JP2018119199A - Electrode for hydrogen generation, method for producing the same, and method of electrolysis therewith - Google Patents

Electrode for hydrogen generation, method for producing the same, and method of electrolysis therewith Download PDF

Info

Publication number
JP2018119199A
JP2018119199A JP2017013202A JP2017013202A JP2018119199A JP 2018119199 A JP2018119199 A JP 2018119199A JP 2017013202 A JP2017013202 A JP 2017013202A JP 2017013202 A JP2017013202 A JP 2017013202A JP 2018119199 A JP2018119199 A JP 2018119199A
Authority
JP
Japan
Prior art keywords
electrode
catalyst layer
hydrogen generation
hydrogen
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017013202A
Other languages
Japanese (ja)
Other versions
JP6878917B2 (en
Inventor
健二 坂本
Kenji Sakamoto
健二 坂本
和正 末次
Kazumasa Suetsugu
和正 末次
正治 土井
Masaharu Doi
正治 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2017013202A priority Critical patent/JP6878917B2/en
Publication of JP2018119199A publication Critical patent/JP2018119199A/en
Application granted granted Critical
Publication of JP6878917B2 publication Critical patent/JP6878917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for hydrogen generation having sufficiently low hydrogen overvoltage in the initial stage and having excellent durability.SOLUTION: An electrode for hydrogen generation comprises a catalyst layer having principal components therein supported on an electrically conductive base material, wherein the principal components are platinum, nickel, and palladium, the catalyst layer is in the form of alloy, amorphous metal, metal oxide or metal hydroxide, impedance is 0.9 Ω or less at 0.1 Hz when a set potential is 1.0 V vs Hg/HgO and when a potential amplitude is 5 mV in an aqueous solution of 1 mol/l sodium hydroxide, and the weight of the catalyst layer is 10 g/mor more per projection area of the electrically conductive base material.SELECTED DRAWING: Figure 1

Description

本発明は水の電気分解又は食塩などのアルカリ金属塩化物水溶液の電気分解に使用する水素発生用電極及びその製造方法並びにこれを用いた電気分解方法に関するものである。   The present invention relates to an electrode for hydrogen generation used for electrolysis of water or electrolysis of an aqueous alkali metal chloride solution such as salt, a method for producing the same, and an electrolysis method using the same.

水又はアルカリ金属塩化物水溶液の電解工業は電力多消費型産業であり、省エネルギー化のために様々な技術開発が行われている。その省エネルギー化の手段とは、電解電圧の低減、及び/又は、電流効率の向上により、電解時に発生する電力ロスを削減することである。例えば、食塩電解工業において、電流効率は95%以上で操業されており、向上余地は少ない。それに対し、電解電圧は理論分解電圧の約2.3Vに対して3.0V前後で操業されており、電圧削減余地が大きく、電圧を削減するための研究開発が盛んに成されている。   The water or alkali metal chloride aqueous solution electrolysis industry is a power-intensive industry, and various technological developments have been made to save energy. The energy saving means is to reduce power loss generated during electrolysis by reducing electrolysis voltage and / or improving current efficiency. For example, in the salt electrolysis industry, the current efficiency is operated at 95% or more, and there is little room for improvement. On the other hand, the electrolysis voltage is operated at around 3.0 V with respect to the theoretical decomposition voltage of about 2.3 V, and there is a lot of room for voltage reduction, and research and development for reducing the voltage are actively conducted.

特に、過電圧の低減に関しては、その過電圧値が電極の触媒材料や電極表面のモルフォロジーに左右されることから、その改良についてこれまで多くの研究開発が行われてきた。例えば、イオン交換膜法食塩電解用陽極について、陽極過電圧の低減に盛んな研究開発が行われてきた結果、陽極過電圧が低く、耐久性に優れた寸法安定性電極[例えば、デノラ・ペルメレック株式会社製のDSE塩素発生用電極(登録商標)]が実用化された。   In particular, regarding the reduction of the overvoltage, since the overvoltage value depends on the electrode catalyst material and the morphology of the electrode surface, many researches and developments have been conducted on the improvement thereof. For example, as a result of vigorous research and development for reducing anode overvoltage for the ion exchange membrane salt electrolysis anode, a dimensional stability electrode with low anode overvoltage and excellent durability [eg Denora Permerek Co., Ltd. DSE chlorine-generating electrode (registered trademark)] made commercially available.

一方、陰極過電圧を低減するための水素発生用電極、いわゆる活性陰極に関してもこれまで多くの提案がなされている。例えば、電気めっき法で導電性基材表面に、ニッケルと鉄、コバルト、インジウムとの組み合わせに加えてアミノ酸、カルボン酸、アミンなどの有機化合物を含んだ物質を担持した水素発生用電極が提案されている(特許文献1)。特許文献1の水素発生用電極は、被覆層の厚みとしては、薄すぎると十分な低水素過電圧性能が得られず、厚すぎると剥離しやすくなるので、20μm〜300μmが適当である([0011])。   On the other hand, many proposals have been made regarding an electrode for hydrogen generation for reducing cathode overvoltage, so-called active cathode. For example, an electrode for hydrogen generation has been proposed in which a conductive substrate surface is loaded with a substance containing organic compounds such as amino acids, carboxylic acids, and amines in addition to a combination of nickel, iron, cobalt, and indium by electroplating. (Patent Document 1). In the electrode for generating hydrogen of Patent Document 1, if the coating layer is too thin, sufficient low hydrogen overvoltage performance cannot be obtained, and if it is too thick, it is easy to peel off, so 20 μm to 300 μm is appropriate ([0011 ]).

近年、陽極とイオン交換膜と陰極を密着させた、所謂、ゼロギャップ型イオン交換膜法電解槽が実用化されている。例えば、刻み巾が0.1mm以上1.0mm以下、短径が0.5mm以上5.0mm以下、長径が1.0mm以上10mm以下、板厚が0.1mm以上1.0mm以下であり、開口率が48〜60%であるエキスパンドメタルに電極触媒が担持されている水素発生用電極を用いることが提案されている(特許文献2)。この様な、薄く、開孔が小さいエキスパンドメタル(「エキスパンドメッシュ」とも言う)に電極触媒を担持する場合、被覆層が20μm〜300μmでは厚すぎるため、特許文献1記載の陰極を特許文献2記載のゼロギャップ電解槽で使用すると、これらの効果が発揮されない場合もある。   In recent years, a so-called zero gap type ion exchange membrane method electrolytic cell in which an anode, an ion exchange membrane and a cathode are brought into close contact with each other has been put into practical use. For example, the step width is 0.1 mm to 1.0 mm, the minor axis is 0.5 mm to 5.0 mm, the major axis is 1.0 mm to 10 mm, the plate thickness is 0.1 mm to 1.0 mm, and the opening It has been proposed to use an electrode for hydrogen generation in which an electrode catalyst is supported on an expanded metal having a rate of 48 to 60% (Patent Document 2). When the electrocatalyst is supported on such an expanded metal (also referred to as “expanded mesh”) that is thin and has a small aperture, the coating layer is too thick at 20 μm to 300 μm. These effects may not be exhibited when used in a zero gap electrolytic cell.

近年、白金を含有する触媒を用いた水素発生用電極が提案されている。例えば、触媒層の重量は、1〜15g/m程度が最良であり、最適な厚さは0.1〜10μm程度の水素発生用電極であり(特許文献3[0036])、前記の特許文献2記載のゼロギャップ型イオン交換膜法電解槽にも好ましく用いることができ、盛んに研究開発が成されている。 In recent years, an electrode for hydrogen generation using a catalyst containing platinum has been proposed. For example, the weight of the catalyst layer is optimally about 1 to 15 g / m 2 , and the optimal thickness is an electrode for hydrogen generation having a thickness of about 0.1 to 10 μm (Patent Document 3 [0036]). It can also be preferably used in the zero gap type ion exchange membrane electrolytic cell described in Document 2, and research and development has been actively conducted.

中でも、導電性基材上に、白金、ニッケルおよびパラジウムを主成分とする触媒層が担持されてなる水素発生用電極は、例えば、従来の白金系触媒の欠点とされていた電解液中の鉄イオンの被毒によって、水素過電圧が上昇することがなく、さらに、電解運転中や停止・起動操作中に流れる逆電流により触媒が剥離・脱落することもない優れた性能を発揮する(特許文献4[0047])。   Among them, the electrode for hydrogen generation in which a catalyst layer mainly composed of platinum, nickel and palladium is supported on a conductive substrate is, for example, iron in an electrolyte solution which has been regarded as a drawback of conventional platinum-based catalysts. Due to ion poisoning, the hydrogen overvoltage does not increase, and the catalyst does not peel off or fall off due to the reverse current flowing during the electrolysis operation or stop / start operation (Patent Document 4). [0047]).

白金、ニッケルおよびパラジウムを主成分とする触媒層が担持されてなる水素発生用電極は、例えば、水素過電圧が70〜80mVである(特許文献4の表1)。これは従来技術に対し、十分な高性能と位置付けることが出来るが、環境保護の観点からは、更に水素過電圧を低減可能な技術が求められている。   The electrode for hydrogen generation in which the catalyst layer which has platinum, nickel, and palladium as a main component is carry | supported has a hydrogen overvoltage of 70-80 mV, for example (Table 1 of patent document 4). This can be positioned as sufficiently high performance as compared with the prior art, but from the viewpoint of environmental protection, a technology capable of further reducing hydrogen overvoltage is required.

特許第3319370号公報Japanese Patent No. 3319370 特許第5583002号公報Japanese Patent No. 5582002 特許第5042389号公報Japanese Patent No. 5042389 特開2015−143389号公報JP2015-143389A

本発明の目的は、水又はアルカリ金属塩化物水溶液電解工業等で使用可能で、鉄イオンによる被毒の影響がなく、かつ、運転中や起動・停止中にも水素過電圧の上昇や担持物の脱落がなく、耐久性に優れた水素発生用電極であって、さらに、90℃の32wt%水酸化ナトリウム水溶液中で、6kA/mで測定した水素過電圧が70mV未満を示す、白金、ニッケル及びパラジウムを主成分とする触媒層が担持されてなる水素発生用電極の製造方法を提供することにある。 The object of the present invention is that it can be used in the water or alkali metal chloride aqueous solution electrolysis industry, etc., and is not affected by poisoning by iron ions. Platinum, nickel, and an electrode for hydrogen generation excellent in durability with no dropout, and further having a hydrogen overvoltage of less than 70 mV measured at 6 kA / m 2 in a 32 wt% sodium hydroxide aqueous solution at 90 ° C. The object is to provide a method for producing an electrode for hydrogen generation in which a catalyst layer mainly composed of palladium is supported.

発明者は上記の課題を解決するために、白金、ニッケル及びパラジウムを主成分とする触媒層が担持されてなる水素発生用電極について、鋭意検討を重ねた結果、水素過電圧が70mV未満を示す、白金、ニッケル及びパラジウムを主成分とする触媒層が担持されてなる水素発生用電極が得られることを見出し、本発明に至ったものである。すなわち、本発明は、導電性基材上に、白金、ニッケル及びパラジウムを主成分とする触媒層が担持されてなる水素発生用電極であって、前記触媒層が、合金、アモルファス金属、金属酸化物又は金属水酸化物の状態であり、かつ、1mol/Lの水酸化ナトリウム水溶液中で設定電位:1.0V vs Hg/HgO、電位振幅:5mVで測定したインピーダンスが0.1Hzで0.9Ω以下であり、触媒層の重量が、導電性基材の投影面積あたり、10g/m以上であることを特徴とする水素発生用電極である。 In order to solve the above problems, the inventor has conducted extensive studies on a hydrogen generation electrode in which a catalyst layer mainly composed of platinum, nickel, and palladium is supported. As a result, the hydrogen overvoltage is less than 70 mV. The inventors have found that an electrode for hydrogen generation in which a catalyst layer mainly composed of platinum, nickel and palladium is supported is obtained, and the present invention has been achieved. That is, the present invention is an electrode for hydrogen generation in which a catalyst layer mainly composed of platinum, nickel and palladium is supported on a conductive substrate, and the catalyst layer is made of an alloy, amorphous metal, metal oxide In a 1 mol / L aqueous solution of sodium hydroxide, set potential: 1.0 V vs Hg / HgO, potential amplitude: 0.9 Ω at 0.1 Hz, measured at 5 mV The hydrogen generating electrode is characterized in that the weight of the catalyst layer is 10 g / m 2 or more per projected area of the conductive substrate.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の水素発生用電極は、導電性基材上に、白金、ニッケル及びパラジウムを主成分とする触媒層が担持されてなるものである。   The electrode for hydrogen generation of the present invention is formed by supporting a catalyst layer mainly composed of platinum, nickel and palladium on a conductive substrate.

本発明の水素発生用電極では、水素発生に対する高い触媒活性を得るため、すなわち十分に低い水素過電圧を得るために、触媒層の中で、白金、ニッケル、パラジウムが、原子レベルで適度に分散できていることが望ましい。特にパラジウムは、白金及びニッケルに対して相互に親和性が高いので、この3成分を適度に分散させることに重要な役割を果たす。   In the hydrogen generating electrode of the present invention, platinum, nickel, and palladium can be appropriately dispersed at the atomic level in the catalyst layer in order to obtain high catalytic activity for hydrogen generation, that is, to obtain a sufficiently low hydrogen overvoltage. It is desirable that In particular, palladium has a high affinity for platinum and nickel, and therefore plays an important role in appropriately dispersing these three components.

適度な分散状態を得るため、前記触媒層中のパラジウム含有量が1モル%以上55モル%以下であることが好ましい。   In order to obtain an appropriate dispersion state, the palladium content in the catalyst layer is preferably 1 mol% or more and 55 mol% or less.

また、さらに適度な分散状態を得るため、前記触媒層中のパラジウム含有量が4〜48モル%、ニッケル含有量が48〜4モル%、残部が白金であることが好ましい。   In order to obtain a more appropriate dispersion state, it is preferable that the palladium content in the catalyst layer is 4 to 48 mol%, the nickel content is 48 to 4 mol%, and the balance is platinum.

本発明の水素発生用電極は、前記触媒層が、合金、アモルファス金属、金属酸化物又は金属水酸化物の状態のものである。これは、本発明の水素発生用電極では、金属塩の化合物の媒体を介し、様々な熱条件で触媒層が形成されるため、金属酸化物又は金属水酸化物の状態や、合金、アモルファス金属化した状態となるものであり、これらの状態が水素過電圧性能に影響を与えることはない。   In the electrode for hydrogen generation according to the present invention, the catalyst layer is in an alloy, amorphous metal, metal oxide or metal hydroxide state. This is because the hydrogen generation electrode of the present invention forms a catalyst layer under various thermal conditions through a metal salt compound medium, so that the state of metal oxide or metal hydroxide, alloy, amorphous metal Therefore, these states do not affect the hydrogen overvoltage performance.

本発明の水素発生用電極は、1mol/Lの水酸化ナトリウム水溶液中で設定電位:1.0V vs Hg/HgO、電位振幅:5mVで測定したインピーダンスが0.1Hzで0.9Ω以下である。当該インピーダンスが0.9Ωを超えると、水素過電圧が70mV以上を示し、本発明の効果が発揮されない。好ましくは0.88Ω以下であり、さらに好ましくは0.86Ω以下である。インピーダンスの下限値はなく、0.9Ω以下であれば如何なる値でも本発明の効果が発揮される。   The electrode for hydrogen generation of the present invention has an impedance measured at a set potential of 1.0 V vs. Hg / HgO and a potential amplitude of 5 mV in a 1 mol / L sodium hydroxide aqueous solution at 0.9 Hz or less at 0.1 Hz. When the impedance exceeds 0.9Ω, the hydrogen overvoltage indicates 70 mV or more, and the effect of the present invention is not exhibited. Preferably it is 0.88Ω or less, more preferably 0.86Ω or less. There is no lower limit value of impedance, and the effect of the present invention is exhibited at any value as long as it is 0.9Ω or less.

インピーダンスは複素数であり、インピーダンスをZ、Zの実数成分をZ’、虚数成分にマイナスを掛けた値をZ’’、虚数をiで示すと、Z=Z’−iZ’’となる。一般に、Z’を横軸にとり、Z’’を縦軸にとった図を、ナイキスト線図とよび、その形状から電極の電気化学特性が考察することが可能である。また、インピーダンスZは周波数で変化し、通常、周波数の対数を横軸に、インピーダンスの絶対値|Z|を縦軸にとった図で表示される。   The impedance is a complex number. When the impedance is Z, the real component of Z is Z ', the value obtained by multiplying the imaginary component by minus is Z ", and the imaginary number is i, Z = Z'-iZ". In general, a graph with Z ′ on the horizontal axis and Z ″ on the vertical axis is called a Nyquist diagram, and the electrochemical characteristics of the electrode can be considered from the shape. The impedance Z varies with frequency, and is usually displayed as a graph with the logarithm of frequency on the horizontal axis and the absolute value | Z | of impedance on the vertical axis.

発明者らは、白金、ニッケル及びパラジウムを主成分とする触媒層が担持されてなる水素発生用電極のインピーダンス特性について検討し、800Hz〜0.1Hzの周波数範囲にて、電解液:1mol/L 水酸化ナトリウム水溶液、参照電極:Hg/HgO、対極:Niコイル、測定温度:室温、設定電位:1.0V vs Hg/HgO、電位振幅:5mVにて測定したインピーダンスのナイキスト線図が図2及び図4に示すように、二つの半円からなることを見出した。左側(高周波数側である)の半円は容量性半円に、右側(低周波数側である)の半円は拡散インピーダンスに帰属される(例えば、「電気化学インピーダンス法原理・測定・解析」板垣昌幸著、丸善株式会社発行、p131)。   The inventors examined the impedance characteristics of the electrode for hydrogen generation in which a catalyst layer mainly composed of platinum, nickel and palladium is supported, and in the frequency range of 800 Hz to 0.1 Hz, the electrolyte solution: 1 mol / L FIG. 2 shows the Nyquist diagram of impedance measured at a sodium hydroxide aqueous solution, reference electrode: Hg / HgO, counter electrode: Ni coil, measurement temperature: room temperature, set potential: 1.0 V vs. Hg / HgO, and potential amplitude: 5 mV. As shown in FIG. 4, it has been found that it consists of two semicircles. The semicircle on the left side (which is on the high frequency side) is attributed to the capacitive semicircle, and the semicircle on the right side (which is on the low frequency side) is attributed to the diffusion impedance. Published by Masayuki Itagaki, published by Maruzen Co., Ltd., p131).

さらに、当該インピーダンス特性と水素発生過電圧について検討を重ね、拡散インピーダンスに帰属される半円の円弧の径が水素発生過電圧と強く相関していることを見出し、遂に、図1に示す通り、0.1Hzのインピーダンスで、白金、ニッケル及びパラジウムを主成分とする触媒層が担持されてなる水素発生用電極の水素発生過電圧が定まることを見出した。   Furthermore, the impedance characteristics and the hydrogen generation overvoltage were studied repeatedly, and it was found that the semicircular arc diameter attributed to the diffusion impedance strongly correlated with the hydrogen generation overvoltage. Finally, as shown in FIG. It has been found that the hydrogen generation overvoltage of the electrode for hydrogen generation in which a catalyst layer mainly composed of platinum, nickel and palladium is supported with an impedance of 1 Hz is determined.

この理由は不明な点が多いが、発明者らは以下の様に推定している。すなわち、低周波数側のインピーダンス特性で拡散層厚みや拡散定数が定まる(例えば、「電気化学インピーダンス法原理・測定・解析」板垣昌幸著、丸善株式会社発行、p132)が、低周波数側のインピーダンスが小さいと、水素発生反応時の拡散層厚みが薄い及び/又は物質移動係数が大きい。その結果、インピーダンスが0.9Ω以下を有する本発明の水素発生用電極は、従来の水素発生用電極に比較し、水素発生反応がスムーズに進行し、特段に低い水素過電圧が得られると推定している。   The reason for this is unclear, but the inventors presume as follows. That is, the diffusion layer thickness and the diffusion constant are determined by the impedance characteristics on the low frequency side (for example, “Electrochemical Impedance Method Principle / Measurement / Analysis” written by Masayuki Itagaki, published by Maruzen Co., Ltd., p132). If it is small, the diffusion layer thickness during the hydrogen generation reaction is thin and / or the mass transfer coefficient is large. As a result, it is estimated that the hydrogen generating electrode of the present invention having an impedance of 0.9Ω or less has a hydrogen generating reaction smoothly proceeding and a particularly low hydrogen overvoltage can be obtained as compared with the conventional hydrogen generating electrode. ing.

本発明の水素発生用電極は、触媒層の重量が、導電性基材の投影面積あたり、10g/m以上である。触媒層の重量が10g/m未満の場合は本発明の効果が得られず、水素発生過電圧が70mVを超える。その理由は不明であるが、例えば、特段に優れた水素過電圧性能を発現するのに必要な触媒活性点数を得るために、10g/m程度の触媒層の重量が必要であるものと推測している。優れた水素過電圧性能をより十分に発現するために、触媒層の重量は、12g/m以上が好ましく、14g/m以上であることがさらに好ましい。 In the hydrogen generating electrode of the present invention, the weight of the catalyst layer is 10 g / m 2 or more per projected area of the conductive substrate. When the weight of the catalyst layer is less than 10 g / m 2 , the effect of the present invention cannot be obtained, and the hydrogen generation overvoltage exceeds 70 mV. The reason for this is unknown, but for example, it is assumed that a catalyst layer weight of about 10 g / m 2 is necessary to obtain the number of catalytic activity points necessary to express particularly excellent hydrogen overvoltage performance. ing. In order to fully exhibit excellent hydrogen overvoltage performance, the weight of the catalyst layer is preferably 12 g / m 2 or more, and more preferably 14 g / m 2 or more.

次に、本発明の水素発生用電極の製造方法について説明する。   Next, the manufacturing method of the electrode for hydrogen generation of this invention is demonstrated.

本発明の水素発生用電極の製造方法は、白金塩、ニッケル塩、パラジウム塩を含む触媒層形成用液を導電性基材上に塗布、乾燥、熱分解して触媒層前駆体を形成するものである。   The method for producing an electrode for hydrogen generation according to the present invention comprises forming a catalyst layer precursor by applying a catalyst layer forming liquid containing a platinum salt, a nickel salt, and a palladium salt on a conductive substrate, drying, and thermally decomposing. It is.

触媒層形成用液を導電性基材上に塗布、乾燥、熱分解して触媒層前駆体を形成する方法としては、例えば、熱分解法等があげられる。   Examples of the method for forming the catalyst layer precursor by applying the catalyst layer forming liquid on a conductive substrate, drying, and pyrolyzing include a pyrolysis method and the like.

ここに、熱分解法とは、白金塩、ニッケル塩、パラジウム塩を含む触媒層形成用液を導電性基材上に塗布し、乾燥し、熱分解を行う一連の操作をいう。   Here, the thermal decomposition method refers to a series of operations in which a liquid for forming a catalyst layer containing a platinum salt, a nickel salt, and a palladium salt is applied on a conductive substrate, dried, and thermally decomposed.

用いられる導電性基材は、例えば、ニッケル、鉄、銅、チタンやステンレス合金鋼が挙げられ、特にアルカリ性溶液に対して耐食性の優れたニッケルが好ましい。導電性基材の形状は、特に限定されるものではなく、一般に電解槽の電極に合せた形状でよく、例えば、平板、曲板等が使用可能である。   Examples of the conductive substrate used include nickel, iron, copper, titanium, and stainless steel alloy, and nickel having excellent corrosion resistance with respect to an alkaline solution is particularly preferable. The shape of the conductive substrate is not particularly limited, and may generally be a shape that matches the electrode of the electrolytic cell. For example, a flat plate, a curved plate, or the like can be used.

また、用いられる導電性基材は、多孔板が好ましく、例えば、エキスパンドメタル、パンチメタル、網等が使用できる。   In addition, the conductive substrate used is preferably a perforated plate, and for example, expanded metal, punch metal, and net can be used.

導電性基材は、予め基材表面を粗面化することが好ましい。これは、粗面化によって接触表面積を大きくでき、基材と担持物の密着性が向上するためである。粗面化の手段としては特に限定されず、公知の方法、例えばサンドブラスト処理、蓚酸、塩酸溶液などによりエッチング処理し、水洗、乾燥する方法を用いることができる。   The conductive substrate is preferably roughened in advance. This is because the contact surface area can be increased by roughening, and the adhesion between the substrate and the support is improved. The surface roughening means is not particularly limited, and a known method such as sand blasting, etching with oxalic acid or hydrochloric acid solution, washing with water and drying can be used.

用いられる触媒層形成用液は、白金塩、ニッケル塩、パラジウム塩を含むものである。   The catalyst layer forming liquid used contains platinum salt, nickel salt, and palladium salt.

白金塩は、塩化白金酸、ジニトロジアミン白金などを用いることができる。特にアンミン錯体を形成するジニトロジアンミン白金を用いると、還元処理後の白金合金の結晶子径を例えば200オングストローム以下まで微細化し、反応比表面積を増大させられるため好ましい。これは、前記ジニトロジアミン白金は熱分解温度が約550℃と高いために、熱分解中の白金の凝集を抑制し、熱分解後に白金とニッケルとパラジウムが均一に混合した被膜が得られ、還元処理により微細な結晶子系の合金が得られるためと推定される。   As the platinum salt, chloroplatinic acid, dinitrodiamine platinum or the like can be used. In particular, it is preferable to use dinitrodiammine platinum that forms an ammine complex because the crystallite diameter of the platinum alloy after the reduction treatment can be reduced to, for example, 200 angstroms or less to increase the reaction specific surface area. This is because the thermal decomposition temperature of the dinitrodiamine platinum is as high as about 550 ° C., so that aggregation of platinum during thermal decomposition is suppressed, and a film in which platinum, nickel and palladium are uniformly mixed after thermal decomposition is obtained. It is estimated that a fine crystallite-based alloy is obtained by the treatment.

ニッケル塩、パラジウム塩における塩としては特に限定されず、例えば、硝酸塩、硫酸塩、塩化物、炭酸塩、酢酸塩、スルファミン酸塩などを用いることができる。   The salt in the nickel salt or palladium salt is not particularly limited, and for example, nitrate, sulfate, chloride, carbonate, acetate, sulfamate and the like can be used.

さらに、白金塩とニッケル塩とパラジウム塩を溶解させる場合の溶媒としては、担持物の表面積を高めるためには、これらの原料が完全に溶解できるものが好ましく、水、硝酸、塩酸、硫酸などの無機酸、酢酸溶液などの有機酸、メタノール、エタノール、プロパノール、ブタノールなどの有機溶媒、あるいはこれらを混合物として用いることもできる。また、触媒形成用液中へ基材金属の溶解を抑制する目的で触媒形成用液のpHを調製して用いてもよく、担持物の表面積を高めるためにリシン、クエン酸などの錯塩を添加し、ニッケルおよびパラジウムを錯体化させてもよい。   Further, as a solvent for dissolving platinum salt, nickel salt and palladium salt, those capable of completely dissolving these raw materials are preferable in order to increase the surface area of the supported material, such as water, nitric acid, hydrochloric acid and sulfuric acid. An organic acid such as an inorganic acid or an acetic acid solution, an organic solvent such as methanol, ethanol, propanol, or butanol, or a mixture thereof can also be used. In addition, the pH of the catalyst forming liquid may be adjusted and used for the purpose of suppressing the dissolution of the base metal in the catalyst forming liquid, and complex salts such as lysine and citric acid are added to increase the surface area of the support. However, nickel and palladium may be complexed.

前記触媒層形成用液を導電性基材に塗布する方法は、例えば、白金塩とニッケル塩とパラジウム塩を含む触媒層形成用液を、刷毛などを用いて導電性基材に塗布してもよい。また、刷毛塗り以外にスプレー法、ディップコート法など、全ての既知の方法を好適に用いることができる。   For example, the catalyst layer forming liquid may be applied to the conductive substrate using, for example, a catalyst layer forming liquid containing a platinum salt, a nickel salt, and a palladium salt using a brush. Good. In addition to brush coating, all known methods such as a spray method and a dip coating method can be suitably used.

塗布後の乾燥温度は、例えば、200℃以下の温度で5〜60分間行えばよく、150℃以下の乾燥温度が好ましい。   What is necessary is just to perform the drying temperature after application | coating at the temperature of 200 degrees C or less for 5 to 60 minutes, for example, and the drying temperature of 150 degrees C or less is preferable.

乾燥後の熱分解温度は200℃を超え700℃以下の範囲で5〜60分間行えばよいが、好ましくは350℃を超え500℃以下の範囲で行うとよい。例えば、ジニトロジアミン白金溶液を用いた場合、ジニトロジアミン白金の熱分解温度は550℃であり、500℃以下で熱分解を行うことで白金のシンタリングが抑制され、水素過電圧がより一層低い水素発生用電極を得ることができる。   The thermal decomposition temperature after drying may be performed for 5 to 60 minutes in the range of over 200 ° C. and 700 ° C. or less, but preferably over 350 ° C. and 500 ° C. or less. For example, when a dinitrodiamine platinum solution is used, the thermal decomposition temperature of dinitrodiamine platinum is 550 ° C., and by performing thermal decomposition at 500 ° C. or less, platinum sintering is suppressed and hydrogen overvoltage is further reduced. A working electrode can be obtained.

本発明の水素発生用電極の製造方法では、特に前記の塗布量を導電基材の投影面積あたり13mL/m以上31mL/m以下に制御して塗布した後、乾燥、熱分解する工程を4回以上8回以下繰返すことが重要である。導電基材の投影面積あたりの塗布量が13mL/mより少ない場合、及び/又は、塗布、乾燥、熱分解工程を繰り返す回数が9回以上となった場合、インピーダンスが0.9Ωを超える等、本発明の効果を得ることができない。逆に、塗布、乾燥、熱分解工程を繰り返す回数が3回未満の場合、最終的な触媒層重量が10g/m未満になる等、本発明の水素発生用電極が得られない。 In the method for producing an electrode for hydrogen generation according to the present invention, in particular, the coating amount is controlled to be 13 mL / m 2 or more and 31 mL / m 2 or less per projected area of the conductive base material, and then the step of drying and pyrolysis is performed. It is important to repeat 4 to 8 times. When the coating amount per projected area of the conductive base material is less than 13 mL / m 2 and / or when the number of times of repeating the coating, drying, and thermal decomposition steps is 9 times or more, the impedance exceeds 0.9Ω, etc. The effect of the present invention cannot be obtained. On the contrary, when the number of times of repeating the coating, drying and pyrolysis steps is less than 3, the final catalyst layer weight is less than 10 g / m 2, and the hydrogen generating electrode of the present invention cannot be obtained.

以上の通り、触媒層形成用液の塗布量が導電基材の投影面積あたり13mL/mより少ない場合、及び/又は、塗布、乾燥、熱分解工程を繰り返す回数が9回以上、或いは、3回未満の場合、本発明の水素発生用電極は得られず、水素過電圧は70mV以上となる。 As described above, when the coating amount of the catalyst layer forming liquid is less than 13 mL / m 2 per projected area of the conductive substrate, and / or the number of times of repeating the coating, drying, and thermal decomposition steps is 9 times or more, or 3 If it is less than the number of times, the electrode for hydrogen generation of the present invention cannot be obtained, and the hydrogen overvoltage is 70 mV or more.

一方、塗布量が31mL/mを超えると、導電性基材へ触媒層形成用液が十分に保持できずに歩留まりが悪い、または導電性基材が多孔板の場合は孔の目詰まりを起こすなど、製造上の不具合があり、例え水素発生過電圧が70mVであっても、本発明の効果を十分に得ることはできない。 On the other hand, if the coating amount exceeds 31 mL / m 2 , the catalyst layer forming liquid cannot be sufficiently retained on the conductive substrate, resulting in poor yield, or clogging of the holes when the conductive substrate is a perforated plate. Even if there is a manufacturing defect such as occurrence, even if the hydrogen generation overvoltage is 70 mV, the effect of the present invention cannot be sufficiently obtained.

なお、本発明では投影面積に孔の面積は考慮しない。例えば、1m×1mの無孔板の投影面積は1mであり、1m×1mの多孔板の投影面積も、開口率によらず、1mとする。 In the present invention, the area of the hole is not considered in the projected area. For example, the projected area of a 1 m × 1 m non-porous plate is 1 m 2 , and the projected area of a 1 m × 1 m perforated plate is also 1 m 2 regardless of the aperture ratio.

導電性基材に無孔板を用いる場合、触媒形成用液は片面のみに塗布し、塗布した面を陽極に対面させ使用すればよい。   When a non-porous plate is used for the conductive substrate, the catalyst-forming liquid may be applied only on one side, and the applied side may be used facing the anode.

一方、導電性基材に多孔板を用いる場合、触媒形成用液は、導電性基材の両面に、ほぼ均等に塗布すると、電解電圧がより低下する場合が有り好ましい。例えば、20mL/mを塗布する場合、片面に8〜12mL/mを塗布し、残りの12〜8mL/mを他面に塗布したり、片面のみに20mL/mを塗布し、乾燥、熱分解を行い、次の回に他面のみに20mL/mを塗布することができる。 On the other hand, when a porous plate is used for the conductive substrate, the catalyst forming liquid is preferably applied on both surfaces of the conductive substrate almost evenly because the electrolysis voltage may be further lowered. For example, when applying a 20 mL / m 2, the 8~12mL / m 2 was coated on one surface, or by applying the remaining 12~8mL / m 2 on the other side, a 20 mL / m 2 only on one side is coated, Drying and thermal decomposition can be performed, and 20 mL / m 2 can be applied only to the other side in the next round.

導電性基材が多孔板の場合、両面にほぼ均等に塗布することで電解電圧がより低下する場合がある理由は不明であるが、次の様に考えることが出来る。   When the conductive base material is a perforated plate, the reason why the electrolysis voltage may be further lowered by applying it almost evenly on both sides is unknown, but can be considered as follows.

水素発生反応は触媒と電解液の接触部分で主に生じるが、触媒を片面に塗布するよりも、両面に塗布する方が、触媒量が同じでも、触媒と電解液の接触面積が広くなり易い。導電性基材が無孔板の場合、陽極と対面する逆の面は、電解電流が遮蔽され、水素発生反応は進行し難いため、触媒形成用液は片面に塗ることが好ましい。   Although the hydrogen generation reaction mainly occurs at the contact portion between the catalyst and the electrolytic solution, the contact area between the catalyst and the electrolytic solution tends to be wider when the catalyst is applied on both sides, even if the amount of catalyst is the same, than when the catalyst is applied on one side. . When the conductive substrate is a non-porous plate, the reverse surface facing the anode is shielded from the electrolysis current, and the hydrogen generation reaction is unlikely to proceed. Therefore, the catalyst-forming liquid is preferably applied to one side.

一方、導電性基材が多孔板の場合、導電性基材の孔を通り電解電流が陽極と対面する逆の面まで到達し易く、そのため、両面にほぼ均等に塗布することで電解電圧がより低下する場合があると考えられる。   On the other hand, when the conductive substrate is a perforated plate, the electrolysis current easily reaches the opposite surface facing the anode through the holes of the conductive substrate. It is thought that it may decrease.

熱分解した後、担持物を金属状態に還元、合金化させることを目的とした還元処理を行う。還元処理方法は特に限定されないが、例えば、ヒドラジン、ギ酸、蓚酸などの還元力の強い物質との接触による化学還元法、白金とニッケルとパラジウムに対し、還元電位を与える電気化学的還元法等を用いることができる。効率的な処方として、電気化学的還元法であることが好ましく、水の電気分解又はアルカリ金属塩化物水溶液の電気分解での電気化学的還元法であることがより好ましい。なお、本発明で言う「水の電気分解」とは、「純水の電気分解」ではなく、「NaOH、HCl、HSO等の電解質を含む水の電気分解」を意味する。 After pyrolysis, a reduction treatment is performed for the purpose of reducing and alloying the support to a metallic state. Although the reduction treatment method is not particularly limited, for example, a chemical reduction method by contact with a substance having a strong reducing power such as hydrazine, formic acid or oxalic acid, an electrochemical reduction method for giving a reduction potential to platinum, nickel and palladium, etc. Can be used. As an efficient prescription, an electrochemical reduction method is preferable, and an electrochemical reduction method in water electrolysis or alkali metal chloride aqueous solution electrolysis is more preferable. The “electrolysis of water” referred to in the present invention means not “electrolysis of pure water” but “electrolysis of water containing an electrolyte such as NaOH, HCl, H 2 SO 4 ”.

例えば、電気化学還元法は白金とニッケルとパラジウムの還元に必要な電位を与える方法である。水溶液中の白金とニッケルとパラジウムの標準電極電位はすでに開示されており(「電気化学便覧」 第5版 丸善出版 第92〜95頁)、還元に必要な電位は標準電極電位から見積もることが可能である。   For example, the electrochemical reduction method is a method for applying a potential necessary for the reduction of platinum, nickel, and palladium. The standard electrode potential of platinum, nickel and palladium in aqueous solution has already been disclosed ("Electrochemical Handbook" 5th edition, Maruzen Publishing, pages 92-95), and the potential required for reduction can be estimated from the standard electrode potential. It is.

熱分解後の担持物を金属状態に還元、合金化させるにあたり、電気化学的還元法が本発明の好ましい実施形態の一つであることは、熱分解を実施し還元処理を行う前の電極も本発明の好ましい水素発生用電極の形態であることを意味する。   In reducing and alloying the support after pyrolysis into a metal state, the electrochemical reduction method is one of the preferred embodiments of the present invention. The electrode before the pyrolysis and reduction treatment is also performed. It means that it is a preferable form of the electrode for hydrogen generation of this invention.

この様にして得られる本発明の水素発生用電極は、水の電気分解又はアルカリ金属塩化物水溶液の電気分解で、前記陰極上から水素ガス及びアルカリ金属水酸化物水溶液を生成し、陽極上から酸素ガス又は塩素ガスを生成することを特徴とする電解、すなわち、隔膜を挟んで陽極を配置した電解槽で水又は食塩などのアルカリ金属塩化物水溶液の電気分解する用途において、水素発生用電極として用いると、低水素過電圧が得られると共に、陰極液中に鉄イオンを混入させない特別な工夫をすることなく低過電圧特性を長期間安定に維持し、かつ、停止や再起動操作時に触媒が剥離や脱落を生じることもない、すなわち、水素過電圧性能と耐久性に極めて優れた水素発生用電極である。ここで、隔膜とは、代表的に、陽イオンを選択的に透過する陽イオン交換膜などが挙げられる。   The electrode for hydrogen generation of the present invention thus obtained generates hydrogen gas and an aqueous alkali metal hydroxide solution from above the cathode by electrolysis of water or alkali metal chloride aqueous solution, and from above the anode. Electrolysis characterized by producing oxygen gas or chlorine gas, that is, as an electrode for hydrogen generation in an application of electrolysis of an aqueous solution of alkali metal chloride such as water or salt in an electrolytic cell in which an anode is arranged with a diaphragm interposed When used, low hydrogen overvoltage can be obtained, low overvoltage characteristics can be maintained stably for a long time without special measures not to mix iron ions in the catholyte, and the catalyst can be peeled off during shutdown and restart operations. This is an electrode for hydrogen generation that does not drop off, that is, extremely excellent in hydrogen overvoltage performance and durability. Here, the diaphragm typically includes a cation exchange membrane that selectively permeates cations.

従って、水又は食塩などのアルカリ金属塩化物水溶液の電気分解工業分野において、水素発生用電極を本発明が提供する水素発生用電極に変更するのみで、当該電気分解工業の所要エネルギーを容易に低減可能となる。   Therefore, in the field of electrolysis industry of aqueous solutions of alkali metal chlorides such as water or salt, the required energy of the electrolysis industry can be easily reduced simply by changing the electrode for hydrogen generation to the electrode for hydrogen generation provided by the present invention. It becomes possible.

本発明によれば、初期の水素過電圧が十分に低く、かつ、耐久性に優れた水素発生用電極が容易に得られる。   According to the present invention, it is possible to easily obtain an electrode for hydrogen generation in which the initial hydrogen overvoltage is sufficiently low and the durability is excellent.

本発明の水素発生用電極は、従来の白金系触媒の欠点とされていた電解液中の鉄イオンの被毒によって、水素過電圧が上昇することがなく、さらに、電解運転中や停止・起動操作中に流れる逆電流により触媒が剥離・脱落することもない。そのため、白金が本来有する低水素過電圧特性を長期間に渡り安定に維持でき、特に年間数回の停止、再起動の際に流れる逆電流や陰極液中への鉄混入が余儀なくされる水又はアルカリ金属水溶液の電気分解工業等の所要エネルギーを大幅に削減可能である。   The hydrogen generating electrode of the present invention does not increase the hydrogen overvoltage due to iron ion poisoning in the electrolytic solution, which has been regarded as a drawback of the conventional platinum-based catalyst. The catalyst does not peel off or fall off due to the reverse current flowing inside. Therefore, the low hydrogen overvoltage characteristic inherent in platinum can be stably maintained over a long period of time, and in particular, water or alkali that is forced to contain iron in the catholyte and reverse current that flows several times a year during shutdown and restart. The energy required for the electrolysis industry of metal aqueous solutions can be greatly reduced.

実施例1〜4、及び、比較例1〜4のインピーダンス測定値と過電圧測定値の関係を示す図である。It is a figure which shows the relationship of the impedance measured value and overvoltage measured value of Examples 1-4 and Comparative Examples 1-4. 実施例1のナイキスト線図である。1 is a Nyquist diagram of Example 1. FIG. 実施例1のインピーダンスの周波数特性を示す図である。It is a figure which shows the frequency characteristic of the impedance of Example 1. FIG. 比較例1のナイキスト線図である。2 is a Nyquist diagram of Comparative Example 1. FIG. 比較例1のインピーダンスの周波数特性を示す図である。6 is a diagram illustrating frequency characteristics of impedance in Comparative Example 1. FIG.

以下の実施例により、本発明を具体的に説明するが、本発明は実施例のみに限定されるものではない。   The present invention will be specifically described by the following examples, but the present invention is not limited to the examples.

尚、各評価は下記に示す方法で実施した。   In addition, each evaluation was implemented by the method shown below.

<インピーダンス測定>
電極の0.1Hzにおけるインピーダンスは、1260型 インピーダンスアナライザー(Solartron社製)、及び、1287型 ポテンショスタット/ガルバノスタット(Solartron社製)を使用し、800Hz〜0.1Hzの周波数範囲で、以下の条件で測定した。
<Impedance measurement>
The impedance at 0.1 Hz of the electrode is 1260 type impedance analyzer (manufactured by Solartron) and 1287 type potentiostat / galvanostat (manufactured by Solartron). Measured with

電解液:1mol/L 水酸化ナトリウム水溶液
参照電極:Hg/HgO
対極:Niコイル
測定温度:室温
設定電位:1.0V vs Hg/HgO
電位振幅:5mV
なお、参照電極と測定電極はペルフルオロアルコキシフッ素樹脂製のチュープを用いて液絡させたが、該チューブの先端と測定電極との間隔を800Hzにおけるインピーダンスが0.43〜0.47Ωになるように調整した。
Electrolytic solution: 1 mol / L sodium hydroxide aqueous solution Reference electrode: Hg / HgO
Counter electrode: Ni coil Measurement temperature: Room temperature Setting potential: 1.0 V vs Hg / HgO
Potential amplitude: 5mV
Although the reference electrode and the measurement electrode were liquid-coupled using a tube made of perfluoroalkoxy fluororesin, the impedance between the tip of the tube and the measurement electrode was set to 0.43 to 0.47Ω at 800 Hz. It was adjusted.

<水素過電圧測定>
32wt%水酸化ナトリウム水溶液の電解液(容量約1L)を用いて、対極にNi、温度88℃、電流密度6.0kA/mの条件で10分間、水電解を行い、カレントインタラプター法により、水素過電圧を測定した。
<Measurement of hydrogen overvoltage>
Water electrolysis was performed for 10 minutes under the conditions of Ni, temperature 88 ° C., and current density 6.0 kA / m 2 using an electrolytic solution of 32 wt% sodium hydroxide aqueous solution (capacity: about 1 L) by the current interrupter method. The hydrogen overvoltage was measured.

実施例1
導電性基材として、ニッケルエキスパンドメッシュ(1200mm×450mm)を用い、粗面化処理として、10wt%の塩酸溶液を用いて温度50℃で15分間エッチングした後、水洗、乾燥した。
Example 1
Nickel expanded mesh (1200 mm × 450 mm) was used as the conductive substrate, and as a roughening treatment, 10 wt% hydrochloric acid solution was used for etching at a temperature of 50 ° C. for 15 minutes, followed by washing with water and drying.

次いで、ジニトロジアンミン白金硝酸溶液(田中貴金属製)と硝酸ニッケル6水和物と硝酸パラジウム2水和物(小島化学薬品製)と水を用いて、白金が48モル%、ニッケルが48モル%とパラジウムが4モル%の触媒形成用液を調製した。   Next, using dinitrodiammine platinum nitrate solution (Tanaka Kikinzoku), nickel nitrate hexahydrate, palladium nitrate dihydrate (Kojima Chemical) and water, platinum was 48 mol%, nickel was 48 mol%, A catalyst forming solution containing 4 mol% of palladium was prepared.

次いで、この触媒形成用液を前記ニッケルエキスパンドメッシュにローラーを用いて全面に20mL/mの塗布量で塗布し、熱風式乾燥機内で80℃15分間乾燥後、箱型焼成炉を用いて空気流通下のもと400℃で15分間熱分解した。この一連の操作を6回繰り返し、電極を作製した。 Next, this catalyst forming liquid was applied to the entire surface of the nickel expanded mesh using a roller at a coating amount of 20 mL / m 2 , dried in a hot air drier at 80 ° C. for 15 minutes, and then aired using a box-type firing furnace. Thermal decomposition was performed at 400 ° C. for 15 minutes under the flow. This series of operations was repeated 6 times to produce an electrode.

なお、触媒形成用液は片面に全触媒形成用液量の半分を塗布し、他方の面に残りの半分を塗布した。   The catalyst-forming liquid was applied on one side by half of the total catalyst-forming liquid amount and on the other side by the remaining half.

この電極の重量から、元の導電性基材の重量を差し引いて、最終的な触媒層の重量を測定したところ、16.4g/mであった。 When the weight of the final catalyst layer was measured by subtracting the weight of the original conductive substrate from the weight of this electrode, it was 16.4 g / m 2 .

次にこの電極を切出し、初期水素過電圧を測定したところ68mVであった。続いて、0.1Hzにおけるインピーダンスを測定した。これらの結果を表1に、0.1Hzにおけるインピーダンスと水素過電圧の関係を図1に示した。   Next, when this electrode was cut out and the initial hydrogen overvoltage was measured, it was 68 mV. Subsequently, the impedance at 0.1 Hz was measured. These results are shown in Table 1, and the relationship between impedance and hydrogen overvoltage at 0.1 Hz is shown in FIG.

インピーダンスのナイキスト線図は、図2に示した通り、二つの半円で構成されており、インピーダンスの周波数特性は、図3に示した通り、低周波数側で立上り、0.1Hzのインピーダンスが最も高い値を示した。   The Nyquist diagram of the impedance is composed of two semicircles as shown in FIG. 2, and the frequency characteristic of the impedance rises on the low frequency side as shown in FIG. High value was shown.

なお、触媒形成用液1mL当たりの触媒層の重量(最終的な触媒層の重量を塗布量×繰り返し回数で除した数値)は0.14g/mであった。 The weight of the catalyst layer per mL of the catalyst-forming liquid (numerical value obtained by dividing the weight of the final catalyst layer by the coating amount × the number of repetitions) was 0.14 g / m 2 .

Figure 2018119199
比較例1
実施例1と同様の触媒形成用液をニッケルエキスパンドメッシュにローラーを用いて全面に10mL/mの塗布量で塗布することと一連の操作を10回繰り返すこと以外は、実施例1と同様に操作して電極を作製した。触媒形成用液量、一連の操作の繰返し回数の条件、最終的な触媒層の重量、0.1Hzにおけるインピーダンス、初期水素過電圧を、まとめて表1に、0.1Hzにおけるインピーダンスと水素過電圧の関係を図1に示した。
Figure 2018119199
Comparative Example 1
The same catalyst forming solution as in Example 1 was applied to the entire surface of a nickel expanded mesh at a coating amount of 10 mL / m 2 using a roller, and the series of operations was repeated 10 times in the same manner as in Example 1. An electrode was produced by operating. Table 1 summarizes the amount of catalyst forming liquid, conditions for the number of repetitions of a series of operations, final catalyst layer weight, impedance at 0.1 Hz, and initial hydrogen overvoltage. Table 1 shows the relationship between impedance and hydrogen overvoltage at 0.1 Hz. Is shown in FIG.

インピーダンスのナイキスト線図は、図4に示した通り、実施例1と同様、二つの半円で構成されていた。左側の半円は実施例1と比較例1で同等であったが、右側の半円は径が実施例1よりも大きいものであった。   The Nyquist diagram of impedance was composed of two semicircles as in Example 1, as shown in FIG. The left semicircle was the same in Example 1 and Comparative Example 1, but the right semicircle was larger in diameter than Example 1.

また、インピーダンスの周波数特性は、図6に示した通り、実施例1と同様、低周波数側で立上るが、立ち上がりが急激であり、0.1Hzのインピーダンスは実施例1より高い値を示した。   Further, as shown in FIG. 6, the frequency characteristic of the impedance rises on the low frequency side as in the first embodiment, but the rise is abrupt, and the impedance of 0.1 Hz shows a higher value than that in the first embodiment. .

実施例2
実施例1と同様の触媒形成用液をニッケルエキスパンドメッシュにローラーを用いて全面に16mL/mの塗布量で塗布すること以外は、実施例1と同様に操作して電極を作製した。触媒形成用液量、一連の操作の繰返し回数の条件、最終的な触媒層の重量、0.1Hzにおけるインピーダンス、初期水素過電圧を、まとめて表1に、0.1Hzにおけるインピーダンスと水素過電圧の関係を図1に示した。
Example 2
An electrode was produced in the same manner as in Example 1 except that the same catalyst forming liquid as in Example 1 was applied to the entire surface of the nickel expanded mesh using a roller at a coating amount of 16 mL / m 2 . Table 1 summarizes the amount of catalyst forming liquid, conditions for the number of repetitions of a series of operations, final catalyst layer weight, impedance at 0.1 Hz, and initial hydrogen overvoltage. Table 1 shows the relationship between impedance and hydrogen overvoltage at 0.1 Hz. Is shown in FIG.

実施例2のインピーダンスのナイキスト線図及びインピーダンスの周波数特性は、図示していないが、実施例1と同様であった。   Although not shown, the Nyquist diagram of the impedance and the frequency characteristic of the impedance in Example 2 were the same as those in Example 1.

実施例3
実施例1と同様の触媒形成用液をニッケルエキスパンドメッシュにローラーを用いて全面に30mL/mの塗布量で塗布することと一連の操作を5回繰り返すこと以外は、実施例1と同様に操作して電極を作製した。触媒形成用液量、一連の操作の繰返し回数の条件、最終的な触媒層の重量、0.1Hzにおけるインピーダンス、初期水素過電圧を、まとめて表1に、0.1Hzにおけるインピーダンスと水素過電圧の関係を図1に示した。
Example 3
Similar to Example 1, except that the same catalyst forming solution as in Example 1 was applied to the entire surface of a nickel expanded mesh using a roller at a coating amount of 30 mL / m 2 and the series of operations was repeated five times. An electrode was produced by operating. Table 1 summarizes the amount of catalyst forming liquid, conditions for the number of repetitions of a series of operations, final catalyst layer weight, impedance at 0.1 Hz, and initial hydrogen overvoltage. Table 1 shows the relationship between impedance and hydrogen overvoltage at 0.1 Hz. Is shown in FIG.

実施例3のインピーダンスのナイキスト線図及びインピーダンスの周波数特性は、図示していないが、実施例1と同様であった。   Although not shown, the Nyquist diagram of impedance and the frequency characteristic of impedance in Example 3 were the same as in Example 1.

実施例4
実施例1と同様の触媒形成用液をニッケルエキスパンドメッシュにローラーを用いて全面に25mL/mの塗布量で塗布すること以外は、実施例1と同様に操作して電極を作製した。触媒形成用液量、一連の操作の繰返し回数の条件、最終的な触媒層の重量、0.1Hzにおけるインピーダンス、初期水素過電圧を、まとめて表1に、0.1Hzにおけるインピーダンスと水素過電圧の関係を図1に示した。
Example 4
An electrode was produced in the same manner as in Example 1 except that the same catalyst forming solution as in Example 1 was applied to the entire surface of the nickel expanded mesh using a roller at a coating amount of 25 mL / m 2 . Table 1 summarizes the amount of catalyst forming liquid, conditions for the number of repetitions of a series of operations, final catalyst layer weight, impedance at 0.1 Hz, and initial hydrogen overvoltage. Table 1 shows the relationship between impedance and hydrogen overvoltage at 0.1 Hz. Is shown in FIG.

実施例4のインピーダンスのナイキスト線図及びインピーダンスの周波数特性は、図示していないが、実施例1と同様であった。   Although not shown, the Nyquist diagram of the impedance and the frequency characteristic of the impedance in Example 4 were the same as those in Example 1.

比較例2
実施例1と同様の触媒形成用液をニッケルエキスパンドメッシュ(60mm×60mm)に刷毛を用いて全面に10mL/mの塗布量で塗布することと一連の操作を8回繰り返すこと以外は、実施例1と同様に操作して電極を作製した。触媒形成用液量、一連の操作の繰返し回数の条件、最終的な触媒層の重量、0.1Hzにおけるインピーダンス、初期水素過電圧を、まとめて表1に、0.1Hzにおけるインピーダンスと水素過電圧の関係を図1に示した。
Comparative Example 2
The same procedure as in Example 1 except that the catalyst forming solution was applied to a nickel expanded mesh (60 mm × 60 mm) with a brush on the entire surface at a coating amount of 10 mL / m 2 and the series of operations was repeated 8 times. An electrode was produced in the same manner as in Example 1. Table 1 summarizes the amount of catalyst forming liquid, conditions for the number of repetitions of a series of operations, final catalyst layer weight, impedance at 0.1 Hz, and initial hydrogen overvoltage. Table 1 shows the relationship between impedance and hydrogen overvoltage at 0.1 Hz. Is shown in FIG.

比較例2のインピーダンスのナイキスト線図及びインピーダンスの周波数特性は、図示していないが、比較例1と同様であった。   Although not shown, the Nyquist diagram of impedance and the frequency characteristic of impedance of Comparative Example 2 were the same as those of Comparative Example 1.

比較例3
実施例1と同様の触媒形成用液をニッケルエキスパンドメッシュ(60mm×60mm)に刷毛を用いて全面に16mL/mの塗布量で塗布することと一連の操作を3回繰り返すこと以外は、実施例1と同様に操作して電極を作製した。触媒形成用液量、一連の操作の繰返し回数の条件、最終的な触媒層の重量、0.1Hzにおけるインピーダンス、初期水素過電圧を、まとめて表1に、0.1Hzにおけるインピーダンスと水素過電圧の関係を図1に示した。
Comparative Example 3
Except for applying the same catalyst forming solution as in Example 1 to a nickel expanded mesh (60 mm × 60 mm) with a brush on the entire surface at a coating amount of 16 mL / m 2 and repeating the series of operations three times. An electrode was produced in the same manner as in Example 1. Table 1 summarizes the amount of catalyst forming liquid, conditions for the number of repetitions of a series of operations, final catalyst layer weight, impedance at 0.1 Hz, and initial hydrogen overvoltage. Table 1 shows the relationship between impedance and hydrogen overvoltage at 0.1 Hz. Is shown in FIG.

比較例3のインピーダンスのナイキスト線図及びインピーダンスの周波数特性は、図示していないが、比較例1と同様であった。   Although not shown, the Nyquist diagram of impedance and the frequency characteristic of impedance of Comparative Example 3 were the same as those of Comparative Example 1.

比較例4
実施例1と同様の触媒形成用液をニッケルエキスパンドメッシュ(60mm×60mm)に刷毛を用いて全面に13mL/mの塗布量で塗布することと一連の操作を10回繰り返すこと以外は、実施例1と同様に操作して電極を作製した。触媒形成用液量、一連の操作の繰返し回数の条件、最終的な触媒層の重量、0.1Hzにおけるインピーダンス、初期水素過電圧を、まとめて表1に、0.1Hzにおけるインピーダンスと水素過電圧の関係を図1に示した。
Comparative Example 4
The same procedure as in Example 1 except that the catalyst forming solution was applied to a nickel expanded mesh (60 mm × 60 mm) with a brush on the entire surface at a coating amount of 13 mL / m 2 and the series of operations was repeated 10 times. An electrode was produced in the same manner as in Example 1. Table 1 summarizes the amount of catalyst forming liquid, conditions for the number of repetitions of a series of operations, final catalyst layer weight, impedance at 0.1 Hz, and initial hydrogen overvoltage. Table 1 shows the relationship between impedance and hydrogen overvoltage at 0.1 Hz. Is shown in FIG.

比較例4のインピーダンスのナイキスト線図及びインピーダンスの周波数応答は、図示していないが、比較例1と同様であった。   The impedance Nyquist diagram and impedance frequency response of Comparative Example 4 were the same as those of Comparative Example 1 although not shown.

表1から、1mol/Lの水酸化ナトリウム水溶液中で設定電位:1.0V vs Hg/HgO、電位振幅:5mVで測定したインピーダンスが0.1Hzで0.9Ω以下であり、触媒層の重量が、導電性基材の投影面積あたり、10g/m以上である実施例1〜4では水素発生電極は、初期水素過電圧が70mV未満であるが、1mol/Lの水酸化ナトリウム水溶液中で設定電位:1.0V vs Hg/HgO、電位振幅:5mVで測定したインピーダンスが0.1Hzで0.9Ωより大きい、及び/又は、触媒層の重量が、導電性基材の投影面積あたり、10g/m未満の比較例1〜4では初期水素過電圧が70mVを超えており、本発明の水素発生用電極が特段に優れた性能を有することが明らかである。 From Table 1, the impedance measured at a set potential of 1.0 V vs Hg / HgO and a potential amplitude of 5 mV in a 1 mol / L sodium hydroxide aqueous solution is 0.9 Ω or less at 0.1 Hz, and the weight of the catalyst layer is In Examples 1 to 4, which are 10 g / m 2 or more per projected area of the conductive base material, the hydrogen generation electrode has an initial hydrogen overvoltage of less than 70 mV, but the set potential in a 1 mol / L sodium hydroxide aqueous solution. : 1.0 V vs Hg / HgO, potential amplitude: impedance measured at 5 mV is greater than 0.9Ω at 0.1 Hz, and / or the weight of the catalyst layer is 10 g / m per projected area of the conductive substrate In Comparative Examples 1 to 4 of less than 2 , the initial hydrogen overvoltage exceeds 70 mV, and it is clear that the hydrogen generating electrode of the present invention has particularly excellent performance.

比較例5
実施例1と同様の触媒形成用液をニッケルエキスパンドメッシュ(60mm×60mm)に刷毛を用いて全面に35mL/mの塗布量で塗布することと一連の操作を4回繰り返すこと以外は、実施例1と同様に操作して電極を作製した。触媒形成用液量、一連の操作の繰返し回数の条件、最終的な触媒層の重量を、まとめて表1に示した(製造時の触媒担持効率が著しく悪かったため、0.1Hzにおけるインピーダンス、初期水素過電圧は測定しなかった)。
Comparative Example 5
Except for applying the same catalyst forming solution as in Example 1 to a nickel expanded mesh (60 mm × 60 mm) with a brush on the entire surface at a coating amount of 35 mL / m 2 and repeating the series of operations four times. An electrode was produced in the same manner as in Example 1. The amount of catalyst forming liquid, the conditions for the number of repetitions of a series of operations, and the weight of the final catalyst layer are collectively shown in Table 1 (impedance at 0.1 Hz, initial value because the catalyst loading efficiency during production was remarkably bad) Hydrogen overvoltage was not measured).

触媒形成用液1mL当たりの触媒層の重量は0.07g/mlと、実施例1の約半分であり、製造時の触媒担持効率が著しく悪いことが明らかとなった。そのため、本製造方法は製造コスト面で著しく劣ることが明らかである。   The weight of the catalyst layer per 1 mL of the catalyst forming liquid was 0.07 g / ml, which is about half that of Example 1, and it was revealed that the catalyst supporting efficiency at the time of production was remarkably poor. Therefore, it is clear that this manufacturing method is remarkably inferior in manufacturing cost.

上記の全ての実施例、全ての比較例の結果から、触媒層形成用液の塗布量を導電性基材の投影面積あたり13mL/m以上31mL/m以下に制御して塗布した後、乾燥、熱分解する工程を4回以上8回以下繰返し行い製造された実施例1〜4は初期過電圧性能が特段に優れ、かつ、触媒担持効率にも優れるが、塗布量及び/又は繰り返し回数の条件を逸脱した条件で製造された比較例1〜5では、初期過電圧性能、及び/又は、触媒担持効率に劣ることが明らかである。 From the results of all of the above examples and all the comparative examples, after coating the coating amount of the catalyst layer forming liquid to 13 mL / m 2 or more and 31 mL / m 2 or less per projected area of the conductive substrate, Examples 1-4 produced by repeating the drying and pyrolysis steps 4 to 8 times are particularly excellent in initial overvoltage performance and excellent in catalyst carrying efficiency. In Comparative Examples 1 to 5 manufactured under conditions that deviate from the conditions, it is apparent that the initial overvoltage performance and / or the catalyst carrying efficiency is inferior.

Claims (8)

導電性基材上に、白金、ニッケル及びパラジウムを主成分とする触媒層が担持されてなる水素発生用電極であって、前記触媒層が、合金、アモルファス金属、金属酸化物又は金属水酸化物の状態であり、かつ、1mol/Lの水酸化ナトリウム水溶液中で設定電位:1.0V vs Hg/HgO、電位振幅:5mVで測定したインピーダンスが0.1Hzで0.9Ω以下であり、触媒層の重量が、導電性基材の投影面積あたり、10g/m以上であることを特徴とする水素発生用電極。 An electrode for hydrogen generation in which a catalyst layer mainly composed of platinum, nickel and palladium is supported on a conductive base material, the catalyst layer being an alloy, an amorphous metal, a metal oxide or a metal hydroxide And an impedance measured in a 1 mol / L sodium hydroxide aqueous solution at a set potential of 1.0 V vs. Hg / HgO and a potential amplitude of 5 mV is 0.9 Ω or less at 0.1 Hz, and the catalyst layer The hydrogen generating electrode is characterized by having a weight of 10 g / m 2 or more per projected area of the conductive substrate. 前記触媒層中のパラジウム含有量が1モル%以上55モル%以下であることを特徴とする請求項1に記載の水素発生用電極。 The electrode for hydrogen generation according to claim 1, wherein the palladium content in the catalyst layer is 1 mol% or more and 55 mol% or less. 前記触媒層中のパラジウム含有量が4〜48モル%、ニッケル含有量が48〜4モル%、残部が白金であることを特徴とする請求項1に記載の水素発生用電極。 2. The electrode for hydrogen generation according to claim 1, wherein the catalyst layer has a palladium content of 4 to 48 mol%, a nickel content of 48 to 4 mol%, and the balance being platinum. 白金塩、ニッケル塩、パラジウム塩を含む触媒層形成用液を導電性基材上に塗布、乾燥、熱分解して触媒層前駆体を形成する水素発生用電極の製造方法であって、前記触媒層形成用液の塗布量を導電性基材の投影面積あたり13mL/m以上31mL/m以下に制御して塗布した後、乾燥、熱分解する工程を4回以上8回以下繰返し行うことを特徴とする請求項1〜請求項3のいずれかの項に記載の水素発生用電極の製造方法。 A method for producing an electrode for hydrogen generation in which a catalyst layer forming liquid containing a platinum salt, a nickel salt, and a palladium salt is coated on a conductive substrate, dried, and thermally decomposed to form a catalyst layer precursor, the catalyst After the coating amount of the layer forming liquid is controlled to be 13 mL / m 2 or more and 31 mL / m 2 or less per projected area of the conductive substrate, the drying and pyrolysis steps are repeated 4 to 8 times. The method for producing an electrode for hydrogen generation according to any one of claims 1 to 3, wherein: 導電性基板上に触媒層前駆体を形成後、還元処理し、前記触媒層を形成することを特徴とする請求項4に記載の水素発生用電極の製造方法。 The method for producing an electrode for hydrogen generation according to claim 4, wherein the catalyst layer is formed by forming a catalyst layer precursor on a conductive substrate, followed by reduction treatment. 還元処理が、水又はアルカリ金属塩化物水溶液の電気化学的還元処理であることを特徴とする請求項5に記載の水素発生用電極の製造方法。 6. The method for producing an electrode for hydrogen generation according to claim 5, wherein the reduction treatment is an electrochemical reduction treatment of water or an aqueous alkali metal chloride solution. 請求項1〜請求項3のいずれかの項に記載の水素発生用電極を陰極として使用し、隔膜を挟んで陽極を配置した電解槽で水又はアルカリ金属塩化物水溶液を電気分解し、前記陰極上から水素ガスおよびアルカリ金属水酸化物水溶液を生成し、陽極上から酸素ガス又は塩素ガスを生成することを特徴とする電気分解方法。 The electrode for hydrogen generation according to any one of claims 1 to 3 is used as a cathode, and water or an alkali metal chloride aqueous solution is electrolyzed in an electrolytic cell in which an anode is disposed across a diaphragm, and the cathode An electrolysis method comprising producing hydrogen gas and an aqueous alkali metal hydroxide solution from above, and producing oxygen gas or chlorine gas from above the anode. 隔膜が陽イオン交換膜であることを特徴とする請求項7に記載の電気分解方法。 The electrolysis method according to claim 7, wherein the diaphragm is a cation exchange membrane.
JP2017013202A 2017-01-27 2017-01-27 Electrode for hydrogen generation, its manufacturing method, and electrolysis method using it Active JP6878917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017013202A JP6878917B2 (en) 2017-01-27 2017-01-27 Electrode for hydrogen generation, its manufacturing method, and electrolysis method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017013202A JP6878917B2 (en) 2017-01-27 2017-01-27 Electrode for hydrogen generation, its manufacturing method, and electrolysis method using it

Publications (2)

Publication Number Publication Date
JP2018119199A true JP2018119199A (en) 2018-08-02
JP6878917B2 JP6878917B2 (en) 2021-06-02

Family

ID=63043038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017013202A Active JP6878917B2 (en) 2017-01-27 2017-01-27 Electrode for hydrogen generation, its manufacturing method, and electrolysis method using it

Country Status (1)

Country Link
JP (1) JP6878917B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045512A (en) * 2021-06-24 2022-02-15 有研工程技术研究院有限公司 Porous high-specific-surface-area integrated electrode material for hydrogen production by water electrolysis and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045512A (en) * 2021-06-24 2022-02-15 有研工程技术研究院有限公司 Porous high-specific-surface-area integrated electrode material for hydrogen production by water electrolysis and preparation method thereof

Also Published As

Publication number Publication date
JP6878917B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
CN108172850B (en) Hydrogen evolution electrode and preparation and application thereof
JP4346070B2 (en) Electrode for hydrogen generation
WO2015098058A1 (en) Electrode for hydrogen generation, process for producing same, and method of electrolysis therewith
JP4341838B2 (en) Electrode cathode
JPH11315390A (en) Catalyst for gas diffusion electrode
JP5042389B2 (en) Active cathode for hydrogen generation
JP4578348B2 (en) Electrode for hydrogen generation
JP2010059446A (en) Electrode for electrolysis
JP4882218B2 (en) Electrode for hydrogen generation, method for producing the same, and electrolysis method using the same
JP7353599B2 (en) Electrode catalyst and its manufacturing method, and hydrogen manufacturing method
WO2005103337A1 (en) Electrode for hydrogen generation, process for producing the same and method of electrolysis therewith
JP6515509B2 (en) ELECTRODE FOR HYDROGEN GENERATION, METHOD FOR PRODUCING THE SAME, AND ELECTROLYTIC METHOD USING THE SAME
CN113242915A (en) Electrode for electrolysis
JP6878917B2 (en) Electrode for hydrogen generation, its manufacturing method, and electrolysis method using it
US7879750B2 (en) Anodes for alkaline electrolysis
JP2006265649A (en) Method for producing electrode for generating hydrogen
JP2020012170A (en) Manufacturing method of electrode, electrode, and manufacturing method of hydrogen
JP2022166266A (en) Method of producing hydrogen generating electrode, and electrolysis method using hydrogen generating electrode
KR102132414B1 (en) Cathode for electrolysis and manufacturing method thereof
JP6926782B2 (en) Hydrogen generation electrode and its manufacturing method and electrolysis method using hydrogen generation electrode
JP6609913B2 (en) Electrode for hydrogen generation, method for producing the same, and electrolysis method using the same
WO2020110527A1 (en) Hydrogen generation electrode, method of producing same, and hydrogen production method
JP2012077381A (en) Method for manufacturing transport- and storage-stable oxygen-consuming electrode
JPWO2017085829A1 (en) Method for producing lead dioxide electrode
JP6753195B2 (en) Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210412

R151 Written notification of patent or utility model registration

Ref document number: 6878917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151