JP2018120651A - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP2018120651A
JP2018120651A JP2017009076A JP2017009076A JP2018120651A JP 2018120651 A JP2018120651 A JP 2018120651A JP 2017009076 A JP2017009076 A JP 2017009076A JP 2017009076 A JP2017009076 A JP 2017009076A JP 2018120651 A JP2018120651 A JP 2018120651A
Authority
JP
Japan
Prior art keywords
layer
crystal grain
discharge
base material
discharge layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017009076A
Other languages
Japanese (ja)
Other versions
JP6557267B2 (en
Inventor
達哉 後澤
Tatsuya Atozawa
達哉 後澤
高明 鬼海
Takaaki Kiumi
高明 鬼海
大典 角力山
Daisuke Sumoyama
大典 角力山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2017009076A priority Critical patent/JP6557267B2/en
Priority to CN201810001901.0A priority patent/CN108346975B/en
Priority to DE102018200211.8A priority patent/DE102018200211B4/en
Publication of JP2018120651A publication Critical patent/JP2018120651A/en
Application granted granted Critical
Publication of JP6557267B2 publication Critical patent/JP6557267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spark Plugs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spark plug which enables the suppression of the interface peeling of a buffer layer and a discharge layer.SOLUTION: A spark plug comprises: a first electrode including a chip arranged by bonding a discharge layer including Pt as a primary component and a buffer layer including Pt as a primary component to each other, and an electrode base material made of an alloy including Ni as a primary component, or Ni; and a second electrode opposed to the first electrode through a spark gap. The buffer layer is composed of an alloy including Ni as a second component and having a thickness of 0.05 mm or more, and welded to the electrode base material. The discharge layer is composed of an alloy including Rh as a second component. As to the organization of the discharge layer and buffer layer of the chip after welding to the electrode base material, the discharge layer and the buffer layer are different from each other in average crystal grain diameter.SELECTED DRAWING: Figure 1

Description

本発明はスパークプラグに関し、特にPtを主体とするチップを電極に設けたスパークプラグに関するものである。   The present invention relates to a spark plug, and more particularly to a spark plug in which a chip mainly composed of Pt is provided on an electrode.

電極の耐火花消耗性を向上させるため、Ptを主体とするチップを電極母材に接合した第1電極と第2電極とを対向させたスパークプラグが知られている。特許文献1には、チップと電極母材との熱膨脹差に起因する熱応力の緩和のため、Pt−Ni合金からなる緩和層にPt−Ir合金からなる放電層を接合したチップを用いる技術が開示されている。   In order to improve the spark wear resistance of the electrode, a spark plug is known in which a first electrode in which a chip mainly composed of Pt is bonded to an electrode base material and a second electrode are opposed to each other. Patent Document 1 discloses a technique using a chip in which a discharge layer made of a Pt—Ir alloy is bonded to a relaxation layer made of a Pt—Ni alloy in order to alleviate thermal stress caused by the thermal expansion difference between the chip and the electrode base material. It is disclosed.

特開平6−60959号公報JP-A-6-60959

しかしながら上述した従来の技術では、熱衝撃等による熱応力が原因の、電極母材と緩和層との界面剥離や緩和層と放電層との界面剥離が問題となる。   However, in the conventional technique described above, there is a problem of interfacial delamination between the electrode base material and the relaxation layer and interfacial delamination between the relaxation layer and the discharge layer due to thermal stress due to thermal shock or the like.

本発明は上述した問題点を解決するためになされたものであり、緩和層や放電層の界面剥離を抑制できるスパークプラグを提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a spark plug capable of suppressing interfacial peeling between a relaxation layer and a discharge layer.

この目的を達成するために本発明のスパークプラグは、第1電極が、Ptを主体とする放電層とPtを主体とする緩和層とが接合されたチップと、Niを主体とする合金またはNiからなる電極母材と、を備えている。火花ギャップを介して第2電極と第1電極が対向する。緩和層はNiを第2成分として含有する厚さ0.05mm以上の合金からなり、電極母材に溶接される。放電層はRhを第2成分として含有する合金からなる。電極母材に溶接された後のチップの放電層および緩和層の組織は、放電層の平均結晶粒径と緩和層の平均結晶粒径とが互いに異なる。   In order to achieve this object, in the spark plug of the present invention, the first electrode has a tip in which a discharge layer mainly composed of Pt and a relaxation layer mainly composed of Pt, and an alloy mainly composed of Ni or Ni. An electrode base material. The second electrode and the first electrode face each other through the spark gap. The relaxation layer is made of an alloy containing Ni as a second component and having a thickness of 0.05 mm or more, and is welded to the electrode base material. The discharge layer is made of an alloy containing Rh as the second component. In the structure of the discharge layer and the relaxation layer of the chip after being welded to the electrode base material, the average crystal grain size of the discharge layer and the average crystal grain size of the relaxation layer are different from each other.

請求項1記載のスパークプラグによれば、Ptを主体とする緩和層は、Niを第2成分として含有する厚さ0.05mm以上の合金からなるので、Niを主体とする合金またはNiからなる電極母材と、Ptを主体としRhを第2成分として含有する合金からなる放電層との熱膨脹差に起因する熱応力を緩和する。   According to the spark plug of claim 1, since the relaxation layer mainly composed of Pt is made of an alloy containing Ni as a second component and having a thickness of 0.05 mm or more, it is made of an alloy mainly containing Ni or Ni. The thermal stress caused by the thermal expansion difference between the electrode base material and the discharge layer made of an alloy containing Pt as a main component and Rh as the second component is relaxed.

さらに、チップが電極母材に溶接された後の放電層および緩和層の組織は、放電層の平均結晶粒径と緩和層の平均結晶粒径とが互いに異なるので、放電層や緩和層の結晶粒界に割れを生じさせて熱応力を緩和できる。その結果、電極母材と緩和層との界面剥離や緩和層と放電層との界面剥離を抑制できる効果がある。   Further, the structure of the discharge layer and the relaxation layer after the tip is welded to the electrode base material is different from each other in the average crystal grain size of the discharge layer and the average crystal grain size of the relaxation layer. The thermal stress can be relieved by causing cracks at the grain boundaries. As a result, there is an effect that the interface peeling between the electrode base material and the relaxing layer and the interface peeling between the relaxing layer and the discharge layer can be suppressed.

請求項2記載のスパークプラグによれば、チップが電極母材に溶接された後の放電層および緩和層の組織は、放電層の平均結晶粒径が、緩和層の平均結晶粒径よりも大きいので、熱応力により放電層の結晶粒界に割れを生じさせて熱応力を緩和できる。よって、請求項1の効果に加え、界面剥離をより抑制できる効果がある。   According to the spark plug according to claim 2, in the structure of the discharge layer and the relaxation layer after the tip is welded to the electrode base material, the average crystal grain size of the discharge layer is larger than the average crystal grain size of the relaxation layer. Therefore, the thermal stress can be relaxed by causing cracks in the crystal grain boundaries of the discharge layer due to the thermal stress. Therefore, in addition to the effect of the first aspect, there is an effect that the interfacial peeling can be further suppressed.

請求項3記載のスパークプラグによれば、チップが電極母材に溶接された後の放電層の厚さを、チップが電極母材に溶接された後の緩和層の厚さで除した値は3未満である。その結果、請求項2の効果に加え、熱応力により放電層を変形させ易くすることができ、熱応力の緩和効果を確保できる。   According to the spark plug of claim 3, the value obtained by dividing the thickness of the discharge layer after the tip is welded to the electrode base material by the thickness of the relaxation layer after the tip is welded to the electrode base material is Less than 3. As a result, in addition to the effect of the second aspect, the discharge layer can be easily deformed by the thermal stress, and the relaxation effect of the thermal stress can be ensured.

請求項4記載のスパークプラグによれば、チップが電極母材に溶接された後の放電層および緩和層の組織は、放電層の平均結晶粒径が、緩和層の平均結晶粒径よりも小さいので、熱応力により緩和層の結晶粒界に割れを生じさせ易くできる。その結果、請求項1の効果に加え、緩和層の結晶粒界の割れによって熱応力を緩和し、界面剥離を抑制できる効果がある。   According to the spark plug of claim 4, in the structure of the discharge layer and the relaxation layer after the tip is welded to the electrode base material, the average crystal grain size of the discharge layer is smaller than the average crystal grain size of the relaxation layer. Therefore, it is possible to easily cause cracks in the crystal grain boundaries of the relaxation layer due to thermal stress. As a result, in addition to the effect of the first aspect, there is an effect that the thermal stress is relaxed by the crack of the grain boundary of the relaxation layer, and the interface peeling can be suppressed.

請求項5記載のスパークプラグによれば、緩和層はNiを3質量%よりも多く含有するので、緩和層の線膨張率を、放電層の線膨張率と電極母材の線膨張率との中間に近づけることができる。その結果、請求項4の効果に加え、界面剥離をより抑制できる効果がある。   According to the spark plug of claim 5, since the relaxation layer contains more than 3% by mass of Ni, the linear expansion coefficient of the relaxation layer is expressed by the linear expansion coefficient of the discharge layer and the linear expansion coefficient of the electrode base material. It can be close to the middle. As a result, in addition to the effect of the fourth aspect, there is an effect that the interfacial peeling can be further suppressed.

請求項6記載のスパークプラグによれば、放電層および緩和層の組成は、チップが1200℃で33時間加熱された後の放電層および緩和層の組織において、放電層の平均結晶粒径が、緩和層の平均結晶粒径よりも大きくなるように設定されている。従って、請求項1から5のいずれかの効果に加え、燃焼室で第1電極が1000℃程度に加熱される環境下において、放電層の結晶粒界に微小な割れを生じさせ易くすることができ、熱応力を緩和できる効果がある。   According to the spark plug of claim 6, the composition of the discharge layer and the relaxation layer is such that the average crystal grain size of the discharge layer in the structure of the discharge layer and the relaxation layer after the chip is heated at 1200 ° C. for 33 hours is It is set to be larger than the average crystal grain size of the relaxation layer. Therefore, in addition to the effect of any one of claims 1 to 5, in the environment where the first electrode is heated to about 1000 ° C. in the combustion chamber, it is easy to cause minute cracks at the crystal grain boundaries of the discharge layer. This is effective in reducing thermal stress.

請求項7記載のスパークプラグによれば、放電層および緩和層の組成は、チップが1200℃で33時間加熱された後の放電層および緩和層の組織において、放電層の平均結晶粒径が、緩和層の平均結晶粒径よりも小さくなるように設定されている。従って、請求項1から5のいずれかの効果に加え、燃焼室で第1電極が1000℃程度に加熱される環境下において、緩和層の結晶粒界に割れを生じさせ易くすることができ、熱応力を緩和できる効果がある。   According to the spark plug of claim 7, the composition of the discharge layer and the relaxation layer is such that the average crystal grain size of the discharge layer in the structure of the discharge layer and the relaxation layer after the chip is heated at 1200 ° C. for 33 hours, It is set to be smaller than the average crystal grain size of the relaxation layer. Therefore, in addition to the effect of any one of claims 1 to 5, in an environment where the first electrode is heated to about 1000 ° C. in the combustion chamber, it is possible to easily cause cracks in the crystal grain boundaries of the relaxation layer, It has the effect of reducing thermal stress.

請求項8記載のスパークプラグによれば、放電層はPt及びRhを85質量%以上含有するので、請求項1から7のいずれかの効果に加え、耐火花消耗性を向上できる効果がある。   According to the spark plug of the eighth aspect, since the discharge layer contains Pt and Rh in an amount of 85% by mass or more, in addition to the effect of any one of the first to seventh aspects, there is an effect that the spark wear resistance can be improved.

本発明の一実施の形態におけるスパークプラグの片側断面図である。It is a half sectional view of the spark plug in one embodiment of the present invention. 中心電極および接地電極の断面図である。It is sectional drawing of a center electrode and a ground electrode.

以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は本発明の一実施の形態におけるスパークプラグ10の片側断面図であり、図2は中心電極13及び接地電極18の断面図である。図1及び図2では、紙面下側をスパークプラグ10の先端側、紙面上側をスパークプラグ10の後端側という。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a side sectional view of a spark plug 10 according to an embodiment of the present invention, and FIG. 2 is a sectional view of a center electrode 13 and a ground electrode 18. 1 and 2, the lower side of the drawing is referred to as the front end side of the spark plug 10, and the upper side of the drawing is referred to as the rear end side of the spark plug 10.

図1に示すようにスパークプラグ10は、絶縁体11、中心電極13(第2電極)、主体金具17及び接地電極18(第1電極)を備えている。絶縁体11は、機械的特性や高温下の絶縁性に優れるアルミナ等により形成された略円筒状の部材である。絶縁体11は、軸線Oに沿って軸孔12が貫通する。   As shown in FIG. 1, the spark plug 10 includes an insulator 11, a center electrode 13 (second electrode), a metal shell 17, and a ground electrode 18 (first electrode). The insulator 11 is a substantially cylindrical member formed of alumina or the like that is excellent in mechanical properties and insulation at high temperatures. The insulator 11 passes through the shaft hole 12 along the axis O.

中心電極13は、軸孔12に挿入されて軸線Oに沿って絶縁体11に保持される棒状の電極である。中心電極13は、電極母材14と、電極母材14の先端に接合されるチップ15とを備えている。電極母材14は熱伝導性に優れる芯材が埋設されている。電極母材14は、Niを主体とする合金またはNiからなる金属材料で形成されており、芯材は銅または銅を主成分とする合金で形成されている。チップ15は、電極母材14よりも耐火花消耗性の高い白金、イリジウム、ルテニウム、ロジウム等の貴金属または貴金属を主体とする合金によって形成されている。   The center electrode 13 is a rod-shaped electrode that is inserted into the shaft hole 12 and held by the insulator 11 along the axis O. The center electrode 13 includes an electrode base material 14 and a chip 15 joined to the tip of the electrode base material 14. The electrode base material 14 is embedded with a core material excellent in thermal conductivity. The electrode base material 14 is made of an alloy mainly composed of Ni or a metal material made of Ni, and the core material is made of copper or an alloy mainly composed of copper. The tip 15 is made of a noble metal such as platinum, iridium, ruthenium, or rhodium that has a higher resistance to spark consumption than the electrode base material 14 or an alloy mainly composed of a noble metal.

端子金具16は、高圧ケーブル(図示せず)が接続される棒状の部材であり、先端側が絶縁体11内に配置される。端子金具16は、軸孔12内で中心電極13と電気的に接続されている。主体金具17は、内燃機関のねじ穴(図示せず)に固定される略円筒状の金属製の部材である。主体金具17は絶縁体11の外周に固定されている。   The terminal fitting 16 is a rod-like member to which a high voltage cable (not shown) is connected, and the distal end side is disposed in the insulator 11. The terminal fitting 16 is electrically connected to the center electrode 13 in the shaft hole 12. The metal shell 17 is a substantially cylindrical metal member fixed to a screw hole (not shown) of the internal combustion engine. The metal shell 17 is fixed to the outer periphery of the insulator 11.

接地電極18は、主体金具17に接合される電極母材19と、電極母材19に接合されるチップ20と、を備えている。電極母材19は熱伝導性に優れる芯材が埋設されている。電極母材19は、Niを主体とする合金またはNiからなる金属材料で形成されており、芯材は銅または銅を主成分とする合金で形成されている。なお、芯材を省略して、Niを主体とする合金またはNiからなる金属材料で電極母材19の全体を形成することは当然可能である。電極母材19は中心電極13へ向けて屈曲し、チップ20は火花ギャップG(図2参照)を介して中心電極13と対向する。   The ground electrode 18 includes an electrode base material 19 joined to the metal shell 17 and a chip 20 joined to the electrode base material 19. The electrode base material 19 is embedded with a core material excellent in thermal conductivity. The electrode base material 19 is made of an alloy mainly composed of Ni or a metal material made of Ni, and the core material is made of copper or an alloy mainly composed of copper. It is naturally possible to omit the core material and form the entire electrode base material 19 with an alloy mainly composed of Ni or a metal material made of Ni. The electrode base material 19 is bent toward the center electrode 13, and the tip 20 faces the center electrode 13 through a spark gap G (see FIG. 2).

スパークプラグ10は、例えば、以下のような方法によって製造される。まず、中心電極13を絶縁体11の軸孔12に挿入する。中心電極13は先端が軸孔12から外部に露出するように配置される。軸孔12に端子金具16を挿入し、端子金具16と中心電極13との導通を確保した後、予め電極母材19が接合された主体金具17を絶縁体11の外周に組み付ける。電極母材19にチップ20を接合した後、チップ20が中心電極13と軸線O方向に対向するように電極母材19を屈曲して、スパークプラグ10を得る。   The spark plug 10 is manufactured by the following method, for example. First, the center electrode 13 is inserted into the shaft hole 12 of the insulator 11. The center electrode 13 is disposed such that the tip is exposed to the outside from the shaft hole 12. After the terminal fitting 16 is inserted into the shaft hole 12 and the conduction between the terminal fitting 16 and the center electrode 13 is ensured, the metal shell 17 to which the electrode base material 19 has been joined in advance is assembled to the outer periphery of the insulator 11. After joining the tip 20 to the electrode base material 19, the electrode base material 19 is bent so that the tip 20 faces the center electrode 13 in the direction of the axis O to obtain the spark plug 10.

図2に示すようにチップ20は、緩和層21、及び、緩和層21に積層された放電層22を備えたクラッド材料であり、円盤状に形成されている。放電層22は、圧延法、爆着法、拡散法、爆着圧延法などの種々の方法により、緩和層21と金属学的に接合されている。チップ20は、抵抗溶接などによって電極母材19に緩和層21が接合される。   As shown in FIG. 2, the chip 20 is a clad material including a relaxation layer 21 and a discharge layer 22 laminated on the relaxation layer 21, and is formed in a disk shape. The discharge layer 22 is metallurgically joined to the relaxation layer 21 by various methods such as a rolling method, an explosion method, a diffusion method, and an explosion rolling method. In the tip 20, the relaxation layer 21 is joined to the electrode base material 19 by resistance welding or the like.

放電層22は、Ptを主体とし、Rhを第2成分として含有する合金である。放電層22がPt及びRhを含有することにより、耐酸化性および耐火花消耗性を確保できる。なお、「Ptを主体とする」とは、放電層22に対するPtの含有率が50質量%以上であることをいう。放電層22は、Pt,Rh以外に、Ni,Cr,Ti,Si,Y,Sr等の第3成分を含有できる。放電層22は、Pt及びRhを85質量%以上含有することが望ましい。耐火花消耗性を向上させるためである。   The discharge layer 22 is an alloy containing Pt as a main component and Rh as a second component. When the discharge layer 22 contains Pt and Rh, it is possible to ensure oxidation resistance and spark consumption resistance. Note that “consisting mainly of Pt” means that the content ratio of Pt with respect to the discharge layer 22 is 50 mass% or more. The discharge layer 22 can contain a third component such as Ni, Cr, Ti, Si, Y, and Sr in addition to Pt and Rh. The discharge layer 22 preferably contains 85% by mass or more of Pt and Rh. This is to improve the spark wear resistance.

緩和層21は、Ptを主体とし、Niを第2成分として含有する厚さ0.05mm以上の合金である。緩和層21は電極母材19と放電層22との間に介在して、電極母材19と放電層22との熱膨脹差に起因する熱応力を緩和する。なお、「Ptを主体とする」とは、緩和層21に対するPtの含有率が50質量%以上であることをいう。緩和層21はNiを3質量%よりも多く含有することが望ましい。緩和層21による熱応力の緩和効果を確保するためである。   The relaxation layer 21 is an alloy having a thickness of 0.05 mm or more containing Pt as a main component and Ni as a second component. The relaxation layer 21 is interposed between the electrode base material 19 and the discharge layer 22 to relieve thermal stress caused by the thermal expansion difference between the electrode base material 19 and the discharge layer 22. “Mainly containing Pt” means that the content of Pt with respect to the relaxation layer 21 is 50 mass% or more. The relaxing layer 21 preferably contains more than 3% by mass of Ni. This is to ensure a thermal stress relaxation effect by the relaxation layer 21.

緩和層21は厚さが0.05mm以上あるので、電極母材19と緩和層21との溶接性を確保できる。その反面、緩和層21の厚さが0.05mm以上になると、電極母材19と放電層22との熱膨脹差に起因する熱応力により、電極母材19と緩和層21との界面剥離や緩和層21と放電層22との界面剥離が生じ易くなる。界面剥離が生じると放電層22やチップ20が浮き上がるので、火花ギャップGが小さくなり、スパークプラグ10の着火性が損なわれる。また、界面剥離が進行して放電層22やチップ20が脱落すると、火花ギャップGが大きくなり、やはりスパークプラグ10の着火性が損なわれる。これらの界面剥離は、最高到達温度が600〜1000℃程度の熱衝撃によって生じる可能性がある。   Since the relaxing layer 21 has a thickness of 0.05 mm or more, the weldability between the electrode base material 19 and the relaxing layer 21 can be secured. On the other hand, when the thickness of the relaxation layer 21 is 0.05 mm or more, interface peeling or relaxation between the electrode base material 19 and the relaxation layer 21 due to thermal stress caused by the thermal expansion difference between the electrode base material 19 and the discharge layer 22. Interfacial peeling between the layer 21 and the discharge layer 22 is likely to occur. When the interface peeling occurs, the discharge layer 22 and the chip 20 are lifted, so that the spark gap G is reduced and the ignitability of the spark plug 10 is impaired. Further, when the interfacial peeling progresses and the discharge layer 22 and the chip 20 fall off, the spark gap G increases, and the ignitability of the spark plug 10 is also impaired. Such interfacial debonding may occur due to thermal shock having a maximum temperature of about 600 to 1000 ° C.

界面剥離を抑制するため、緩和層21及び放電層22の平均結晶粒径を制御する。結晶粒径が大きいと、転移が集積する範囲(長さ)が大きくなり、集積する転移も多くなる。その結果、応力集中を起こり易くすることができ、結晶粒界に割れを生じさせ易くできる。即ち、緩和層21の平均結晶粒径と放電層22の平均結晶粒径とを異ならせることにより、緩和層21及び放電層22のうち平均結晶粒径の大きい方の層の結晶粒界に割れを生じさせ、熱応力を緩和し、界面剥離を抑制する。緩和層21及び放電層22の結晶粒径は、緩和層21及び放電層22の加工条件や組成を制御して調製できる。   In order to suppress interfacial peeling, the average crystal grain size of the relaxation layer 21 and the discharge layer 22 is controlled. When the crystal grain size is large, the range (length) in which the transition is accumulated increases, and the number of transitions that accumulate is also increased. As a result, stress concentration can easily occur, and cracks can easily occur in the crystal grain boundaries. That is, by making the average crystal grain size of the relaxation layer 21 different from the average crystal grain size of the discharge layer 22, cracks occur in the crystal grain boundaries of the layer having the larger average crystal grain size among the relaxation layer 21 and the discharge layer 22. To relieve thermal stress and suppress interfacial debonding. The crystal grain sizes of the relaxation layer 21 and the discharge layer 22 can be adjusted by controlling the processing conditions and composition of the relaxation layer 21 and the discharge layer 22.

PtNi合金からなる緩和層21やPtRh合金からなる放電層22は、600℃程度の温度では組織がほとんど変化しないので、電極母材19に溶接された後の緩和層21や放電層22の組織が、最高到達温度が600℃程度の熱衝撃による熱応力の緩和に大きな影響を与える。電極母材19に溶接された後の緩和層21や放電層22の組織は、緩和層21や放電層22の加工条件によって制御できる。   Since the structure of the relaxation layer 21 made of PtNi alloy or the discharge layer 22 made of PtRh alloy hardly changes at a temperature of about 600 ° C., the structure of the relaxation layer 21 and the discharge layer 22 after being welded to the electrode base material 19 In addition, it has a great influence on the relaxation of thermal stress due to thermal shock with a maximum temperature of about 600 ° C. The structure of the relaxation layer 21 and the discharge layer 22 after being welded to the electrode base material 19 can be controlled by the processing conditions of the relaxation layer 21 and the discharge layer 22.

一方、緩和層21や放電層22は、1000℃程度に加熱されると経時的に組織が変化して平均結晶粒径が変化する。このときの緩和層21や放電層22の組織は、緩和層21や放電層22の組成によって制御できる。緩和層21や放電層22の組成によって制御された緩和層21や放電層22の組織は、最高到達温度が1000℃程度の熱衝撃による熱応力の緩和に大きな影響を与える。   On the other hand, when the relaxation layer 21 and the discharge layer 22 are heated to about 1000 ° C., the structure changes with time and the average crystal grain size changes. The structure of the relaxation layer 21 and the discharge layer 22 at this time can be controlled by the composition of the relaxation layer 21 and the discharge layer 22. The structure of the relaxation layer 21 and the discharge layer 22 controlled by the composition of the relaxation layer 21 and the discharge layer 22 has a great influence on the relaxation of thermal stress due to thermal shock having a maximum temperature of about 1000 ° C.

なお、緩和層21や放電層22の平均結晶粒径は、ISO643(2003年版)を基に作成されたJIS G0551(2013年)の附属書C「切断法による評価」に準拠して求められる。平均結晶粒径は、顕微鏡観察のために研磨された試験片の平らな断面上に現出する結晶粒内を横切る試験線の1結晶粒当たりの平均線分長である。本実施の形態では、軸線Oと平行な直線の試験線、軸線Oと直交する直線の試験線、軸線Oと45°に交わる直線の試験線を、軸線Oを含む断面にそれぞれ1本以上引き、平均結晶粒径を求める。試験線1mm当たりの平均捕捉結晶粒数または試験線1mm当たりの平均交点の数から、結晶粒内を横切る試験線の1結晶粒当たりの平均線分長が求められる。捕捉結晶粒数は試験線が通過または捕捉した結晶の数であり、交点の数は結晶粒界と試験線との交点の数である。   The average crystal grain size of the relaxation layer 21 and the discharge layer 22 is determined in accordance with Annex C “Evaluation by Cutting Method” of JIS G0551 (2013) created based on ISO643 (2003 edition). The average crystal grain size is an average line segment length per crystal grain of a test line that crosses the inside of a crystal grain appearing on a flat cross section of a test piece polished for microscopic observation. In the present embodiment, one or more straight test lines parallel to the axis O, a straight test line orthogonal to the axis O, and a straight test line intersecting with the axis O at 45 ° are drawn on the cross section including the axis O. The average crystal grain size is obtained. From the average number of captured crystal grains per 1 mm of the test line or the number of average intersections per 1 mm of the test line, the average line segment length per crystal grain of the test line crossing the crystal grain is obtained. The number of captured crystal grains is the number of crystals passed or captured by the test line, and the number of intersections is the number of intersections between the grain boundaries and the test lines.

電極母材19に溶接された後の放電層22及び緩和層21の組織において、緩和層21の平均結晶粒径と放電層22の平均結晶粒径とが同じ大きさであると、最高到達温度が600℃程度の熱衝撃によって、電極母材19と緩和層21との界面剥離や緩和層21と放電層22との界面剥離が生じ易いという問題点がある。   In the structure of the discharge layer 22 and the relaxation layer 21 after being welded to the electrode base material 19, if the average crystal grain size of the relaxation layer 21 and the average crystal grain size of the discharge layer 22 are the same, However, there is a problem that the interface peeling between the electrode base material 19 and the relaxing layer 21 and the interface peeling between the relaxing layer 21 and the discharge layer 22 are likely to occur due to thermal shock of about 600 ° C.

これに対し、電極母材19に溶接された後の放電層22及び緩和層21の組織において、放電層22の平均結晶粒径が緩和層21の平均結晶粒径よりも大きいと、最高到達温度が600℃程度の熱衝撃によって放電層22の結晶粒界に割れを生じさせ、放電層22(チップ20)を変形させ易くできる。その結果、放電層22の結晶粒界の割れや放電層22(チップ20)の変形によって熱応力を緩和し、界面剥離を抑制できる。   On the other hand, when the average crystal grain size of the discharge layer 22 is larger than the average crystal grain size of the relaxation layer 21 in the structure of the discharge layer 22 and the relaxation layer 21 after being welded to the electrode base material 19, However, the thermal shock of about 600 ° C. can cause cracks in the crystal grain boundaries of the discharge layer 22 to easily deform the discharge layer 22 (chip 20). As a result, thermal stress can be relieved by cracks in the grain boundaries of the discharge layer 22 and deformation of the discharge layer 22 (chip 20), and interface peeling can be suppressed.

なお、放電層22の結晶粒界の割れが進行して結晶粒が脱落するとスパークプラグ10の着火性が損なわれるおそれがある。しかし、放電層22(チップ20)が変形することによって、結晶粒界の割れの程度を小さくできるので、放電層22の結晶粒界の割れがスパークプラグ10の着火性に悪影響を与えないようにできる。   Note that if the crystal grain boundaries of the discharge layer 22 are cracked and the crystal grains fall off, the ignitability of the spark plug 10 may be impaired. However, the deformation of the discharge layer 22 (chip 20) can reduce the degree of cracks at the grain boundaries, so that the cracks at the grain boundaries of the discharge layer 22 do not adversely affect the ignitability of the spark plug 10. it can.

また、電極母材19に溶接された後の放電層22及び緩和層21の組織において、放電層22の平均結晶粒径が緩和層21の平均結晶粒径よりも小さいと、最高到達温度が600℃程度の熱衝撃によって緩和層21の結晶粒界に割れを生じさせることができる。その結果、緩和層21の結晶粒界の割れによって熱応力を緩和し、界面剥離を抑制できる。なお、緩和層21は放電などの性能を担う部分ではないので、緩和層21の結晶粒界に割れが生じても、スパークプラグ10の着火性に悪影響を与えないようにできる。   Further, in the structure of the discharge layer 22 and the relaxation layer 21 after being welded to the electrode base material 19, if the average crystal grain size of the discharge layer 22 is smaller than the average crystal grain size of the relaxation layer 21, the maximum temperature reached 600. Cracks can be generated at the crystal grain boundaries of the relaxation layer 21 by a thermal shock of about ° C. As a result, the thermal stress can be relaxed by the cracks in the crystal grain boundaries of the relaxation layer 21, and the interface peeling can be suppressed. Since relaxation layer 21 is not a part responsible for performance such as electric discharge, even if cracks occur in the crystal grain boundaries of relaxation layer 21, the ignitability of spark plug 10 can be prevented from being adversely affected.

さらに、放電層22及び緩和層21の組成が、チップ20が1200℃で33時間加熱された後の放電層22及び緩和層21の組織において、放電層22の平均結晶粒径が緩和層21の平均結晶粒径よりも大きくなるように設定されると、最高到達温度が1000℃程度の熱衝撃によって、放電層22の結晶粒界に割れを生じさせ易くすることができる。その結果、熱応力を緩和し、界面剥離を抑制できる。   Further, in the structure of the discharge layer 22 and the relaxation layer 21 after the chip 20 is heated at 1200 ° C. for 33 hours, the average crystal grain size of the discharge layer 22 is that of the relaxation layer 21. If it is set to be larger than the average crystal grain size, it is possible to easily cause cracks in the crystal grain boundaries of the discharge layer 22 due to thermal shock with a maximum temperature of about 1000 ° C. As a result, thermal stress can be relaxed and interface peeling can be suppressed.

また、放電層22及び緩和層21の組成が、チップ20が1200℃で33時間加熱された後の放電層22及び緩和層21の組織において、放電層22の平均結晶粒径が緩和層21の平均結晶粒径よりも小さくなるように設定されると、最高到達温度が1000℃程度の熱衝撃によって、緩和層21の結晶粒界に割れを生じさせ易くすることができる。その結果、熱応力を緩和し、界面剥離を抑制できる。   Further, in the structure of the discharge layer 22 and the relaxation layer 21 after the chip 20 is heated at 1200 ° C. for 33 hours, the average crystal grain size of the discharge layer 22 is that of the relaxation layer 21. When set so as to be smaller than the average crystal grain size, it is possible to easily cause cracks at the crystal grain boundaries of the relaxing layer 21 by thermal shock with a maximum temperature of about 1000 ° C. As a result, thermal stress can be relaxed and interface peeling can be suppressed.

なお、放電層22及び緩和層21の厚さは、チップ20が電極母材19に溶接された後の放電層22の厚さを、チップ20が電極母材19に溶接された後の緩和層21の厚さで除した値を3未満にするのが好ましい。緩和層21の厚さに対する放電層22の厚さを3未満にすることで、熱応力により放電層22を変形させ易くして、熱応力の緩和効果を確保するためである。なお、放電層22及び緩和層21の厚さは、軸線Oを含む断面における放電層22及び緩和層21の中央の厚さである。   The thicknesses of the discharge layer 22 and the relaxation layer 21 are the thicknesses of the discharge layer 22 after the tip 20 is welded to the electrode base material 19 and the relaxation layers after the tip 20 is welded to the electrode base material 19. The value divided by the thickness of 21 is preferably less than 3. This is because by making the thickness of the discharge layer 22 less than 3 with respect to the thickness of the relaxation layer 21, the discharge layer 22 can be easily deformed by thermal stress, and the thermal stress relaxation effect is ensured. The thicknesses of the discharge layer 22 and the relaxation layer 21 are the thicknesses of the center of the discharge layer 22 and the relaxation layer 21 in the cross section including the axis O.

本発明を実施例によりさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。   The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

<サンプルの作成>
試験者は、形状、放電層22及び緩和層21の組成、平均結晶粒径および厚さの異なる種々のチップ20を、放電層22と緩和層21との固相拡散接合により作成した。NFC600製の電極母材19に放電層22を抵抗溶接により接合し、接地電極18に種々のチップ20が設けられたスパークプラグ10のサンプルを作成した。作成したサンプルを一覧にして表1に示した。各サンプルについて複数の評価を行うので、各サンプルは複数準備した。
<Create sample>
The tester produced various chips 20 having different shapes, compositions of the discharge layer 22 and the relaxation layer 21, average crystal grain size and thickness by solid phase diffusion bonding of the discharge layer 22 and the relaxation layer 21. The discharge layer 22 was joined to the electrode base material 19 made of NFC600 by resistance welding, and samples of the spark plug 10 in which various tips 20 were provided on the ground electrode 18 were prepared. The created samples are listed in Table 1. Since a plurality of evaluations were performed for each sample, a plurality of each sample was prepared.

Figure 2018120651
なお、サンプル1〜56は、クラッド材料で放電層22及び緩和層21が作られたチップ20が接地電極18に設けられている。サンプル57〜62は、放電層22と緩和層21とに分かれていないチップが接地電極18に設けられている。表1におけるチップの「放電層」「緩和層」の欄の数値は元素の質量%を示している。
Figure 2018120651
In samples 1 to 56, the chip 20 in which the discharge layer 22 and the relaxation layer 21 are made of a clad material is provided on the ground electrode 18. In Samples 57 to 62, a chip that is not divided into the discharge layer 22 and the relaxation layer 21 is provided on the ground electrode 18. The numerical values in the “discharge layer” and “relaxation layer” columns of the chip in Table 1 indicate the mass% of the element.

試験者は、耐火花消耗性を評価するための2種類の試験(試験1及び試験2)、及び、バーナで接地電極18を加熱して放冷する2種類の冷熱繰り返し試験(冷熱試験1及び冷熱試験2)を、各サンプルに別々に実施した。   The tester has two types of tests for evaluating the spark wear resistance (Test 1 and Test 2), and two types of repeated cooling tests (cooling test 1 and test 2) in which the ground electrode 18 is heated by a burner and allowed to cool. A cold test 2) was performed on each sample separately.

試験者は、これらの試験とは別に、電極母材19に溶接された後の試験前のチップ20を樹脂に埋め込んだ後に研磨して、顕微鏡観察によって、軸線Oを含む断面上に現出する結晶粒内を横切る試験線(軸線Oと平行、直交、45°に交わるそれぞれ1本以上の直線)の1結晶粒当たりの平均線分長(平均結晶粒径)を求めた。放電層22の平均結晶粒径を緩和層21の平均結晶粒径で除した値を、表1の「結晶粒径」「前」の欄に記した。それと同時に、軸線Oを含む断面上に現出する放電層22の厚さを緩和層21の厚さで除した値を求めた。その値を表1の「厚さ」の欄に記した。   In addition to these tests, the tester embeds the chip 20 before the test after being welded to the electrode base material 19 in the resin, polishes it, and appears on a cross section including the axis O by microscopic observation. The average line segment length (average crystal grain size) per crystal grain of a test line (one or more straight lines each parallel to, perpendicular to, and 45 ° to the axis O) crossing the crystal grain was determined. Values obtained by dividing the average crystal grain size of the discharge layer 22 by the average crystal grain size of the relaxation layer 21 are shown in the columns “Crystal grain size” and “Previous” in Table 1. At the same time, a value obtained by dividing the thickness of the discharge layer 22 appearing on the cross section including the axis O by the thickness of the relaxation layer 21 was obtained. The value is shown in the column of “Thickness” in Table 1.

これとは別に、試験者は、チップ20が溶接された試験前の電極母材19を切断した。切断した電極母材19及びチップ20を1200℃で33時間加熱し、その後、樹脂に埋め込んだ電極母材19及びチップ20を研磨して、軸線Oを含む断面上に現出する結晶粒内を横切る試験線(軸線Oと平行、直交、45°に交わるそれぞれ1本以上の直線)の1結晶粒当たりの平均線分長(平均結晶粒径)を求めた。放電層22の平均結晶粒径を緩和層21の平均結晶粒径で除した値を、表1の「結晶粒径」「後」の欄に記した。   Separately, the tester cut the electrode base material 19 before the test, to which the tip 20 was welded. The cut electrode base material 19 and the chip 20 are heated at 1200 ° C. for 33 hours, and then the electrode base material 19 and the chip 20 embedded in the resin are polished, and the inside of the crystal grains appearing on the cross section including the axis O The average line segment length (average crystal grain size) per crystal grain of the test line across (one or more straight lines each parallel to, perpendicular to, and 45 ° with respect to the axis O) was determined. Values obtained by dividing the average crystal grain size of the discharge layer 22 by the average crystal grain size of the relaxation layer 21 are shown in the “crystal grain size” and “after” columns of Table 1.

<耐火花消耗性 試験1の試験方法および評価方法>
試験者は、排気タービン式過給装置の付いた排気量2.0リットルの4気筒直噴エンジンにスパークプラグ10の各サンプルを取り付け、エンジンを運転した。各サンプルの火花ギャップ(放電層22と中心電極13との間隔)は0.75mmとした。エンジンの運転条件は、回転数を4000rpm、空燃比を12.0、負荷を図示平均有効圧力(NMEP)190kPa、エンジンの運転時間は連続200時間とした。
<Spark Resistance Consumption Test 1 Test Method and Evaluation Method>
The tester attached each sample of the spark plug 10 to a 4-cylinder direct injection engine with a displacement of 2.0 liters equipped with an exhaust turbine supercharger and operated the engine. The spark gap (interval between the discharge layer 22 and the center electrode 13) of each sample was 0.75 mm. The engine operating conditions were a rotational speed of 4000 rpm, an air fuel ratio of 12.0, a load of 190 kPa as a mean effective effective pressure (NMEP), and an engine operating time of 200 hours.

試験者は、試験後の各サンプルの火花ギャップをピンゲージで測定し、試験による火花ギャップの増加量(消耗量)を求めた。評価は、増加量が0.15mm未満は「A」、増加量が0.15mm以上0.20mm未満は「B」、増加量が0.20mm以上は「C」とした。   The tester measured the spark gap of each sample after the test with a pin gauge, and obtained the increase amount (consumption amount) of the spark gap by the test. The evaluation was “A” when the increase amount was less than 0.15 mm, “B” when the increase amount was 0.15 mm or more and less than 0.20 mm, and “C” when the increase amount was 0.20 mm or more.

<耐火花消耗性 試験2の試験方法および評価方法>
各サンプルの火花ギャップを1.05mmとした以外は、試験1と同様にして、スパークプラグ10の各サンプルを取り付けたエンジンを運転した。
<Spark Resistance Consumption Test 2 Test Method and Evaluation Method>
An engine equipped with each sample of the spark plug 10 was operated in the same manner as in Test 1 except that the spark gap of each sample was 1.05 mm.

試験者は、試験後の各サンプルの火花ギャップをピンゲージで測定し、試験による火花ギャップの増加量(消耗量)を求めた。評価は、増加量が0.15mm未満は「S」、増加量が0.15mm以上0.20mm未満は「A」、増加量が0.20mm以上0.30mm未満は「B」、増加量が0.30mm以上は「C」とした。   The tester measured the spark gap of each sample after the test with a pin gauge, and obtained the increase amount (consumption amount) of the spark gap by the test. Evaluation is “S” when the increase is less than 0.15 mm, “A” when the increase is from 0.15 mm to less than 0.20 mm, “B” when the increase is from 0.20 mm to less than 0.30 mm, and the increase is “C” was set for 0.30 mm or more.

<冷熱試験1の試験方法>
試験者は、電極母材19の先端(主体金具17から最も離れた部分)の温度が600℃になるように2分間バーナで加熱した後、1分間かけて放冷することを1サイクルとして、1000サイクルを電極母材19に加えた。
<Test method of the thermal test 1>
The tester, after heating with a burner for 2 minutes so that the temperature of the tip of the electrode base material 19 (the part farthest from the metal shell 17) is 600 ° C., let it cool for 1 minute as one cycle, 1000 cycles were applied to the electrode matrix 19.

<冷熱試験2の試験方法>
試験者は、電極母材19の先端の温度が1000℃になるように2分間バーナで加熱した後、1分間かけて放冷することを1サイクルとして、1000サイクルを電極母材19に加えた。
<Test method of the thermal test 2>
The tester added 1000 cycles to the electrode base material 19 by heating the tip of the electrode base material 19 with a burner for 2 minutes so that the temperature was 1000 ° C., and letting it cool for 1 minute as one cycle. .

<界面剥離の評価方法>
試験者は、試験後の接地電極18を樹脂に埋め込み、研磨して、チップ20の中心を含む断面を露出させた。顕微鏡観察によって、チップ20の長さ(チップ20と電極母材19との界面に沿った寸法)をA、界面剥離が生じておらず緩和層21と電極母材19とが接合されている部分の長さをa、界面剥離が生じておらず放電層22と緩和層21とが接合されている部分の長さをbとし、界面剥離の割合、即ちX=(A−a)/A(%)、Y=(A−b)/A(%)を求めた。評価は、X,Yの大きい方の値が10%未満は「S」、10%以上40%未満は「A」、40%以上50%未満は「B」、50%以上は「C」とした。
<Evaluation method of interface peeling>
The tester embedded the ground electrode 18 after the test in a resin and polished it to expose the cross section including the center of the chip 20. By microscopic observation, the length of the tip 20 (a dimension along the interface between the tip 20 and the electrode base material 19) is A, and the portion where the interface layer is not peeled and the relaxing layer 21 and the electrode base material 19 are joined Where a is the length of the part where the interface peeling does not occur and the length of the portion where the discharge layer 22 and the relaxation layer 21 are joined is b, and the ratio of the interface peeling, that is, X = (A−a) / A ( %), Y = (A−b) / A (%). Evaluation is such that the larger value of X and Y is less than 10% is “S”, 10% to less than 40% is “A”, 40% to less than 50% is “B”, and 50% or more is “C”. did.

<粒界割れの評価方法>
試験者は、上記の界面剥離を評価した断面(試験後の接地電極18を樹脂に埋め込み、研磨して露出させたチップ20の中心を含む断面)において、放電層22、緩和層21の各々の断面積に対する、粒界割れにより欠損している部分の面積の割合(%)をそれぞれ求めた。評価は、1%未満は「A」、1%以上10%未満は「B」、10%以上は「C」とした。
<Evaluation method of intergranular cracking>
The tester evaluated each of the discharge layer 22 and the relaxation layer 21 in the cross-section (the cross-section including the center of the chip 20 exposed by embedding the ground electrode 18 after the test in resin and polishing) in the cross-section evaluated for the above-described interface peeling. The ratio (%) of the area of the part missing due to the grain boundary cracking with respect to the cross-sectional area was determined. The evaluation was “A” for less than 1%, “B” for 1% or more and less than 10%, and “C” for 10% or more.

<変形の評価方法>
冷熱試験後にマイクロメータで測定した電極母材19からのチップ20の突き出し量から、冷熱試験前にマイクロメータで測定した電極母材19からのチップ20の突き出し量を減じた値をチップ20の変形量(μm)とした。
<Method for evaluating deformation>
The deformation of the chip 20 is obtained by subtracting the protrusion amount of the tip 20 from the electrode base material 19 measured with the micrometer before the cooling test from the protrusion amount of the tip 20 from the electrode base material 19 measured with the micrometer after the cooling test. Amount (μm).

<総合評価の方法>
各評価の「S」に3点、「A」に2点、「B」に1点、Cに0点を付与して各評価を数値化し、合計点を算出した。総合評価は、その合計点が18点以上は「S」、15点〜17点は「A」、11点〜14点は「B」、0点〜10点は「C」とした。但し、各評価のなかに一つでも「C」が存在する場合は、合計点に関わらず、総合評価は「C」とした。
<Method of comprehensive evaluation>
For each evaluation, 3 points were assigned to “S”, 2 points were given to “A”, 1 point was given to “B”, and 0 points were given to C. Each evaluation was digitized to calculate a total score. In the comprehensive evaluation, the total score was “S” for 18 points or more, “A” for 15 to 17 points, “B” for 11 to 14 points, and “C” for 0 to 10 points. However, when at least one “C” is present in each evaluation, the overall evaluation is “C” regardless of the total score.

<結果>
表1の「チップ」「組成」の欄に示すように、サンプル1〜52は、放電層がPtRh合金からなり、緩和層がPtNi合金からなるサンプルであった。サンプル53,54は、緩和層はPtNi合金からなるが、放電層がPtRh合金以外の金属からなるサンプルであった。サンプル55,56は、放電層はPtRh合金からなるが、緩和層がPtNi合金以外の金属からなるサンプルであった。サンプル57〜62は、クラッド材料ではないチップを用いたサンプルであった。
<Result>
As shown in the “chip” and “composition” columns of Table 1, Samples 1 to 52 were samples in which the discharge layer was made of a PtRh alloy and the relaxation layer was made of a PtNi alloy. In Samples 53 and 54, the relaxation layer was made of a PtNi alloy, but the discharge layer was made of a metal other than the PtRh alloy. In Samples 55 and 56, the discharge layer was made of a PtRh alloy, but the relaxation layer was made of a metal other than the PtNi alloy. Samples 57 to 62 were samples using chips that were not clad materials.

冷熱試験1の界面剥離の評価において、サンプル53〜56,57,59,60,62は評価がCであったのに対し、サンプル1〜14,17〜52,58,61は評価がS〜Bであった。このサンプル1〜14,17〜52,58,61のうち、サンプル58,61以外のサンプル1〜14,17〜52は、耐火花消耗性 試験1の評価がA又はBであった。   In the evaluation of interfacial debonding in the thermal test 1, the samples 53 to 56, 57, 59, 60, and 62 were evaluated as C, whereas the samples 1 to 14, 17 to 52, 58, and 61 were evaluated as S to B. Among these samples 1 to 14, 17 to 52, 58 and 61, the samples 1 to 14 and 17 to 52 other than the samples 58 and 61 were evaluated as A or B in the spark wear resistance test 1.

サンプル1〜52のうち、表1の「結晶粒径」「前」の欄に示すように、サンプル15,16は、電極母材19に溶接された後の放電層22の平均結晶粒径と緩和層21の平均結晶粒径とが同じであった。サンプル1〜14,17〜52は、電極母材19に溶接された後の放電層22の平均結晶粒径と緩和層21の平均結晶粒径とが異なるサンプルであった。サンプル1〜14,17〜52のように、放電層がPtRh合金からなり、緩和層がPtNi合金からなるサンプルでは、電極母材19に溶接された後の放電層22の平均結晶粒径と緩和層21の平均結晶粒径とを互いに異ならせることにより、最高到達温度が600℃の冷熱試験1において、界面剥離を抑制できることが確認された。   Among the samples 1 to 52, as shown in the columns of “Crystal grain size” and “Previous” in Table 1, samples 15 and 16 are the average crystal grain size of the discharge layer 22 after being welded to the electrode base material 19. The average crystal grain size of the relaxation layer 21 was the same. Samples 1 to 14 and 17 to 52 were samples in which the average crystal grain size of the discharge layer 22 after being welded to the electrode base material 19 and the average crystal grain size of the relaxation layer 21 were different. In samples 1 to 14 and 17 to 52, in which the discharge layer is made of a PtRh alloy and the relaxation layer is made of a PtNi alloy, the average crystal grain size and relaxation of the discharge layer 22 after being welded to the electrode base material 19 It was confirmed that interfacial delamination can be suppressed in the thermal test 1 where the maximum temperature reached 600 ° C. by making the average crystal grain size of the layer 21 different from each other.

サンプル1〜14,17〜52のうち、サンプル1〜14は、電極母材19に溶接された後の放電層22の平均結晶粒径が、緩和層21の平均結晶粒径より小さいサンプルであった。サンプル17〜52は、電極母材19に溶接された後の放電層22の平均結晶粒径が、緩和層21の平均結晶粒径より大きいサンプルであった。サンプル1〜14は、冷熱試験1において、緩和層21の粒界割れの面積が、放電層22の粒界割れの面積より大きいことがわかった。一方、サンプル17〜52は、冷熱試験1において、放電層22の粒界割れの面積が、緩和層21の粒界割れの面積より大きいことがわかった。   Among samples 1 to 14 and 17 to 52, samples 1 to 14 are samples in which the average crystal grain size of the discharge layer 22 after being welded to the electrode base material 19 is smaller than the average crystal grain size of the relaxation layer 21. It was. Samples 17 to 52 were samples in which the average crystal grain size of the discharge layer 22 after being welded to the electrode base material 19 was larger than the average crystal grain size of the relaxing layer 21. In samples 1 to 14, it was found in the thermal test 1 that the area of grain boundary cracks in the relaxation layer 21 was larger than the area of grain boundary cracks in the discharge layer 22. On the other hand, samples 17 to 52 were found to have a grain boundary crack area of the discharge layer 22 larger than that of the relaxation layer 21 in the cooling test 1.

これらの結果から、放電層22及び緩和層21のうち平均結晶粒径の大きい層に生じた粒界割れにより、冷熱試験1の熱衝撃で生じた熱応力を緩和して界面剥離を抑制できたと推察される。   From these results, it can be said that the interfacial delamination can be suppressed by relaxing the thermal stress generated by the thermal shock of the cold test 1 due to the intergranular cracking generated in the layer having the large average crystal grain size among the discharge layer 22 and the relaxation layer 21 Inferred.

冷熱試験1の界面剥離の評価において、サンプル8,9,17〜20,34,35を比べると、緩和層21のNiの含有率が3質量%以下のサンプル17〜20,34,35は評価がBであった。しかし、緩和層21がNiを3質量%よりも多く(5質量%)含有するサンプル8,9は評価がSであった。この結果から、Niを3質量%よりも多く含む緩和層21は、緩和層21の線膨張率が、放電層22の線膨張率と電極母材19の線膨張率との中間に近づいたことで、界面剥離を抑制できたと推察される。   In the evaluation of interfacial delamination in the thermal test 1, when samples 8, 9, 17 to 20, 34, and 35 are compared, samples 17 to 20, 34, and 35 in which the Ni content of the relaxation layer 21 is 3% by mass or less are evaluated. Was B. However, the samples 8 and 9 in which the relaxation layer 21 contains more than 3 mass% (5 mass%) of Ni were evaluated as S. From this result, in the relaxation layer 21 containing more than 3% by mass of Ni, the linear expansion coefficient of the relaxation layer 21 approached the middle between the linear expansion coefficient of the discharge layer 22 and the linear expansion coefficient of the electrode base material 19. Thus, it is presumed that interfacial delamination could be suppressed.

冷熱試験1の界面剥離の評価において、サンプル31〜33を比べると、電極母材19に溶接された後の放電層22の厚さを緩和層21の厚さで除した値が3以上のサンプル32,33は評価がBであった。しかし、放電層22の厚さを緩和層21の厚さで除した値が3未満のサンプル29〜31は評価がSであった。この結果から、放電層22の厚さを薄くすることにより、熱応力により放電層22を変形させ易くすることができ、熱応力の緩和効果を向上できたと推察される。   In the evaluation of the interfacial delamination in the thermal test 1, when comparing the samples 31 to 33, the value obtained by dividing the thickness of the discharge layer 22 after being welded to the electrode base material 19 by the thickness of the relaxation layer 21 is 3 or more. 32 and 33 were evaluated as B. However, the samples 29 to 31 in which the value obtained by dividing the thickness of the discharge layer 22 by the thickness of the relaxation layer 21 was less than 3 were evaluated as S. From this result, it is surmised that by reducing the thickness of the discharge layer 22, the discharge layer 22 can be easily deformed by thermal stress, and the effect of mitigating thermal stress can be improved.

なお、耐火花消耗性 試験2の評価において、サンプル6,7,13,14を比べると、放電層22がPt及びRhを80質量%含有するサンプル14は評価がCであった。しかし、放電層22がPt及びRhを85質量%以上含有するサンプル6,7,13は評価がA又はBであった。同様に、耐火花消耗性 試験1の評価において、サンプル6,7,13,14を比べると、放電層22がPt及びRhを80質量%含有するサンプル14は評価がBであった。しかし、放電層22がPt及びRhを85質量%以上含有するサンプル6,7,13は評価がAであった。この結果から、放電層22がPt及びRhを85質量%以上含有することにより、耐火花消耗性を向上できることがわかった。   In addition, in the evaluation of the spark wear resistance test 2, when the samples 6, 7, 13, and 14 were compared, the evaluation of the sample 14 in which the discharge layer 22 contained 80% by mass of Pt and Rh was C. However, samples 6, 7, and 13 in which the discharge layer 22 contained Pt and Rh in an amount of 85% by mass or more were evaluated as A or B. Similarly, when the samples 6, 7, 13, and 14 were compared in the evaluation of the spark wear resistance test 1, the sample 14 in which the discharge layer 22 contained 80% by mass of Pt and Rh was evaluated as B. However, Samples 6, 7, and 13 in which the discharge layer 22 contained Pt and Rh in an amount of 85% by mass or more were evaluated as A. From this result, it was found that the spark wear resistance can be improved when the discharge layer 22 contains Pt and Rh in an amount of 85% by mass or more.

冷熱試験2の界面剥離および粒界割れの評価において、サンプル8〜12とサンプル13,14とを比較し、サンプル17〜24とサンプル25〜33とを比較し、サンプル34〜36とサンプル37〜44とを比較した。サンプル8〜12,17〜24,34〜36は、電極母材19及びチップ20を1200℃で33時間加熱した後の緩和層21の平均結晶粒径が放電層22の平均結晶粒径よりも大きいサンプルであった。サンプル13,14,25〜33,37〜44は、電極母材19及びチップ20を1200℃で33時間加熱した後の放電層22の平均結晶粒径が緩和層21の平均結晶粒径よりも大きいサンプルであった。   In the evaluation of interfacial peeling and intergranular cracking in the thermal test 2, samples 8 to 12 and samples 13 and 14 are compared, samples 17 to 24 and samples 25 to 33 are compared, and samples 34 to 36 and samples 37 to 36 are compared. 44. In Samples 8 to 12, 17 to 24, and 34 to 36, the average crystal grain size of the relaxation layer 21 after the electrode base material 19 and the chip 20 were heated at 1200 ° C. for 33 hours is larger than the average crystal grain size of the discharge layer 22. It was a big sample. In Samples 13, 14, 25 to 33, and 37 to 44, the average crystal grain size of the discharge layer 22 after heating the electrode base material 19 and the chip 20 at 1200 ° C. for 33 hours is larger than the average crystal grain size of the relaxation layer 21. It was a big sample.

それらを比較した結果、サンプル8〜12,17〜24,34〜36は、サンプル13,14,25〜33,37〜44に比べて、粒界割れにより緩和層21の欠損した部分がそれぞれ大きいことが確認された。サンプル8〜12,17〜24,34〜36のように、1200℃で33時間加熱した後の緩和層21の平均結晶粒径が、放電層22の平均結晶粒径よりも大きくなるように緩和層21及び放電層22の組成を調製することにより、最高到達温度が1000℃の冷熱試験2において、緩和層21に粒界割れを生じさせ易くできることがわかった。その結果、熱応力を緩和してチップ20の界面剥離を抑制できる。   As a result of comparison, Samples 8 to 12, 17 to 24, and 34 to 36 have larger portions where the relaxation layer 21 is missing due to grain boundary cracking than Samples 13, 14, 25 to 33, and 37 to 44, respectively. It was confirmed. As in Samples 8-12, 17-24, 34-36, the average crystal grain size of the relaxation layer 21 after heating at 1200 ° C. for 33 hours is larger than the average crystal grain size of the discharge layer 22 It was found that by preparing the compositions of the layer 21 and the discharge layer 22, it is possible to easily cause grain boundary cracking in the relaxation layer 21 in the thermal test 2 where the maximum temperature reached 1000 ° C. As a result, thermal stress can be relieved and interface peeling of the chip 20 can be suppressed.

また、サンプル13,14,25〜33,37〜44は、サンプル8〜12,17〜24,34〜36に比べて、粒界割れにより緩和層21の欠損した部分がそれぞれ小さいことが確認された。サンプル13,14,25〜33,37〜44のように、1200℃で33時間加熱した後の放電層22の平均結晶粒径が、緩和層21の平均結晶粒径よりも大きくなるように緩和層21及び放電層22の組成を調製することにより、最高到達温度が1000℃の冷熱試験2において、緩和層21の粒界割れを抑制しつつ放電層22に微小な粒界割れを生じさせ易くできることがわかった。その結果、熱応力を緩和してチップ20の界面剥離を抑制できる。   In addition, it is confirmed that samples 13, 14, 25 to 33, and 37 to 44 have smaller portions where the relaxation layer 21 is lost due to grain boundary cracking than samples 8 to 12, 17 to 24, and 34 to 36, respectively. It was. As in Samples 13, 14, 25 to 33, and 37 to 44, the average crystal grain size of the discharge layer 22 after heating at 1200 ° C. for 33 hours becomes larger than the average crystal grain size of the relaxation layer 21. By preparing the composition of the layer 21 and the discharge layer 22, it is easy to cause minute grain boundary cracks in the discharge layer 22 while suppressing the grain boundary cracks in the relaxation layer 21 in the thermal test 2 where the maximum temperature reached 1000 ° C. I knew it was possible. As a result, thermal stress can be relieved and interface peeling of the chip 20 can be suppressed.

冷熱試験2の変形量において、サンプル17〜24,34〜36を比べると、放電層22が第3成分を含有するサンプル23,24,36は、その他のサンプル17〜22,34,35に比べて、変形量を小さくできることが確認された。   When the samples 17 to 24 and 34 to 36 are compared with each other in the deformation amount of the cooling test 2, the samples 23, 24, and 36 in which the discharge layer 22 contains the third component are compared with the other samples 17 to 22, 34, and 35. Thus, it was confirmed that the deformation amount can be reduced.

なお、本実施例では、円盤または角柱の形状をしたチップ20を接地電極18に設けたサンプル1〜62について各種の評価を行った。サンプル1〜62によれば、評価結果は、チップ20の形状に何ら影響されないことが確認された。   In this example, various evaluations were performed on samples 1 to 62 in which the chip 20 having a disk or prism shape was provided on the ground electrode 18. According to Samples 1 to 62, it was confirmed that the evaluation result was not affected at all by the shape of the chip 20.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.

上記実施の形態では、チップ20の形状が円盤または角柱の場合について説明したが、必ずしもこれに限られるものではなく、他の形状を採用することは当然可能である。他のチップ20の形状としては、例えば円錐台状、楕円柱状などが挙げられる。   In the above embodiment, the case where the shape of the chip 20 is a disk or a prism has been described. However, the shape is not necessarily limited to this, and other shapes can naturally be adopted. Examples of the shape of the other chip 20 include a truncated cone shape and an elliptical column shape.

上記実施の形態では、チップ20を電極母材19に抵抗溶接で接合する場合について説明したが、必ずしもこれに限られるものではなく、他の手段によってチップ20を電極母材19に接合することは当然可能である。他の手段としては、例えばレーザ溶接が挙げられる。   In the above embodiment, the case where the tip 20 is joined to the electrode base material 19 by resistance welding has been described. However, the present invention is not necessarily limited to this, and the tip 20 may be joined to the electrode base material 19 by other means. Of course it is possible. Examples of other means include laser welding.

上記実施の形態では、接地電極18にチップ20(緩和層21及び放電層22)を設ける場合について説明したが、必ずしもこれに限られるものではない。中心電極13に設けられたチップ15に代えて、中心電極13の電極母材14にチップ20を接合することは当然可能である。この場合にも、上記実施の形態で説明したのと同様の作用効果を実現できる。   In the above embodiment, the case where the chip 20 (relaxation layer 21 and discharge layer 22) is provided on the ground electrode 18 has been described, but the present invention is not necessarily limited thereto. It is naturally possible to join the chip 20 to the electrode base material 14 of the center electrode 13 instead of the chip 15 provided on the center electrode 13. Also in this case, the same effect as that described in the above embodiment can be realized.

上記実施の形態では、主体金具17に接合された電極母材19を屈曲させる場合について説明した。しかし、必ずしもこれに限られるものではない。屈曲した電極母材19を用いる代わりに、直線状の電極母材を用いることは当然可能である。この場合には、主体金具17の先端側を軸線O方向に延ばし、直線状の電極母材を主体金具17に接合して、電極母材を中心電極13と対向させる。   In the above embodiment, the case where the electrode base material 19 joined to the metal shell 17 is bent has been described. However, it is not necessarily limited to this. Naturally, instead of using the bent electrode base material 19, it is possible to use a linear electrode base material. In this case, the front end side of the metal shell 17 is extended in the axis O direction, a linear electrode base material is joined to the metal shell 17, and the electrode base material is opposed to the center electrode 13.

上記実施の形態では、中心電極13の軸線Oとチップ20とを一致させ、チップ20が中心電極13と軸線O方向に対向するように接地電極18を配置する場合について説明した。しかし、必ずしもこれに限られるものではなく、接地電極18と中心電極13との位置関係は適宜設定できる。接地電極18と中心電極13との他の位置関係としては、例えば、中心電極13の側面と接地電極18とが対向するように接地電極18を配置すること等が挙げられる。   In the above-described embodiment, the case where the axis O of the center electrode 13 and the chip 20 are aligned and the ground electrode 18 is disposed so that the chip 20 faces the center electrode 13 in the direction of the axis O has been described. However, the present invention is not necessarily limited to this, and the positional relationship between the ground electrode 18 and the center electrode 13 can be set as appropriate. Other positional relationships between the ground electrode 18 and the center electrode 13 include, for example, arranging the ground electrode 18 so that the side surface of the center electrode 13 and the ground electrode 18 face each other.

10 スパークプラグ
13 主体金具(第2電極)
18 接地電極(第1電極)
19 電極母材
20 チップ
21 緩和層
22 放電層
10 Spark plug 13 Metal shell (second electrode)
18 Ground electrode (first electrode)
19 Electrode Base Material 20 Tip 21 Relaxation Layer 22 Discharge Layer

Claims (8)

Ptを主体とする放電層とPtを主体とする緩和層とが接合されたチップと、Niを主体とする合金またはNiからなり前記緩和層が溶接された電極母材と、を備える第1電極と、
前記放電層と火花ギャップを介して対向する第2電極と、を備えるスパークプラグであって、
前記放電層は、Rhを第2成分として含有する合金からなり、
前記緩和層は、Niを第2成分として含有する厚さ0.05mm以上の合金からなり、
前記チップが前記電極母材に溶接された後の前記放電層および前記緩和層の組織は、前記放電層の平均結晶粒径と前記緩和層の平均結晶粒径とが互いに異なることを特徴とするスパークプラグ。
A first electrode comprising: a chip in which a discharge layer mainly composed of Pt and a relaxation layer mainly composed of Pt are joined; and an electrode base material made of an alloy mainly composed of Ni or Ni and welded to the relaxation layer. When,
A spark plug comprising a second electrode facing the discharge layer via a spark gap,
The discharge layer is made of an alloy containing Rh as a second component,
The relaxation layer is made of an alloy having a thickness of 0.05 mm or more containing Ni as a second component,
The structure of the discharge layer and the relaxation layer after the tip is welded to the electrode base material is characterized in that an average crystal grain size of the discharge layer and an average crystal grain size of the relaxation layer are different from each other. Spark plug.
前記チップが前記電極母材に溶接された後の前記放電層および前記緩和層の組織は、前記放電層の前記平均結晶粒径が、前記緩和層の前記平均結晶粒径よりも大きいことを特徴とする請求項1記載のスパークプラグ。   The structure of the discharge layer and the relaxation layer after the tip is welded to the electrode base material is characterized in that the average crystal grain size of the discharge layer is larger than the average crystal grain size of the relaxation layer. The spark plug according to claim 1. 前記チップが前記電極母材に溶接された後の前記放電層の厚さを、前記チップが前記電極母材に溶接された後の前記緩和層の厚さで除した値は3未満であることを特徴とする請求項2記載のスパークプラグ。   The value obtained by dividing the thickness of the discharge layer after the tip is welded to the electrode base material by the thickness of the relaxation layer after the tip is welded to the electrode base material is less than 3. The spark plug according to claim 2. 前記チップが前記電極母材に溶接された後の前記放電層および前記緩和層の組織は、前記放電層の前記平均結晶粒径が、前記緩和層の前記平均結晶粒径よりも小さいことを特徴とする請求項1記載のスパークプラグ。   The structure of the discharge layer and the relaxation layer after the tip is welded to the electrode base material is characterized in that the average crystal grain size of the discharge layer is smaller than the average crystal grain size of the relaxation layer. The spark plug according to claim 1. 前記緩和層は、Niを3質量%よりも多く含有することを特徴とする請求項4記載のスパークプラグ。   The spark plug according to claim 4, wherein the relaxation layer contains more than 3 mass% of Ni. 前記放電層および前記緩和層の組成は、前記チップが1200℃で33時間加熱された後の前記放電層および前記緩和層の組織において、前記放電層の前記平均結晶粒径が、前記緩和層の前記平均結晶粒径よりも大きくなるように設定されていることを特徴とする請求項1から5のいずれかに記載のスパークプラグ。   The composition of the discharge layer and the relaxation layer is such that, in the structure of the discharge layer and the relaxation layer after the chip is heated at 1200 ° C. for 33 hours, the average crystal grain size of the discharge layer is that of the relaxation layer. The spark plug according to any one of claims 1 to 5, wherein the spark plug is set to be larger than the average crystal grain size. 前記放電層および前記緩和層の組成は、前記チップが1200℃で33時間加熱された後の前記放電層および前記緩和層の組織において、前記放電層の前記平均結晶粒径が、前記緩和層の前記平均結晶粒径よりも小さくなるように設定されていることを特徴とする請求項1から5のいずれかに記載のスパークプラグ。   The composition of the discharge layer and the relaxation layer is such that, in the structure of the discharge layer and the relaxation layer after the chip is heated at 1200 ° C. for 33 hours, the average crystal grain size of the discharge layer is that of the relaxation layer. The spark plug according to any one of claims 1 to 5, wherein the spark plug is set to be smaller than the average crystal grain size. 前記放電層は、Pt及びRhを85質量%以上含有することを特徴とする請求項1から7のいずれかに記載のスパークプラグ。   The spark plug according to any one of claims 1 to 7, wherein the discharge layer contains 85 mass% or more of Pt and Rh.
JP2017009076A 2017-01-23 2017-01-23 Spark plug Active JP6557267B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017009076A JP6557267B2 (en) 2017-01-23 2017-01-23 Spark plug
CN201810001901.0A CN108346975B (en) 2017-01-23 2018-01-02 Spark plug
DE102018200211.8A DE102018200211B4 (en) 2017-01-23 2018-01-09 spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017009076A JP6557267B2 (en) 2017-01-23 2017-01-23 Spark plug

Publications (2)

Publication Number Publication Date
JP2018120651A true JP2018120651A (en) 2018-08-02
JP6557267B2 JP6557267B2 (en) 2019-08-07

Family

ID=62813067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017009076A Active JP6557267B2 (en) 2017-01-23 2017-01-23 Spark plug

Country Status (3)

Country Link
JP (1) JP6557267B2 (en)
CN (1) CN108346975B (en)
DE (1) DE102018200211B4 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160988A (en) * 1983-03-02 1984-09-11 日本特殊陶業株式会社 Spark plug
JP3724815B2 (en) * 1992-08-12 2005-12-07 株式会社デンソー Spark plug for internal combustion engine
JP5224980B2 (en) * 2008-09-08 2013-07-03 株式会社フジシールインターナショナル Blister package
US8415867B2 (en) * 2009-01-23 2013-04-09 Ngk Spark Plug Co., Ltd. Spark plug
JP5778819B2 (en) * 2013-05-09 2015-09-16 日本特殊陶業株式会社 Spark plug
JP6320354B2 (en) 2015-09-01 2018-05-09 日本特殊陶業株式会社 Spark plug and manufacturing method thereof
JP6328158B2 (en) 2016-01-26 2018-05-23 日本特殊陶業株式会社 Spark plug

Also Published As

Publication number Publication date
CN108346975B (en) 2020-05-19
JP6557267B2 (en) 2019-08-07
DE102018200211B4 (en) 2024-10-24
DE102018200211A1 (en) 2018-07-26
CN108346975A (en) 2018-07-31

Similar Documents

Publication Publication Date Title
JP5119268B2 (en) Spark plug and manufacturing method thereof
JP5978348B1 (en) Spark plug
KR101515257B1 (en) Spark plug for internal combustion engine and method of manufacturing the same
EP2325960B1 (en) Spark plug
JP6320354B2 (en) Spark plug and manufacturing method thereof
JP6328158B2 (en) Spark plug
JP2018120734A (en) Spark plug
US20070194681A1 (en) Spark plug designed to have enhanced spark resistance and oxidation resistance
WO2013018252A1 (en) Spark plug
JP6557267B2 (en) Spark plug
JP2006210325A (en) Spark plug
JP6745319B2 (en) Spark plug
JP4267837B2 (en) Spark plug and manufacturing method thereof
WO2015075855A1 (en) Spark plug
JP6061307B2 (en) Spark plug
JP5895056B2 (en) Spark plug
JP6944429B2 (en) Spark plug
JP2006173141A (en) Spark plug
JP2003105467A (en) Spark plug
JP7109146B2 (en) Spark plug
CN110048308B (en) Spark plug
JP2003323962A (en) Spark plug
WO2023013371A1 (en) Spark plug
JP2019125569A (en) Spark plug
JP6280899B2 (en) Spark plug

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190711

R150 Certificate of patent or registration of utility model

Ref document number: 6557267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250