/JP7297004B2/en
Application granted granted Critical
Publication of JP7259558B2 publication Critical patent/JP7259558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Abstract

To provide a technique capable of returning benefits to both of an owner of a complex facility and a plurality of power supply destinations in the complex facility.SOLUTION: A power supply system has: a distributed power supply; a power distribution device distributing and supplying, to a plurality of power supply destinations, power supplied from a system and power supplied from the distributed power supply; power detection means for detecting power supplied to the plurality of power supply destinations through the power distribution device; system power detection means for detecting power transferred between the system and the power distribution device; a control device controlling power concerning charge/discharge or power generation of the distributed power supply based on a power value detected by the power detection means; and a management device calculating electricity charge charged to the plurality of power supply destinations and a reduction fee to an owner of a complex facility based on the power value detected by the power detection means and the system power detection means.SELECTED DRAWING: Figure 1

Description

本発明は、複数の電力供給先を含む複合施設に電力を供給する電力供給システム及び、当該電力供給システムを用いた電力管理方法に関する。 The present invention relates to a power supply system that supplies power to a complex facility including a plurality of power supply destinations, and a power management method using the power supply system.

近年、蓄電池や太陽電池等の分散型電源を備え、商用電力系統とも連系する電力供給システムが普及している。その中で、複数の電力供給先を含む複合施設に電力を供給する電力供給システムとして、高圧一括受電契約に必要な電力未満の電力で低圧一括受電契約を行う複合需要家施設における電力供給システム(90)であって、系統(80)から電力の供給を受ける一括受電盤(2)と、複合需要家施設による消費電力量を測定する上位メータ装置(1)と、一括受電盤(2)で受電された電力を複合需要家施設内の複数の需要家施設に供給する分電盤(4)と、複数の需要家施設に電力を供給可能な分散型電源(3)と、を有するものが公知である。 In recent years, a power supply system equipped with a distributed power source such as a storage battery or a solar cell and connected to a commercial power system has become widespread. Among them, as a power supply system that supplies power to a complex facility including multiple power supply destinations, a power supply system in a complex consumer facility that makes a low-voltage collective power reception contract with less power than the power required for the high-voltage collective power reception contract ( 90), the collective power receiving board (2) that receives power from the grid (80), the high-end meter device (1) that measures the power consumption by the complex consumer facility, and the collective power receiving board (2). Those having a distribution board (4) that supplies the received electric power to a plurality of consumer facilities in the complex consumer facility and a distributed power source (3) that can supply electric power to a plurality of consumer facilities. It is known.

この電力供給システムは、一括受電を行うときに電気料金の低減を実現するためのものである。しかしながら、上記のシステムにおいては、電気料金の低減は、必ずしも、複合施設の所有者と、複合施設における複数の電力供給先の両方に分散型電源による自家発電の利益を供与できるものではなかった。 This power supply system is for realizing a reduction in electricity charges when collectively receiving power. However, in the above system, the reduction of electricity charges has not always been able to provide both the owner of the complex and the plurality of power supply destinations in the complex with the benefit of private power generation by distributed generation.

特開2017−17779号公報JP-A-2017-17779 特開2013−143815号公報Japanese Unexamined Patent Publication No. 2013-143815

本発明は、上記のような実情に鑑みてなされたものであり、複数の電力供給先を含む複合施設に電力を供給する電力供給システム及び、電力管理方法において、複合施設の所有者と、複合施設における複数の電力供給先の両方に分散型電源による自家発電の利益を供与できる技術を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in a power supply system that supplies power to a complex facility including a plurality of power supply destinations and a power management method, the present invention is combined with the owner of the complex facility. The purpose is to provide technology that can provide the benefits of private power generation from distributed generation to both of the multiple power supply destinations in the facility.

前記の目的を達成するために、本発明は以下の構成を採用する。すなわち、複数の電力供給先を含む複合施設に電力を供給する電力供給システムであって、
前記複数の電力供給先に電力を供給可能な分散型電源と、
系統から供給された電力および/または前記分散型電源から供給された電力を前記複数の電力供給先の各々に分散して供給する分電装置と、
前記分電装置を介して前記複数の電力供給先の各々に供給される電力を検知する電力検知手段と、
前記系統と前記分電装置との間で授受される電力を検知する系統電力検知手段と、
前記電力検知手段および前記系統電力検知手段によって検知される電力値に基づいて、前記分散型電源の充放電または発電に係る電力を制御する制御装置と、
前記電力検知手段および前記系統電力検知手段によって検知される電力値に基づいて、前記複数の電力供給先の各々に請求する電気料金と、前記複合施設の所有者に対する還元料金とを算出する管理装置と、
を備えること特徴とする、電力供給システムである。
In order to achieve the above object, the present invention adopts the following configuration. That is, it is a power supply system that supplies power to a complex facility including a plurality of power supply destinations.
A distributed power source that can supply power to the plurality of power supply destinations,
A distribution device that distributes and supplies electric power supplied from the grid and / or electric power supplied from the distributed power source to each of the plurality of power supply destinations.
A power detecting means for detecting power supplied to each of the plurality of power supply destinations via the distribution device, and
A system power detecting means for detecting power transmitted and received between the system and the distribution device, and
A control device that controls power related to charging / discharging or power generation of the distributed power source based on the power value detected by the power detecting means and the system power detecting means.
A management device that calculates an electricity charge charged to each of the plurality of electric power supply destinations and a return charge to the owner of the complex facility based on the electric power value detected by the electric power detecting means and the grid electric power detecting means. When,
It is a power supply system characterized by being equipped with.

これによれば、複数の電力供給先の各々に請求する電気料金を低廉に設定でき、複合施設の所有者に対しても還元料金を還元できるので、分散型電源による自家発電(または給電)のメリットを、複数の電力供給先と複合施設の所有者の両方に供与することが可能である。 According to this, the electricity charges charged to each of the multiple power supply destinations can be set at a low price, and the return charges can be returned to the owners of the complex, so that the private power generation (or power supply) by the distributed power source can be used. Benefits can be provided to both multiple power sources and complex owners.

また、本発明においては、前記管理装置は、前記検知手段により検知された前記複数の電力供給先の各々に供給した電力の量に基づいて、前記複数の電力供給先に請求する電気料金を算出する電気料金算出部を、備えるようにしてもよい。これによれば、分散型電源により供給される電力の電気料金を自動的に算出することができる。 Further, in the present invention, the management device calculates an electricity charge to be charged to the plurality of power supply destinations based on the amount of power supplied to each of the plurality of power supply destinations detected by the detection means. An electricity charge calculation unit may be provided. According to this, the electricity charge of the electric power supplied by the distributed power source can be automatically calculated.

また、本発明においては、前記電気料金算出部は、前記複数の電力供給先に系統から直接供給される電力に対して定められる電力の単価以下に設定された第一電力単価と、前記検知手段により検知された前記複数の電力供給先の各々に供給した電力の量と、に基づいて、前記複数の電力供給先に請求する電気料金を算出するようにしてもよい。これによれば、前記複数の電力供給先に系統から直接供給される電力に対して定められる電力の単価以下に設定された第一電力単価を用いて、分散型電源により供給される電力の電気料金を算出するので、より確実に、複数の電力供給先の各々に請求する電気料金を低廉に設定することができる。 Further, in the present invention, the electricity charge calculation unit has a first power unit price set to be equal to or lower than a power unit price set for power directly supplied from the grid to the plurality of power supply destinations, and the detection means. The electricity charge to be charged to the plurality of power supply destinations may be calculated based on the amount of power supplied to each of the plurality of power supply destinations detected by. According to this, the electricity of the power supplied by the distributed power source is used by using the first power unit price set to be equal to or lower than the unit price of the power determined for the power directly supplied from the grid to the plurality of power supply destinations. Since the charge is calculated, it is possible to more reliably set the electricity charge to be charged to each of the plurality of power supply destinations at a low price.

また、本発明においては、前記電気料金算出部は、前記電力検知手段により検知された前記複数の電力供給先の各々に供給した電力の量と、前記第一電力単価との乗算によって前記電気料金を算出するようにしてもよい。これによれば、分散型電源により供給される電力の電気料金を、前記複数の電力供給先に系統から直接供給される電力に対して定められる電力の単価以下に設定された第一電力単価に、実際に複数の電力供給先に供給した電力の量に乗算することで算出するので、電気料金を、より確実に、電力の供給量に応じた低廉な料金に設定することができる。 Further, in the present invention, the electricity charge calculation unit multiplies the amount of power supplied to each of the plurality of power supply destinations detected by the power detection means by the first power unit price to obtain the electricity charge. May be calculated. According to this, the electricity charge of the electric power supplied by the distributed power source is set to the first electric power unit price set to be equal to or less than the electric power unit price set for the electric power directly supplied from the grid to the plurality of electric power supply destinations. Since it is calculated by multiplying the amount of electricity actually supplied to a plurality of power supply destinations, the electricity charge can be more reliably set to a low charge according to the amount of electricity supplied.

また、本発明においては、前記管理装置は、前記電気料金と、系統から供給される電力の量と前記買電単価とから算出される電力調達料金と、に基づいて、前記還元料金を算出する還元料金算出部を、さらに備えるようにしてもよい。これによれば、管理装置の還元料金算出部によって、複数の電力供給先からの電気料金による収入と、系統からの電力調達料金と、に基づいて、設備所有者への還元料金を算出することができるので、より精度よく、還元料金を算出することが可能である。 Further, in the present invention, the management device calculates the return charge based on the electricity charge, the power procurement charge calculated from the amount of power supplied from the grid and the power purchase unit price. A return charge calculation unit may be further provided. According to this, the return charge calculation unit of the management device calculates the return charge to the equipment owner based on the income from the electricity charges from multiple power supply destinations and the power procurement charge from the grid. Therefore, it is possible to calculate the return fee more accurately.

また、本発明においては、記還元料金算出部は、前記電気料金の合計値から、前記電力調達料金及び、前記管理装置による管理の費用を含めた料金として定められた所定の管理料金を減算することによって、前記還元料金を算出するようにしてもよい。これによれば、より単純な演算でより精度よく、還元料金を算出することが可能である。 Further, in the present invention, the reduction charge calculation unit subtracts a predetermined management charge determined as a charge including the power procurement charge and the management cost by the management device from the total value of the electricity charges. As a result, the return fee may be calculated. According to this, it is possible to calculate the return fee more accurately with a simpler calculation.

また、本発明においては、前記電力検知手段は、前記分電装置と前記分散型電源との間で授受される電力についても検知し、前記電力検知手段によって検知された、前記分散型電源から前記分電装置を介して前記複数の電力供給先に供給された電力の量に応じて、前記第一電力単価を変化させるようにしてもよい。これにより、例えば、分散型電源から複数の電力供給先に供給された電力が多いほど、第一電力単価を低廉に設定する等の運用が可能となる。その結果、複数の電力供給先において、分散型電源から供給された電力の比率を高めるインセンティブを生じさせることが可能となる。 Further, in the present invention, the power detecting means also detects the power transmitted and received between the distribution device and the distributed power source, and the distributed power source detected by the power detecting means. The first power unit price may be changed according to the amount of power supplied to the plurality of power supply destinations via the power distribution device. As a result, for example, the more power supplied from the distributed power source to a plurality of power supply destinations, the lower the first power unit price can be set. As a result, it is possible to generate an incentive to increase the ratio of the power supplied from the distributed power source at a plurality of power supply destinations.

また、本発明においては、前記分散型電源は、蓄電池を含むようにしてもよいし、蓄電池を含まないようにしてもよい。また、前記分散型電源は、太陽電池を含むようにしてもよい。また、風力発電機、所謂V2H(Vehicle to Home)に係る電源等
を含んでいてもよい。
Further, in the present invention, the distributed power source may include a storage battery or may not include the storage battery. Further, the distributed power source may include a solar cell. Further, a wind power generator, a power source related to a so-called V2H (Vehicle to Home), or the like may be included.

また、本発明は、複数の電力供給先を含む複合施設に電力を供給する電力供給システムによる電力管理方法であって、
前記複数の電力供給先に電力を供給可能な分散型電源と、
系統から供給された電力および/または前記分散型電源から供給された電力を前記複数の電力供給先の各々に分散して供給する分電装置と、
前記分電装置を介して前記複数の電力供給先の各々に供給される電力を検知する電力検知手段と、
前記系統と前記分電装置との間で授受される電力を検知する系統電力検知手段と、
前記電力検知手段および前記系統電力検知手段によって検知される電力値に基づいて、前記分散型電源の充放電または発電に係る電力を制御する制御装置と、
を備える電力供給システムを用い、
前記電力検知手段および前記系統電力検知手段によって検知される電力値に基づいて、前記複数の電力供給先の各々に請求する電気料金と、前記複合施設の所有者に対する還元料金とを自動的に算出し、
前記複数の電力供給先に前記電気料金を課するとともに、前記複合施設の所有者に前記還元料金を還元することを特徴とする、電力供給システムによる電力管理方法であってもよい。
Further, the present invention is a power management method by a power supply system that supplies power to a complex facility including a plurality of power supply destinations.
A distributed power source that can supply power to the plurality of power supply destinations,
A distribution device that distributes and supplies electric power supplied from the grid and / or electric power supplied from the distributed power source to each of the plurality of power supply destinations.
A power detecting means for detecting power supplied to each of the plurality of power supply destinations via the distribution device, and
A system power detecting means for detecting power transmitted and received between the system and the distribution device, and
A control device that controls power related to charging / discharging or power generation of the distributed power source based on the power value detected by the power detecting means and the system power detecting means.
Using a power supply system equipped with
Based on the power detection means and the power value detected by the system power detection means, the electricity charge charged to each of the plurality of power supply destinations and the return charge to the owner of the complex facility are automatically calculated. And
The electric power management method by the electric power supply system may be characterized in that the electric power charge is charged to the plurality of electric power supply destinations and the return charge is returned to the owner of the complex facility.

また、本発明は、前記電気料金は、前記複数の電力供給先に系統から直接供給される電力に対して定められる電力の単価以下に設定された第一電力単価と、前記検知手段により検知された前記複数の電力供給先の各々に供給した電力の量と、に基づいて、算出されることを特徴とする、上記の電力管理方法であってもよい。 Further, in the present invention, the electricity charge is detected by the first power unit price set to be equal to or lower than the power unit price set for the power directly supplied from the grid to the plurality of power supply destinations and the detection means. The above-mentioned electric power management method may be characterized in that it is calculated based on the amount of electric power supplied to each of the plurality of electric power supply destinations.

また、本発明は、前記電気料金は、前記電力検知手段により検知された前記複数の電力供給先の各々に供給した電力の量と、前記第一電力単価との乗算によって前記電気料金を算出することを特徴とする、上記の電力管理方法であってもよい。 Further, in the present invention, the electricity charge is calculated by multiplying the amount of electric power supplied to each of the plurality of electric power supply destinations detected by the electric power detecting means by the first electric power unit price. The above-mentioned power management method may be used.

また、本発明は、前記還元料金は、前記電気料金と、系統から供給される電力の量と前記買電単価とから算出される電力調達料金と、に基づいて算出されることを特徴とする、上記の電力管理方法であってもよい。 Further, the present invention is characterized in that the return charge is calculated based on the electricity charge, the power procurement charge calculated from the amount of power supplied from the grid and the power purchase unit price. , The above power management method may be used.

また、本発明は、前記還元料金は、前記電気料金の合計値から、前記電力調達料金及び、前記管理装置による管理の費用を含めた料金として定められた所定の管理料金を減算することによって、算出されることを特徴とする、上記の電力管理方法であってもよい。 Further, in the present invention, the return charge is obtained by subtracting a predetermined management charge determined as a charge including the power procurement charge and the management cost by the management device from the total value of the electricity charge. The above-mentioned power management method, which is characterized in that it is calculated, may be used.

また、本発明は、前記分散型電源から前記分電装置を介して前記複数の電力供給先に供給された電力の量に応じて、前記第一電力単価を変化させることを特徴とする、上記の電力管理方法であってもよい。 The present invention is also characterized in that the first power unit price is changed according to the amount of power supplied from the distributed power source to the plurality of power supply destinations via the distribution device. It may be the power management method of.

なお、上記構成及び処理の各々は技術的な矛盾が生じない限り互いに組み合わせて本発明を構成することができる。 It should be noted that each of the above configurations and processes can be combined with each other to construct the present invention as long as there is no technical contradiction.

本発明によれば、複数の電力供給先を含む複合施設に電力を供給する電力供給システム及び、電力管理方法において、複数の電力供給先を含む複合施設の所有者と、複数の電力供給先の両方に分散型電源による自家発電の利益を供与することができる。 According to the present invention, in a power supply system for supplying power to a complex facility including a plurality of power supply destinations and a power management method, the owner of the complex facility including the plurality of power supply destinations and a plurality of power supply destinations. Both can be provided with the benefits of private power generation from distributed generation.

本発明の実施例における電力供給システムの概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the power supply system in the Example of this invention. 本発明の実施例における管理装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the management apparatus in the Example of this invention. 本発明の実施例における電力供給方法を実施する際の役務と料金の流れを示すブロック図である。It is a block diagram which shows the flow of service and charge at the time of carrying out the power supply method in the Example of this invention. 本発明の実施例における電力供給方法の処理の流れを示すフローチャートである。It is a flowchart which shows the process flow of the power supply method in the Example of this invention. 本発明の実施例における明細項目を示すテーブルである。It is a table which shows the specification item in the Example of this invention. 本発明の実施例における明細票の内容の例を示す図である。It is a figure which shows the example of the content of the specification slip in the Example of this invention.

<適用例>
以下、図面を参照して、本発明の適用例について説明する。図1は、本発明が適用可能な電力供給システム1のブロック図を示す。図1において、各ブロックを連結する実線は電力線を示しており、各ブロックを連結する破線は通信線(無線通信も含む)を示している。本適用例に係る電力供給システム1は、集合住宅1aに対して適用されることを前提としている。この場合、集合住宅1aは、複数の電力供給先を含む複合施設の一例である。また、太陽電池、風力発電機、所謂V2H(Vehicle to Home)に係る電源や蓄電池等の分散型電源を備えることを前提としている。
<Application example>
Hereinafter, application examples of the present invention will be described with reference to the drawings. FIG. 1 shows a block diagram of a power supply system 1 to which the present invention is applicable. In FIG. 1, the solid line connecting each block indicates a power line, and the broken line connecting each block indicates a communication line (including wireless communication). The power supply system 1 according to this application example is premised on being applied to an apartment house 1a. In this case, the apartment house 1a is an example of a complex facility including a plurality of power supply destinations. Further, it is premised that a distributed power source such as a power source for a solar cell, a wind power generator, so-called V2H (Vehicle to Home), a storage battery, or the like is provided.

図1において、電力供給システム1は、系統3a、3bと電気的に繋がっている。そして、分散型電源による供給電力が、複数の電力供給先における消費電力より少なく、電力が不足する場合には、例えば系統3aから買電することが可能となっている。また、分散型電源による供給電力が、複数の電力供給先における消費電力より多い場合には、余剰の電力を例えば系統3bに余剰売電することが可能となっている。系統3a、3bは、所謂小売電気事業者であってもよいし、一般電気事業者であってもよい。また、系統3aと系統3bは異なる電気事業者であってもよいし、同一の電気事業者であってもよい。 In FIG. 1, the power supply system 1 is electrically connected to the systems 3a and 3b. When the power supplied by the distributed power source is less than the power consumption of the plurality of power supply destinations and the power is insufficient, it is possible to purchase power from, for example, the system 3a. Further, when the power supplied by the distributed power source is larger than the power consumed by the plurality of power supply destinations, it is possible to sell the surplus power to, for example, the system 3b. The systems 3a and 3b may be a so-called retail electric power company or a general electric power company. Further, the system 3a and the system 3b may be different electric power companies or may be the same electric power company.

また、電力供給システム1は、集合住宅1aの外部において、集合住宅1a内のシステムと通信可能に構成された管理装置2を有している。本適用例では、集合住宅1a内のシステムと管理装置2とは、LTEルータ6を介した無線通信が可能となっている。この管理装置2は、より具体的には、電力供給システム1の運営主体である管理会社によってクラウド上に備えられたサーバ装置であってもよい。しかしながら、管理装置2は、電力供給システム1において、集合住宅1a内のシステムとの間で情報の授受が可能とされていればよく、有線通信で繋がっていてもよく、必ずしもクラウド上に備えられたものでなくともよい。 Further, the power supply system 1 has a management device 2 configured to be able to communicate with the system in the apartment house 1a outside the apartment house 1a. In this application example, the system in the apartment house 1a and the management device 2 are capable of wireless communication via the LTE router 6. More specifically, the management device 2 may be a server device provided on the cloud by a management company that is an operating entity of the power supply system 1. However, the management device 2 may be connected by wired communication as long as the power supply system 1 can exchange information with the system in the apartment house 1a, and is not necessarily provided on the cloud. It doesn't have to be the one.

また、電力供給システム1の複数の電力供給先としては、専有部12a、12b、12c・・・が想定されている。この専有部12a、12b、12c・・・は、例えば、集合住宅1aにおける各部屋(以下、入居者ともいう。)である。より具体的には、専有部12a、12b、12c・・・における負荷は、集合住宅1aの各部屋における電気製品等(不図示)である。また、集合住宅1aには、専有部12a、12b、12c・・・の他に共用部13が存在する。この共用部13は、集合住宅1aにおける共用部分であり、共用部13の負荷としては、例えば廊下や玄関の照明13aや、停電時等に予め接続しておいた電気製品へ自動で電力を供給可能にする特定負荷分電盤13b等が考えられる。専有部12a、12b、12c・・・及び共用部13には、各々スマートメータ11a、11b、11c・・・、11dが備えられており、専有部12a、12b、12c・・・及び共用部13において消費される電力を測定可能となっている。 Further, as the plurality of power supply destinations of the power supply system 1, the exclusive units 12a, 12b, 12c ... Are assumed. The exclusive portions 12a, 12b, 12c ... Are, for example, each room (hereinafter, also referred to as a resident) in the apartment house 1a. More specifically, the load in the exclusive portions 12a, 12b, 12c ... Is an electric product or the like (not shown) in each room of the apartment house 1a. Further, in the apartment house 1a, there is a common part 13 in addition to the exclusive parts 12a, 12b, 12c ... The common area 13 is a common area in the housing complex 1a, and the load of the common area 13 is to automatically supply electric power to, for example, lighting 13a of a corridor or an entrance, or an electric product connected in advance in the event of a power failure. A specific load distribution board 13b or the like that enables this can be considered. The exclusive portions 12a, 12b, 12c ... And the common portion 13 are provided with smart meters 11a, 11b, 11c ..., 11d, respectively, and the exclusive portions 12a, 12b, 12c ... And the common portion 13 are provided. It is possible to measure the power consumed in.

また、電力供給システム1には、分散型電源として、蓄電池14と太陽電池15が備え
られている。蓄電池14には充放電電圧を昇降させる双方向のDC/DCコンバータ及び、蓄電池の充放電に係る電圧の直流/交流を変換するDC/ACコンバータを含む蓄電池パワコン16が接続されている。蓄電池パワコン16から出力される電力は、スマートメータ11eによって測定される。一方、太陽電池15には太陽電池15の発電電圧を調整するDC/DCコンバータ、山登り法によるMPPT制御を行うための制御回路、太陽電池15の出力電圧の直流/交流を変換するDC/ACコンバータを含む太陽電池パワコン17が接続されている。太陽電池パワコン17は、蓄電池パワコン16とも電気的に繋がれており、太陽電池15で発電した電力を直接、蓄電池14に充電することが可能となっている。なお、本実施例において、畜電池14と太陽電池15とが一体化した分散型電源を使用しても構わない。
Further, the power supply system 1 is provided with a storage battery 14 and a solar cell 15 as distributed power sources. A storage battery power controller 16 including a bidirectional DC / DC converter for raising and lowering the charge / discharge voltage and a DC / AC converter for converting the DC / AC of the voltage related to the charge / discharge of the storage battery is connected to the storage battery 14. The electric power output from the storage battery power conditioner 16 is measured by the smart meter 11e. On the other hand, the solar cell 15 includes a DC / DC converter that adjusts the generated voltage of the solar cell 15, a control circuit for performing MPPT control by the mountain climbing method, and a DC / AC converter that converts the DC / AC of the output voltage of the solar cell 15. The solar cell power controller 17 including the above is connected. The solar cell power conditioner 17 is also electrically connected to the storage battery power conditioner 16, and the electric power generated by the solar cell 15 can be directly charged to the storage battery 14. In this embodiment, a distributed power source in which the storage battery 14 and the solar cell 15 are integrated may be used.

このように、集合住宅1aに対して適用される電力供給システム1では、従来、集合住宅1aの所有者(設備所有者23)が、分散型電源による電力供給により、系統3aからの買電(電力調達)量を低減し、あるいは余剰売電により売電料金を取得することで利益を得ていたに過ぎず、集合住宅1aにおける入居者が直接その利益を得ることはなかった。 As described above, in the power supply system 1 applied to the housing complex 1a, the owner of the housing complex 1a (equipment owner 23) conventionally purchases power from the system 3a by supplying power by a distributed power source. The resident in the housing complex 1a did not directly obtain the profit, but only profited by reducing the amount of power (electric power procurement) or acquiring the power sale fee by selling surplus electricity.

これに対し、本適用例では、図3に示すように、管理会社21は、電気時用者から調達した電力と分散型電源による電力とを組み合わせて低廉なコストで各入居者22(すなわち、図1における専有部12a、12b・・)に電力供給を行い、各入居者22からは、電気事業者20に支払っていた一般電気料金以下の料金である電気料金を徴収する。そして、管理会社21は、設備所有者23に対して、各入居者22から徴収した電気料金の合計額から、電気事業者に支払う電気調達料金と運用手数料を差し引いた額を前記差額の一部を還元する。 On the other hand, in this application example, as shown in FIG. 3, the management company 21 combines the electric power procured from the electric power user and the electric power from the distributed power source to each resident 22 (that is, that is, at a low cost). Electric power is supplied to the exclusive units 12a, 12b ...) In FIG. 1, and each resident 22 collects an electricity charge that is less than or equal to the general electricity charge paid to the electric power company 20. Then, the management company 21 subtracts the electricity procurement fee and the management fee paid to the electric power company from the total amount of the electricity charges collected from each resident 22 to the equipment owner 23, which is a part of the difference. To reduce.

そうすることにより、入居者22、設備所有者23は各々、分散型電源による電力供給の利益を享受することが可能となる。 By doing so, the resident 22 and the equipment owner 23 can each enjoy the benefit of the power supply by the distributed power source.

<実施例1>
以下、図面を参照して、本発明の実施例についてより詳細に説明する。
<Example 1>
Hereinafter, examples of the present invention will be described in more detail with reference to the drawings.

ここで、図1の説明に戻る。図1に示す電力供給システム1において、蓄電池パワコン16と太陽電池パワコン17とは、分散型電源用の第二分電盤10に接続されている。そして、第二分電盤10は各専有部12a、12b、12c・・・及び共用部13に電力を分電する第一分電盤9に接続されている。第一分電盤9は、親スマートメータ4a、4bを介して系統3a、3bと接続されている。また、第一分電盤9は、スマートメータ11a、11b、11c・・・11d、11eを介して、各専有部12a、12b、12c・・・及び共用部13(のコンセント)に接続されている。ここで、第一分電盤9及び第二分電盤10は、本実施例において分電装置を構成する。スマートメータ11a、11b、11c・・・11d、11eは本実施例において電力検知手段に相当する。親スマートメータ4a、4bは本実施例において系統電力検知手段に相当する。 Here, the description returns to FIG. In the power supply system 1 shown in FIG. 1, the storage battery power conditioner 16 and the solar cell power conditioner 17 are connected to a second distribution board 10 for a distributed power source. The second distribution board 10 is connected to the first distribution board 9 that distributes electric power to the dedicated portions 12a, 12b, 12c ... And the common portion 13. The first distribution board 9 is connected to the systems 3a and 3b via the parent smart meters 4a and 4b. Further, the first distribution board 9 is connected to the dedicated portions 12a, 12b, 12c ... And the common portion 13 (outlet) via the smart meters 11a, 11b, 11c ... 11d, 11e. There is. Here, the first distribution board 9 and the second distribution board 10 constitute a distribution device in this embodiment. The smart meters 11a, 11b, 11c ... 11d, 11e correspond to the power detecting means in this embodiment. The parent smart meters 4a and 4b correspond to the system power detection means in this embodiment.

これにより、太陽電池15で発電された電力及び、蓄電池14から放電された電力は、各専有部12a、12b、12c・・・及び共用部13に供給可能となっている。その際、各専有部12a、12b、12c・・・及び共用部13における負荷による消費電力が、蓄電池14、太陽電池15の分散型電源による供給電力より多い場合には、系統3aから買電されることで不足分が補充される。また、各専有部12a、12b、12c・・・及び共用部13における負荷による消費電力が、蓄電池14、太陽電池15の分散型電源による供給電力より少ない場合には、余剰分を系統3bへ余剰売電すること可能になっている。 As a result, the electric power generated by the solar cell 15 and the electric power discharged from the storage battery 14 can be supplied to the dedicated portions 12a, 12b, 12c ... And the common portion 13. At that time, if the power consumption due to the load in each of the exclusive units 12a, 12b, 12c ... And the common unit 13 is larger than the power supplied by the distributed power sources of the storage battery 14 and the solar cell 15, power is purchased from the system 3a. This will make up for the shortfall. Further, when the power consumption due to the load in each of the exclusive parts 12a, 12b, 12c ... And the common part 13 is less than the power supplied by the distributed power sources of the storage battery 14 and the solar cell 15, the surplus is surplus to the system 3b. It is possible to sell electricity.

スマートメータ11a、11b、11c・・・11d、11eによって測定された専有部12a、12b、12c・・・及び、共用部13における消費電力及び、スマートメータ11eで測定された蓄電池パワコン16の入出力電力の情報は、ゲートウェイ8c、ハブ7を介して制御装置としてのVPPコントローラ5に提供される。また、太陽電池パワコン17の出力電力の情報は、ゲートウェイ8a、ハブ7を介してVPPコントローラ5に提供される。また、親スマートメータ4a、4bで測定された系統3aからの買電量、系統3bへの余剰売電量もVPPコントローラ5に提供される。また、太陽電池パワコン17におけるMPPT制御の状態、太陽電池14の端末電流値、電圧値等の情報、蓄電池14における蓄電量等の情報も、ゲートウェイ8a及び8b、ハブ7を介してVPPコントローラ5に提供される。 The power consumption of the exclusive units 12a, 12b, 12c ... Measured by the smart meters 11a, 11b, 11c ... 11d, 11e, the common portion 13, and the input / output of the storage battery power controller 16 measured by the smart meters 11e. The power information is provided to the VPP controller 5 as a control device via the gateway 8c and the hub 7. Further, the information on the output power of the solar cell power conditioner 17 is provided to the VPP controller 5 via the gateway 8a and the hub 7. Further, the amount of power purchased from the system 3a measured by the parent smart meters 4a and 4b and the amount of surplus power sold to the system 3b are also provided to the VPP controller 5. Further, information such as the state of MPPT control in the solar cell power conditioner 17, terminal current value and voltage value of the solar cell 14, and information such as the amount of electricity stored in the storage battery 14 are also transmitted to the VPP controller 5 via the gateways 8a and 8b and the hub 7. Provided.

VPPコントローラ5では、設備所有者(オーナー)による電力マネジメントの方針、電力取引市場価格と、各専有部12a、12b、12c・・・及び共用部13における消費電力、太陽電池15における発電量、蓄電池14における蓄電量等に基づいて、蓄電池パワコン16の入出力電力、系統3aからの買電量、系統3bへの余剰売電量等を制御する。 In the VPP controller 5, the power management policy by the equipment owner (owner), the power transaction market price, the power consumption in each of the exclusive parts 12a, 12b, 12c ... And the common part 13, the amount of power generated in the solar cell 15, and the storage battery The input / output power of the storage battery power controller 16, the amount of power purchased from the system 3a, the amount of surplus power sold to the system 3b, and the like are controlled based on the amount of electricity stored in 14.

同様に、スマートメータ11a、11b、11c・・・11d、11eによって測定された専有部12a、12b、12c・・・及び共用部13における消費電力及び、蓄電池パワコン16からの入出力電力の情報は、ゲートウェイ8c、ハブ7、LTEルータ6を介して管理装置2にも提供される。同様に、親スマートメータ4a、4bで測定された系統3aからの買電量、系統3bへの余剰売電量も管理装置2にも提供される。さらに、太陽電池パワコン17におけるMPPT制御の状態、太陽電池15の端末電流、電圧値等の情報や、蓄電池14における蓄電量等の情報も、ゲートウェイ8a及び8b、ハブ7、LTEルータ6を介して管理装置2に提供される。なお、実施例において、系統3aからの買電量、系統3bへの余剰売電量の情報は、スマートメータから管理装置2に提供されるのではなく、電力事業者からの請求情報より取得されるようにしてもよい。 Similarly, the information on the power consumption in the exclusive sections 12a, 12b, 12c ... And the common section 13 measured by the smart meters 11a, 11b, 11c ... 11d, 11e and the input / output power from the storage battery power conditioner 16 is , The gateway 8c, the hub 7, and the management device 2 are also provided via the LTE router 6. Similarly, the amount of power purchased from the system 3a and the amount of surplus power sold to the system 3b measured by the parent smart meters 4a and 4b are also provided to the management device 2. Further, information such as the state of MPPT control in the solar cell power conditioner 17, terminal current and voltage value of the solar cell 15, and information such as the amount of electricity stored in the storage battery 14 are also transmitted via the gateways 8a and 8b, the hub 7, and the LTE router 6. It is provided to the management device 2. In the embodiment, the information on the amount of power purchased from the system 3a and the amount of surplus power sold to the system 3b is not provided from the smart meter to the management device 2, but is acquired from the billing information from the electric power company. It may be.

図2には、管理装置2の機能の詳細を示すブロック図を示す。図2に示すように、管理装置2内は、専有部12a、12b、12c・・・及び、共用部13における消費電力の情報から、専有部12a、12b、12c・・・に課する電気料金を算出する電気料金算出部2aを有する。また、管理装置2の運営主体である管理会社が、設備所有者に還元する還元料金を演算する還元料金算出部2bを有する。さらに、系統3aからの買電量に基づいて、系統3aに係る電気事業者に支払う買電料金を算出し、あるいは電気事業者からの買電料金の請求額を記憶する買電料金算出部2cを有するようにしてもよい。なお、管理装置2のハード構成は一般的なサーバ装置と同一であることから、ここでは説明は省略する。 FIG. 2 shows a block diagram showing details of the functions of the management device 2. As shown in FIG. 2, in the management device 2, the electricity charges charged to the exclusive units 12a, 12b, 12c ... From the information on the power consumption in the exclusive units 12a, 12b, 12c ... It has an electricity charge calculation unit 2a for calculating. Further, the management company, which is the operating entity of the management device 2, has a return charge calculation unit 2b for calculating the return charge to be returned to the equipment owner. Further, based on the amount of power purchased from the grid 3a, the power purchase charge calculation unit 2c that calculates the power purchase charge to be paid to the electric power company related to the grid 3a or stores the billed amount of the power purchase charge from the electric power company is used. You may have it. Since the hardware configuration of the management device 2 is the same as that of a general server device, the description thereof is omitted here.

図3は、本発明に係る電力供給システム1の運用の形態を示すブロック図である。図中、白矢印は、役務の流れを示し、ハッチングが施された矢印は、金の流れを示している。先ず、役務の流れについて説明する。図3のブロック図における前提として、集合住宅1aのオーナーである設備所有者23は、図1における管理装置2の運営主体である管理会社21に対して、一括受電委託(電力取引制御委託)をする。すなわち、設備所有者23は、集合住宅1aの入居者22や共有部分についての電力供給の管理と電気料金の徴収を一括して管理会社21に依頼する。 FIG. 3 is a block diagram showing an operation mode of the power supply system 1 according to the present invention. In the figure, the white arrows indicate the flow of services, and the hatched arrows indicate the flow of gold. First, the flow of services will be described. As a premise in the block diagram of FIG. 3, the equipment owner 23, who is the owner of the apartment house 1a, entrusts the management company 21, which is the operating entity of the management device 2 in FIG. 1, with a collective power reception consignment (electric power transaction control consignment). To do. That is, the equipment owner 23 collectively requests the management company 21 to manage the power supply and collect the electricity charges for the resident 22 and the common area of the apartment house 1a.

管理会社21は、各入居者22に対して分散型電源による電力を用いて電力供給を行う。各入居者22は、自ら消費した電力に応じた電気料金を管理会社21に支払う。そして、分散型電源から供給された電力が入居者22における消費電力より少ない場合には、管
理会社21は電気事業者20から不足分の電力を調達する。その場合、管理会社21は、電気事業者20に対して買電に係る買電料金を支払う。すなわち、管理会社21は、各入居者22に対して、電気事業者から調達した電力と分散型電源による電力とを組み合わせて電力供給を行う。
The management company 21 supplies electric power to each resident 22 by using electric power generated by a distributed power source. Each resident 22 pays the management company 21 an electricity charge according to the electric power consumed by the resident. Then, when the electric power supplied from the distributed power source is less than the electric power consumed by the resident 22, the management company 21 procures the insufficient electric power from the electric power company 20. In that case, the management company 21 pays the electric power company 20 a power purchase fee related to the power purchase. That is, the management company 21 supplies electric power to each resident 22 by combining the electric power procured from the electric power company and the electric power generated by the distributed power source.

ここで、上述のように、入居者22は、管理会社21に対して電力供給量に応じた電気料金を支払うが、その際の電気料金単価(円/kWh)は、本実施例において第一電力単価に相当する。そして、この第一電力単価は、管理会社21により自由に定められるが、従前、入居者22が電気事業者20に支払っていた一般電気料金の単価(円/kWh)より低い額としてもよい。また、管理会社21は、設備所有者23には、自家消費還元として、入居者22から支払われる電気料金の合計(電気料金合計)から、電気事業者20から電力調達した電力についての買電料金と、管理装置2の稼働費用を含んだ、電力供給システム1の運用手数料を差し引いた額を支払う。この運用手数料は本実施例において管理料金に相当する。 Here, as described above, the resident 22 pays the management company 21 an electricity charge according to the amount of power supply, and the electricity charge unit price (yen / kWh) at that time is the first in this embodiment. It corresponds to the unit price of electricity. The first electric power unit price is freely determined by the management company 21, but may be lower than the unit price (yen / kWh) of the general electricity charge previously paid by the resident 22 to the electric power company 20. In addition, the management company 21 gives the equipment owner 23 a power purchase fee for the power procured from the electric power company 20 from the total electricity charges paid by the resident 22 (total electricity charges) as a return for self-consumption. And the amount after deducting the operation fee of the power supply system 1 including the operation cost of the management device 2 is paid. This management fee corresponds to the management fee in this embodiment.

このことで、入居者22は従来、電気事業者20の一般電気料金の単価に基づく電気料金を電気事業者20に支払っていたところ、分散型電源による電力供給に基づき、より安い電気料金を支払えば済むというメリットを享受できる。また、設備所有者23は、管理会社21に一括受電委託をすることで、自動的に自家消費還元を得ることができるというメリットを享受できる。一方、管理会社21は、電力供給システム1の運用手数料(すなわち、一括受電委託に係る手数料)を得ることができる。 As a result, the resident 22 has conventionally paid the electricity rate based on the unit price of the general electricity rate of the electricity company 20 to the electricity company 20, but pays a cheaper electricity rate based on the power supply by the distributed power source. You can enjoy the merit of doing it. In addition, the equipment owner 23 can enjoy the merit that the self-consumption return can be automatically obtained by entrusting the management company 21 to receive power collectively. On the other hand, the management company 21 can obtain an operation fee for the power supply system 1 (that is, a fee for collective power reception consignment).

図4は、本実施例における電力供給システム1を用いた電力管理方法の処理ステップを、各処理ステップの主体を明記しつつ説明したフローチャートである。以下、図4を用いて処理の流れについて説明する。本フローチャートでは、まず、集合住宅1aの各入居者22が電気を使用する(S101)。そうすると、集合住宅1aに備えられた電力供給システム1において、入居者22の消費電力が計測される(S102)。そうすると、管理装置2(クラウドシステム)の電気料金算出部2aにおいて、各入居者22の電気料金が算出される(S103)。より具体的には、各入居者22の消費電力量に電気料金単価(円/kWh)を乗じることによって算出される。そして、各入居者22に対して請求処理が行われる(S104)。それに対し、各入居者22は電気料金を支払う(S105)。 FIG. 4 is a flowchart illustrating the processing steps of the power management method using the power supply system 1 in this embodiment while clearly indicating the main body of each processing step. Hereinafter, the processing flow will be described with reference to FIG. In this flowchart, first, each resident 22 of the apartment house 1a uses electricity (S101). Then, the power consumption of the resident 22 is measured in the power supply system 1 provided in the apartment house 1a (S102). Then, the electricity charge calculation unit 2a of the management device 2 (cloud system) calculates the electricity charge of each resident 22 (S103). More specifically, it is calculated by multiplying the power consumption of each resident 22 by the unit price of electricity (yen / kWh). Then, a billing process is performed for each resident 22 (S104). On the other hand, each resident 22 pays an electricity charge (S105).

次に、管理装置2(クラウドシステム)において、収入管理が行われる(S106)。より具体的には、各入居者22からの該当月についての電気料金の支払いが完了したか否かが確認され、未収金の場合には、督促処理が行われる。また、管理装置2の買電料金算出部2cより、買電料金の情報が取得される(S107)。より具体的には、買電料金算出部2cに記憶された電気事業者20からの請求額を参照してもよいし、電気事業者20から買電した電力の量から買電料金を算出してもよい。そして、ステップS106において算出された収入額と、ステップS107において算出された買電料金とから、設備所有者23への還元額が計算される(S108)。そして、設備所有者23への支払い処理が行われる(S109)。そして、設備所有者23は自家消費還元に係る料金を受領する(S110)。 Next, income management is performed in the management device 2 (cloud system) (S106). More specifically, it is confirmed whether or not the payment of electricity charges for the corresponding month from each resident 22 has been completed, and in the case of receivables, a reminder process is performed. In addition, information on the power purchase charge is acquired from the power purchase charge calculation unit 2c of the management device 2 (S107). More specifically, the invoice amount from the electric power company 20 stored in the power purchase charge calculation unit 2c may be referred to, or the power purchase charge is calculated from the amount of power purchased from the electric power company 20. You may. Then, the amount of return to the equipment owner 23 is calculated from the income amount calculated in step S106 and the power purchase charge calculated in step S107 (S108). Then, the payment process to the equipment owner 23 is performed (S109). Then, the equipment owner 23 receives the fee related to the return of self-consumption (S110).

図5は、管理会社21において、設備所有者23に提出する明細書を作成する際のベースとなる明細リストの例である。ここで、ハッチングを施した項目は、設備所有者23への明細書に明記する項目である。まず、設備所有者23への明細書への明記事項としては、契約情報(氏名、物件名、契約No.等)、電気料金合計(円)、運用益・還元額(円)、還元率(%)が挙げられる。ここで、電気料金合計(円)は、集合住宅1aに請求する電気料金の合計額である。運用益・還元額(円)は、設備所有者23への還元額である。還元率(%)は、還元額(円)を電気料金合計(円)で除した値である。電気料金合計
(円)、運用益・還元額(円)、還元率(%)については、詳細情報として、月ごとの変化のグラフ等が掲載されるようにしてもよい。
FIG. 5 is an example of a detailed list as a base when the management company 21 prepares a statement to be submitted to the equipment owner 23. Here, the hatched items are the items specified in the specification to the equipment owner 23. First, as the items to be specified in the statement to the equipment owner 23, contract information (name, property name, contract No., etc.), total electricity charges (yen), operating profit / return amount (yen), return rate ( %). Here, the total electricity charge (yen) is the total amount of electricity charges charged to the apartment house 1a. The investment profit / return amount (yen) is the return amount to the equipment owner 23. The return rate (%) is the value obtained by dividing the return amount (yen) by the total electricity rate (yen). For the total electricity rate (yen), investment profit / return amount (yen), and return rate (%), a graph of monthly changes may be posted as detailed information.

上記の他、明細リストに記載される情報としては、電力調達価格(円)、運用手数料(円)、物件電気使用量合計(kWh)、電力調達量合計(kWh)、PV発電量(kWh)等が挙げられる。ここで、電力調達価格(円)は、買電金額、すなわち電気事業者20から調達した電力の金額である。運用手数料(円)は、管理会社21のランニングコスト、すなわち管理会社21の手数料である。物件電気使用量合計(kWh)は、集合住宅1aにおける電気消費量の合計値である。電力調達量合計(kWh)は、集合住宅1aにおいて買電した電力の合計値である。PV発電量(kWh)は太陽電池15における発電量である。
その他、明細リストに記載される情報として、さらに自家消費量(kWh)、自家消費率(%)、自家消費還元計算式、環境価値等も考えられる。自家消費量(kWh)は、物件電気使用量の合計から電力調達量合計を差し引いた量である。自家消費率(%)は、自家消費量(kWh)をPV発電量(kWh)で除した値である。自家消費還元計算式は、自家消費単価、自家消費還元率などの計算式である。環境価値は、自家消費の環境価値であり、例えば、CO2削減量などである。
In addition to the above, the information described in the detailed list includes electricity procurement price (yen), management fee (yen), total property electricity usage (kWh), total electricity procurement amount (kWh), and PV power generation amount (kWh). And so on. Here, the electric power procurement price (yen) is the purchase price, that is, the amount of electric power procured from the electric power company 20. The management fee (yen) is the running cost of the management company 21, that is, the fee of the management company 21. The total electricity consumption of the property (kWh) is the total value of the electricity consumption in the apartment house 1a. The total amount of electric power procured (kWh) is the total value of the electric power purchased in the apartment house 1a. The PV power generation amount (kWh) is the power generation amount in the solar cell 15.
In addition, as the information described in the detailed list, the self-consumption amount (kWh), the self-consumption rate (%), the self-consumption return calculation formula, the environmental value, etc. can be considered. Private consumption (kWh) is the amount obtained by subtracting the total amount of electricity procured from the total amount of electricity used in the property. The self-consumption rate (%) is a value obtained by dividing the self-consumption amount (kWh) by the PV power generation amount (kWh). The self-consumption return calculation formula is a calculation formula for the self-consumption unit price, the self-consumption return rate, and the like. The environmental value is the environmental value of self-consumption, for example, the amount of CO2 reduction.

また、図6には、設備所有者23向けの明細書の記載事項の例について示す。これは、所定期間、例えば半年間の運用実績を示すものである。図6に示した例では、電気料金合計(円)と、自家消費還元額(円)、自家消費還元率(%)、CO2削減量を記載する。そして、より詳細な情報として、毎月の還元額(円)と還元率(%)の記載をグラフ化して表示している。 Further, FIG. 6 shows an example of the items described in the specification for the equipment owner 23. This shows the operation results for a predetermined period, for example, half a year. In the example shown in FIG. 6, the total electricity charge (yen), the self-consumption return amount (yen), the self-consumption return rate (%), and the CO2 reduction amount are described. Then, as more detailed information, the description of the monthly return amount (yen) and the return rate (%) is displayed as a graph.

ここで、還元額(円)及び、還元率(%)は、以下の式で算出される。

還元額(円)=電気料金合計(円)−電力調達料金(円)−運用手数料(円)・・(1)

還元率(%)=還元額(円)/電気料金合計(円)・・・・・・・・・・・・・(2)
Here, the return amount (yen) and the return rate (%) are calculated by the following formulas.

Return amount (yen) = Total electricity charges (yen) -Electricity procurement charges (yen) -Management fees (yen) ... (1)

Return rate (%) = Return amount (yen) / Total electricity charges (yen) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (2)

また、運用手数料(円)は例えば、以下の式で算出されてもよい。

運用手数料(円)=基本料(円)+
(電気料金合計(円)−電力調達料金(円))×管理会社マージン率(%)・・・(3)
ここで、基本料は、集合住宅1aごとに設定され、主に戸数及び地域に依存する値である。
Further, the management fee (yen) may be calculated by the following formula, for example.

Management fee (yen) = basic fee (yen) +
(Total electricity charges (yen) -Electricity procurement charges (yen)) x Management company margin rate (%) ... (3)
Here, the basic charge is set for each apartment house 1a and is a value mainly depending on the number of units and the area.

なお、本実施例においては、系統から調達する電力量を減少させ、自家消費率(%)を上昇させて電気料金を低廉にすることが望ましい。この為に、以下の施策が考えられる。(1)安価な深夜電力で充電し、昼間の買電量を減少させる。
安価な深夜電力を利用して、可能な限り蓄電池14の充電率を高めておくことで、専有部12a、12b、12c・・・、共用部13における消費電力に対して分散型電源からの電力供給の不足が生じることを抑制できる。
(2)太陽光発電による蓄電池の充電と夜間充電電力を組み合わせて、調達電力料金を減少させる。
太陽電池15の発電電力が余剰となる場合には、可能な限り蓄電池14に充電し、可能な限り、蓄電池14の充電率を高める。
(3)太陽光発電と需要予測と蓄電池制御で売電電力のピークカット。
日付や、曜日、日の出時刻、日の入り時刻、温度、湿度などのデータ、および、サー
バから取得される天気予報に基づいて、現在の時点から所定の時刻ごとに、専有部12a、12b、12c・・・、共用部13における消費電力を予測する。この予測消費電力に対して分散型電源による供給電力の不足を最小にするように、蓄電池14の充電率を制御し、買電電力の最大値を低減しピークカットする。これにより、電気事業者20との間の基本契約における最大消費電力を低く設定し、電気事業者20に支払う基本料金を削減する。
In this embodiment, it is desirable to reduce the amount of electricity procured from the grid, increase the self-consumption rate (%), and reduce the electricity rate. For this purpose, the following measures can be considered. (1) Charge with cheap midnight electricity to reduce the amount of electricity purchased during the day.
By increasing the charging rate of the storage battery 14 as much as possible by using inexpensive midnight power, the power from the distributed power source is compared with the power consumption in the exclusive parts 12a, 12b, 12c ..., The common part 13. It is possible to prevent a shortage of supply.
(2) Reduce the procured power charge by combining the charging of the storage battery by solar power generation and the nighttime charging power.
When the generated power of the solar cell 15 becomes surplus, the storage battery 14 is charged as much as possible, and the charging rate of the storage battery 14 is increased as much as possible.
(3) Peak cut of electricity sold by solar power generation, demand forecasting and storage battery control.
Based on the date, day, sunrise time, sunset time, temperature, humidity, and other data, and the weather forecast obtained from the server, the exclusive units 12a, 12b, 12c ... ·, Predict the power consumption in the common area 13. The charge rate of the storage battery 14 is controlled so as to minimize the shortage of the power supplied by the distributed power source with respect to the predicted power consumption, and the maximum value of the purchased power is reduced to cut the peak. As a result, the maximum power consumption in the basic contract with the electric power company 20 is set low, and the basic charge paid to the electric power company 20 is reduced.

また、本実施例においては、自家消費電力量を増やすことが望ましい。この為には、以下の施策が考えられる。
(1)家電の制御を利用した低消費電力化
例えば、共用部13のエアコンの駆動制御や、自然冷媒ヒートポンプ給湯機を用いた低消費電力の給湯システムを用いることで、専有部12a、12b、12c・・・、共用部13における消費電力を抑制する。
(2)太陽光発電、風力発電機、所謂V2H(Vehicle to Home)に係る電源、蓄電池等を組み合わせて自家消費電力量を増やす
上記に加えて、太陽電池15等の発電電力が余剰となる場合には、可能な限り蓄電池14に充電し、可能な限り、蓄電池14の充電率を高める。系統3bへの売電を低減し、自家消費電力量を増やすことで、収益性は向上する。
Further, in this embodiment, it is desirable to increase the amount of self-power consumption. For this purpose, the following measures can be considered.
(1) Low power consumption by using the control of home appliances For example, by using the drive control of the air conditioner in the common part 13 and the low power consumption hot water supply system using the natural refrigerant heat pump water heater, the exclusive parts 12a and 12b, 12c ..., The power consumption in the common portion 13 is suppressed.
(2) Increase the amount of self-power consumption by combining solar power generation, wind power generators, power sources related to so-called V2H (Vehicle to Home), storage batteries, etc. In addition to the above, when the generated power of the solar cells 15 etc. becomes surplus The storage battery 14 is charged as much as possible, and the charging rate of the storage battery 14 is increased as much as possible. Profitability is improved by reducing the sale of electricity to the grid 3b and increasing the amount of private power consumption.

また、本実施例においては、自家消費電力量の低下を防止することが望ましい。この為には、以下の施策が考えられる。
(1)遠隔モニタリングシステムで故障を検出・予測
管理会社21において、遠隔モニタリングシステムで電力供給システム1における故障を検出する。または、各スマートメータ11a、11b、11c・・・11d、11eの検出値の変化から故障を予測する。これにより、分散型電源からの供給電力が低下し、自家消費電力量が低下することを防止する。
Further, in this embodiment, it is desirable to prevent a decrease in self-power consumption. For this purpose, the following measures can be considered.
(1) Failure detection / prediction by remote monitoring system The management company 21 detects a failure in the power supply system 1 by the remote monitoring system. Alternatively, a failure is predicted from changes in the detected values of the smart meters 11a, 11b, 11c ... 11d, 11e. This prevents the power supply from the distributed power source from being reduced and the self-consumption power from being reduced.

また、本実施例においては、電気事業者20との基本契約料金を低下させることが重要である。この為には、以下の施策が考えられる。
(1)太陽光発電と需要予測と蓄電池制御でピークカット。
日付や、曜日、日の出時刻、日の入り時刻、温度、湿度などのデータ、および、サーバから取得される天気予報に基づいて、現在の時点から所定の時刻ごとに、専有部12a、12b、12c・・・、共用部13における消費電力を予測する。この予測消費電力に対して分散型電源による発電電力の不足を最小にするように、蓄電池14の充電率を制御することで、買電電力の最大値を低減しピークカットする。これにより、電気事業者との間の基本契約における最大消費電力を低く設定し、基本料金を削減する。
(2)時間によって、スマートメータの容量を変動させる
スマートメータ11a、11b、11c・・・11d、11eにおける設定を変更することで、柔軟に契約容量を変更することができる。従って、電力の需要予測を行い、調達電力量を予測し、時間によってスマートメータ11a、11b、11c・・・11d、11eの各々の容量を変動させる。これにより、常に必要最低限の容量で電気事業者20との契約を行うことができ、基本料金を削減することが可能となる。
Further, in this embodiment, it is important to reduce the basic contract fee with the electric power company 20. For this purpose, the following measures can be considered.
(1) Peak cut by solar power generation, demand forecast and storage battery control.
Based on the date, day, sunrise time, sunset time, temperature, humidity, and other data, and the weather forecast obtained from the server, the exclusive units 12a, 12b, 12c ... ·, Predict the power consumption in the common area 13. By controlling the charge rate of the storage battery 14 so as to minimize the shortage of the generated power generated by the distributed power source with respect to the predicted power consumption, the maximum value of the purchased power is reduced and the peak is cut. As a result, the maximum power consumption in the basic contract with the electric power company is set low, and the basic charge is reduced.
(2) The contracted capacity can be flexibly changed by changing the settings of the smart meters 11a, 11b, 11c ... 11d, 11e that change the capacity of the smart meter depending on the time. Therefore, the demand for electric power is predicted, the amount of electric power to be procured is predicted, and the capacities of the smart meters 11a, 11b, 11c ... 11d, and 11e are changed depending on the time. As a result, it is possible to always make a contract with the electric power company 20 with the minimum required capacity, and it is possible to reduce the basic charge.

また、本実施例において、自家消費電力量を多くするための利益分配方法の工夫点としては以下のものが考えられる。
(1)自家消費量によって、電気料金の割引率を変える
専有部(入居者)12a、12b、12c・・・に対する電気料金の請求額の割引率が、自家消費量が多いほど大きくなるような契約とする。これにより、入居者に、電力ピーク時の電力使用の抑制を啓蒙する。
(2)自家消費量・率を表示して、自家消費を促す。
また、入居者22に対し電気料金、電気使用量の連絡をする際には、自家消費量・率を表示するようにする。これにより、入居者22に、電力ピーク時の電力使用の抑制を啓蒙する。
(3)ポイント還元
入居者22が、自家消費量が多いほどより多くのポイントが得られるような運用とする。そして、ポイントの蓄積量に応じて値引き、景品がもらえるなどのポイント還元を行うことで、電力ピーク時の電力使用の抑制を啓蒙する。
Further, in this embodiment, the following can be considered as the points for devising the profit sharing method for increasing the amount of self-consumption.
(1) Change the discount rate of electricity charges according to the amount of self-consumption The discount rate of the billed amount of electricity charges for the exclusive departments (residents) 12a, 12b, 12c ... Make a contract. This will educate residents about curbing power usage during peak power hours.
(2) Display the amount and rate of self-consumption to encourage self-consumption.
In addition, when contacting the resident 22 about the electricity rate and the amount of electricity used, the self-consumption amount / rate is displayed. As a result, the resident 22 is enlightened to curb the use of electric power during peak electric power.
(3) Point reduction The operation will be such that the resident 22 can earn more points as the amount of self-consumption increases. Then, by discounting points according to the amount of accumulated points and returning points such as receiving prizes, we will enlighten the suppression of power usage during peak power hours.

その他、電力供給システム1の運用について以下のようなバリエーションが考えられる。
(1)機器寿命を延ばす。
複数の蓄電池14を使用する。これにより、各蓄電池14の充放電回数、充放電レートを減らす。
(2)親スマートメータ4a、4bとスマートメータ11a、11b、・・11eの遮断情報を検知し、故障個所(過電流、漏電)を判定する
(3)停電時、スマートメータ11a、11b、・・11eの容量を自動的に変更し、各入居者22が自立電源を使用する。
(4)入居者22のスケジュール情報を取得し、当該情報から需要予測を行い、自家消費量を向上させる制御を行う。
(5)消費電力の異常変化(不連続的な変化)から機器故障や入居者22の変化を推定する。
In addition, the following variations can be considered for the operation of the power supply system 1.
(1) Extend the life of the equipment.
A plurality of storage batteries 14 are used. As a result, the number of charge / discharge cycles and the charge / discharge rate of each storage battery 14 are reduced.
(2) Detects the cutoff information of the parent smart meters 4a and 4b and the smart meters 11a, 11b, ... 11e to determine the faulty part (overcurrent, leakage) (3) In the event of a power failure, the smart meters 11a, 11b, ... -The capacity of 11e is automatically changed, and each resident 22 uses an independent power supply.
(4) The schedule information of the resident 22 is acquired, the demand is forecasted from the information, and the control for improving the self-consumption is performed.
(5) A device failure or a change in the resident 22 is estimated from an abnormal change (discontinuous change) in power consumption.

なお、上記の実施例においては、複数の電力供給先を有する複合施設として、集合住宅1aを例示したが、本発明の対象となる複合施設は集合住宅には限られない。例えば、共同オフィス、工業団地等も対象となる。また、上記の実施例においては分散型電源の例として、太陽電池を例示したが、本発明の対象となる分散型電源は太陽電池に限られない、風力発電装置、地熱発電装置、バイオマス発電装置等の他の電源装置も含まれる。 In the above embodiment, the apartment house 1a is illustrated as a complex facility having a plurality of power supply destinations, but the complex facility to which the present invention is applied is not limited to the apartment house. For example, common offices, industrial parks, etc. are also covered. Further, in the above embodiment, a solar cell is exemplified as an example of the distributed power source, but the distributed power source to which the present invention is applied is not limited to the solar cell, and is not limited to the solar cell, but is a wind power generation device, a geothermal power generation device, and a biomass power generation device. Other power sources such as are also included.

なお、以下には本発明の構成要件と実施例の構成とを対比可能とするために、本発明の構成要件を図面の符号付きで記載しておく。
<発明1>
複数の電力供給先(12a、12b・・・)を含む複合施設(1b)に電力を供給する電力供給システム(1)であって、
前記複数の電力供給先(12a、12b・・・)に電力を供給可能な分散型電源(14、15)と、
系統(3a)から供給された電力および/または前記分散型電源(14、15)から供給された電力を前記複数の電力供給先(12a、12b・・・)の各々に分散して供給する分電装置(9、10)と、
前記分電装置(9、10)を介して前記複数の電力供給先(12a、12b・・・)の各々に供給される電力を検知する電力検知手段(11a、11b、・・・11d)と、
前記系統(3a、3b)と前記分電装置(9、10)との間で授受される電力を検知する系統電力検知手段(4a、4b)と、
前記電力検知手段(11a、11b、・・・11d)によって検知される電力値に基づいて、前記分散型電源(14、15)の充放電または発電に係る電力を制御する制御装置(5)と、
前記電力検知手段(11a、11b、・・・11e)および前記系統電力検知手段(4a、4b)によって検知される電力値に基づいて、前記複数の電力供給先(12a、12b・・・)の各々に請求する電気料金と、前記複合施設(1b)の所有者に対する還元料金とを算出する管理装置(2)と、
を備えること特徴とする、電力供給システム。
<発明2>
複数の電力供給先(12a、12b・・・)を含む複合施設(1b)に電力を供給する電力供給システム(1)による電力管理方法であって、
前記複数の電力供給先(12a、12b・・・)に電力を供給可能な分散型電源(14、15)と、
系統(3a)から供給された電力および/または前記分散型電源(14、15)から供給された電力を前記複数の電力供給先(12a、12b・・・)の各々に分散して供給する分電装置(9、10)と、
前記分電装置(9、10)を介して前記複数の電力供給先(12a、12b・・・)の各々に供給される電力を検知する電力検知手段(11a、11b、・・・11d)と、
前記系統(3a、3b)と前記分電装置(9、10)との間で授受される電力を検知する系統電力検知手段(4a、4b)と、
前記電力検知手段(11a、11b、・・・11d)および前記系統電力検知手段(4a、4b)によって検知される電力値に基づいて、前記分散型電源(14、15)の充放電または発電に係る電力を制御する制御装置(5)と、
を備える電力供給システム(1)を用い、
前記電力検知手段(11a、11b、・・・11e)および前記系統電力検知手段(4a、4b)によって検知される電力値に基づいて、前記複数の電力供給先(12a、12b・・・)の各々に請求する電気料金と、前記複合施設(1b)の所有者に対する還元料金とを自動的に算出し、
前記複数の電力供給先(12a、12b・・・)に前記電気料金を課するとともに、前記複合施設(1b)の所有者に前記還元料金を還元することを特徴とする、電力供給システム(1)による電力管理方法。
In addition, in order to make it possible to compare the constituent requirements of the present invention with the configurations of the examples, the constituent requirements of the present invention are described below with reference numerals in the drawings.
<Invention 1>
A power supply system (1) that supplies power to a complex facility (1b) including a plurality of power supply destinations (12a, 12b ...).
Distributed power sources (14, 15) capable of supplying power to the plurality of power supply destinations (12a, 12b ...), And
The amount of power supplied from the system (3a) and / or the power supplied from the distributed power sources (14, 15) distributed to each of the plurality of power supply destinations (12a, 12b ...). Electric devices (9, 10) and
With the power detecting means (11a, 11b, ... 11d) that detects the power supplied to each of the plurality of power supply destinations (12a, 12b ...) Through the distribution device (9, 10). ,
System power detecting means (4a, 4b) for detecting power transferred between the system (3a, 3b) and the distribution device (9, 10), and
With the control device (5) that controls the power related to charging / discharging or power generation of the distributed power sources (14, 15) based on the power value detected by the power detecting means (11a, 11b, ... 11d). ,
Based on the power values detected by the power detecting means (11a, 11b, ... 11e) and the system power detecting means (4a, 4b), the plurality of power supply destinations (12a, 12b ...) A management device (2) that calculates the electricity charge charged to each and the return charge to the owner of the complex facility (1b), and
A power supply system characterized by being equipped with.
<Invention 2>
It is a power management method by a power supply system (1) that supplies power to a complex facility (1b) including a plurality of power supply destinations (12a, 12b ...).
Distributed power sources (14, 15) capable of supplying power to the plurality of power supply destinations (12a, 12b ...), And
The amount of power supplied from the system (3a) and / or the power supplied from the distributed power sources (14, 15) distributed to each of the plurality of power supply destinations (12a, 12b ...). Electric devices (9, 10) and
With the power detecting means (11a, 11b, ... 11d) that detects the power supplied to each of the plurality of power supply destinations (12a, 12b ...) Through the distribution device (9, 10). ,
System power detecting means (4a, 4b) for detecting power transferred between the system (3a, 3b) and the distribution device (9, 10), and
For charging / discharging or generating power of the distributed power sources (14, 15) based on the power values detected by the power detecting means (11a, 11b, ... 11d) and the system power detecting means (4a, 4b). A control device (5) that controls the power, and
Using the power supply system (1) equipped with
Based on the power values detected by the power detecting means (11a, 11b, ... 11e) and the system power detecting means (4a, 4b), the plurality of power supply destinations (12a, 12b ...) The electricity charge charged to each and the return charge to the owner of the complex facility (1b) are automatically calculated.
A power supply system (1), characterized in that the electricity charges are imposed on the plurality of power supply destinations (12a, 12b ...) And the return charges are returned to the owner of the complex facility (1b). ) Power management method.

1・・・電力供給システム
1a・・・集合住宅
2・・・管理装置
3a、3b・・・系統
4a、4b・・・親スマートメータ
5・・・VPPコントローラ
6・・・LTEルータ
7・・・ハブ
8a、8b、8c・・・ゲートウェイ
9・・・第一分電盤
10・・・第二分電盤
11a、11b、11c、11d、11e・・・スマートメータ
12a、12b、12c・・・専有部
13・・・共用部
14・・・蓄電池
15・・・太陽電池
16・・・蓄電池パワコン
17・・・太陽電池パワコン
1 ... Power supply system 1a ... Apartment house 2 ... Management device 3a, 3b ... System 4a, 4b ... Parent smart meter 5 ... VPP controller 6 ... LTE router 7 ...・ Hub 8a, 8b, 8c ・ ・ ・ Gateway 9 ・ ・ ・ First distribution board 10 ・ ・ ・ Second distribution board 11a, 11b, 11c, 11d, 11e ・ ・ ・ Smart meters 12a, 12b, 12c ・ ・・ Exclusive part 13 ・ ・ ・ Common part 14 ・ ・ ・ Storage battery 15 ・ ・ ・ Solar battery 16 ・ ・ ・ Storage battery power conditioner 17 ・ ・ ・ Solar battery power conditioner

Claims (15)

複数の電力供給先を含む複合施設に電力を供給する電力供給システムであって、
前記複数の電力供給先に電力を供給可能な分散型電源と、
系統から供給された電力および/または前記分散型電源から供給された電力を前記複数の電力供給先の各々に分散して供給する分電装置と、
前記分電装置を介して前記複数の電力供給先の各々に供給される電力を検知する電力検知手段と、
前記系統と前記分電装置との間で授受される電力を検知する系統電力検知手段と、
前記電力検知手段によって検知される電力値に基づいて、前記分散型電源の充放電または発電に係る電力を制御する制御装置と、
前記電力検知手段および前記系統電力検知手段によって検知される電力値に基づいて、前記複数の電力供給先の各々に請求する電気料金と、前記複合施設の所有者に対する還元料金とを算出する管理装置と、
を備えること特徴とする、電力供給システム。
A power supply system that supplies power to a complex facility that includes multiple power supply destinations.
A distributed power source that can supply power to the plurality of power supply destinations,
A distribution device that distributes and supplies electric power supplied from the grid and / or electric power supplied from the distributed power source to each of the plurality of power supply destinations.
A power detecting means for detecting power supplied to each of the plurality of power supply destinations via the distribution device, and
A system power detecting means for detecting power transmitted and received between the system and the distribution device, and
A control device that controls power related to charging / discharging or power generation of the distributed power source based on the power value detected by the power detecting means.
A management device that calculates an electricity charge charged to each of the plurality of electric power supply destinations and a return charge to the owner of the complex facility based on the electric power value detected by the electric power detecting means and the grid electric power detecting means. When,
A power supply system characterized by being equipped with.
前記管理装置は、
前記検知手段により検知された前記複数の電力供給先の各々に供給した電力の量に基づいて、前記複数の電力供給先に請求する電気料金を算出する電気料金算出部を、
備えることを特徴とする、請求項1に記載の電力供給システム。
The management device
An electricity charge calculation unit that calculates an electricity charge to be charged to the plurality of electric power supply destinations based on the amount of electric power supplied to each of the plurality of electric power supply destinations detected by the detection means.
The power supply system according to claim 1, wherein the power supply system is provided.
前記電気料金算出部は、前記複数の電力供給先に系統から直接供給される電力に対して定められる電力の単価以下に設定された第一電力単価と、前記検知手段により検知された前記複数の電力供給先の各々に供給した電力の量と、に基づいて、前記複数の電力供給先に請求する電気料金を算出することを特徴とする、請求項2に記載の電力供給システム。 The electricity charge calculation unit includes a first power unit price set to be equal to or lower than a power unit price set for power directly supplied from the grid to the plurality of power supply destinations, and the plurality of powers detected by the detection means. The power supply system according to claim 2, wherein the electricity charges charged to the plurality of power supply destinations are calculated based on the amount of power supplied to each of the power supply destinations. 前記電気料金算出部は、前記電力検知手段により検知された前記複数の電力供給先の各々に供給した電力の量と、前記第一電力単価との乗算によって前記電気料金を算出することを特徴とする、請求項3に記載の電力供給システム。 The electricity charge calculation unit is characterized in that the electricity charge is calculated by multiplying the amount of power supplied to each of the plurality of power supply destinations detected by the power detection means by the first power unit price. The power supply system according to claim 3. 前記管理装置は、
前記電気料金と、系統から供給される電力の量と前記買電単価とから算出される電力調達料金と、に基づいて、前記還元料金を算出する還元料金算出部を、
さらに備えることを特徴とする、請求項2から4のいずれか一項に記載の電力供給システム。
The management device
A return charge calculation unit that calculates the return charge based on the electricity charge, the amount of power supplied from the grid, and the power procurement charge calculated from the power purchase unit price.
The power supply system according to any one of claims 2 to 4, further comprising.
前記還元料金算出部は、前記電気料金の合計値から、前記電力調達料金及び、前記管理装置による管理の費用を含めた料金として定められた所定の管理料金を減算することによって、前記還元料金を算出することを特徴とする、請求項5に記載の電力供給システム。 The return charge calculation unit calculates the return charge by subtracting a predetermined management charge determined as a charge including the power procurement charge and the management cost by the management device from the total value of the electricity charge. The power supply system according to claim 5, wherein the power supply system is calculated. 前記電力検知手段は、前記分電装置と前記分散型電源との間で授受される電力についても検知し、
前記電力検知手段によって検知された、前記分散型電源から前記分電装置を介して前記複数の電力供給先に供給された電力の量に応じて、前記第一電力単価を変化させることを特徴とする、請求項3から6のいずれか一項に記載の電力供給システム。
The power detecting means also detects the power transmitted and received between the distribution device and the distributed power source.
The first power unit price is changed according to the amount of power supplied from the distributed power source to the plurality of power supply destinations via the distribution device, which is detected by the power detection means. The power supply system according to any one of claims 3 to 6.
前記分散型電源は、蓄電池を含むことを特徴とする、請求項1から7のいずれか一項に記載の電力供給システム。 The power supply system according to any one of claims 1 to 7, wherein the distributed power source includes a storage battery. 前記分散型電源は、太陽電池を含むことを特徴とする、請求項1から8のいずれか一項
に記載の電力供給システム。
The power supply system according to any one of claims 1 to 8, wherein the distributed power source includes a solar cell.
複数の電力供給先を含む複合施設に電力を供給する電力供給システムによる電力管理方法であって、
前記複数の電力供給先に電力を供給可能な分散型電源と、
系統から供給された電力および/または前記分散型電源から供給された電力を前記複数の電力供給先の各々に分散して供給する分電装置と、
前記分電装置を介して前記複数の電力供給先の各々に供給される電力を検知する電力検知手段と、
前記系統と前記分電装置との間で授受される電力を検知する系統電力検知手段と、
前記電力検知手段によって検知される電力値に基づいて、前記分散型電源の充放電または発電に係る電力を制御する制御装置と、
を備える電力供給システムを用い、
前記電力検知手段および前記系統電力検知手段によって検知される電力値に基づいて、前記複数の電力供給先の各々に請求する電気料金と、前記複合施設の所有者に対する還元料金とを自動的に算出し、
前記複数の電力供給先に前記電気料金を課するとともに、前記複合施設の所有者に前記還元料金を還元することを特徴とする、電力供給システムによる電力管理方法。
It is a power management method using a power supply system that supplies power to a complex facility that includes multiple power supply destinations.
A distributed power source that can supply power to the plurality of power supply destinations,
A distribution device that distributes and supplies electric power supplied from the grid and / or electric power supplied from the distributed power source to each of the plurality of power supply destinations.
A power detecting means for detecting power supplied to each of the plurality of power supply destinations via the distribution device, and
A system power detecting means for detecting power transmitted and received between the system and the distribution device, and
A control device that controls power related to charging / discharging or power generation of the distributed power source based on the power value detected by the power detecting means.
Using a power supply system equipped with
Based on the power detection means and the power value detected by the system power detection means, the electricity charge charged to each of the plurality of power supply destinations and the return charge to the owner of the complex facility are automatically calculated. And
A power management method by a power supply system, which comprises imposing the electricity charge on a plurality of power supply destinations and returning the return charge to the owner of the complex facility.
前記電気料金は、
前記複数の電力供給先に系統から直接供給される電力に対して定められる電力の単価以下に設定された第一電力単価と、前記検知手段により検知された前記複数の電力供給先の各々に供給した電力の量と、に基づいて、算出されることを特徴とする、請求項10に記載の電力管理方法。
The electricity bill is
The first power unit price set to be equal to or lower than the power unit price set for the power directly supplied from the grid to the plurality of power supply destinations, and the power supply to each of the plurality of power supply destinations detected by the detection means. The electric power management method according to claim 10, wherein the electric power is calculated based on the amount of electric power generated.
前記電気料金は、
前記電力検知手段により検知された前記複数の電力供給先の各々に供給した電力の量と、前記第一電力単価との乗算によって前記電気料金を算出することを特徴とする、請求項11に記載の電力管理方法。
The electricity bill is
The eleventh aspect of claim 11, wherein the electricity charge is calculated by multiplying the amount of electric power supplied to each of the plurality of electric power supply destinations detected by the electric power detecting means by the first electric power unit price. Power management method.
前記還元料金は、
前記電気料金と、系統から供給される電力の量と前記買電単価とから算出される電力調達料金と、に基づいて算出されることを特徴とする、請求項10から12のいずれか一項に記載の電力管理方法。
The return fee is
Any one of claims 10 to 12, characterized in that it is calculated based on the electricity charge, the power procurement charge calculated from the amount of power supplied from the grid, and the power purchase unit price. The power management method described in.
前記還元料金は、
前記電気料金の合計値から、前記電力調達料金及び、前記管理装置による管理の費用を含めた料金として定められた所定の管理料金を減算することによって、算出されることを特徴とする、請求項13に記載の電力管理方法。
The return fee is
The claim is characterized in that it is calculated by subtracting a predetermined management fee determined as a fee including the power procurement fee and the cost of management by the management device from the total value of the electricity fee. 13. The power management method according to 13.
前記分散型電源から前記分電装置を介して前記複数の電力供給先に供給された電力の量に応じて、前記第一電力単価を変化させることを特徴とする、請求項11から14のいずれか一項に記載の電力管理方法。 Any of claims 11 to 14, characterized in that the first power unit price is changed according to the amount of power supplied from the distributed power source to the plurality of power supply destinations via the distribution device. The power management method described in item 1.
JP2019103264A 2019-05-31 2019-05-31 Power supply system and power management method Active JP7259558B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019103264A JP7259558B2 (en) 2019-05-31 2019-05-31 Power supply system and power management method
JP2021040362A JP7297004B2 (en) 2019-05-31 2021-03-12 Power supply system and power management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019103264A JP7259558B2 (en) 2019-05-31 2019-05-31 Power supply system and power management method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021040362A Division JP7297004B2 (en) 2019-05-31 2021-03-12 Power supply system and power management method

Publications (2)

Publication Number Publication Date
JP2020198696A true JP2020198696A (en) 2020-12-10
JP7259558B2 JP7259558B2 (en) 2023-04-18

Family

ID=73649433

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019103264A Active JP7259558B2 (en) 2019-05-31 2019-05-31 Power supply system and power management method
JP2021040362A Active JP7297004B2 (en) 2019-05-31 2021-03-12 Power supply system and power management method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021040362A Active JP7297004B2 (en) 2019-05-31 2021-03-12 Power supply system and power management method

Country Status (1)

Country Link
JP (2) JP7259558B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022138885A (en) * 2021-03-11 2022-09-26 恒栄電設株式会社 Notification system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7035267B2 (en) * 2021-12-28 2022-03-14 北海道瓦斯株式会社 Emergency power supply system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109040A (en) * 2000-07-28 2002-04-12 Asahi Chuo Kk Management method and management system for multiple dwelling house
JP2003087970A (en) * 2001-09-17 2003-03-20 Osaka Gas Co Ltd Operating method of co-generation facility
JP2005195670A (en) * 2003-12-26 2005-07-21 Fuji Xerox Co Ltd Image forming method
JP2006146554A (en) * 2004-11-19 2006-06-08 Daikin Ind Ltd Charge computing device, charge computing system, and charge computing program
JP2010097589A (en) * 2008-09-19 2010-04-30 Keiko Tatsumoto System for bulk purchase, profit return, and sale of electric power, system management program and server device
JP2011030313A (en) * 2009-07-22 2011-02-10 Tooa:Kk Private power generation power operation apparatus for apartment house and private power generation power operation system for apartment house using the same
JP2015176305A (en) * 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 Electric rate calculation system and electric rate calculation method
JP2019096078A (en) * 2017-11-22 2019-06-20 京セラ株式会社 Management device and calculation method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109040A (en) * 2000-07-28 2002-04-12 Asahi Chuo Kk Management method and management system for multiple dwelling house
JP2003087970A (en) * 2001-09-17 2003-03-20 Osaka Gas Co Ltd Operating method of co-generation facility
JP2005195670A (en) * 2003-12-26 2005-07-21 Fuji Xerox Co Ltd Image forming method
JP2006146554A (en) * 2004-11-19 2006-06-08 Daikin Ind Ltd Charge computing device, charge computing system, and charge computing program
JP2010097589A (en) * 2008-09-19 2010-04-30 Keiko Tatsumoto System for bulk purchase, profit return, and sale of electric power, system management program and server device
JP2011030313A (en) * 2009-07-22 2011-02-10 Tooa:Kk Private power generation power operation apparatus for apartment house and private power generation power operation system for apartment house using the same
JP2015176305A (en) * 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 Electric rate calculation system and electric rate calculation method
JP2019096078A (en) * 2017-11-22 2019-06-20 京セラ株式会社 Management device and calculation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022138885A (en) * 2021-03-11 2022-09-26 恒栄電設株式会社 Notification system

Also Published As

Publication number Publication date
JP7297004B2 (en) 2023-06-23
JP2021096872A (en) 2021-06-24
JP7259558B2 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
Mishra et al. Greencharge: Managing renewableenergy in smart buildings
Zhu et al. The case for efficient renewable energy management in smart homes
US20110055036A1 (en) Methods and systems for managing electricity delivery and commerce
AU2012286588B2 (en) Power apparatus
JP6512503B2 (en) Power adjustment device, power adjustment method, program
JP6703447B2 (en) Electric power data management system, consumer group and electric power interchange block
EP2387776A1 (en) Optimization of microgrid energy use and distribution
JP7144950B2 (en) Power supply system and power supply control method
JP2015070744A (en) Power managing device, power managing method and program
JP2007014066A (en) System and method for leveling power load
JP2011182555A (en) Power supply system
JP6754615B2 (en) Incentive calculation system and control method of incentive calculation system
JP7297004B2 (en) Power supply system and power management method
JP2005185016A (en) Electric power information processing system
JP2014170493A (en) Energy management system, energy management method, program and server device
JP2015211516A (en) Charge/discharge control system for power storage device
JP6698371B2 (en) Electric charge management device, electric charge management method and program
JP2021105926A (en) Photovoltaic power generation facility usage right purchase support system and method
Denholm et al. Summary of market opportunities for electric vehicles and dispatchable load in electrolyzers
JP7345371B2 (en) Power management device, power management method, and power management program
WO2018078802A1 (en) Power management system, control device, and power management method
JP6148119B2 (en) Energy management apparatus, energy management method, and energy management system
WO2020026681A1 (en) Charging management system, charging management method, and program
JP2022086199A (en) Information processing apparatus, method for operating power supply system, and program
JP6117529B2 (en) Electricity trading system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221019

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221028

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R150 Certificate of patent or registration of utility model

Ref document number: 7259558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150