JP2018120016A - Gamma ray-resistant reflection film - Google Patents

Gamma ray-resistant reflection film Download PDF

Info

Publication number
JP2018120016A
JP2018120016A JP2017009465A JP2017009465A JP2018120016A JP 2018120016 A JP2018120016 A JP 2018120016A JP 2017009465 A JP2017009465 A JP 2017009465A JP 2017009465 A JP2017009465 A JP 2017009465A JP 2018120016 A JP2018120016 A JP 2018120016A
Authority
JP
Japan
Prior art keywords
metal
gamma ray
reflection film
film
gamma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017009465A
Other languages
Japanese (ja)
Other versions
JP6870340B2 (en
Inventor
直文 丸山
Naofumi Maruyama
直文 丸山
直樹 三須
Naoki Misu
直樹 三須
叙夫 平川
Nobuo Hirakawa
叙夫 平川
仁美 笹尾
Hitomi Sasao
仁美 笹尾
務 竹内
Tsutomu Takeuchi
務 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Group Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Group Holdings Ltd filed Critical Toyo Seikan Group Holdings Ltd
Priority to JP2017009465A priority Critical patent/JP6870340B2/en
Publication of JP2018120016A publication Critical patent/JP2018120016A/en
Application granted granted Critical
Publication of JP6870340B2 publication Critical patent/JP6870340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gamma ray-resistant reflection film having resistance to gamma rays.SOLUTION: A gamma ray-resistant reflection film has a reflection film 2 formed on the top of a quartz glass base material 1. The reflection film 2 has a metal reflection layer 22 composed of a metal or alloy with 0.799 V or more of standard electrode potential.SELECTED DRAWING: Figure 1

Description

本発明は、耐ガンマ線反射膜に関し、より詳細には、石英ガラス基材のような基材の一部表面に形成され、ガンマ線照射に対して耐性を有する耐ガンマ線反射膜に関する。   The present invention relates to a gamma ray reflective film, and more particularly to a gamma ray reflective film formed on a partial surface of a substrate such as a quartz glass substrate and having resistance to gamma ray irradiation.

医学分野では、標準的な滅菌方法として、ガンマ線照射による医療機器の滅菌処理が行われている。ガンマ線照射により滅菌可能な光ファイバの一例が、特許文献1に記載されている。この特許文献1に記載の光ファイバには、水素含有光ファイバから外部への水素の拡散を抑制するために金属のコーティングが施されている。また、光ファイバの端面には、酸化アルミニウムなどの金属酸化物のコーティングが施されている。   In the medical field, as a standard sterilization method, medical devices are sterilized by gamma irradiation. An example of an optical fiber that can be sterilized by gamma irradiation is described in Patent Document 1. The optical fiber described in Patent Document 1 is coated with a metal in order to suppress diffusion of hydrogen from the hydrogen-containing optical fiber to the outside. The end face of the optical fiber is coated with a metal oxide such as aluminum oxide.

また、ガンマ線滅菌される医療機器の一例として、光干渉断層撮影法(OCT,Optical Coherence Tomography)に使用される光プローブが挙げられる。OCTでは、患者の体内に挿入した光プローブの先端から側方にコヒーレント光を出射するとともに反射光を受光し、器官内の断層画像を生成する。
なお、光プローブの多くは、器官が傷つくことを防止するため、耐薬品性が高く摩擦の少ないフッ素樹脂製のチューブで被覆されている。
An example of a medical device to be sterilized with gamma rays is an optical probe used for optical coherence tomography (OCT). In OCT, coherent light is emitted laterally from the tip of an optical probe inserted into a patient's body, and reflected light is received to generate a tomographic image in the organ.
Many of the optical probes are covered with a fluororesin tube having high chemical resistance and low friction in order to prevent the organ from being damaged.

特開平11−343144号公報JP-A-11-343144

金属反射膜を蒸着した光ファイバ等の医療機器にガンマ線を照射すると、金属反射膜が変質し、剥離したように見える現象(以下、「剥離現象」と称する。)が発生することがある。この剥離現象について本願に係る発明者は種々の実験及び検討を重ねた結果、この剥離現象が、医療機器を被覆するフッ素樹脂製のチューブ等が存在する場合にのみ発生することを見出した。また、フッ素樹脂にガンマ線を照射したところ、フッ化物が検出された。さらに、金属反射膜が変質した部分の付着物をラマン分光測定したところ、フッ化アルミニウムのラマンスペクトルと同様に158cm−1にピークを有するスペクトルが観測された。これらの結果から、剥離現象は、ガンマ線照射によりフッ素樹脂が僅かに分解され、発生したフッ素ラジカルが金属反射膜と反応したことによって発生したものであると考えられる。 When gamma rays are irradiated to a medical device such as an optical fiber on which a metal reflection film is deposited, the metal reflection film may be altered and a phenomenon that appears to be peeled off (hereinafter referred to as “peeling phenomenon”) may occur. As a result of repeated experiments and studies on the peeling phenomenon, the inventors of the present application have found that this peeling phenomenon occurs only when there is a fluororesin tube or the like covering the medical device. Moreover, when the fluororesin was irradiated with gamma rays, fluoride was detected. Furthermore, when the spectroscopic measurement of the deposit on the part where the metal reflective film was altered was performed, a spectrum having a peak at 158 cm −1 was observed, similar to the Raman spectrum of aluminum fluoride. From these results, it is considered that the peeling phenomenon is caused by the fact that the fluorine resin is slightly decomposed by gamma ray irradiation and the generated fluorine radicals react with the metal reflecting film.

本発明は、かかる事情に鑑みてなされたものであり、ガンマ線照射に対して耐性を有する耐ガンマ線反射膜の提供を目的としている。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a gamma ray reflective film having resistance to gamma ray irradiation.

本発明に係る耐ガンマ線反射膜は、基材の一部表面上に形成された反射膜を備え、前記反射膜は、0.799ボルト以上の標準電極電位を有する金属又は合金で形成された金属反射層を有することを特徴としている。   The anti-gamma ray reflective film according to the present invention includes a reflective film formed on a partial surface of a substrate, and the reflective film is a metal formed of a metal or alloy having a standard electrode potential of 0.799 volts or more. It has a reflective layer.

本発明の耐ガンマ線反射膜は、0.799ボルト以上の標準電極電位を有するイオン化傾向の低い金属又は合金で形成された金属反射層を有する。このようにイオン化傾向の小さい金属で反射層を形成することにより、反射層と、ガンマ線照射により発生したフッ素ラジカルとの反応を抑制し、ガンマ線の照射による反射膜のダメージを抑制することができる。   The anti-gamma ray reflective film of the present invention has a metal reflective layer formed of a metal or alloy having a standard electrode potential of 0.799 volts or more and a low ionization tendency. By forming the reflection layer with a metal having a low ionization tendency in this way, the reaction between the reflection layer and fluorine radicals generated by gamma ray irradiation can be suppressed, and damage to the reflection film due to gamma ray irradiation can be suppressed.

本発明の実施形態に係る耐ガンマ線反射膜の断面模式図である。It is a cross-sectional schematic diagram of the gamma ray resistant reflective film which concerns on embodiment of this invention.

以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1に、本発明に係る耐ガンマ線反射膜の断面模式図を示す。同図に示すように、本実施形態の耐ガンマ線反射膜は、石英ガラス基材1の上面に形成された反射膜2を備えている。   FIG. 1 is a schematic cross-sectional view of a gamma-resistant reflective film according to the present invention. As shown in the figure, the anti-gamma ray reflective film of this embodiment includes a reflective film 2 formed on the upper surface of a quartz glass substrate 1.

さらに、石英ガラス基材1は、不図示のフッ素樹脂製のチューブで被覆されている。フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、及び、ポリフッ化ビニリデン(PVDF)が挙げられるが、これらに限定されない。   Further, the quartz glass substrate 1 is covered with a fluororesin tube (not shown). Examples of the fluororesin include, but are not limited to, polytetrafluoroethylene (PTFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and polyvinylidene fluoride (PVDF).

石英ガラス基材1は、光ファイバや屈折率分布(Gradient Index,GRIN)レンズのような光伝播部材で構成されるのがよい。また、耐ガンマ線反射膜2は、石英ガラス基材1の鏡面研磨した表面に形成されるのがよく、耐ガンマ線反射膜2は、石英ガラス基材1の内部を伝播してきた光を反射してもよいし、外部からの光を反射してもよい。   The quartz glass substrate 1 is preferably composed of a light propagation member such as an optical fiber or a refractive index distribution (Gradient Index, GRIN) lens. The anti-gamma ray reflecting film 2 is preferably formed on the mirror-polished surface of the quartz glass substrate 1, and the anti-gamma ray reflecting film 2 reflects light propagating through the inside of the quartz glass substrate 1. Alternatively, light from the outside may be reflected.

反射膜2は、石英ガラス基材1の上面に、アンダーコート層21、金属反射層22、トップコート層23、オーバートップコート層24を順次に蒸着することにより形成された積層構造を有している。   The reflective film 2 has a laminated structure formed by sequentially depositing an undercoat layer 21, a metal reflective layer 22, a topcoat layer 23, and an overtopcoat layer 24 on the upper surface of the quartz glass substrate 1. Yes.

アンダーコート層21は、例えば、厚さ100nmのAlの蒸着膜で形成され、金属反射層22と石英ガラス基材1との接着性を高める効果を有することが好ましい。 The undercoat layer 21 is preferably formed of, for example, a deposited film of Al 2 O 3 having a thickness of 100 nm, and has an effect of improving the adhesion between the metal reflective layer 22 and the quartz glass substrate 1.

また、トップコート層23は、例えば、厚さ100nmのSiOの蒸着膜で形成され、金属反射層22の保護膜としての効果を有することが好ましい。 The topcoat layer 23 is preferably formed of, for example, a 100 nm thick SiO 2 vapor deposition film, and has an effect as a protective film of the metal reflective layer 22.

さらに、オーバートップコート層24は、例えば、厚さ50nmのTiの蒸着膜で形成され、反射膜2の反射量増加の効果を有することが好ましい。 Furthermore, the overtop coat layer 24 is preferably formed of, for example, a deposited film of Ti 3 O 5 having a thickness of 50 nm, and has an effect of increasing the amount of reflection of the reflective film 2.

ここで、表1に、金属反射層22として、種々の材料で厚さ150nmの蒸着膜を形成した場合のガンマ線耐性の試験結果を示す。ガンマ線耐性の試験にあたっては、50kGyのガンマ線を照射し、さらに、気温55℃かつ湿度95%のチャンバ内で6時間の高温高湿試験を経た後、反射膜2を観察して耐性を評価した。   Here, Table 1 shows a test result of gamma ray resistance when a deposited film having a thickness of 150 nm is formed of various materials as the metal reflective layer 22. In the gamma ray resistance test, 50 kGy of gamma ray was irradiated, and after a high temperature and high humidity test for 6 hours in a chamber having an air temperature of 55 ° C. and a humidity of 95%, the reflection film 2 was observed to evaluate the resistance.

Figure 2018120016
Figure 2018120016

上記の表1に示すように、金属反射層22を、1.5Vの標準電極電位を有する金(Au)、又は0.799Vの標準電極電位を有する銀(Ag)の蒸着膜として形成した場合には、試験後も反射膜2がきれいに残っていた。
一方、金属反射層22を、0.345Vの標準電極電位を有する銅(Cu)、又は−0.146Vの標準電極電位を有する錫(Sn)の蒸着膜として形成した場合には、試験後に反射膜2の剥離現象が発生した。
As shown in Table 1 above, when the metal reflective layer 22 is formed as a vapor deposition film of gold (Au) having a standard electrode potential of 1.5 V or silver (Ag) having a standard electrode potential of 0.799 V The reflective film 2 remained clean even after the test.
On the other hand, when the metal reflective layer 22 is formed as a deposited film of copper (Cu) having a standard electrode potential of 0.345 V or tin (Sn) having a standard electrode potential of −0.146 V, the reflection is performed after the test. The peeling phenomenon of the film 2 occurred.

上記の試験結果から、0.799ボルト以上の標準電極電位を有するイオン化傾向の低い金属で金属反射層22を形成した場合に、剥離現象の発生が回避されている。したがって、剥離現象の発生を回避するためには、耐ガンマ線反射膜の金属反射層22は、0.799ボルト以上の標準電極電位を有する金属で形成することが望ましい。
なお、金属反射層22は、0.799ボルト以上の標準電極電位を有する、金、銀、パラジウム又は白金をベースとした合金で形成してもよい。
From the above test results, the occurrence of the peeling phenomenon is avoided when the metal reflective layer 22 is formed of a metal having a standard electrode potential of 0.799 volts or more and a low ionization tendency. Therefore, in order to avoid the occurrence of the peeling phenomenon, it is desirable to form the metal reflection layer 22 of the anti-gamma ray reflection film with a metal having a standard electrode potential of 0.799 volts or more.
The metal reflection layer 22 may be formed of an alloy based on gold, silver, palladium, or platinum having a standard electrode potential of 0.799 volts or more.

以上、本発明の実施形態を説明したが、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲で種々の変更実施が可能である。例えば、上述した実施形態では、金属反射層22をアンダーコート層21とトップコート層23及びオーバートップコート層24とで挟んだ積層構造を有する反射膜2を説明したが、本発明では、反射膜の積層構造はこれに限定されない。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention. For example, in the above-described embodiment, the reflective film 2 having the laminated structure in which the metal reflective layer 22 is sandwiched between the undercoat layer 21, the topcoat layer 23, and the overtopcoat layer 24 has been described. The laminated structure is not limited to this.

また、上述した実施形態では、石英ガラス基材上に耐ガンマ線反射膜を形成した例を説明したが、本発明では、基材の材料はこれに限定されず、種々の材料を採用することができる。また、基材の形態も限定されない。特に、反射膜を形成する光伝播部材の表面は平面に限定されず、曲面であってもよい。   In the above-described embodiment, an example in which a gamma ray reflective film is formed on a quartz glass substrate has been described. However, in the present invention, the material of the substrate is not limited to this, and various materials can be adopted. it can. Further, the form of the substrate is not limited. In particular, the surface of the light propagation member forming the reflective film is not limited to a flat surface, and may be a curved surface.

本発明は、光干渉断層撮影法(Optical Coherence Tomography, OCT)用の光プローブをはじめとする、ガンマ線照射による滅菌処理が必要な種々の医療機器に適用して好適である。また、本発明は、ガンマ線により被曝することが予想される原子炉周辺で測定等に使用される機器や、宇宙空間において使用される機器にも適用して好適である。   The present invention is suitable for application to various medical devices that require sterilization by gamma irradiation, such as optical probes for optical coherence tomography (OCT). The present invention is also suitable for application to equipment used for measurement around a nuclear reactor that is expected to be exposed to gamma rays, and equipment used in outer space.

1 石英ガラス基材
2 反射膜
21 アンダーコート層
22 金属反射層
23 トップコート層
24 オーバートップコート層
DESCRIPTION OF SYMBOLS 1 Quartz glass base material 2 Reflective film 21 Undercoat layer 22 Metal reflective layer 23 Topcoat layer 24 Overtopcoat layer

Claims (4)

基材の一部表面上に形成された反射膜を備え、
前記反射膜は、0.799ボルト以上の標準電極電位を有する金属又は合金で形成された金属反射層を有する
ことを特徴とする、耐ガンマ線反射膜。
A reflective film formed on a part of the surface of the substrate;
The said reflection film has a metal reflection layer formed with the metal or alloy which has a standard electrode potential of 0.799 volts or more, The gamma-ray-resistant reflection film characterized by the above-mentioned.
前記基材は、光伝播部材であり、
前記反射膜は、前記光伝搬部材内を伝播してきた光を反射する
ことを特徴とする、請求項1記載の耐ガンマ線反射膜。
The base material is a light propagation member,
2. The anti-gamma ray reflection film according to claim 1, wherein the reflection film reflects light propagating through the light propagation member.
前記基材の少なくとも一部が、フッ素樹脂で被覆されている
ことを特徴とする、請求項1又は2記載の耐ガンマ線反射膜。
The gamma ray reflective film according to claim 1 or 2, wherein at least a part of the substrate is coated with a fluororesin.
前記金属反射層は、金又は銀の蒸着膜である
ことを特徴とする、請求項1〜3のいずれか一項に記載の耐ガンマ線反射膜。
The said metal reflection layer is a vapor deposition film | membrane of gold | metal | money or silver, The gamma-ray-resistant reflection film as described in any one of Claims 1-3 characterized by the above-mentioned.
JP2017009465A 2017-01-23 2017-01-23 Gamma-ray resistant film Active JP6870340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017009465A JP6870340B2 (en) 2017-01-23 2017-01-23 Gamma-ray resistant film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017009465A JP6870340B2 (en) 2017-01-23 2017-01-23 Gamma-ray resistant film

Publications (2)

Publication Number Publication Date
JP2018120016A true JP2018120016A (en) 2018-08-02
JP6870340B2 JP6870340B2 (en) 2021-05-12

Family

ID=63044327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017009465A Active JP6870340B2 (en) 2017-01-23 2017-01-23 Gamma-ray resistant film

Country Status (1)

Country Link
JP (1) JP6870340B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266334A (en) * 1984-07-31 1986-11-26 アメリカ合衆国 Method of depositing silver on glass substrate surface and manufacture of silver-coated mirror
JPH08199382A (en) * 1995-01-26 1996-08-06 Matsushita Electric Works Ltd Prevention of corrosion of metallic member
WO1999061542A1 (en) * 1998-05-28 1999-12-02 Dainippon Ink And Chemicals, Inc. Ultraviolet-curing composition, optical disk, and method of producing optical disk
JP2000019019A (en) * 1998-07-03 2000-01-21 Omron Corp Infrared detector
JP2002214418A (en) * 2001-01-17 2002-07-31 Morita Mfg Co Ltd Reflecting mirror and hollow waveguide
JP2002341155A (en) * 2001-05-16 2002-11-27 Machida Endscope Co Ltd Hollow optical fiber and method for manufacturing the same
JP2010014466A (en) * 2008-07-02 2010-01-21 National Institute Of Advanced Industrial & Technology Light utilizing type plasma torch and plasma torch holder
JP2010204380A (en) * 2009-03-03 2010-09-16 Kyocera Optec Co Ltd Light reflecting mirror and method of manufacturing the same
JP2014502373A (en) * 2010-11-18 2014-01-30 コーニング インコーポレイテッド Strengthened and protected silver coating on aluminum for optical mirrors
KR101375238B1 (en) * 2013-10-14 2014-03-18 신창핫멜트 주식회사 Reflective film with two metal reflective components
JP2014071321A (en) * 2012-09-28 2014-04-21 Fujifilm Corp Film mirror and composite film used for the same
JP2016095456A (en) * 2014-11-17 2016-05-26 旭硝子株式会社 Video display transparent member, video display system, and video display method
JP2016099397A (en) * 2014-11-18 2016-05-30 Jsr株式会社 Retardation film laminate, polarizing plate, and production method of retardation film laminate

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266334A (en) * 1984-07-31 1986-11-26 アメリカ合衆国 Method of depositing silver on glass substrate surface and manufacture of silver-coated mirror
JPH08199382A (en) * 1995-01-26 1996-08-06 Matsushita Electric Works Ltd Prevention of corrosion of metallic member
WO1999061542A1 (en) * 1998-05-28 1999-12-02 Dainippon Ink And Chemicals, Inc. Ultraviolet-curing composition, optical disk, and method of producing optical disk
JP2000019019A (en) * 1998-07-03 2000-01-21 Omron Corp Infrared detector
JP2002214418A (en) * 2001-01-17 2002-07-31 Morita Mfg Co Ltd Reflecting mirror and hollow waveguide
JP2002341155A (en) * 2001-05-16 2002-11-27 Machida Endscope Co Ltd Hollow optical fiber and method for manufacturing the same
JP2010014466A (en) * 2008-07-02 2010-01-21 National Institute Of Advanced Industrial & Technology Light utilizing type plasma torch and plasma torch holder
JP2010204380A (en) * 2009-03-03 2010-09-16 Kyocera Optec Co Ltd Light reflecting mirror and method of manufacturing the same
JP2014502373A (en) * 2010-11-18 2014-01-30 コーニング インコーポレイテッド Strengthened and protected silver coating on aluminum for optical mirrors
JP2014071321A (en) * 2012-09-28 2014-04-21 Fujifilm Corp Film mirror and composite film used for the same
KR101375238B1 (en) * 2013-10-14 2014-03-18 신창핫멜트 주식회사 Reflective film with two metal reflective components
JP2016095456A (en) * 2014-11-17 2016-05-26 旭硝子株式会社 Video display transparent member, video display system, and video display method
JP2016099397A (en) * 2014-11-18 2016-05-30 Jsr株式会社 Retardation film laminate, polarizing plate, and production method of retardation film laminate

Also Published As

Publication number Publication date
JP6870340B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
Salvi et al. Prevalence of periimplant diseases
Guarnieri et al. Platinum metallization for MEMS application: Focus on coating adhesion for biomedical applications
Huang et al. Tuning the rigidity of silk fibroin for the transfer of highly stretchable electronics
JP2014099349A (en) Transmission type target and radiation generating tube provided with the same, radiation generating device provided with the radiation generating tube, and radiographic device provided with the radiation generating device
WO2014148479A1 (en) Structure provided with antifouling amorphous carbon film and method for forming antifouling amorphous carbon film
JP5621184B2 (en) Transparent electrode
Dominic et al. Facile fabrication of superhydrophobic brass surface for excellent corrosion resistance
JP6870340B2 (en) Gamma-ray resistant film
Asiry et al. Influence of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires
JP6870341B2 (en) Gamma-ray resistant film
Ossowska et al. The mechanisms of degradation of titanium dental implants
Ion et al. Surface characterization, corrosion resistance and in vitro biocompatibility of a new Ti-Hf-Mo-Sn alloy
Lux et al. The role of substrate temperature and magnetic filtering for DLC by cathodic arc evaporation
Lepojević et al. Characterisation of NiTi orthodontic archwires surface after the simulation of mechanical loading in CACO2-2 cell culture
JP2013181916A (en) Radiation absorbing grid for radiographic imaging, manufacturing method thereof, and radiographic imaging system
Ahangar et al. The effect of adsorbed volatile organic compounds on an ultrathin water film measurement
Chaturvedi Corrosion of orthodontic brackets in different spices: In vitro: study
Wang et al. Non-evaporable getter Ti-V-Hf-Zr film coating on laser-treated aluminum alloy substrate for electron cloud mitigation
Sena et al. Larger surface area can reduce nitinol corrosion resistance
Rodríguez-de Marcos et al. Enhanced far-UV reflectance of Al mirrors protected with hot-deposited MgF2
Tantradi et al. Role of bitewing in enhancing the assessment of DMFS index in a group of Indian adolescents
Vera et al. Wear resistance of anodic titanium dioxide films produced on Ti-6Al-4V alloy
Hess et al. Polycrystalline diamond-on-polymer electrode arrays fabricated using a polymer-based transfer process
Reddy et al. Development and environmental stability of ITO thin film for spacecraft application
Rajput et al. Effects of Disinfection Procedures on Surface Roughness of Hard Chairside Relining and Denture Base Acrylic Resins: An: In Vitro: Study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6870340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150