JP2018119634A - Heat insulation structure of liquefied gas storage tank - Google Patents

Heat insulation structure of liquefied gas storage tank Download PDF

Info

Publication number
JP2018119634A
JP2018119634A JP2017012470A JP2017012470A JP2018119634A JP 2018119634 A JP2018119634 A JP 2018119634A JP 2017012470 A JP2017012470 A JP 2017012470A JP 2017012470 A JP2017012470 A JP 2017012470A JP 2018119634 A JP2018119634 A JP 2018119634A
Authority
JP
Japan
Prior art keywords
layer
liquefied gas
heat insulating
storage tank
heat insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017012470A
Other languages
Japanese (ja)
Other versions
JP7000023B2 (en
Inventor
川水 努
Tsutomu Kawamizu
努 川水
健太郎 四方
Kentaro Yomo
健太郎 四方
石田 聡成
Toshinari Ishida
聡成 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2017012470A priority Critical patent/JP7000023B2/en
Publication of JP2018119634A publication Critical patent/JP2018119634A/en
Application granted granted Critical
Publication of JP7000023B2 publication Critical patent/JP7000023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulation structure that eliminates deterioration in heat insulation performance due to replacement of ambient air or nitrogen gas or the like with inert gas, has high heat insulation properties and can reduce an installation space.SOLUTION: A heat insulation structure of a liquefied gas storage tank according to several embodiments has a heat insulation layer covering a surface of an outer wall of the liquefied gas storage tank storing liquefied gas. The heat insulation layer includes a first layer of a heat insulator having independent air bubbles, and air non-permeable layers provided on both sides of the first layer, and at least one of the air non-permeable layers provided on both the sides of the first layer includes a vacuum heat insulator formed by covering and sealing a core material with a jacket material having gas barrier properties and reducing the pressure in the jacket material.SELECTED DRAWING: Figure 2

Description

本開示は、液化ガス貯蔵タンクの断熱構造に関する。   The present disclosure relates to a heat insulating structure of a liquefied gas storage tank.

LNG(液化天然ガス)などの運搬船において、LNGタンク内のボイルオフガス(BOG)の発生率を極力小さくするため、タンクの外壁表面を熱伝導率の低い断熱材で覆う必要がある。熱伝導率の低い断熱材として、例えば、ポリウレタン・フォーム(PUF)、ビーズ法ポリスチレン・フォーム(EPS)らの独立気泡を有する断熱材がある。
しかし、PUFなどの断熱材単体でBOGの低下を図ろうとすると、その厚みが現実的でない厚みとなり、設置スペースを確保できない場合がある。
そこで、特許文献1には、高性能防熱を実現するため、真空断熱材を用いた断熱構造が開示されている。
In a carrier ship such as LNG (liquefied natural gas), in order to minimize the generation rate of boil-off gas (BOG) in the LNG tank, it is necessary to cover the outer wall surface of the tank with a heat insulating material having low thermal conductivity. As a heat insulating material with low thermal conductivity, for example, there are heat insulating materials having closed cells such as polyurethane foam (PUF) and beaded polystyrene foam (EPS).
However, if it is attempted to reduce BOG with a single heat insulating material such as PUF, the thickness becomes unrealistic and the installation space may not be secured.
Therefore, Patent Document 1 discloses a heat insulating structure using a vacuum heat insulating material in order to realize high-performance heat insulation.

特開2010−249174号公報JP 2010-249174 A

液化ガス貯蔵タンクの外壁と断熱材との間には、空気中水分の吸湿/凍結防止および液化ガスの漏れを検知するため、窒素ガスなどの不活性ガスが流される場合がある。
PUFの熱伝導率は常温(20℃)で約0.02W/mKであるが、独立気泡内に封入された代替フロンなどの低熱伝導率のガスが周囲の空気又は窒素ガスと置換することで、断熱性能が劣化する場合があることが知られている。
An inert gas such as nitrogen gas may flow between the outer wall of the liquefied gas storage tank and the heat insulating material to absorb moisture in the air / prevent freezing and detect leakage of the liquefied gas.
The heat conductivity of PUF is about 0.02 W / mK at room temperature (20 ° C.), but by substituting the surrounding air or nitrogen gas with a gas with low thermal conductivity, such as alternative chlorofluorocarbon enclosed in closed cells. It is known that the heat insulation performance may deteriorate.

特許文献1に開示された断熱構造は、外側面は表面材(アルミシートとプラスチックフィルムの積層体)が施工されているので、独立気泡内のガスが周囲空気と置換するおそれはない。しかし、内側に窒素ガスが流れる場合に、真空断熱材がPUFなどの断熱材に内蔵された構造を有するため、独立気泡内のガスが窒素ガスと置換して断熱性能が劣化するおそれがある。   In the heat insulating structure disclosed in Patent Document 1, a surface material (a laminate of an aluminum sheet and a plastic film) is applied to the outer side surface, so that there is no possibility that the gas in the closed cell is replaced with ambient air. However, when nitrogen gas flows inside, the vacuum heat insulating material has a structure built in a heat insulating material such as PUF, so that the gas in the closed cell may be replaced with nitrogen gas and the heat insulating performance may be deteriorated.

少なくとも一実施形態は、周囲空気又は窒素ガスなどの不活性ガスとの置換による断熱性能の劣化をなくし、かつ高断熱性能を有して設置スペースを低減可能な断熱構造を提案することを目的とする。   An object of at least one embodiment is to propose a heat insulating structure that eliminates deterioration of heat insulating performance due to substitution with an inert gas such as ambient air or nitrogen gas, and has high heat insulating performance and can reduce installation space. To do.

(1)幾つかの実施形態に係る液化ガス貯蔵タンクの断熱構造は、
液化ガスを貯蔵する液化ガス貯蔵タンクの外壁の表面を覆う断熱層を有する液化ガス貯蔵タンクの断熱構造であって、
前記断熱層は、
独立気泡を有する断熱材である第1層と、
前記第1層の両側に設けられた非通気層と、
を含み、
前記第1層の両側に設けられた非通気層の少なくとも一方は、心材をガスバリア性を有する外被材で覆って封止し前記外被材の内部を減圧した真空断熱材を含む。
(1) The heat insulation structure of the liquefied gas storage tank according to some embodiments is
A heat insulating structure for a liquefied gas storage tank having a heat insulating layer covering a surface of an outer wall of the liquefied gas storage tank for storing the liquefied gas,
The thermal insulation layer is
A first layer which is a heat insulating material having closed cells;
A non-breathable layer provided on both sides of the first layer;
Including
At least one of the non-breathing layers provided on both sides of the first layer includes a vacuum heat insulating material in which the core material is covered with a jacket material having a gas barrier property and sealed to reduce the pressure inside the jacket material.

上記(1)の構成によれば、独立気泡を有する断熱材である上記第1層の両側に上記非通気層を設けたことで、第1層の独立気泡内の低熱伝導率を有するガスが周囲の空気又は窒素ガスなどの不活性ガスと置換するのを抑制でき、これによって、第1層の断熱性能の劣化を防止できる。
また、上記非通気層の少なくとも一方が優れたガスバリア性及び断熱性能を有する真空断熱材を含むことで、断熱性能を向上でき、これによって、BOGの発生率を減少できると共に、設置スペースを低減できる。
According to the configuration of (1) above, by providing the non-breathing layer on both sides of the first layer, which is a heat insulating material having closed cells, gas having low thermal conductivity in the closed cells of the first layer can be obtained. Substitution with an inert gas such as ambient air or nitrogen gas can be suppressed, thereby preventing deterioration of the heat insulation performance of the first layer.
In addition, heat insulation performance can be improved by including a vacuum heat insulating material having excellent gas barrier properties and heat insulation performance in at least one of the non-breathing layers, thereby reducing the generation rate of BOG and reducing the installation space. .

(2)一実施形態では、前記(1)の構成において、
前記非通気層は、前記第1層の外側に設けられる外側非通気層を含み、
前記外側非通気層は、前記真空断熱材を含む。
上記(2)の構成によれば、第1層の外側に設けられる上記外側非通気層が優れたガスバリア性及び断熱性能を有する真空断熱材を含むことで、第1層の独立気泡内の低熱伝導率ガスが断熱層外側の周囲空気と置換するのを防止できる。また、真空断熱材の高断熱性能により、断熱層の薄厚化が可能になり、これによって、断熱層の設置スペースを低減できる。
(2) In one embodiment, in the configuration of (1),
The non-breathing layer includes an outer non-breathing layer provided outside the first layer,
The outer non-breathing layer includes the vacuum heat insulating material.
According to the configuration of (2) above, the outer non-breathing layer provided outside the first layer includes the vacuum heat insulating material having excellent gas barrier properties and heat insulating performance, thereby reducing the low heat in the closed cells of the first layer. It is possible to prevent the conductivity gas from being replaced with the ambient air outside the heat insulating layer. Moreover, the high heat insulating performance of the vacuum heat insulating material enables the heat insulating layer to be thinned, thereby reducing the installation space for the heat insulating layer.

(3)一実施形態では、前記(1)の構成において、
前記非通気層は、前記第1層の内側に設けられる内側非通気層を含み、
前記内側非通気層は、前記真空断熱材を含む。
上記(3)の構成によれば、第1層の内側に設けられる上記内側非通気層が優れたガスバリア性及び断熱性能を有する真空断熱材を含むことで、第1層の独立気泡内の低熱伝導率ガスが不活性ガスなどと置換するのを抑制できる。また、真空断熱材の高断熱性能により、断熱層の薄厚化が可能になり、これによって、断熱層の設置スペースを低減できる。
(3) In one embodiment, in the configuration of (1),
The non-breathing layer includes an inner non-breathing layer provided inside the first layer,
The inner non-breathing layer includes the vacuum heat insulating material.
According to the configuration of (3) above, the inner non-venting layer provided on the inner side of the first layer includes the vacuum heat insulating material having excellent gas barrier properties and heat insulating performance, thereby reducing the low heat in the closed cells of the first layer. Replacement of the conductivity gas with an inert gas can be suppressed. Moreover, the high heat insulating performance of the vacuum heat insulating material enables the heat insulating layer to be thinned, thereby reducing the installation space for the heat insulating layer.

(4)一実施形態では、前記(3)の構成において、
前記断熱層は、
前記内側非通気層の内側に設けられた独立気泡を有する断熱材である第2層をさらに含む。
上記(4)の構成によれば、真空断熱材の使用可能最低温度が液化ガスの温度より高い場合、真空断熱材を含む内側非通気層の内側に上記第2層を配置することで、内側非通気層が配置される領域を真空断熱材の使用可能最低温度以上とすることができ、これによって、内側非通気層に含まれる真空断熱材の劣化を防止できる。
(4) In one embodiment, in the configuration of (3),
The thermal insulation layer is
It further includes a second layer which is a heat insulating material having closed cells provided inside the inner non-breathing layer.
According to the configuration of (4) above, when the minimum usable temperature of the vacuum heat insulating material is higher than the temperature of the liquefied gas, the second layer is disposed inside the inner non-venting layer including the vacuum heat insulating material, thereby The region where the non-air-permeable layer is disposed can be set to the minimum usable temperature or higher of the vacuum heat insulating material, thereby preventing the vacuum heat insulating material included in the inner non-air-permeable layer from being deteriorated.

(5)一実施形態では、前記(4)の構成において、
前記断熱層は、
前記第2層の内側に設けられた非通気性被覆材をさらに含む。
上記(5)の構成によれば、第2層の内側に設けられた上記非通気性被覆材の存在によって、第2層の独立気泡内ガスが不活性ガスと置換するのを抑制できる。従って、この非通気性被覆材を設けることで、第2層の断熱性能の劣化も抑制できる。
(5) In one embodiment, in the configuration of (4),
The thermal insulation layer is
A non-breathable covering material provided on the inner side of the second layer is further included.
According to the configuration of (5) above, the presence of the non-breathable coating material provided on the inner side of the second layer can suppress the substitution of the gas in the closed cells of the second layer with the inert gas. Therefore, the deterioration of the heat insulation performance of the second layer can be suppressed by providing this non-breathable coating material.

(6)一実施形態では、前記(1)〜(5)の何れかの構成において、
前記第1層の両側に設けられた非通気層の他方は、前記真空断熱材を含む。
上記(6)の構成によれば、第1層の両側に設けられた非通気層が優れた断熱性能及びガスバリア性を有する真空断熱材を含むので、第1層の断熱性能の劣化を抑制できると共に、断熱層の断熱性能をさらに向上できる。
(6) In one embodiment, in any one of the configurations (1) to (5),
The other of the non-breathing layers provided on both sides of the first layer includes the vacuum heat insulating material.
According to the configuration of (6) above, since the non-venting layer provided on both sides of the first layer includes the vacuum heat insulating material having excellent heat insulating performance and gas barrier properties, deterioration of the heat insulating performance of the first layer can be suppressed. At the same time, the heat insulation performance of the heat insulation layer can be further improved.

(7)一実施形態では、前記(1)〜(5)の何れかの構成において、
前記第1層の両側に設けられた非通気層の他方は、非通気性被覆材である。
上記(7)の構成によれば、非通気層として非通気性被覆材を用いることで、第1層の独立気泡内のガスの置換による断熱性能の劣化を抑制できる。また、厚さが薄い非通気性被覆材を用いることで、断熱層の設置スペースを低減できる。
(7) In one embodiment, in any one of the configurations (1) to (5),
The other of the non-breathing layers provided on both sides of the first layer is a non-breathable coating material.
According to the configuration of (7) above, by using a non-breathable covering material as the non-breathable layer, it is possible to suppress deterioration of the heat insulation performance due to the replacement of the gas in the closed cells of the first layer. Moreover, the installation space of a heat insulation layer can be reduced by using a thin non-breathable covering material.

(8)一実施形態では、前記(1)〜(7)の何れかの構成において、
前記非通気層は、端部が互いに重なるように配置された複数の非通気性被覆材を含む。
(8) In one embodiment, in any one of the configurations (1) to (7),
The non-breathable layer includes a plurality of non-breathable covering materials arranged so that the end portions overlap each other.

液化ガス貯蔵タンクの外壁の表面を覆う断熱層は、複数枚の第1層や真空断熱材が敷き詰められることで構成され、隣接する第1層や真空断熱材の間には継ぎ目が形成される。
上記(8)の構成によれば、複数の非通気性被覆材の端部が互いに重なるように配置されることで、これらの継ぎ目を密閉でき、これによって、第1層を周囲空気及び窒素ガスなどの不活性ガスから遮断できるので、第1層の独立気泡内のガスの置換による断熱性能の劣化を抑制できる。
The heat insulating layer covering the surface of the outer wall of the liquefied gas storage tank is configured by laying a plurality of first layers and vacuum heat insulating materials, and a seam is formed between adjacent first layers and vacuum heat insulating materials. .
According to the configuration of the above (8), by arranging the end portions of the plurality of non-breathable covering materials so as to overlap each other, it is possible to seal these seams, whereby the first layer is surrounded by ambient air and nitrogen gas. Therefore, it is possible to suppress the deterioration of the heat insulation performance due to the replacement of the gas in the closed cells of the first layer.

(9)一実施形態では、前記(1)〜(8)の何れかの構成において、
前記液化ガス貯蔵タンクは液化ガス運搬船に設けられたものである。
上記(9)の構成によれば、上記液化ガス貯蔵タンクは、周囲空気又は窒素ガスとの置換による断熱性能の劣化をなくし、かつ高断熱性能を有するために薄厚化が可能になる。これによって、断熱層の設置スペースを低減できるため、容積や船幅が限られた液化ガス運搬船でも配置の自由度を広げることができる。また、断熱層の重量増加を抑制できるため、液化ガス運搬船の運行性能の悪化を抑制できる。
(9) In one embodiment, in any one of the configurations (1) to (8),
The liquefied gas storage tank is provided in a liquefied gas carrier ship.
According to the configuration of (9) above, the liquefied gas storage tank eliminates deterioration of the heat insulation performance due to replacement with ambient air or nitrogen gas, and has a high heat insulation performance, and thus can be thinned. Thereby, since the installation space of a heat insulation layer can be reduced, the freedom degree of arrangement | positioning can be expanded also in the liquefied gas carrier ship with which the volume and ship width were limited. Moreover, since the weight increase of a heat insulation layer can be suppressed, the deterioration of the operation performance of a liquefied gas carrier ship can be suppressed.

幾つかの実施形態によれば、液化ガス貯蔵タンクの断熱構造を、周囲空気又は窒素ガスなどの不活性ガスとの置換による断熱性能の劣化を抑制でき、かつ高断熱性能を有して薄厚化が可能になり設置スペースを低減できる。   According to some embodiments, the heat insulation structure of the liquefied gas storage tank can be prevented from being deteriorated due to replacement with an inert gas such as ambient air or nitrogen gas, and thinned with high heat insulation performance. And the installation space can be reduced.

液化ガス運搬船に設けられた一実施形態に係る液化ガス貯蔵タンクの断面図である。It is sectional drawing of the liquefied gas storage tank which concerns on one Embodiment provided in the liquefied gas carrier ship. 一実施形態に係る液化ガス貯蔵タンクの断熱構造の断面図である。It is sectional drawing of the heat insulation structure of the liquefied gas storage tank which concerns on one Embodiment. 一実施形態に係る液化ガス貯蔵タンクの断熱構造の断面図である。It is sectional drawing of the heat insulation structure of the liquefied gas storage tank which concerns on one Embodiment. 一実施形態に係る液化ガス貯蔵タンクの断熱構造の断面図である。It is sectional drawing of the heat insulation structure of the liquefied gas storage tank which concerns on one Embodiment. 一実施形態に係る液化ガス貯蔵タンクの断熱構造の断面図である。It is sectional drawing of the heat insulation structure of the liquefied gas storage tank which concerns on one Embodiment. 一実施形態に係る液化ガス貯蔵タンクの断熱構造の断面図である。It is sectional drawing of the heat insulation structure of the liquefied gas storage tank which concerns on one Embodiment. 一実施形態に係る液化ガス貯蔵タンクの断熱構造の断面図である。It is sectional drawing of the heat insulation structure of the liquefied gas storage tank which concerns on one Embodiment.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples. Absent.
For example, expressions expressing relative or absolute arrangements such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly In addition to such an arrangement, it is also possible to represent a state of relative displacement with an angle or a distance such that tolerance or the same function can be obtained.
In addition, for example, expressions representing shapes such as quadrangular shapes and cylindrical shapes not only represent shapes such as quadrangular shapes and cylindrical shapes in a strict geometric sense, but also within the range where the same effect can be obtained. A shape including a chamfered portion or the like is also expressed.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of the other constituent elements.

幾つかの実施形態に係る液化ガス貯蔵タンクの断熱構造は、図1に示すように、液化ガス貯蔵タンク12の外壁表面を覆うように形成された断熱層20を有する。
断熱層20(20A、20B、20C、20D、20E、20F)は、図2〜図7に示すように、第1層24と、第1層24の両側に設けられた非通気層22及び26とを含む。第1層24は独立気泡bを有する断熱材であり、非通気層22及び26の少なくとも一方は真空断熱材32を含む。
図2〜図7は図1中のA部を拡大して示す断面図であり、図2〜図7中、oは断熱層20の外側雰囲気を示し、iは液化ガス貯蔵タンク12の内部の液化ガス雰囲気を示す。
The heat insulation structure of the liquefied gas storage tank according to some embodiments includes a heat insulating layer 20 formed so as to cover the outer wall surface of the liquefied gas storage tank 12, as shown in FIG.
As shown in FIGS. 2 to 7, the heat insulating layer 20 (20 </ b> A, 20 </ b> B, 20 </ b> C, 20 </ b> D, 20 </ b> E, 20 </ b> F) includes a first layer 24 and non-breathing layers 22 and 26 provided on both sides of the first layer 24. Including. The first layer 24 is a heat insulating material having closed cells b, and at least one of the non-air-permeable layers 22 and 26 includes a vacuum heat insulating material 32.
2 to 7 are enlarged cross-sectional views showing a portion A in FIG. 1. In FIGS. 2 to 7, o represents an atmosphere outside the heat insulating layer 20, and i represents the inside of the liquefied gas storage tank 12. A liquefied gas atmosphere is shown.

真空断熱材とは、例えば無機断熱材を心材として用い、該心材をガスバリア性に優れた外被材で覆って封止し、この外被材の内部を減圧したものである。代表的な心材として、例えば、ウレタンなどの発泡体、シリカなどの粉末材料、グラスウールなどの繊維材料がある。外被材として、例えば、アルミシート、多層ラミネートフィルム等が用いられる。外被材の内部は減圧されるため対流が起こらず、かつ心材は空隙率が高いため伝熱抵抗が高く、これによって高い断熱性能を有する。   The vacuum heat insulating material is obtained by using, for example, an inorganic heat insulating material as a core material, covering the core material with an outer shell material having excellent gas barrier properties, and sealing the inner surface of the outer jacket material. Typical core materials include, for example, foams such as urethane, powder materials such as silica, and fiber materials such as glass wool. As the jacket material, for example, an aluminum sheet, a multilayer laminate film, or the like is used. Since the inside of the jacket material is depressurized, no convection occurs, and the core material has a high heat transfer resistance due to its high porosity, thereby having high heat insulation performance.

一実施形態では、液化ガスは、例えばLNG、LPG(液化石油ガス)等である。また、第1層24は、例えば、独立気泡bを有するPUF、EPS等であり、独立気泡bを有することで、高い断熱性能を有する。
一実施形態では、第1層24の独立気泡b内に代替フロンなどの熱伝導率が低いガスが封入されている。独立気泡b内に熱伝導率が低いガスが封入されることで、さらに断熱性能を向上できる。
In one embodiment, the liquefied gas is, for example, LNG, LPG (liquefied petroleum gas), or the like. Moreover, the 1st layer 24 is PUF, EPS, etc. which have the closed cell b, for example, and has high heat insulation performance by having the closed cell b.
In one embodiment, a gas having a low thermal conductivity, such as alternative chlorofluorocarbon, is enclosed in the closed cells b of the first layer 24. Heat insulation performance can be further improved by enclosing a gas having low thermal conductivity in the closed cell b.

一実施形態では、液化ガス貯蔵タンク12の外壁28と断熱層20との間に、例えば窒素ガスなどの不活性ガスが供給される隙間sが形成される。隙間sに窒素ガスなどの不活性ガスを流すことで空気中水分の吸湿/凍結を防止し、また、隙間sのガスをサンプリングすることで、液化ガスの漏洩有無を検知できる。
一実施形態では、図1に示すように、液化ガス貯蔵タンク12は液化ガス運搬船10に搭載される。
In one embodiment, a gap s in which an inert gas such as nitrogen gas is supplied is formed between the outer wall 28 of the liquefied gas storage tank 12 and the heat insulating layer 20. By flowing an inert gas such as nitrogen gas through the gap s, moisture absorption / freezing of moisture in the air can be prevented, and by sampling the gas in the gap s, it is possible to detect the presence or absence of leakage of the liquefied gas.
In one embodiment, the liquefied gas storage tank 12 is mounted on a liquefied gas carrier 10 as shown in FIG.

上記構成によれば、独立気泡を有する断熱材である第1層24の両側に非通気層22及び26を設けたことで、第1層24の独立気泡b内の低熱伝導率を有するガスが周囲の空気又は窒素ガスなどの不活性ガスと置換するのを抑制でき、これによって、第1層24の断熱性能劣化を抑制できる。
また、非通気層22及び26の少なくとも一方が優れたガスバリア性及び断熱性能を有する真空断熱材32を含むことで、断熱性能を向上でき、これによって、BOGの発生率を減少できると共に、断熱層20の薄厚化が可能になり設置スペースを低減できる。
PUFの熱伝導率は常温(20℃)で約0.02W/mKであるのに比べて、真空断熱材の一般的な熱伝導率は0.002W/mK程度であり、優れた断熱性能を有する。
According to the above configuration, by providing the non-breathing layers 22 and 26 on both sides of the first layer 24 which is a heat insulating material having closed cells, the gas having low thermal conductivity in the closed cells b of the first layer 24 can be obtained. Substitution with an inert gas such as ambient air or nitrogen gas can be suppressed, and thereby the deterioration of the heat insulation performance of the first layer 24 can be suppressed.
In addition, since at least one of the non-venting layers 22 and 26 includes the vacuum heat insulating material 32 having excellent gas barrier properties and heat insulating performance, the heat insulating performance can be improved, thereby reducing the generation rate of BOG and the heat insulating layer. 20 can be reduced in thickness, and the installation space can be reduced.
The heat conductivity of PUF is about 0.02 W / mK at room temperature (20 ° C), whereas the general heat conductivity of vacuum heat insulating materials is about 0.002 W / mK. Have.

一実施形態では、図2〜図7に示すように、第1層24の外側に設けられる外側非通気層22は真空断熱材32を含む。
このように、第1層24の外側に優れたガスバリア性及び断熱性能を有する真空断熱材を有することで、第1層24の独立気泡b内の低熱伝導率ガスが断熱層外側の周囲空気と置換するのを抑制でき、かつ真空断熱材の高断熱性能により断熱層20の設置スペースを低減できる。
In one embodiment, as shown in FIGS. 2 to 7, the outer non-venting layer 22 provided on the outer side of the first layer 24 includes a vacuum heat insulating material 32.
Thus, by having the vacuum heat insulating material having excellent gas barrier properties and heat insulating performance outside the first layer 24, the low thermal conductivity gas in the closed cells b of the first layer 24 is separated from the ambient air outside the heat insulating layer. Replacement can be suppressed, and the installation space for the heat insulating layer 20 can be reduced by the high heat insulating performance of the vacuum heat insulating material.

一実施形態では、図6を除く図2〜図7に示す断熱層20(20A、20B、20C、20D、20F)は、第1層24の内側に設けられる内側非通気層26は真空断熱材32を含む。
このように、第1層24の内側に優れたガスバリア性及び断熱性能を有する真空断熱材32を有することで、第1層24の独立気泡b内の低熱伝導率ガスが不活性ガスなどと置換するのを防止でき、かつ真空断熱材32の高断熱性能により断熱層20の設置スペースを低減できる。
In one embodiment, the heat insulation layer 20 (20A, 20B, 20C, 20D, 20F) shown in FIG. 2 to FIG. 7 excluding FIG. 6 is an inner non-air-permeable layer 26 provided inside the first layer 24. 32.
Thus, by having the vacuum heat insulating material 32 having excellent gas barrier properties and heat insulating performance inside the first layer 24, the low thermal conductivity gas in the closed cell b of the first layer 24 is replaced with an inert gas or the like. The installation space of the heat insulation layer 20 can be reduced by the high heat insulation performance of the vacuum heat insulating material 32.

一実施形態では、図4及び図5に示す断熱層20(20C、20D)は、内側非通気層26の内側に設けられ、独立気泡を有する断熱材である第2層30をさらに含む。
一実施形態では、第2層30は、第1層24と同様に、例えば、独立気泡bを有するPUF、EPS等であり、独立気泡bを有することで高い断熱性能を有する。また、独立気泡b内に代替フロンなどの熱伝導率が低いガスが封入され、これによって、さらに断熱性能を向上できる。
In one embodiment, the heat insulating layer 20 (20C, 20D) shown in FIGS. 4 and 5 further includes a second layer 30 that is provided inside the inner non-venting layer 26 and is a heat insulating material having closed cells.
In one embodiment, the 2nd layer 30 is PUF, EPS, etc. which have closed cell b like the 1st layer 24, for example, and has high heat insulation performance by having closed cell b. In addition, a gas having a low thermal conductivity such as an alternative chlorofluorocarbon is enclosed in the closed cell b, thereby further improving the heat insulation performance.

真空断熱材32の使用可能最低温度が液化ガスの温度より高い場合、真空断熱材32を含む内側非通気層26の内側にさらに第2層30を配置することで、真空断熱材32が配置された領域を使用可能最低温度以上とすることができる。これによって、内側非通気層26に含まれる真空断熱材の劣化を抑制できる。なお、真空断熱材32を含む内側非通気層26の存在によって、第1層24の独立気泡b内のガス置換が抑制され、第1層24の断熱性能の劣化は抑制される。本実施形態では、不活性ガスによる第2層30の断熱性能の劣化を許容している。   When the minimum usable temperature of the vacuum heat insulating material 32 is higher than the temperature of the liquefied gas, the vacuum heat insulating material 32 is disposed by further disposing the second layer 30 inside the inner non-venting layer 26 including the vacuum heat insulating material 32. The region can be above the minimum usable temperature. Thereby, deterioration of the vacuum heat insulating material contained in the inner non-air-permeable layer 26 can be suppressed. Note that the presence of the inner non-breathing layer 26 including the vacuum heat insulating material 32 suppresses the gas replacement in the closed cells b of the first layer 24 and suppresses the deterioration of the heat insulating performance of the first layer 24. In this embodiment, deterioration of the heat insulation performance of the second layer 30 due to the inert gas is allowed.

一実施形態では、図5に示す断熱層20(20D)は、第2層30の内側に設けられた非通気性被覆材34をさらに含む。
一実施形態では、非通気性被覆材34は、アルミシートとプラスチックフィルムとの積層体である。
非通気性被覆材34の存在によって、図4に示す断熱層20(20C)が得られる作用効果に加えて、第2層30の独立気泡内ガスが不活性ガスと置換するのを抑制でき、これによって、第2層30の断熱性能の劣化を抑制できる。
In one embodiment, the heat insulating layer 20 (20 </ b> D) shown in FIG. 5 further includes a non-breathable covering material 34 provided inside the second layer 30.
In one embodiment, the non-breathable covering material 34 is a laminate of an aluminum sheet and a plastic film.
Due to the presence of the non-breathable covering material 34, in addition to the effect of obtaining the heat insulating layer 20 (20C) shown in FIG. 4, it is possible to suppress the gas in the closed cells of the second layer 30 from being replaced with an inert gas, Thereby, deterioration of the heat insulation performance of the second layer 30 can be suppressed.

一実施形態では、図6を除く図2〜図7に示す断熱層20(20A、20B、20C、20D、20F)は、第1層24の両側に設けられた非通気層22及び26は真空断熱材32を含む。
このように、第1層24の両側に優れた断熱性能及びガスバリア性を有する真空断熱材32が配置されるので、第1層24の独立気泡b内の熱伝導率が低いガスと外側の周囲空気及び内側の不活性ガスとの置換を抑制でき、第1層24の断熱性能の劣化を抑制できると共に、断熱層20の断熱性能をさらに向上できる。
In one embodiment, the heat insulating layer 20 (20A, 20B, 20C, 20D, 20F) shown in FIGS. 2 to 7 except for FIG. 6 is used for the non-breathing layers 22 and 26 provided on both sides of the first layer 24. Insulating material 32 is included.
As described above, since the vacuum heat insulating material 32 having excellent heat insulating performance and gas barrier property is arranged on both sides of the first layer 24, the gas having low thermal conductivity in the closed cell b of the first layer 24 and the outer periphery The replacement with air and an inert gas inside can be suppressed, the deterioration of the heat insulation performance of the first layer 24 can be suppressed, and the heat insulation performance of the heat insulation layer 20 can be further improved.

一実施形態では、図3、図5及び図6に示す断熱層20(20B、20D、20E)は、第1層24の外側及び内側の少なくとも一方の非通気層22,26に真空断熱材32が設けられ、少なくとも他方の非通気層22,26に非通気性被覆材34が設けられる。
このように、非通気層22又は26に厚さが薄い非通気性被覆材34を用いることで、第1層24の独立気泡内のガスの置換による断熱性能の劣化を抑制できると共に、断熱層の薄厚化が可能になり設置スペースを低減できる。
In one embodiment, the heat insulating layer 20 (20B, 20D, 20E) shown in FIGS. 3, 5, and 6 is provided with a vacuum heat insulating material 32 on at least one of the non-breathing layers 22, 26 outside and inside the first layer 24. And a non-breathable covering material 34 is provided on at least the other non-breathable layers 22 and 26.
Thus, by using the non-breathable coating material 34 having a small thickness for the non-breathing layer 22 or 26, it is possible to suppress the deterioration of the heat insulation performance due to the replacement of the gas in the closed cells of the first layer 24, and It is possible to reduce the installation space.

一実施形態では、図3、図5及び図6に示す断熱層20(20B、20D、20E)は、該断熱層の最外側及び最内側に非通気性被覆材34を有する。
上記構成によれば、第1層24の両側に厚さが薄い非通気性被覆材34を用いることで、第1層24の独立気泡内のガスの置換による断熱性能の劣化を防止できると共に、断熱層の薄厚化が可能になり設置スペースをさらに低減できる。
In one embodiment, the thermal insulation layer 20 (20B, 20D, 20E) shown in FIGS. 3, 5, and 6 has a non-breathable coating 34 on the outermost and innermost sides of the thermal insulation layer.
According to the above configuration, by using the non-breathable covering material 34 having a small thickness on both sides of the first layer 24, it is possible to prevent deterioration of the heat insulating performance due to the replacement of the gas in the closed cells of the first layer 24, and The heat insulation layer can be made thinner and the installation space can be further reduced.

一実施形態では、図3、図5及び図6に示す断熱層20(20B、20D、20E)は、第1層24の外側及び内側に配置された非通気層22及び26の少なくとも一方が真空断熱材32及び非通気性被覆材34が積層されている。
上記実施形態によれば、非通気層22及び26の少なくとも一方が真空断熱材32及び非通気性被覆材34が積層されて構成されることで、断熱性能及びガスバリア性をさらに向上できる。
In one embodiment, the thermal insulation layer 20 (20B, 20D, 20E) shown in FIGS. 3, 5 and 6 is such that at least one of the non-breathing layers 22 and 26 disposed outside and inside the first layer 24 is a vacuum. A heat insulating material 32 and a non-breathable coating material 34 are laminated.
According to the embodiment, at least one of the non-air-permeable layers 22 and 26 is configured by laminating the vacuum heat insulating material 32 and the non-air-permeable covering material 34, so that the heat insulating performance and the gas barrier property can be further improved.

一実施形態では、図3に示す断熱層20(20B)は、第1層24の外側及び内側に配置された非通気層22及び26が真空断熱材32及び非通気性被覆材34が積層されて構成されている。
上記実施形態によれば、非通気層22及び26が真空断熱材32と非通気性被覆材34とが積層されて構成されることで、断熱性能及びガスバリア性をさらに向上できる。
In one embodiment, the heat-insulating layer 20 (20B) shown in FIG. 3 has a non-air-permeable layer 22 and 26 disposed outside and inside the first layer 24, and a vacuum heat-insulating material 32 and a non-air-permeable covering material 34 are laminated. Configured.
According to the above embodiment, the non-air-permeable layers 22 and 26 are configured by laminating the vacuum heat insulating material 32 and the non-air-permeable covering material 34, whereby the heat insulating performance and gas barrier properties can be further improved.

一実施形態では、図7に示すように、非通気層22及び26は、複数の非通気性被覆材34(34a、34b)を含み、非通気性被覆材34(34a、34b)の端部は互いに重なるように配置されている。   In one embodiment, as shown in FIG. 7, the non-breathable layers 22 and 26 include a plurality of non-breathable dressings 34 (34a, 34b), and the ends of the non-breathable dressings 34 (34a, 34b). Are arranged so as to overlap each other.

液化ガス貯蔵タンク12の外壁28の表面を覆う断熱層は、複数枚の第1層24が敷き詰められることで構成され、隣接する第1層24の間には継ぎ目36が形成される。
上記実施形態によれば、複数の非通気性被覆材34(34a、34b)の端部が互いに重なるように配置されることで、第1層24の継ぎ目36を密閉でき、これによって、第1層24の独立気泡内のガスの置換による断熱性能の劣化を防止できる。
The heat insulating layer covering the surface of the outer wall 28 of the liquefied gas storage tank 12 is configured by laying a plurality of first layers 24, and a seam 36 is formed between adjacent first layers 24.
According to the embodiment, the seams 36 of the first layer 24 can be hermetically sealed by arranging the ends of the plurality of non-breathable covering materials 34 (34a, 34b) so as to overlap each other. It is possible to prevent the heat insulation performance from being deteriorated due to the replacement of the gas in the closed cells of the layer 24.

一実施形態では、図7に示すように、非通気層22及び26は真空断熱材32を含み、複数枚の真空断熱材32が敷き詰められる。真空断熱材32の継ぎ目38は第1層24の継ぎ目36とずれた位置に配置される。
これによって、継ぎ目36と継ぎ目38が重なることによる継ぎ目の断熱性能の低下を抑制できる。
In one embodiment, as shown in FIG. 7, the non-breathing layers 22 and 26 include a vacuum insulation 32, and a plurality of vacuum insulations 32 are laid down. The joint 38 of the vacuum heat insulating material 32 is disposed at a position shifted from the joint 36 of the first layer 24.
Accordingly, it is possible to suppress a decrease in the heat insulation performance of the joint due to the overlap of the joint 36 and the joint 38.

一実施形態では、図1に示すように、液化ガス貯蔵タンク12は液化ガス運搬船10に設けられている。
上記幾つかの実施形態に係る断熱層20は、周囲空気又は窒素ガスなどの不活性ガスとの置換による断熱性能の劣化をなくし、かつ高断熱性能を有して薄厚化が可能になり設置スペースを低減できるため、船幅及び船内容積が限られたスペースの液化ガス運搬船でも配置の自由度を広げることができる。また、断熱層20の重量増加を抑制できるため、液化ガス運搬船の運行性能の悪化を抑制できる。
In one embodiment, as shown in FIG. 1, the liquefied gas storage tank 12 is provided in the liquefied gas carrier ship 10.
The heat insulation layer 20 according to some of the above embodiments eliminates deterioration of heat insulation performance due to replacement with ambient air or an inert gas such as nitrogen gas, and has high heat insulation performance and can be thinned, so that the installation space can be reduced. Therefore, the degree of freedom of arrangement can be expanded even in a liquefied gas carrier ship having a space with limited ship width and ship volume. Moreover, since the weight increase of the heat insulation layer 20 can be suppressed, the deterioration of the operation performance of a liquefied gas carrier ship can be suppressed.

幾つかの実施形態によれば、周囲空気又は窒素ガスとの置換による断熱性能の劣化をなくし、かつ高断熱性能を有して重量及び設置スペースを低減可能であり、陸上又は液化ガス運搬船にいずれに設けられた場合であっても有効に適用できる。   According to some embodiments, the deterioration of thermal insulation performance due to replacement with ambient air or nitrogen gas is eliminated, and the high thermal insulation performance can be reduced in weight and installation space. Even if it is provided, it can be effectively applied.

10 液化ガス運搬船
12 液化ガス貯蔵タンク
20(20A、10B、10C、10D、20E,20F) 断熱層
22 外側非通気層
24 第1層
26 内側非通気層
28 外壁
30 第2層
32 真空断熱材
34(34a、34b) 非通気性被覆材
36、38 継ぎ目
b 独立気泡
s 隙間
DESCRIPTION OF SYMBOLS 10 Liquefied gas carrier 12 Liquefied gas storage tank 20 (20A, 10B, 10C, 10D, 20E, 20F) Thermal insulation layer 22 Outer non-venting layer 24 First layer 26 Inner non-venting layer 28 Outer wall 30 Second layer 32 Vacuum insulating material 34 (34a, 34b) Non-breathable coating material 36, 38 Seam b Closed cell s Gap

Claims (9)

液化ガスを貯蔵する液化ガス貯蔵タンクの外壁の表面を覆う断熱層を有する液化ガス貯蔵タンクの断熱構造であって、
前記断熱層は、
独立気泡を有する断熱材である第1層と、
前記第1層の両側に設けられた非通気層と、
を含み、
前記第1層の両側に設けられた非通気層の少なくとも一方は、心材をガスバリア性を有する外被材で覆って封止し前記外被材の内部を減圧した真空断熱材を含むことを特徴とする液化ガス貯蔵タンクの断熱構造。
A heat insulating structure for a liquefied gas storage tank having a heat insulating layer covering a surface of an outer wall of the liquefied gas storage tank for storing the liquefied gas,
The thermal insulation layer is
A first layer which is a heat insulating material having closed cells;
A non-breathable layer provided on both sides of the first layer;
Including
At least one of the non-breathing layers provided on both sides of the first layer includes a vacuum heat insulating material in which a core material is covered and sealed with a jacket material having a gas barrier property, and the inside of the jacket material is decompressed. Insulating structure of liquefied gas storage tank.
前記非通気層は、前記第1層の外側に設けられる外側非通気層を含み、
前記外側非通気層は、前記真空断熱材を含むことを特徴とする請求項1に記載の液化ガス貯蔵タンクの断熱構造。
The non-breathing layer includes an outer non-breathing layer provided outside the first layer,
The heat insulation structure of a liquefied gas storage tank according to claim 1, wherein the outer non-venting layer includes the vacuum heat insulating material.
前記非通気層は、前記第1層の内側に設けられる内側非通気層を含み、
前記内側非通気層は、前記真空断熱材を含むことを特徴とする請求項1に記載の液化ガス貯蔵タンクの断熱構造。
The non-breathing layer includes an inner non-breathing layer provided inside the first layer,
The heat insulation structure of a liquefied gas storage tank according to claim 1, wherein the inner non-venting layer includes the vacuum heat insulating material.
前記断熱層は、
前記内側非通気層の内側に設けられた独立気泡を有する断熱材である第2層をさらに含むことを特徴とする請求項3に記載の液化ガス貯蔵タンクの断熱構造。
The thermal insulation layer is
The heat insulation structure for a liquefied gas storage tank according to claim 3, further comprising a second layer, which is a heat insulating material having closed cells, provided inside the inner non-venting layer.
前記断熱層は、
前記第2層の内側に設けられた非通気性被覆材をさらに含むことを特徴とする請求項4に記載の液化ガス貯蔵タンクの断熱構造。
The thermal insulation layer is
The heat insulation structure for a liquefied gas storage tank according to claim 4, further comprising a non-breathable covering material provided inside the second layer.
前記第1層の両側に設けられた非通気層の他方は、前記真空断熱材を含むことを特徴とする請求項1から5の何れか一項に記載の液化ガス貯蔵タンクの断熱構造。   The heat insulation structure for a liquefied gas storage tank according to any one of claims 1 to 5, wherein the other of the non-venting layers provided on both sides of the first layer includes the vacuum heat insulating material. 前記第1層の両側に設けられた非通気層の他方は、非通気性被覆材であることを特徴とする請求項1から5の何れか一項に記載の液化ガス貯蔵タンクの断熱構造。   The heat insulation structure for a liquefied gas storage tank according to any one of claims 1 to 5, wherein the other of the non-breathing layers provided on both sides of the first layer is a non-breathable covering material. 前記非通気層は、端部が互いに重なるように配置された複数の非通気性被覆材を含むことを特徴とする請求項1から7の何れか一項に記載の液化ガス貯蔵タンクの断熱構造。   The heat insulation structure for a liquefied gas storage tank according to any one of claims 1 to 7, wherein the non-breathing layer includes a plurality of non-breathable coating materials arranged such that end portions thereof overlap each other. . 前記液化ガス貯蔵タンクは液化ガス運搬船に設けられたものであることを特徴とする請求項1から8の何れか一項に記載の液化ガス貯蔵タンクの断熱構造。   The said liquefied gas storage tank is provided in the liquefied gas carrier ship, The heat insulation structure of the liquefied gas storage tank as described in any one of Claim 1 to 8 characterized by the above-mentioned.
JP2017012470A 2017-01-26 2017-01-26 Insulation structure of liquefied gas storage tank Active JP7000023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017012470A JP7000023B2 (en) 2017-01-26 2017-01-26 Insulation structure of liquefied gas storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012470A JP7000023B2 (en) 2017-01-26 2017-01-26 Insulation structure of liquefied gas storage tank

Publications (2)

Publication Number Publication Date
JP2018119634A true JP2018119634A (en) 2018-08-02
JP7000023B2 JP7000023B2 (en) 2022-01-19

Family

ID=63045049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012470A Active JP7000023B2 (en) 2017-01-26 2017-01-26 Insulation structure of liquefied gas storage tank

Country Status (1)

Country Link
JP (1) JP7000023B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164234A (en) * 2019-03-29 2020-10-08 積水ソフランウイズ株式会社 Thermally insulating construction method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103680A1 (en) * 2014-12-26 2016-06-30 パナソニックIpマネジメント株式会社 Heat-insulating container provided with vacuum heat-insulating material, vacuum heat-insulating material, and tanker provided with heat-insulating container
JP2017223327A (en) * 2016-06-17 2017-12-21 株式会社フォームテック Heat insulation panel for liquefied gas tank, and heat insulation structure for liquefied gas tank

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103680A1 (en) * 2014-12-26 2016-06-30 パナソニックIpマネジメント株式会社 Heat-insulating container provided with vacuum heat-insulating material, vacuum heat-insulating material, and tanker provided with heat-insulating container
JP2017223327A (en) * 2016-06-17 2017-12-21 株式会社フォームテック Heat insulation panel for liquefied gas tank, and heat insulation structure for liquefied gas tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164234A (en) * 2019-03-29 2020-10-08 積水ソフランウイズ株式会社 Thermally insulating construction method

Also Published As

Publication number Publication date
JP7000023B2 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
JP6387528B2 (en) Thermal insulation container and thermal insulation structure
JP6390009B2 (en) Insulated container
CN106536383B (en) Heat-insulated container
JP2017223327A (en) Heat insulation panel for liquefied gas tank, and heat insulation structure for liquefied gas tank
KR20170024123A (en) Vacuum heat-insulating material, and heat-insulating container, dwelling wall, transport machine, hydrogen transport tanker, and lng transport tanker equipped with vacuum heat-insulating material
CN111213003B (en) Double-shell tank and ship
CN106537022B (en) Heat-insulating container and heat-insulating structure
EP2777932B1 (en) Systems and methods for providing insulation
US20140117021A1 (en) Cryogenic Fluid Tank and Its Use
JP6266162B2 (en) Insulating body, vacuum heat insulating material, and method of manufacturing vacuum heat insulating material
KR20100119939A (en) Vacuum insulator and envelope for vacuum insulator
JP2018119634A (en) Heat insulation structure of liquefied gas storage tank
JP4386902B2 (en) Piping insulation structure
JP4580412B2 (en) Insulation structure for covering insulation material and insulation object
WO2017154698A1 (en) Heat-resistant structure for liquefied gas tank, and liquefied gas tank using same
JP2017075636A (en) Heat insulation panel for membrane-type liquefied gas tank heat insulation wall
JP5466547B2 (en) Thermal insulation structure and thermal insulation construction method for low temperature tank
JP6376446B2 (en) Laminate, vacuum insulation
JP4334525B2 (en) refrigerator
JP6425680B2 (en) Low temperature tank
JP4130982B2 (en) Vacuum insulation
JP2021050773A (en) Heat insulation material and method for producing the same
JP2009041648A (en) Vacuum heat insulating material and construction member applying the same
JP2017180709A (en) Heat insulation pipe for water supply and construction method of heat insulation pipe for water supply
KR20080104801A (en) Insulation structure of lng carrier ship using aerogel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211223

R150 Certificate of patent or registration of utility model

Ref document number: 7000023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150