JP2018118277A - CONTINUOUS CASTING METHOD FOR Ni-CONTAINING STEEL - Google Patents

CONTINUOUS CASTING METHOD FOR Ni-CONTAINING STEEL Download PDF

Info

Publication number
JP2018118277A
JP2018118277A JP2017011064A JP2017011064A JP2018118277A JP 2018118277 A JP2018118277 A JP 2018118277A JP 2017011064 A JP2017011064 A JP 2017011064A JP 2017011064 A JP2017011064 A JP 2017011064A JP 2018118277 A JP2018118277 A JP 2018118277A
Authority
JP
Japan
Prior art keywords
steel
slab
continuous casting
concentration
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017011064A
Other languages
Japanese (ja)
Other versions
JP6866650B2 (en
Inventor
明人 清▲瀬▼
Akihito Kiyose
明人 清▲瀬▼
児島 明彦
Akihiko Kojima
明彦 児島
鉄也 北見
Tetsuya Kitami
鉄也 北見
智仁 田中
Tomohito Tanaka
智仁 田中
英明 澤田
Hideaki Sawada
英明 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017011064A priority Critical patent/JP6866650B2/en
Publication of JP2018118277A publication Critical patent/JP2018118277A/en
Application granted granted Critical
Publication of JP6866650B2 publication Critical patent/JP6866650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method for Ni-added steel preventing the surface cracks of a slab.SOLUTION: Provided is a continuous casting method for Ni-containing steel characterized in that, upon the continuous casting of Ni-containing steel, the concentration of Ni in the steel is controlled to 0.2 to 3%, and the concentration of S in the steel is controlled to 0.001% or lower.SELECTED DRAWING: Figure 1

Description

本発明は、Ni含有鋼の連続鋳造方法に関し、特に、垂直曲げ型または湾曲型連続鋳造機を用いて製造されるNi添加鋼において、表面割れの発生を防止する連続鋳造方法に関する。   The present invention relates to a continuous casting method for Ni-containing steel, and more particularly to a continuous casting method for preventing the occurrence of surface cracks in Ni-added steel manufactured using a vertical bending type or curved type continuous casting machine.

鋼の靭性向上のため、鋼中にNiを添加することが一般に行われている。しかしながら、Ni添加鋼を垂直曲げ型または湾曲型連続鋳造機で鋳造する場合、鋳片表面に割れ(以下、単に表面割れともいう。)が発生する場合があり、手入れ処理などの増工程の原因となる。このような表面割れは、連続鋳造の2次冷却時に鋳片の表面温度がオーステナイト相からフェライト相へ変態する温度(γ→α変態温度)近傍(700℃〜900℃)になって熱間延性が低下し、このような温度範囲内にて鋳片矯正による応力を受けることにより発生する。
したがって、Ni添加鋼の生産性向上のためには、このような鋳片表面割れを防止することが課題となっている。
In order to improve the toughness of steel, Ni is generally added to the steel. However, when Ni-added steel is cast with a vertical bending mold or a curved continuous casting machine, cracks (hereinafter, also simply referred to as surface cracks) may occur on the surface of the slab, which causes an increase process such as a maintenance process. It becomes. Such surface cracks are hot ductile when the surface temperature of the slab becomes near the temperature (γ → α transformation temperature) (700 ° C. to 900 ° C.) at the time of secondary cooling in continuous casting. Is generated by receiving stress due to slab correction within such a temperature range.
Therefore, in order to improve the productivity of the Ni-added steel, it is a problem to prevent such slab surface cracks.

このような課題を解決する手段として、特許文献1には、鋳型内溶鋼のメニスカス部から鋳型下端までの鋳片の引き抜き所要時間を1分以内とし、鋳型から引き抜いた後、直ちに2次冷却を行い、1分以内に鋳片表面温度をA3変態温度以下まで冷却することを特徴とする鋼の連続鋳造における鋳片表面割れの抑制方法、さらに、鋳片表面温度をA3変態温度以下まで冷却した後、復熱させ、曲げ点および矯正点における鋳片表面温度を850℃以上とし、鋳型内溶鋼のメニスカス通過後20分以内に鋳片の矯正を終了することを特徴とする鋼の連続鋳造における鋳片表面割れの抑制方法が開示されている。   As means for solving such a problem, Patent Document 1 discloses that the time required for drawing the slab from the meniscus portion of the molten steel in the mold to the lower end of the mold is within 1 minute, and immediately after the drawing, the secondary cooling is performed. The method of suppressing slab surface cracking in continuous casting of steel, characterized by cooling the slab surface temperature to A3 transformation temperature or less within 1 minute, and further cooling the slab surface temperature to A3 transformation temperature or less In continuous casting of steel, the temperature of the slab at the bending point and the straightening point is set to 850 ° C. or more, and the straightening of the slab is finished within 20 minutes after passing through the meniscus of the molten steel in the mold. A method for suppressing slab surface cracking is disclosed.

特許文献2には、質量%で、Ni:5.5〜10%を含有し、Cが0.1%以下、Siが0.5%以下、Mnが1.0%以下であるNi含有鋼を連続鋳造する方法であって、溶鋼中のPを0.0010%以下、Sを0.0010%以下、Alを0.002〜0.030%、Nを0.0040%以下とし、さらにAlとNの%濃度積[Al]×[N]を6×10−5未満とし、かつ鋳片の2次冷却において下記(1)式で表される鋳片の寸法比Rと下記(2)式で表される冷却水量の総和の比WRとの関係が下記(3)式を満たす条件で鋳造することを特徴とするNi含有鋼の連続鋳造方法が開示されている。
R=W/T ・・・ (1)
WR=WW/WN ・・・ (2)
R<WR ・・・ (3)
ただし、W:鋳片の幅(mm)、T:鋳片の厚み(mm)、WW:鋳片の長辺面の冷却水量の総和(l/min)、WN:鋳片の短辺面の冷却水量の総和(l/min)
Patent Document 2 contains Ni: 5.5 to 10% by mass, C containing 0.1% or less, Si containing 0.5% or less, and Mn containing 1.0% or less. In the molten steel, P is 0.0010% or less, S is 0.0010% or less, Al is 0.002 to 0.030%, N is 0.0040% or less, and Al is further added. % Concentration product [Al] × [N] of N and N is less than 6 × 10 −5, and in the secondary cooling of the slab, the slab size ratio R expressed by the following formula (1) and the following (2) A continuous casting method for Ni-containing steel is disclosed in which casting is performed under the condition that the relationship with the ratio WR of the total amount of cooling water expressed by the formula satisfies the following formula (3).
R = W / T (1)
WR = WW / WN (2)
R <WR (3)
Where W: slab width (mm), T: slab thickness (mm), WW: total amount of cooling water on the long side of the slab (l / min), WN: short side of the slab Total amount of cooling water (l / min)

特開平9−47854号公報Japanese Patent Laid-Open No. 9-47854 特開平10−166126号公報JP-A-10-166126

しかし、上記の方法では、以下の問題点がある。
特許文献1記載の鋼の連続鋳造における鋳片表面割れの抑制方法では、鋳型から引き抜いた後、直ちに2次冷却を行い、1分以内に鋳片表面温度をA3変態温度以下に冷却するものであるが、通常よりも多量の冷却水を用いなければならず、鋳片幅方向、鋳造方向の冷却が不均一になり、表面割れが助長されるおそれがある問題がある。
特許文献2記載の連続鋳造方法では、Sだけでなく、P濃度も0.0010%以下にしなければならず、精錬負荷が非常に高い問題がある。
However, the above method has the following problems.
In the method for suppressing slab surface cracking in continuous casting of steel described in Patent Document 1, secondary cooling is performed immediately after drawing from the mold, and the slab surface temperature is cooled to A3 transformation temperature or less within 1 minute. However, there is a problem that a larger amount of cooling water than usual must be used, cooling in the width direction of the slab and in the casting direction becomes uneven, and surface cracking may be promoted.
In the continuous casting method described in Patent Document 2, not only S but also the P concentration must be 0.0010% or less, and there is a problem that the refining load is very high.

そこで本発明は、このような事情に鑑みてなされたものであり、垂直曲げ型または湾曲型連続鋳造機を用いて製造されるNi添加鋼において、表面割れの発生を抑制することが可能な連続鋳造方法を提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and in a Ni-added steel manufactured by using a vertical bending type or a curved type continuous casting machine, it is possible to suppress the occurrence of surface cracks. An object is to provide a casting method.

ここで、垂直曲げ型または湾曲型連続鋳造機を用いて製造されるNi添加鋼の表面割れは、上述したように、鋳片表面温度が700℃〜900℃の時に矯正されるときに生じ、この時、オーステナイト粒界(以下、γ粒界と記載する場合がある)に沿って割れることが知られている。そのため、γ粒界の脆化を防止することで、割れ深さを低減することができ、手入れの必要がない浅い割れに抑制することができると着想した。
そこで、本発明者らは表面割れを抑制するべく、γ粒界を脆化させる鋼組成について鋭意検討した。その結果、鋼中のS濃度を制御することで、γ粒界の脆化を防止して表面割れを抑制できることを見出した。また、鋼中のS濃度のほかにも、Caも表面割れに対して有効に作用させうることを見出した。
本発明は、得られた知見を基に更に検討を加えてなされたもので、その要旨は以下の通りである。
Here, as described above, the surface crack of the Ni-added steel manufactured using the vertical bending mold or the curved continuous casting machine occurs when the slab surface temperature is corrected when the slab surface temperature is 700 ° C. to 900 ° C., At this time, it is known that cracking occurs along austenite grain boundaries (hereinafter sometimes referred to as γ grain boundaries). Therefore, the inventors have conceived that by preventing embrittlement of the γ grain boundary, the crack depth can be reduced, and shallow cracks that do not require maintenance can be suppressed.
Therefore, the present inventors diligently studied a steel composition that embrittles the γ grain boundary in order to suppress surface cracking. As a result, it was found that by controlling the S concentration in steel, embrittlement of the γ grain boundary can be prevented and surface cracking can be suppressed. In addition to the S concentration in steel, it has been found that Ca can also effectively act on surface cracks.
The present invention has been made by further study based on the obtained knowledge, and the gist thereof is as follows.

[1]Ni含有鋼を、垂直曲げ型連続鋳造機または湾曲型連続鋳造機を用いて連続鋳造する方法であって、質量%で、溶鋼中のNi濃度を0.2〜3%、S濃度を0.001%以下にし、鋳片の表面温度が800℃以上で、鋳片の矯正を行なうことを特徴とするNi含有鋼の連続鋳造方法。
[2]Ni含有鋼を、垂直曲げ型連続鋳造機または湾曲型連続鋳造機を用いて連続鋳造する方法であって、質量%で、溶鋼中のNi濃度を0.2〜3%、S濃度を0.001超0.002%以下、Ca濃度を0.001%以上0.004%以下にし、鋳片の表面温度が800℃以上で、鋳片の矯正を行なうことを特徴とするNi含有鋼の連続鋳造方法。
[1] A method of continuously casting Ni-containing steel using a vertical bending type continuous casting machine or a curved type continuous casting machine, wherein the Ni concentration in the molten steel is 0.2 to 3% and the S concentration in mass%. Is a continuous casting method of Ni-containing steel, characterized in that the slab is straightened when the surface temperature of the slab is 800 ° C. or higher.
[2] A method of continuously casting Ni-containing steel using a vertical bending type continuous casting machine or a curved type continuous casting machine, wherein the Ni concentration in the molten steel is 0.2 to 3% and the S concentration in mass%. More than 0.001 and 0.002% or less, Ca concentration is 0.001% or more and 0.004% or less, the surface temperature of the slab is 800 ° C. or more, and the slab is corrected. Steel continuous casting method.

本発明によれば、垂直曲げ型または湾曲型連続鋳造機を用いて製造される高靭性のNi添加鋼において、製造コストや製造工数を増加させることなく、鋼組成を制御することにより表面割れの発生を抑制できる。   According to the present invention, in a high toughness Ni-added steel manufactured using a vertical bending mold or a curved continuous casting machine, surface cracks can be controlled by controlling the steel composition without increasing the manufacturing cost and the number of manufacturing steps. Generation can be suppressed.

本実施形態における、絞り値に及ぼす引張温度と鋼成分の影響を示す図である。It is a figure which shows the influence of the tensile temperature and steel component which acts on an aperture value in this embodiment.

以下、本発明に係るNi含有鋼の連続鋳造方法について説明する。
まず、表面割れを抑制すべくγ粒界の脆化に影響を及ぼす鋼組成について検討した結果を説明する。
Hereinafter, the Ni-containing steel continuous casting method according to the present invention will be described.
First, the results of studying the steel composition that affects the embrittlement of the γ grain boundary in order to suppress surface cracks will be described.

上述したように、本発明者らは、垂直曲げ型または湾曲型連続鋳造機を用いて製造されるNi添加鋼において、鋳片の表面に発生する表面割れを抑制するため、鋼組成について鋭意検討し、表面割れの要因となるγ粒界の脆化を防止することに着目した。その結果、鋼中のS濃度を0.001%以下とすることで、Ni添加鋼の鋳片表面割れを防止できることを見出した。また、鋼中のS濃度が0.001%超0.002%以下であっても、Caを0.001%以上0.004%以下とすることで、Ni添加鋼の鋳片表面割れを防止できることを見出した。
以下に詳細に説明する。
As described above, in the Ni-added steel produced by using a vertical bending type or a curved type continuous casting machine, the present inventors have studied earnestly about the steel composition in order to suppress surface cracks generated on the surface of the slab. Attention was focused on preventing embrittlement of the γ grain boundaries, which causes surface cracking. As a result, it has been found that cracking of the slab surface of Ni-added steel can be prevented by setting the S concentration in the steel to 0.001% or less. Moreover, even if the S concentration in the steel is more than 0.001% and 0.002% or less, Ca is controlled to 0.001% or more and 0.004% or less to prevent slab surface cracking of Ni-added steel. I found out that I can do it.
This will be described in detail below.

γ粒界を脆化させる元素について検討をおこなった結果、Ni含有鋼においてはSが最も影響が大きいことが分かった。図1に、Ni添加鋼の絞り値に及ぼすS濃度と引張温度の影響を、熱間引張り試験機を用いて調査した結果を示す。鋼成分を調整したNi添加鋼から直径10mm、長さ100mmの試験片を採取し、20℃/秒で1350℃まで加熱昇温し、10分間保定した。5℃/秒で所定の温度まで降温し、2分保定した後、0.005/秒のひずみ速度で引張り破断させ、絞り値を求めた。   As a result of examining elements that embrittle γ grain boundaries, it was found that S has the greatest influence on Ni-containing steel. FIG. 1 shows the results of investigating the effects of S concentration and tensile temperature on the drawing value of Ni-added steel using a hot tensile tester. A specimen having a diameter of 10 mm and a length of 100 mm was taken from the Ni-added steel with the steel components adjusted, heated to 1350 ° C. at 20 ° C./second, and held for 10 minutes. The temperature was lowered to a predetermined temperature at 5 ° C./second, held for 2 minutes, and then pulled and broken at a strain rate of 0.005 / second to obtain a drawing value.

図1に示すグラフより分かるように、0.002%のSを含有する鋼では引張温度がγ→α変態温度域である700℃〜900℃の範囲で絞り値が40%以下となった。熱間引張り試験機で評価される絞り値が40%以下の場合に連続鋳造鋳片で表面割れが生じると言われている。一方、S濃度を0.001%とした場合、700〜900℃の絞り値は40%超となり、鋳片の割れが生じない範囲まで延性が回復している。さらに、S濃度が0.002%でCa濃度を0.003%の場合も、700〜900℃における絞り値が40%を超えている。
なお、Sによるγ粒界の脆化メカニズムについては十分明らかになっていないが、本発明者らは、Ni>0.2%かつS>0.001%の場合に、γ粒界が著しく脆化することを見出した。これは、γ粒界に偏析したNiとSの相互作用により、脆化を大きくしていると考えられる。
As can be seen from the graph shown in FIG. 1, in the steel containing 0.002% S, the drawing temperature was 40% or less in the range of 700 ° C. to 900 ° C., which is the γ → α transformation temperature range. It is said that surface cracking occurs in a continuous cast slab when the drawing value evaluated by a hot tensile tester is 40% or less. On the other hand, when the S concentration is 0.001%, the drawing value at 700 to 900 ° C. exceeds 40%, and the ductility is recovered to the extent that the slab does not crack. Furthermore, when the S concentration is 0.002% and the Ca concentration is 0.003%, the aperture value at 700 to 900 ° C. exceeds 40%.
Although the mechanism of embrittlement of the γ grain boundary due to S has not been clarified sufficiently, the present inventors have found that the γ grain boundary becomes extremely brittle when Ni> 0.2% and S> 0.001%. I found out that This is thought to be due to the increased embrittlement due to the interaction between Ni and S segregated at the γ grain boundaries.

以上の調査結果をふまえ、本発明のNi含有鋼の連続鋳造方法について詳細に説明する。
まず、本発明の鋼の化学組成を限定した理由を説明する(以降、「%」との表記は「質量%」である)。
Based on the above investigation results, the continuous casting method of Ni-containing steel of the present invention will be described in detail.
First, the reason for limiting the chemical composition of the steel of the present invention will be described (hereinafter, the notation “%” is “mass%”).

<第1実施形態>
本実施形態のNi含有鋼の連続鋳造方法は、Ni含有鋼を、垂直曲げ型連続鋳造機または湾曲型連続鋳造機を用いて連続鋳造する方法であって、質量%で、溶鋼中のNi濃度を0.2〜3%、S濃度を0.001%以下にし、鋳片の表面温度が800℃以上で、鋳片の矯正を行なうことを特徴とする。
以下、本実施形態の鋼の化学組成を限定した理由を説明する(以降、「%」との表記は「質量%」である)。
<First Embodiment>
The Ni-containing steel continuous casting method of the present embodiment is a method of continuously casting Ni-containing steel using a vertical bending type continuous casting machine or a curved type continuous casting machine, and the Ni concentration in molten steel in mass%. 0.2 to 3%, S concentration is 0.001% or less, and the surface temperature of the slab is 800 ° C. or more, and the slab is corrected.
Hereinafter, the reason why the chemical composition of the steel of this embodiment is limited will be described (hereinafter, the notation “%” is “mass%”).

[Ni:0.2〜3%]
鋼中のNiは、鋼材の強度、靭性を向上させるために添加される元素である。強度、靭性を向上させるために必要な添加量は0.2%以上である。なお、Ni濃度が0.2%未満であれば、S濃度の低減やCaの添加を行なわずとも通常の連続鋳造において表面割れが発生することはない。
一方、3%を超えて過剰に添加すると、オーステナイト粒界酸化が大きくなり過ぎ、粒界割れの起点が発生するため、後述するS濃度を低減し、オーステナイト粒界の脆化を防止しても、割れ深さを低減することが困難となるため、上限は3%とする。
ここで、NiはFeよりも貴な元素で、酸化されにくいという性質を有している。一方、γ粒界には、Siなどの酸化されやすい元素が偏析している。粒内は酸化されにくく、粒界が酸化されやすい状態にあるため、一般的には、粒界が優先的に酸化される。従って、Ni添加量が多い場合は、酸化されにくいNiが多いということになり、酸化されやすい元素が偏析する傾向にあるγ粒界の酸化が大きくなります。そして、このようにγ粒界だけが大きく酸化されるので、鋼板表面にあたかもノッチ(切り欠き)が入ったようになり、鋳片表面に引張り応力がかかった際に、ノッチが起点となり割れやすくなり。
以上のように、本発明においては、Ni濃度を0.2〜3%とすることが重要である。
[Ni: 0.2-3%]
Ni in the steel is an element added to improve the strength and toughness of the steel material. The addition amount necessary for improving the strength and toughness is 0.2% or more. If the Ni concentration is less than 0.2%, surface cracks will not occur in normal continuous casting without reducing the S concentration or adding Ca.
On the other hand, if added in excess of 3%, the austenite grain boundary oxidation becomes too large, and the starting point of grain boundary cracking occurs. Therefore, even if the S concentration described later is reduced and the embrittlement of the austenite grain boundary is prevented. Since it is difficult to reduce the crack depth, the upper limit is made 3%.
Here, Ni is a noble element than Fe and has the property of being difficult to be oxidized. On the other hand, easily oxidizable elements such as Si are segregated at the γ grain boundaries. In general, the grain boundaries are preferentially oxidized because the grains are not easily oxidized and the grain boundaries are easily oxidized. Therefore, when the amount of Ni added is large, it means that there is a large amount of Ni that is difficult to oxidize, and the oxidation of the γ grain boundary tends to segregate easily oxidizable elements. Since only the γ grain boundary is greatly oxidized in this way, the surface of the steel plate appears to have a notch (notch). When tensile stress is applied to the surface of the slab, the notch is the starting point and easily breaks. That's it.
As described above, in the present invention, it is important to set the Ni concentration to 0.2 to 3%.

[S:0.001%以下]
Sはオーステナイト粒界を脆化させる元素であり、Ni含有鋼ではその影響が著しい。
0.001%を超えて含有すると連鋳鋳片に手入れが必要な割れが生じるため、0.001%以下とする。下限は0%を含む。
[S: 0.001% or less]
S is an element that embrittles the austenite grain boundary, and its influence is remarkable in Ni-containing steel.
If the content exceeds 0.001%, cracks that require maintenance occur in the continuous cast slab, so the content is made 0.001% or less. The lower limit includes 0%.

<第2実施形態>
次に、本発明の第2実施形態について説明する。
本実施形態のNi含有鋼の連続鋳造方法は、Ni含有鋼を、垂直曲げ型連続鋳造機または湾曲型連続鋳造機を用いて連続鋳造する方法であって、質量%で、溶鋼中のNi濃度を0.2〜3%、S濃度を0.001超0.002%以下、Ca濃度を0.001%以上0.004%以下にし、鋳片の表面温度が800℃以上で、鋳片の矯正を行なうことを特徴とする。
以下、本実施形態の鋼の化学組成を限定した理由を説明する。
Second Embodiment
Next, a second embodiment of the present invention will be described.
The Ni-containing steel continuous casting method of the present embodiment is a method of continuously casting Ni-containing steel using a vertical bending type continuous casting machine or a curved type continuous casting machine, and the Ni concentration in molten steel in mass%. 0.2 to 3%, S concentration is more than 0.001 and 0.002% or less, Ca concentration is 0.001% or more and 0.004% or less, and the surface temperature of the slab is 800 ° C. or more. It is characterized by performing correction.
Hereinafter, the reason which limited the chemical composition of steel of this embodiment is demonstrated.

[Ni:0.2〜3%]
Niは、上述した第1実施形態と同様に、鋼材の強度、靭性を向上させるために添加される元素であり、必要な添加量は0.2%以上である。なお、Ni濃度が0.2%未満であれば、S濃度の低減やCaの添加を行なわずとも通常の連続鋳造において表面割れが発生することはない。
一方、3%を超えて過剰に添加すると、オーステナイト粒界酸化が大きくなり過ぎ、粒界割れの起点が発生するため、S濃度を低減し、オーステナイト粒界の脆化を防止しても、割れ深さを低減することが困難となるため、上限は3%とする。
[Ni: 0.2-3%]
Ni is an element added to improve the strength and toughness of the steel material as in the first embodiment described above, and the necessary addition amount is 0.2% or more. If the Ni concentration is less than 0.2%, surface cracks will not occur in normal continuous casting without reducing the S concentration or adding Ca.
On the other hand, if added in excess of 3%, the austenite grain boundary oxidation becomes too large and the starting point of grain boundary cracking occurs, so even if the S concentration is reduced and embrittlement of the austenite grain boundary is prevented, cracking occurs. Since it is difficult to reduce the depth, the upper limit is made 3%.

[S:0.001超0.002%以下]
[Ca:0.001%以上0.004%以下]
Caは鋼中でSと結合しやすく、容易にCaSを形成する。このため、γ粒界に存在するSを低減することができる。S濃度が0.001%超0.002%以下である場合、Ca濃度が0.001%以上であれば、粒界を脆化させることがないため、連鋳鋳片に手入れが必要な割れが生じることもない。一方、Caは沸点が低く、蒸発しやすい元素であるため、鋼中に多量に含有させることはコスト高となる。さらに、CaSとしてSを無害化する効果も飽和するため、上限を0.004%とする。
[S: more than 0.001 and 0.002% or less]
[Ca: 0.001% to 0.004%]
Ca easily binds to S in steel and easily forms CaS. For this reason, S existing in the γ grain boundary can be reduced. When the S concentration is more than 0.001% and not more than 0.002%, if the Ca concentration is 0.001% or more, the grain boundary will not be embrittled, so the continuous cast slab needs to be maintained. Does not occur. On the other hand, since Ca is an element that has a low boiling point and easily evaporates, it is expensive to contain a large amount in Ca. Furthermore, since the effect of detoxifying S as CaS is saturated, the upper limit is made 0.004%.

上記の第1実施形態、第2実施形態それぞれにて説明した組成は、鋳造を開始するまでの溶鋼段階で、常法により調整することで実施できる。例えば、Sは、溶銑予備処理工程、転炉工程、二次精錬工程で、例えば石灰を含有するフラックスを用いることで0.001%以下まで低減することができる。Caは粉状のCaを鋼中に吹きこむ方法やCa粒を充填したワイヤを鋼中に装入することで含有させることができる。   The composition described in each of the first embodiment and the second embodiment can be carried out by adjusting by a conventional method at the molten steel stage until the start of casting. For example, S can be reduced to 0.001% or less by using, for example, a flux containing lime in the hot metal preliminary treatment process, the converter process, and the secondary refining process. Ca can be contained by charging powdered Ca into the steel or by inserting a wire filled with Ca particles into the steel.

本発明に係る連続鋳造方法は、上述してきたような組成を有するNi含有鋼を、垂直曲げ型連鋳機または湾曲型連鋳機を用いて鋳造する。   In the continuous casting method according to the present invention, Ni-containing steel having the composition as described above is cast using a vertical bending type continuous casting machine or a curved type continuous casting machine.

[鋳片の矯正を行う際の鋳片表面温度:800℃以上]
上述したように、垂直曲げ型連鋳機または湾曲型連鋳機を用いて鋼を鋳造する場合、鋳片を矯正する際に鋳片上面に表面割れが生じるという問題がある。このため、表面割れを防止するためには、鋼が脆化する温度範囲を回避するよう二次冷却や鋳造速度を調整している。
図1に示すように本発明の方法では、引張温度が800℃以上のときに、40%以上の絞り値を確保することができる。これより、鋳片の矯正を行う際の鋳片表面温度を800℃以上とする。なお、表面温度の上限については特には制限しないが、温度が高すぎと内部割れや鋳片酸化量の増大が生じるため、900℃以下が望ましい。
[Slab surface temperature when straightening the slab: 800 ° C or higher]
As described above, when steel is cast using a vertical bending type continuous casting machine or a curved type continuous casting machine, there is a problem that surface cracks occur on the upper surface of the slab when the slab is straightened. For this reason, in order to prevent surface cracking, the secondary cooling and the casting speed are adjusted so as to avoid the temperature range in which the steel becomes brittle.
As shown in FIG. 1, in the method of the present invention, when the tensile temperature is 800 ° C. or higher, an aperture value of 40% or more can be secured. From this, the slab surface temperature at the time of correcting a slab shall be 800 degreeC or more. The upper limit of the surface temperature is not particularly limited. However, if the temperature is too high, an internal crack or an increase in the amount of slab oxidation occurs.

また、本発明においては、鋳造速度や二次冷却の比水量(鋳片単位重量当たりの二次冷却水の量)については、鋳造速度においては、0.8〜1.5mpm、二次冷却の比水量については、0.7〜1.5l/kgとすることが好ましい。   In the present invention, the casting speed and the specific water amount of secondary cooling (the amount of secondary cooling water per slab unit weight) are 0.8 to 1.5 mpm at the casting speed, The specific water amount is preferably 0.7 to 1.5 l / kg.

以下、実施例により本発明の効果を説明するが、本発明は、以下の実施例で用いた条件に限定されるものではない。   Hereinafter, the effects of the present invention will be described with reference to examples, but the present invention is not limited to the conditions used in the following examples.

表1に示すNo.1〜No.8の化学成分を有する鋼を、それぞれ垂直曲げ型連続鋳造機または湾曲型連続鋳造機を用いて鋳造した。その際、二次冷の冷却条件、鋳造速度を変更することで矯正帯での鋳片表面温度を表1に示すように変更した。
鋳造後の鋼において、鋳造方向に垂直な断面を観察し、断面内の最も深い割れの深さを測定し、指数付けをおこなった。割れ深さが0.2mm未満で手入れの必要のないものを鋳片表面割れ指数1、深さ0.2mm以上1mm未満で手入れの必要のあるものを2、深さ1mm以上で屑化しなければならないものを3とした。
No. shown in Table 1. 1-No. Steels having 8 chemical components were cast using a vertical bending type continuous casting machine or a curved type continuous casting machine, respectively. At that time, the slab surface temperature in the straightening band was changed as shown in Table 1 by changing the cooling condition and casting speed of the secondary cooling.
In the steel after casting, the cross section perpendicular to the casting direction was observed, the depth of the deepest crack in the cross section was measured, and indexing was performed. If the crack depth is less than 0.2 mm, the slab surface crack index is 1 for the slab surface crack index, 2 if the depth is 0.2 mm or more and less than 1 mm and needs to be cleaned, and if the depth is 1 mm or more What was not required was set to 3.

Figure 2018118277
Figure 2018118277

No.1〜4は化学成分、製造条件ともに本発明例である。いずれも、鋳片表面割れ指数は1であり、手入れも不要であった。
一方、No.5〜No.10は比較例である。No.5はS濃度が高いために、手入れが必要な割れが発生した。No.6はNi濃度が高すぎるため、1mm以上の深い割れが発生し、屑化せざるを得なかった。No.7はCa濃度が低すぎるため、手入れが必要な割れが発生した。No.8は、矯正帯での鋳片表面温度が低すぎたため、1mm以上の深い割れが発生し、屑化せざるを得なかった。No.9は、Caが0.004%であるが、S濃度が上限を超えているため、割れが発生してしまった。No.10は、割れは発生しなかったものの、Ni濃度が低すぎたため、鋼の強度・靭性が不足してしまった。
No. 1-4 are examples of the present invention for both chemical components and production conditions. In both cases, the slab surface crack index was 1, and maintenance was unnecessary.
On the other hand, no. 5-No. 10 is a comparative example. No. Since No. 5 had a high S concentration, cracks requiring maintenance occurred. No. No. 6 had a Ni concentration that was too high, resulting in deep cracks of 1 mm or more, which had to be scrapped. No. In No. 7, the Ca concentration was too low, and therefore cracks requiring maintenance occurred. No. In No. 8, since the surface temperature of the slab in the straightening band was too low, deep cracks of 1 mm or more were generated and had to be scrapped. No. No. 9 had Ca of 0.004%, but the S concentration exceeded the upper limit, so cracking occurred. No. In No. 10, cracks did not occur, but the Ni concentration was too low, so the steel was insufficient in strength and toughness.

Claims (2)

Ni含有鋼を、垂直曲げ型連続鋳造機または湾曲型連続鋳造機を用いて連続鋳造する方法であって、質量%で、溶鋼中のNi濃度を0.2〜3%、S濃度を0.001%以下にし、鋳片の表面温度が800℃以上で、鋳片の矯正を行なうことを特徴とするNi含有鋼の連続鋳造方法。   This is a method of continuously casting Ni-containing steel using a vertical bending type continuous casting machine or a curved type continuous casting machine, wherein the Ni concentration in the molten steel is 0.2 to 3% and the S concentration is 0. A continuous casting method of Ni-containing steel, characterized in that the slab is straightened when the surface temperature of the slab is 800 ° C. or higher. Ni含有鋼を、垂直曲げ型連続鋳造機または湾曲型連続鋳造機を用いて連続鋳造する方法であって、質量%で、溶鋼中のNi濃度を0.2〜3%、S濃度を0.001超0.002%以下、Ca濃度を0.001%以上0.004%以下にし、鋳片の表面温度が800℃以上で、鋳片の矯正を行なうことを特徴とするNi含有鋼の連続鋳造方法。   This is a method of continuously casting Ni-containing steel using a vertical bending type continuous casting machine or a curved type continuous casting machine, wherein the Ni concentration in the molten steel is 0.2 to 3% and the S concentration is 0. Continuous Ni-containing steel characterized in that the slab is straightened when the slab surface temperature is 800 ° C. or higher and the Ca concentration is 0.001% or more and 0.004% or less over 001. Casting method.
JP2017011064A 2017-01-25 2017-01-25 Continuous casting method of Ni-containing steel Active JP6866650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017011064A JP6866650B2 (en) 2017-01-25 2017-01-25 Continuous casting method of Ni-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017011064A JP6866650B2 (en) 2017-01-25 2017-01-25 Continuous casting method of Ni-containing steel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020210767A Division JP7001143B2 (en) 2020-12-18 2020-12-18 Continuous casting method of Ni-containing steel

Publications (2)

Publication Number Publication Date
JP2018118277A true JP2018118277A (en) 2018-08-02
JP6866650B2 JP6866650B2 (en) 2021-04-28

Family

ID=63043323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017011064A Active JP6866650B2 (en) 2017-01-25 2017-01-25 Continuous casting method of Ni-containing steel

Country Status (1)

Country Link
JP (1) JP6866650B2 (en)

Also Published As

Publication number Publication date
JP6866650B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
JP5224009B2 (en) Steel wire rod and manufacturing method thereof
JP6031022B2 (en) Steel wire for bolt excellent in delayed fracture resistance, high-strength bolt, and method for producing them
JP6036997B2 (en) Spring steel with excellent fatigue resistance and method for producing the same
US10597748B2 (en) Steel wire rod for wire drawing
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
JP6484716B2 (en) Lean duplex stainless steel and manufacturing method thereof
WO2016002413A1 (en) Wire material for steel wire, and steel wire
WO2015141840A1 (en) Favorably workable steel wire and method for producing same
JP2013537586A (en) High carbon chromium bearing steel and manufacturing method thereof
JP6687112B2 (en) Steel wire
JP6560881B2 (en) Extremely low permeability stainless steel wire, as well as steel wire and deformed wire with excellent durability
JP4319839B2 (en) High strength, high toughness high carbon steel wire
JP2010229469A (en) High-strength wire rod excellent in cold working characteristic and method of producing the same
JP5928413B2 (en) Steel continuous casting method
JP6597313B2 (en) Continuous casting method of Ni-containing steel
WO2020080415A1 (en) Hot-rolled wire rod
JP6589096B2 (en) Continuous casting method of Ni-containing steel
JP7001143B2 (en) Continuous casting method of Ni-containing steel
JP6866650B2 (en) Continuous casting method of Ni-containing steel
JP2008208430A (en) Soft austenitic stainless steel and manufacturing method therefor
JPH04293721A (en) Production of soft steel wire rod excellent in mechanical descaling property
JP6402533B2 (en) Continuous casting method of Ni-containing steel
JP4319840B2 (en) High strength, high toughness, high carbon steel wire and its manufacturing method
JP2018162523A (en) Wire material for steel wire, and steel wire
JP6059676B2 (en) Non-tempered weld bolt steel material and manufacturing method thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R151 Written notification of patent or utility model registration

Ref document number: 6866650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151