JP2018119921A - Tire wear performance prediction method - Google Patents

Tire wear performance prediction method Download PDF

Info

Publication number
JP2018119921A
JP2018119921A JP2017013473A JP2017013473A JP2018119921A JP 2018119921 A JP2018119921 A JP 2018119921A JP 2017013473 A JP2017013473 A JP 2017013473A JP 2017013473 A JP2017013473 A JP 2017013473A JP 2018119921 A JP2018119921 A JP 2018119921A
Authority
JP
Japan
Prior art keywords
wear
wear energy
tire
energy
calculation step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017013473A
Other languages
Japanese (ja)
Other versions
JP6790875B2 (en
Inventor
洋一 彌榮
Yoichi Yaei
洋一 彌榮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2017013473A priority Critical patent/JP6790875B2/en
Publication of JP2018119921A publication Critical patent/JP2018119921A/en
Application granted granted Critical
Publication of JP6790875B2 publication Critical patent/JP6790875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tire wear performance prediction method capable of more correctly predicting wear performance of a tire.SOLUTION: A tire wear performance prediction method includes: a first calculation process N1 of calculating a wear energy E1 of a tire when a lateral acceleration is fixed on a vehicle and a longitudinal acceleration is changed; a first derivation process N2 of deriving a first regression equation of the wear energy E1 by analyzing the wear energy E1; a first calculation process N3 of calculating a synthesized energy E2 when a lateral acceleration is fixed and an arbitrary longitudinal acceleration is activated; a second derivation process N4 of deriving a second regression equation of a synthesized wear energy E2 by performing a regression-analysis of the synthesized wear energy E2; and a second calculation process N5 of calculating a composite wear energy E which is the wear energy of the tire during composite travelling.SELECTED DRAWING: Figure 1

Description

本発明は、タイヤの摩耗性能を、より正確に予測することができるタイヤ摩耗性能予測方法に関する。   The present invention relates to a tire wear performance prediction method capable of predicting tire wear performance more accurately.

従来、タイヤの摩耗性能を予測するための方法が、種々提案されている。例えば、下記特許文献1では、模擬路面上でタイヤを転動させて、タイヤ摩耗を試験するタイヤ摩耗試験方法が提案されている。   Conventionally, various methods for predicting the wear performance of a tire have been proposed. For example, Patent Document 1 below proposes a tire wear test method for testing tire wear by rolling a tire on a simulated road surface.

この特許文献1のタイヤ摩耗試験方法では、実車走行により計測された加速度から、前後方向加速度及び横方向加速度の頻度分布を算出するとともに、前後方向加速度又は横方向加速度が単独で作用しているときのタイヤの外的条件を取得し、この頻度分布と外的条件とに基づいて、タイヤの摩耗性能を予測している。   In the tire wear test method of Patent Document 1, when calculating the frequency distribution of the longitudinal acceleration and the lateral acceleration from the acceleration measured by actual vehicle travel, the longitudinal acceleration or the lateral acceleration is acting independently. The external condition of the tire is acquired, and the wear performance of the tire is predicted based on the frequency distribution and the external condition.

特開2007−139708号公報JP 2007-139708 A

しかしながら、上記特許文献1のタイヤ摩耗試験方法は、前後加速度と横加速度とを同時に受けながら走行する複合走行時のタイヤ摩耗を、前後方向加速度及び横方向加速度が線型に累積するという技術思想に基づいて頻度分布から予測しており、実際の複合走行時のタイヤ摩耗と異なった状況で評価されるという問題があった。   However, the tire wear test method of Patent Document 1 is based on the technical idea that the longitudinal wear and the lateral acceleration are accumulated linearly in the tire wear during the combined running in which the vehicle runs while receiving the longitudinal acceleration and the lateral acceleration at the same time. Therefore, there is a problem that it is estimated from a frequency distribution and evaluated in a situation different from tire wear during actual combined driving.

本発明は、以上のような実状に鑑み案出されたもので、任意の横加速度と任意の前後加速度から複合摩耗エネルギーを求めることを基本として、タイヤの摩耗性能を、より正確に予測することができるタイヤ摩耗性能予測方法を提供することを主たる目的としている。   The present invention has been devised in view of the above circumstances, and more accurately predicts the wear performance of a tire on the basis of obtaining a composite wear energy from an arbitrary lateral acceleration and an arbitrary longitudinal acceleration. The main object is to provide a method for predicting tire wear performance.

本発明は、路面に接地する走行用のタイヤを備えた車両が、前後加速度と横加速度とを同時に受けながら走行する複合走行時のタイヤ摩耗性能を予測するための方法であって、
前記車両に前記横加速度を固定しかつ前記前後加速度を変化させたときの前記タイヤの摩耗エネルギーE1を計算する第1計算工程と、前記摩耗エネルギーE1を回帰分析して、前記摩耗エネルギーE1の第1回帰式を導出する第1導出工程と、前記第1回帰式から、前記横加速度を固定しかつ任意の前記前後加速度を作用させたときの合成摩耗エネルギーE2を算出する第1算出工程と、前記合成摩耗エネルギーE2を回帰分析して、前記合成摩耗エネルギーE2の第2回帰式を導出する第2導出工程と、前記第2回帰式から、前記複合走行時の前記タイヤの摩耗エネルギーである複合摩耗エネルギーEを算出する第2算出工程と、前記第2算出工程で算出された複合摩耗エネルギーEに基づいて、前記複合走行時のタイヤ摩耗性能を予測する予測工程とを含むことを特徴とする。
The present invention is a method for predicting tire wear performance during combined traveling in which a vehicle including a traveling tire that contacts the road surface travels while simultaneously receiving longitudinal acceleration and lateral acceleration,
A first calculation step of calculating the wear energy E1 of the tire when the lateral acceleration is fixed to the vehicle and the longitudinal acceleration is changed, and the wear energy E1 is subjected to regression analysis to obtain a first of the wear energy E1. A first derivation step for deriving one regression equation, and a first calculation step for calculating a composite wear energy E2 when the lateral acceleration is fixed and an arbitrary longitudinal acceleration is applied from the first regression equation; A second derivation step of deriving a second regression equation of the synthetic wear energy E2 by regression analysis of the synthetic wear energy E2, and a composite that is the wear energy of the tire during the combined running from the second regression equation Based on the second calculation step for calculating the wear energy E and the combined wear energy E calculated in the second calculation step, the tire wear performance during the combined running is predicted. That is characterized in that it comprises a prediction process.

本発明に係るタイヤ摩耗性能予測方法は、前記第1計算工程は、前記車両に前記前後加速度を固定しかつ前記横加速度を変化させたときの前記タイヤの摩耗エネルギーE3を計算し、前記第1導出工程は、前記摩耗エネルギーE3を回帰分析して、前記摩耗エネルギーE3の第3回帰式を導出し、前記第1算出工程は、前記第3回帰式から、前記前後加速度を固定しかつ任意の前記横加速度を作用させたときの合成摩耗エネルギーE4を算出し、前記第2導出工程は、前記合成摩耗エネルギーE4を回帰分析して、前記合成摩耗エネルギーE4の第4回帰式を導出し、前記第2算出工程は、前記第4回帰式から、前記複合走行時の前記タイヤの摩耗エネルギーである複合摩耗エネルギーEを算出しても良い。   In the tire wear performance prediction method according to the present invention, the first calculation step calculates the tire wear energy E3 when the longitudinal acceleration is fixed to the vehicle and the lateral acceleration is changed. The deriving step performs regression analysis of the wear energy E3 to derive a third regression equation of the wear energy E3, and the first calculation step fixes the longitudinal acceleration from the third regression equation and is arbitrary The composite wear energy E4 when the lateral acceleration is applied is calculated, and the second derivation step performs regression analysis of the composite wear energy E4 to derive a fourth regression equation of the composite wear energy E4, In the second calculation step, a composite wear energy E that is a wear energy of the tire during the combined travel may be calculated from the fourth regression equation.

本発明に係るタイヤ摩耗性能予測方法は、前記第1計算工程で計算される前記摩耗エネルギーE1は、前後方向摩耗エネルギー及び横方向摩耗エネルギーを含むのが望ましい。   In the tire wear performance prediction method according to the present invention, it is preferable that the wear energy E1 calculated in the first calculation step includes a front-rear wear energy and a lateral wear energy.

本発明のタイヤ摩耗性能予測方法は、車両に前記横加速度を固定しかつ前記前後加速度を変化させたときの前記タイヤの摩耗エネルギーE1を計算する第1計算工程と、前記摩耗エネルギーE1を回帰分析して、前記摩耗エネルギーE1の第1回帰式を導出する第1導出工程と、前記第1回帰式から、前記横加速度を固定しかつ任意の前記前後加速度を作用させたときの合成摩耗エネルギーE2を算出する第1算出工程と、前記合成摩耗エネルギーE2を回帰分析して、前記合成摩耗エネルギーE2の第2回帰式を導出する第2導出工程と、前記第2回帰式から、前記複合走行時の前記タイヤの摩耗エネルギーである複合摩耗エネルギーEを算出する第2算出工程と、前記第2算出工程で算出された複合摩耗エネルギーEに基づいて、前記複合走行時のタイヤ摩耗性能を予測する予測工程とを含んでいる。   The tire wear performance prediction method of the present invention includes a first calculation step of calculating the wear energy E1 of the tire when the lateral acceleration is fixed to the vehicle and the longitudinal acceleration is changed, and regression analysis of the wear energy E1. Then, from the first derivation step for deriving the first regression equation of the wear energy E1, and the first regression equation, the combined wear energy E2 when the lateral acceleration is fixed and the arbitrary longitudinal acceleration is applied. From the first calculation step, the second derivation step of deriving a second regression equation of the synthetic wear energy E2 by regression analysis of the synthetic wear energy E2, and the combined regression time from the second regression equation. A second calculation step for calculating a composite wear energy E, which is a wear energy of the tire, and the composite wear energy E calculated in the second calculation step. The tire wear performance during traveling and a prediction step of predicting.

このような複合摩耗エネルギーEは、横加速度及び前後加速度が同時に作用している状態の摩耗エネルギーとして求められる。とりわけ、前後方向摩耗エネルギーと横方向摩耗エネルギーが同時に作用する横加速度及び前後加速度によって複合摩耗エネルギーEが求められる。このため、横方向加速度及び前後方向加速度を実際の複合走行時に近い状態にして、タイヤの摩耗エネルギーを分析し得るので、正確なタイヤ摩耗性能予測が可能となる。   Such composite wear energy E is obtained as wear energy in a state where lateral acceleration and longitudinal acceleration are acting simultaneously. In particular, the composite wear energy E is determined by the lateral acceleration and the longitudinal acceleration in which the longitudinal wear energy and the lateral wear energy act simultaneously. For this reason, it is possible to analyze the tire wear energy with the lateral acceleration and the longitudinal acceleration close to those in the actual combined traveling, so that accurate tire wear performance prediction is possible.

本発明のタイヤ摩耗性能予測方法を示すフローチャートである。It is a flowchart which shows the tire wear performance prediction method of this invention. 実摩耗量と実施例及び比較例の予測摩耗量との関係を示すグラフである。It is a graph which shows the relationship between an actual wear amount and the predicted wear amount of an Example and a comparative example.

以下、本発明の実施の一形態が図面に基づき説明される。
本発明のタイヤ摩耗性能予測方法(以下、単に「予測方法」ということがある。)は、路面に接地する走行用のタイヤを備えた車両が複合走行するときの、タイヤ摩耗性能を予測するための方法である。前記「複合走行」とは、車両が、前後加速度と横加速度とを同時に受けながら走行することをいう。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The tire wear performance prediction method of the present invention (hereinafter, also simply referred to as “prediction method”) is for predicting tire wear performance when a vehicle equipped with a traveling tire that contacts the road surface travels in a complex manner. It is a method. The “composite travel” means that the vehicle travels while receiving both longitudinal acceleration and lateral acceleration at the same time.

図1は、本実施形態の予測方法を示すフローチャートである。図1に示されるように、本実施形態の予測方法では、第1計算工程N1、第1導出工程N2、第1算出工程N3、第2導出工程N4、第2算出工程N5、及び、予測工程N6を含んでいる。このようなタイヤ摩耗性能予測方法は、例えば、周知のドラム試験機(図示省略)によって実験的に予測されても良いし、また、例えば、コンピュータによる有限要素法等を用いたコンピュータシミュレーションによって予測されても良い。さらに、タイヤ摩耗性能予測方法は、例えば、ドラム試験機とコンピュータシミュレーションとをそれぞれ用いて予測しても良い。本実施形態では、工程N1乃至N6において、有限要素法等を用いたコンピュータシミュレーションが用いられる。   FIG. 1 is a flowchart showing the prediction method of this embodiment. As shown in FIG. 1, in the prediction method of the present embodiment, the first calculation step N1, the first derivation step N2, the first calculation step N3, the second derivation step N4, the second calculation step N5, and the prediction step N6 is included. Such a tire wear performance prediction method may be experimentally predicted by, for example, a well-known drum tester (not shown), or may be predicted by, for example, computer simulation using a computer finite element method or the like. May be. Further, the tire wear performance prediction method may be predicted using, for example, a drum tester and a computer simulation. In the present embodiment, computer simulation using a finite element method or the like is used in steps N1 to N6.

コンピュータシミュレーションの場合、例えば、周知な入力工程と設定工程が行われる。入力工程では、本実施形態では、コンピュータに、トレッド部を含むタイヤモデルを入力する。設定工程は、本実施形態では、タイヤモデル等の初期設定、例えば、路面モデルの設定、境界条件の設定、タイヤモデルの内圧付加及びタイヤモデルと路面モデルとの接地等を行うものである。   In the case of computer simulation, for example, a well-known input process and setting process are performed. In the input process, in the present embodiment, a tire model including a tread portion is input to the computer. In the present embodiment, the setting step performs initial setting of the tire model, for example, setting of the road surface model, setting of boundary conditions, addition of internal pressure of the tire model, and contact between the tire model and the road surface model.

入力工程は、例えば、タイヤに関する情報に基づいて、タイヤを数値解析法により有限個の小さな要素F(i)に離散化する。要素F(i)としては、例えば、4面体ソリッド要素が用いられる。要素F(i)には、要素番号、節点P(j)の番号等の数値データが定義される。   In the input process, for example, the tire is discretized into a finite number of small elements F (i) by numerical analysis based on information on the tire. For example, a tetrahedral solid element is used as the element F (i). In the element F (i), numerical data such as an element number and the number of the node P (j) are defined.

次に第1計算工程N1が行われる。第1計算工程N1は、本実施形態では、車両に横加速度を固定しかつ前後加速度を変化させて作用させたときのタイヤの摩耗エネルギーE1を計算する工程である。第1計算工程N1で求められる摩耗エネルギーE1は、例えば、車両の旋回半径、及び/又は、旋回速度を固定して、加速又は減速を変化させたときの、タイヤのせん断力H(t)とすべり量L(t)とが単位時間t毎に求められる。前後加速度は、例えば、加速度が約−4.9m/s(−0.5G)〜約4.9m/s(0.5G)の間の任意の幅で、等ピッチに100〜1000程度、変化させたものが採用される。また、横加速度は、例えば、各々、加速度が約−4.9m/s(−0.5G)〜約4.9m/s(0.5G)の間の任意の幅で、等ピッチな100〜1000程度異ならせたものが採用される。 Next, the first calculation process N1 is performed. In the present embodiment, the first calculation step N1 is a step of calculating the wear energy E1 of the tire when the lateral acceleration is fixed to the vehicle and the longitudinal acceleration is changed. The wear energy E1 obtained in the first calculation step N1 is, for example, the tire shearing force H (t) when changing the acceleration or deceleration while fixing the turning radius and / or turning speed of the vehicle. The slip amount L (t) is obtained every unit time t. The longitudinal acceleration is, for example, an arbitrary width between about −4.9 m / s 2 (−0.5 G) and about 4.9 m / s 2 (0.5 G) with an acceleration of about 100 to 1000 at an equal pitch. The changed one is adopted. Further, the lateral acceleration is, for example, an arbitrary width between about −4.9 m / s 2 (−0.5 G) and about 4.9 m / s 2 (0.5 G) at an equal pitch. What is varied by about 100 to 1000 is employed.

第1計算工程N1は、本実施形態では、摩耗エネルギーE1として、前後方向摩耗エネルギーEa及び横方向摩耗エネルギーEbが計算される。すなわち、第1計算工程N1では、車両に横加速度を固定しかつ前後加速度を変化させて作用させたときのタイヤの摩耗エネルギーE1が、前後方向(タイヤ周方向)と横方向(タイヤ軸方向)との各成分に分解して計算される。このような第1計算工程N1は、車両に横加速度を固定しかつ前後加速度を変化させて作用させたときの摩耗エネルギーE1を、より正確に分析することができる。   In the first calculation step N1, in the present embodiment, the longitudinal wear energy Ea and the lateral wear energy Eb are calculated as the wear energy E1. That is, in the first calculation step N1, the wear energy E1 of the tire when the lateral acceleration is fixed and the longitudinal acceleration is changed is applied to the vehicle in the longitudinal direction (tire circumferential direction) and the lateral direction (tire axial direction). It is calculated by decomposing each component. Such a first calculation step N1 can analyze the wear energy E1 when the lateral acceleration is fixed to the vehicle and the longitudinal acceleration is changed to act on the vehicle more accurately.

第1計算工程N1で求められる前後方向摩耗エネルギーEaは、本実施形態では、タイヤの各前後方向せん断力H1(t)と各前後方向すべり量L1(t)との積の総和として、下記式(1)に基づいて計算される。また、横方向摩耗エネルギーEbは、例えば、各横方向せん断力H2(t)と各横方向すべり量L2(t)との積の総和として、下記式(2)に基づいて計算される。
Ea=Σ{H1(t)×L1(t)} … (1)
Eb=Σ{H2(t)×L2(t)} … (2)
In the present embodiment, the longitudinal wear energy Ea obtained in the first calculation step N1 is expressed by the following formula as the sum of products of the respective longitudinal shear forces H1 (t) and the respective longitudinal slip amounts L1 (t) of the tire. Calculated based on (1). Further, the lateral wear energy Eb is calculated based on the following formula (2), for example, as the sum of products of the respective lateral shear forces H2 (t) and the respective lateral slip amounts L2 (t).
Ea = Σ {H1 (t) × L1 (t)} (1)
Eb = Σ {H2 (t) × L2 (t)} (2)

本実施形態では、これらのタイヤの摩耗エネルギーE1は、複数の周方向溝で区分されるリブ毎に複数箇所で摩耗エネルギーとして計算されるのが望ましい。リブの数としては、例えば、3〜7個程度が望ましい。また、リブ毎にタイヤ周方向位置を揃え、さらにタイヤ軸方向位置を揃えて摩耗エネルギーを計算するのが望ましい。   In this embodiment, it is desirable that the wear energy E1 of these tires is calculated as wear energy at a plurality of locations for each rib divided by a plurality of circumferential grooves. The number of ribs is preferably about 3 to 7, for example. Further, it is desirable to calculate the wear energy by aligning the tire circumferential direction position for each rib and further aligning the tire axial direction position.

第1導出工程N2は、本実施形態では、摩耗エネルギーE1を回帰分析することにより、摩耗エネルギーE1の第1回帰式を導出する。第1回帰式は、例えば、説明変数を前後加速度として、摩耗エネルギーE1を目的変数とする。具体的には、前後加速度を説明変数、前後方向摩耗エネルギーと横方向摩耗エネルギーとの和(Ea+Eb)を目的変数として下記第1回帰式(3)を求める。このように、本実施形態では、摩耗エネルギーE1の第1回帰式は、合算摩耗エネルギー(Ea+Eb)の回帰式として導出される。なお、下記式(3)のfは、説明変数として用いられる前後加速度であり、係数a1、b1は、周知の回帰分析法、例えば最小2乗法を用いて求められる。
E1=Ea+Eb=a1×f+b1 … (3)
In the first derivation step N2, in the present embodiment, the first regression equation of the wear energy E1 is derived by performing regression analysis of the wear energy E1. In the first regression equation, for example, the explanatory variable is the longitudinal acceleration and the wear energy E1 is the target variable. Specifically, the following first regression equation (3) is obtained using the longitudinal acceleration as an explanatory variable and the sum (Ea + Eb) of the longitudinal wear energy and the lateral wear energy as an objective variable. Thus, in the present embodiment, the first regression equation of the wear energy E1 is derived as a regression equation of the combined wear energy (Ea + Eb). Note that f in the following formula (3) is a longitudinal acceleration used as an explanatory variable, and the coefficients a1 and b1 are obtained by using a well-known regression analysis method, for example, a least square method.
E1 = Ea + Eb = a1 × f + b1 (3)

なお、第1導出工程N2では、例えば、説明変数を単位時間tとして、前後方向摩耗エネルギーEa、及び、横方向摩耗エネルギーEbをそれぞれ目的変数とする2つの回帰式、例えば、2つの1次以上のn次回帰式を求めても良い。   Note that in the first derivation step N2, for example, two regression equations, for example, two or more first-order or more, with the explanatory variable as the unit time t and the longitudinal wear energy Ea and the lateral wear energy Eb as objective variables, respectively. N-order regression equation may be obtained.

第1算出工程N3は、第1回帰式から、横加速度を固定しかつ任意の前後加速度を作用させたときの合成摩耗エネルギーE2を算出する。第1算出工程N3は、本実施形態では、第1回帰式(3)を用いて、第1計算工程N1で固定された横加速度毎に、第1計算工程N1で変化させた前後加速度を用い、例えば、第1計算工程N1で変化させた前後加速度の全てを用いて合成摩耗エネルギーE2を求める。   In the first calculation step N3, the composite wear energy E2 when the lateral acceleration is fixed and an arbitrary longitudinal acceleration is applied is calculated from the first regression equation. In the present embodiment, the first calculation step N3 uses the longitudinal acceleration changed in the first calculation step N1 for each lateral acceleration fixed in the first calculation step N1, using the first regression equation (3). For example, the composite wear energy E2 is obtained using all of the longitudinal accelerations changed in the first calculation step N1.

第2導出工程N4は、本実施形態では、合成摩耗エネルギーE2を回帰分析することにより、合成摩耗エネルギーE2の第2回帰式を導出する。第2回帰式は、例えば、説明変数を横加速度として、合成摩耗エネルギーE2を目的変数として下記回帰式(4)を求める。合成摩耗エネルギーE2は、上述の通り、回帰式(3)により算出された合算摩耗エネルギー(Ea+Eb)に基づいて算出されたものである。なお、下記式(4)のgは、説明変数として用いられる横加速度であり、係数a2、b2は、周知の回帰分析法、例えば最小2乗法を用いて求める。
E2=a2×g+b2 … (4)
In the second derivation step N4, in the present embodiment, a regression equation of the synthetic wear energy E2 is derived by performing regression analysis of the synthetic wear energy E2. As for the second regression equation, for example, the following regression equation (4) is obtained with the explanatory variable as the lateral acceleration and the synthetic wear energy E2 as the objective variable. As described above, the synthetic wear energy E2 is calculated based on the combined wear energy (Ea + Eb) calculated by the regression equation (3). Note that g in the following equation (4) is a lateral acceleration used as an explanatory variable, and the coefficients a2 and b2 are obtained by using a well-known regression analysis method, for example, the least square method.
E2 = a2 × g + b2 (4)

なお、第2導出工程N4では、第1導出工程N2と同様に、例えば、説明変数を単位時間tとして、合成摩耗エネルギーE2を目的変数とする、例えば、2つの1次以上のn次回帰式を求めても良い。   In the second derivation step N4, as in the first derivation step N2, for example, the explanatory variable is a unit time t and the synthetic wear energy E2 is an objective variable. You may ask for.

第2算出工程N5は、第2回帰式から、複合走行時のタイヤの摩耗エネルギーである複合摩耗エネルギーEを算出する。本実施形態の第2算出工程N5は、第2回帰式(4)を用いて、第1計算工程N1で採用された前後加速度毎に固定して、第1計算工程N1で固定された各横加速度を採用、例えば、第1計算工程N1で固定された各横加速度全て採用して算出された摩耗エネルギーが、複合走行時の複合摩耗エネルギーEとして求められる。このような複合摩耗エネルギーEは、横加速度及び前後加速度が同時に作用している状態の摩耗エネルギーとして求められる。とりわけ、本実施形態では、前後方向摩耗エネルギーと横方向摩耗エネルギーが、同時に作用する横加速度及び前後加速度によって複合摩耗エネルギーEが求められるので、精度の良い複合の摩耗エネルギーを得ることができる。   In the second calculation step N5, the composite wear energy E, which is the wear energy of the tire during the combined running, is calculated from the second regression equation. In the second calculation step N5 of the present embodiment, each lateral acceleration fixed in the first calculation step N1 is fixed using the second regression equation (4) for each longitudinal acceleration employed in the first calculation step N1. The wear energy calculated by adopting acceleration, for example, by adopting all the lateral accelerations fixed in the first calculation step N1, is obtained as the composite wear energy E during the combined travel. Such composite wear energy E is obtained as wear energy in a state where lateral acceleration and longitudinal acceleration are acting simultaneously. In particular, in this embodiment, since the composite wear energy E is obtained by the lateral acceleration and the longitudinal acceleration in which the longitudinal wear energy and the lateral wear energy act simultaneously, the composite wear energy with high accuracy can be obtained.

第2算出工程N5は、本実施形態では、さらに、複合走行時の複合摩耗エネルギーEに基づいて、補正複合摩耗エネルギーEAが計算される。補正複合摩耗エネルギーEAは、具体的には、下記式(5)に基づいて計算される。コンピュータシミュレーションの場合、例えば、上記各摩耗エネルギーは、各要素F(i)の節点P(j)毎に計算される。
EA=Σ(A1×E) ・・・(5)
なお、A1は、予め設定された係数である。
In the second calculation step N5, in the present embodiment, the corrected combined wear energy EA is further calculated based on the combined wear energy E during combined travel. Specifically, the corrected combined wear energy EA is calculated based on the following formula (5). In the case of computer simulation, for example, each wear energy is calculated for each node P (j) of each element F (i).
EA = Σ (A1 × E) (5)
A1 is a preset coefficient.

係数A1は、例えば、車両毎に個別に設定され得る。すなわち、車両の特性に応じて、係数A1は適宜調整され得る。また、係数A1は、例えば、タイヤ毎に個別に設定され得る。すなわち、同じタイヤであっても、前輪か後輪か、また、駆動輪か従動輪かに応じて、係数A1は適宜調整され得る。このため、第1実施形態の予測方法は、車両毎又はタイヤ毎に適切な係数A1を選択することができ、その結果、任意の横加速度及び任意の前後加速度が作用して走行するタイヤ摩耗性能をより正確に予測することができる。   The coefficient A1 can be set individually for each vehicle, for example. That is, the coefficient A1 can be appropriately adjusted according to the characteristics of the vehicle. The coefficient A1 can be set individually for each tire, for example. That is, even for the same tire, the coefficient A1 can be appropriately adjusted depending on whether the front wheel or the rear wheel, or the driving wheel or the driven wheel. For this reason, the prediction method of the first embodiment can select an appropriate coefficient A1 for each vehicle or for each tire, and as a result, the tire wear performance that travels with any lateral acceleration and any longitudinal acceleration acting. Can be predicted more accurately.

また、係数A1は、加速時と減速時とで異なる値が設定されるのが望ましい。このため、本実施形態の予測方法は、加速しながら旋回する走行モードと、減速しながら旋回する旋回モードとのそれぞれの特性に適した係数A1を設定することが望ましい。その結果、複合走行時のタイヤ摩耗性能をより正確に予測することができる。   The coefficient A1 is preferably set to a different value between acceleration and deceleration. For this reason, it is desirable for the prediction method of this embodiment to set the coefficient A1 suitable for each characteristic of the running mode that turns while accelerating and the turning mode that turns while decelerating. As a result, it is possible to predict the tire wear performance during combined traveling more accurately.

予測工程N6は、本実施形態では、補正複合摩耗エネルギーEAに基づいて、複合走行時のタイヤ摩耗性能を予測する。なお、予測工程N6は、補正されることなく、複合摩耗エネルギーEに基づいて、複合走行時のタイヤ摩耗性能を予測されても良い。予測工程N6では、例えば、タイヤ摩耗性能として、タイヤ摩耗量Dが計算され、その計算結果に基づいて摩耗性能が予測される。タイヤ摩耗量Dは、例えば、複合摩耗エネルギーEとトレッド部の材料の摩耗係数Kとの積として、下記式(6)に基づいて計算される。
D=K×E … (6)
In the prediction step N6, in the present embodiment, the tire wear performance during the combined running is predicted based on the corrected combined wear energy EA. In the prediction step N6, the tire wear performance during the combined running may be predicted based on the combined wear energy E without being corrected. In the prediction step N6, for example, the tire wear amount D is calculated as the tire wear performance, and the wear performance is predicted based on the calculation result. The tire wear amount D is calculated based on the following formula (6) as a product of the composite wear energy E and the wear coefficient K of the material of the tread portion, for example.
D = K × E (6)

なお、他の実施形態として、第1計算工程N1、第1導出工程N2、第1算出工程N3、第2導出工程N4を次のような態様としても良い。第1計算工程N1は、車両に前後加速度を固定しかつ横加速度を変化させたときのタイヤの摩耗エネルギーE3を計算する。第1導出工程N2は、摩耗エネルギーE3を回帰分析して、摩耗エネルギーE3の第3回帰式を導出する。第1算出工程N3は、第3回帰式から、前後加速度を固定しかつ任意の前記横加速度を作用させたときの合成摩耗エネルギーE4を算出する。第2導出工程N4は、合成摩耗エネルギーE4を回帰分析して、前記合成摩耗エネルギーE4の第4回帰式を導出する。第2算出工程は、第4回帰式から、複合走行時のタイヤの摩耗エネルギーである複合摩耗エネルギーEを算出する。第2算出工程は、例えば、第4回帰式から、横加速度を固定しかつ前後加速度を変化させて、複合走行時のタイヤの摩耗エネルギーである複合摩耗エネルギーEを算出する。   As another embodiment, the first calculation step N1, the first derivation step N2, the first calculation step N3, and the second derivation step N4 may be configured as follows. The first calculation step N1 calculates tire wear energy E3 when the longitudinal acceleration is fixed to the vehicle and the lateral acceleration is changed. In the first derivation step N2, the wear energy E3 is subjected to regression analysis to derive a third regression equation of the wear energy E3. In the first calculation step N3, the composite wear energy E4 when the longitudinal acceleration is fixed and any lateral acceleration is applied is calculated from the third regression equation. In the second derivation step N4, the synthetic wear energy E4 is subjected to regression analysis, and a fourth regression equation of the synthetic wear energy E4 is derived. In the second calculation step, a composite wear energy E that is the wear energy of the tire during the combined travel is calculated from the fourth regression equation. In the second calculation step, for example, the composite wear energy E, which is the wear energy of the tire during the combined running, is calculated from the fourth regression equation by fixing the lateral acceleration and changing the longitudinal acceleration.

また、予測工程N6は、本実施形態では、タイヤの摩耗性能として、タイヤ摩耗量Dが計算されていたが、複合摩耗エネルギーEに基づいて、直接タイヤの摩耗性能を予測してもよい。   In the prediction step N6, the tire wear amount D is calculated as the tire wear performance in the present embodiment, but the tire wear performance may be directly predicted based on the composite wear energy E.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施し得る。   As mentioned above, although the especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

図1に示される予測方法に従って、タイヤのトレッド部について、複合走行時のタイヤ摩耗量が予測された(実施例)。比較例として、車両に前後加速度が単独で作用しているときのタイヤの摩耗エネルギーと車両に横加速度が単独で作用しているときのタイヤの摩耗エネルギーとを累積して複合走行時のタイヤ摩耗量が予測された。式(5)のA1は、タイヤが、前輪か後輪であるか、及び、駆動輪か従動輪かに応じて決定された。   According to the prediction method shown in FIG. 1, the tire wear amount at the time of combined traveling was predicted for the tread portion of the tire (Example). As a comparative example, tire wear during combined driving is calculated by accumulating the tire wear energy when the longitudinal acceleration acts on the vehicle alone and the tire wear energy when the lateral acceleration acts on the vehicle alone. The amount was predicted. A1 in Formula (5) was determined depending on whether the tire is a front wheel or a rear wheel, and whether it is a driving wheel or a driven wheel.

結果が図2に示される。図2は、実摩耗量と実施例及び比較例の予測摩耗量との関係を示すグラフである。図2の横軸は、実験的に複合走行時のタイヤ摩耗量を測定した実摩耗量であり、縦軸は、タイヤ摩耗量を実施例又は比較例の方法により予測した予測摩耗量である。実摩耗量と予測摩耗量の計算値との関係が、■印として示され、実摩耗量と比較例の予測摩耗量との関係が◆印として示されている。また、実施例の■印の分布を線型回帰した直線が太い直線で示され、比較例の◆印の分布を線型回帰した直線が細い直線で示されている。   The result is shown in FIG. FIG. 2 is a graph showing the relationship between the actual wear amount and the predicted wear amounts of the examples and comparative examples. The horizontal axis in FIG. 2 is an actual wear amount obtained by experimentally measuring the tire wear amount during combined running, and the vertical axis is a predicted wear amount in which the tire wear amount is predicted by the method of the example or the comparative example. The relationship between the actual wear amount and the calculated value of the predicted wear amount is shown as ■, and the relationship between the actual wear amount and the predicted wear amount of the comparative example is shown as ◆. In addition, a straight line obtained by linear regression of the distribution of the ▪ mark in the example is shown as a thick straight line, and a straight line obtained by linear regression of the distribution of the ♦ mark in the comparative example is shown as a thin straight line.

図2から明らかなように、実施例の■印は、実摩耗量と予測摩耗量とが同一である線上の近傍に分布し、実施例の予測摩耗量が、実摩耗量に近い値となっていることが確認された。従って、実施例は、比較例に対し、複合走行時のタイヤ摩耗性能をより正確に予測していることが確認できた。   As is clear from FIG. 2, the ■ marks in the example are distributed in the vicinity of the line where the actual wear amount and the predicted wear amount are the same, and the predicted wear amount in the example is a value close to the actual wear amount. It was confirmed that Therefore, it was confirmed that the example more accurately predicted the tire wear performance during the combined running than the comparative example.

N1 第1計算工程
N2 第1導出工程
N3 第1算出工程
N4 第2導出工程
N5 第2算出工程
N6 予測工程
N1 first calculation step N2 first derivation step N3 first calculation step N4 second derivation step N5 second calculation step N6 prediction step

Claims (3)

路面に接地する走行用のタイヤを備えた車両が、前後加速度と横加速度とを同時に受けながら走行する複合走行時のタイヤ摩耗性能を予測するための方法であって、
前記車両に前記横加速度を固定しかつ前記前後加速度を変化させたときの前記タイヤの摩耗エネルギーE1を計算する第1計算工程と、
前記摩耗エネルギーE1を回帰分析して、前記摩耗エネルギーE1の第1回帰式を導出する第1導出工程と、
前記第1回帰式から、前記横加速度を固定しかつ任意の前記前後加速度を作用させたときの合成摩耗エネルギーE2を算出する第1算出工程と、
前記合成摩耗エネルギーE2を回帰分析して、前記合成摩耗エネルギーE2の第2回帰式を導出する第2導出工程と、
前記第2回帰式から、前記複合走行時の前記タイヤの摩耗エネルギーである複合摩耗エネルギーEを算出する第2算出工程と、
前記第2算出工程で算出された複合摩耗エネルギーEに基づいて、前記複合走行時のタイヤ摩耗性能を予測する予測工程とを含むことを特徴とするタイヤ摩耗性能予測方法。
A method for predicting tire wear performance during combined traveling in which a vehicle having a traveling tire that touches the road surface travels while receiving both longitudinal acceleration and lateral acceleration,
A first calculation step of calculating the wear energy E1 of the tire when the lateral acceleration is fixed to the vehicle and the longitudinal acceleration is changed;
A first derivation step of regressing the wear energy E1 to derive a first regression equation of the wear energy E1,
A first calculation step of calculating a composite wear energy E2 when the lateral acceleration is fixed and an arbitrary longitudinal acceleration is applied from the first regression equation;
A second derivation step of regressing the synthetic wear energy E2 to derive a second regression equation of the synthetic wear energy E2,
A second calculation step of calculating a composite wear energy E that is a wear energy of the tire during the combined running from the second regression equation;
And a prediction step of predicting the tire wear performance during the combined travel based on the combined wear energy E calculated in the second calculation step.
前記第1計算工程は、前記車両に前記前後加速度を固定しかつ前記横加速度を変化させたときの前記タイヤの摩耗エネルギーE3を計算し、
前記第1導出工程は、前記摩耗エネルギーE3を回帰分析して、前記摩耗エネルギーE3の第3回帰式を導出し、
前記第1算出工程は、前記第3回帰式から、前記前後加速度を固定しかつ任意の前記横加速度を作用させたときの合成摩耗エネルギーE4を算出し、
前記第2導出工程は、前記合成摩耗エネルギーE4を回帰分析して、前記合成摩耗エネルギーE4の第4回帰式を導出し、
前記第2算出工程は、前記第4回帰式から、前記複合走行時の前記タイヤの摩耗エネルギーである複合摩耗エネルギーEを算出する請求項1記載のタイヤ摩耗性能予測方法。
The first calculation step calculates the wear energy E3 of the tire when the longitudinal acceleration is fixed to the vehicle and the lateral acceleration is changed,
In the first deriving step, the wear energy E3 is subjected to regression analysis, and a third regression equation of the wear energy E3 is derived,
The first calculation step calculates a composite wear energy E4 when the longitudinal acceleration is fixed and an arbitrary lateral acceleration is applied from the third regression equation,
The second deriving step performs regression analysis on the synthetic wear energy E4 to derive a fourth regression equation of the synthetic wear energy E4,
2. The tire wear performance prediction method according to claim 1, wherein the second calculation step calculates a composite wear energy E that is a wear energy of the tire during the combined travel from the fourth regression equation.
前記第1計算工程で計算される前記摩耗エネルギーE1は、前後方向摩耗エネルギー及び横方向摩耗エネルギーを含む請求項1記載のタイヤ摩耗性能予測方法。   The tire wear performance prediction method according to claim 1, wherein the wear energy E1 calculated in the first calculation step includes a front-rear wear energy and a lateral wear energy.
JP2017013473A 2017-01-27 2017-01-27 Tire wear performance prediction method Active JP6790875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017013473A JP6790875B2 (en) 2017-01-27 2017-01-27 Tire wear performance prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017013473A JP6790875B2 (en) 2017-01-27 2017-01-27 Tire wear performance prediction method

Publications (2)

Publication Number Publication Date
JP2018119921A true JP2018119921A (en) 2018-08-02
JP6790875B2 JP6790875B2 (en) 2020-11-25

Family

ID=63044322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017013473A Active JP6790875B2 (en) 2017-01-27 2017-01-27 Tire wear performance prediction method

Country Status (1)

Country Link
JP (1) JP6790875B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021133693A (en) * 2020-02-21 2021-09-13 住友ゴム工業株式会社 Tire wear performance prediction method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151655A (en) * 2006-12-18 2008-07-03 Yokohama Rubber Co Ltd:The Acceleration analysis device, acceleration analysis method, and software program
JP2011047675A (en) * 2009-08-25 2011-03-10 Bridgestone Corp Tire rubber index calculating method, device, and program
JP2011149879A (en) * 2010-01-22 2011-08-04 Yokohama Rubber Co Ltd:The Using condition evaluation method and device of tire, and abrasion predicting method and device of the tire
JP2013035413A (en) * 2011-08-08 2013-02-21 Sumitomo Rubber Ind Ltd Prediction method of tire wear energy, and design method of tire
JP2014228963A (en) * 2013-05-20 2014-12-08 横浜ゴム株式会社 Tire wear prediction method, and computer program for wear prediction
JP2015219150A (en) * 2014-05-19 2015-12-07 横浜ゴム株式会社 Wear prediction method of tire and computer program for wear prediction
WO2016069149A1 (en) * 2014-10-31 2016-05-06 Bridgestone Americas Tire Operations, Llc Scalable vehicle models for indoor tire testing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151655A (en) * 2006-12-18 2008-07-03 Yokohama Rubber Co Ltd:The Acceleration analysis device, acceleration analysis method, and software program
JP2011047675A (en) * 2009-08-25 2011-03-10 Bridgestone Corp Tire rubber index calculating method, device, and program
JP2011149879A (en) * 2010-01-22 2011-08-04 Yokohama Rubber Co Ltd:The Using condition evaluation method and device of tire, and abrasion predicting method and device of the tire
JP2013035413A (en) * 2011-08-08 2013-02-21 Sumitomo Rubber Ind Ltd Prediction method of tire wear energy, and design method of tire
JP2014228963A (en) * 2013-05-20 2014-12-08 横浜ゴム株式会社 Tire wear prediction method, and computer program for wear prediction
JP2015219150A (en) * 2014-05-19 2015-12-07 横浜ゴム株式会社 Wear prediction method of tire and computer program for wear prediction
WO2016069149A1 (en) * 2014-10-31 2016-05-06 Bridgestone Americas Tire Operations, Llc Scalable vehicle models for indoor tire testing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021133693A (en) * 2020-02-21 2021-09-13 住友ゴム工業株式会社 Tire wear performance prediction method
JP7497577B2 (en) 2020-02-21 2024-06-11 住友ゴム工業株式会社 Tire wear performance prediction method

Also Published As

Publication number Publication date
JP6790875B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
WO2017149954A1 (en) Tire wear life estimating system
JP6573978B2 (en) Method for predicting variables affecting vehicle behavior and corresponding virtual sensors
JP5504912B2 (en) Tire usage condition evaluation method and apparatus, and tire wear prediction method and apparatus
Peng et al. Observer-based estimation of velocity and tire-road friction coefficient for vehicle control systems
JP7065241B2 (en) Wear amount estimation device
WO2019239305A3 (en) Tread wear monitoring system and method
Hyeon et al. Short-term speed forecasting using vehicle wireless communications
JP6551207B2 (en) Tire wear performance prediction method and tire simulation method
JP2014232497A5 (en)
JP2020122753A (en) Tire estimation system and tire estimation method
JP2019096041A (en) Simulation method, device therefor, and program
JP2015123941A (en) Tire wear simulation device, method and program of it
JP4496716B2 (en) Tire simulation method, tire performance prediction method, tire manufacturing method, tire and program
JP6790875B2 (en) Tire wear performance prediction method
KR101305095B1 (en) Method for Predicting Tire Flat Spot Performance
JP4592431B2 (en) Tire performance prediction device
JP6809172B2 (en) Estimating method, estimation program and estimation device
JP7368181B2 (en) Wear amount estimation system and calculation model generation system
JP7091823B2 (en) Tire tread wear prediction method
KR101671330B1 (en) Method for analysing free rolling of tire
JP2018099936A (en) Tire performance evaluation method
JP5636776B2 (en) Tire shape prediction method, tire shape prediction apparatus, and program
JP7497577B2 (en) Tire wear performance prediction method
JP7056405B2 (en) Tire usage condition frequency distribution acquisition method, device, and tire wear amount prediction method
JP2019137298A (en) Input power estimation system to rotating body, input power estimation method, abutment face state determination system and moving body apparatus control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191125

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6790875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250