JP2018117004A - Magnetic core, inductor, and manufacturing method thereof - Google Patents

Magnetic core, inductor, and manufacturing method thereof Download PDF

Info

Publication number
JP2018117004A
JP2018117004A JP2017005750A JP2017005750A JP2018117004A JP 2018117004 A JP2018117004 A JP 2018117004A JP 2017005750 A JP2017005750 A JP 2017005750A JP 2017005750 A JP2017005750 A JP 2017005750A JP 2018117004 A JP2018117004 A JP 2018117004A
Authority
JP
Japan
Prior art keywords
magnetic core
metal powder
magnetic
composite
magnetic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017005750A
Other languages
Japanese (ja)
Other versions
JP6851204B2 (en
Inventor
健一 茶谷
Kenichi Chatani
健一 茶谷
駿 御子柴
Shun Mikoshiba
駿 御子柴
博司 嶋
Hiroshi Shima
博司 嶋
鎌田 博行
Hiroyuki Kamata
博行 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2017005750A priority Critical patent/JP6851204B2/en
Publication of JP2018117004A publication Critical patent/JP2018117004A/en
Application granted granted Critical
Publication of JP6851204B2 publication Critical patent/JP6851204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic core in which peeling, dropping or cracking of a flat power is less likely to occur with a ridge line part of an end face or a corner part to which the ridge line part is matched, defined as an origin, an inductor, and a manufacturing method thereof.SOLUTION: The present invention relates to a magnetic core consisting of a flat soft magnetic metal powder in 60 vol.% or more, a binder containing silicon nitride in 10 vol.% or more and 30 vol.% or less as a main component, and a compound magnetic substance including pores in 10 vol.% or more and 25 vol.% or less, being elastic and having a polygonal shape. A ridge line part and a corner part are rounded and an end of the soft magnetic metal powder in the rounded portion is folded.SELECTED DRAWING: Figure 2

Description

本発明は、各種電子機器に用いられる磁心、インダクタ、およびその製造方法に関する。   The present invention relates to a magnetic core, an inductor, and a manufacturing method thereof used in various electronic devices.

近年の電子機器は小型化、低電圧化が求められており、回路基板に搭載される電子部品、特に電力供給系における半導体素子やインダクタ等は、必然的に大電流化への対応と更なる耐熱性の向上が重要視されている。   In recent years, electronic devices are required to be smaller and have a lower voltage, and electronic components mounted on circuit boards, especially semiconductor elements and inductors in power supply systems, inevitably respond to higher currents. Improvement of heat resistance is regarded as important.

このような要求に応える電子部品の一つとして、特許文献1のような構成のインダクタが知られている。特許文献1には、扁平形状を有する軟磁性金属粉末をバインダ成分によって結着させ、弾性を備えた磁性体を磁心とするインダクタおよびその製造方法が開示されている。   As one of electronic parts that meet such a requirement, an inductor having a configuration as disclosed in Patent Document 1 is known. Patent Document 1 discloses an inductor in which a soft magnetic metal powder having a flat shape is bound by a binder component and a magnetic body having elasticity is used as a magnetic core, and a manufacturing method thereof.

すなわち、扁平形状を有する軟磁性金属粉末にバインダ成分を混合してスラリーを作製し、ダイスロット法やドクターブレード法等により塗付したスラリーを乾燥させて溶媒を揮発させた後、所望する大きさに切断して複数枚のシートを得る。前記シートを磁心の構成に応じて複数枚重ねて加圧し、積層体を得た後、積層体の所定の位置にフライス盤等により孔部やスリットを形成した後、熱処理を行って平板形状の弾性を備えた磁性体を得るものである。   That is, a soft magnetic metal powder having a flat shape is mixed with a binder component to prepare a slurry, and the slurry applied by the die slot method or doctor blade method is dried to volatilize the solvent, and then the desired size is obtained. To obtain a plurality of sheets. After a plurality of sheets are pressed according to the configuration of the magnetic core and pressed to obtain a laminated body, holes and slits are formed in a predetermined position of the laminated body with a milling machine, etc. The magnetic body provided with is obtained.

特開2016−39222号公報JP-A-2006-39222

前記の磁性体は、磁心1個毎に積層体を形成することもできるが、量産への適用を考慮すると、積層体には磁心を構成する孔部やスリットを複数組形成した後、切断機で個片に切り出す方法が好ましい。   The magnetic body can form a laminated body for each magnetic core. However, in consideration of application to mass production, a plurality of holes and slits constituting the magnetic core are formed in the laminated body, and then a cutting machine is formed. The method of cutting into pieces is preferable.

磁心の端面は、その稜線部、または稜線部が合一する角部を起点とする扁平状粉末の剥離や脱落が発生し易いという課題がある。磁心製造工程やインダクタ製品の実装工程において扁平状粉末の剥離や脱落、磁心のクラックが発生すると、製品の品質を低下させる原因となる。   The end face of the magnetic core has a problem in that the flat powder starting from the ridgeline portion or the corner portion where the ridgeline portions are united is likely to be peeled off or dropped off. If the flat powder is peeled or dropped or cracks occur in the magnetic core manufacturing process or inductor product mounting process, the quality of the product may be degraded.

複合磁性体を切断やフライス加工することで形成された端面は、稜線部や角部が鋭い形状となり、加工工程や組立実装工程で周辺の物体と接触すると、局部的に応力が集中して微細な破壊が生じる場合がある。特に、バインダの有機成分を分解する熱処理を施した複合磁性体は、熱処理前の状態よりも硬く、かつ脆くなることから、複数シートを積層した積層体の構成で層間剥離やクラック等の原因となる場合がある。   The end face formed by cutting or milling a composite magnetic body has sharp edges and corners, and when it comes into contact with surrounding objects in the machining and assembly mounting processes, stress is concentrated locally and becomes fine. Destruction may occur. In particular, a composite magnetic body that has been subjected to a heat treatment that decomposes the organic components of the binder is harder and more brittle than the state before the heat treatment. There is a case.

複合磁性体のシートを積層して熱処理を施した成形体は、軟磁性金属粉末が整然と積み重なった構造となり、非常に堅固かつ弾性を備えたものとなる。しかしながら、切断やフライス加工等の外力を加えると、シートの層間や軟磁性金属粉末の粒子間のように、相対的に結合力が低い部位で結合組織の破壊や剥離が生じる場合がある。また、切断やフライス加工で形成された端面は稜線部や角部が鋭い形状となるため、加工工程や組立実装工程で周辺の物体と接触すると局部的な応力の集中によって微細な破壊が生じる場合がある。   A molded body obtained by laminating sheets of composite magnetic materials and subjected to heat treatment has a structure in which soft magnetic metal powders are stacked in an orderly manner, and is very firm and elastic. However, when an external force such as cutting or milling is applied, the connective tissue may be broken or peeled off at a portion having a relatively low bonding force, such as between sheets or between particles of soft magnetic metal powder. In addition, the end face formed by cutting or milling has sharp edges and corners, so that when it comes into contact with surrounding objects in the machining process or assembly / mounting process, local fracture of the stress occurs due to local stress concentration There is.

多面体形状に成形し、熱処理した磁心の一部の稜線部と角部を丸み付け加工すれば、前記の局部的な応力集中による微細な破壊を、ある程度は緩和することが可能である。しかしながら、熱処理後の堅固な成形体を加工することは、加工応力自体で層間剥離等の破壊を生じかねない。また、複合磁性体の端面には相変わらず、剥離の起点となる軟磁性金属粉末が整然と積み重なった構造の断面が露出していることから、単純な丸み付け加工では端面の稜線部または角部を起点とする扁平状粉末の剥離や脱落を防ぐことは困難である。   If a part of the ridge line and corners of the magnetic core formed into a polyhedron shape and heat-treated are rounded, it is possible to alleviate the fine breakdown due to the local stress concentration to some extent. However, processing a solid molded body after heat treatment may cause delamination such as delamination due to the processing stress itself. In addition, since the cross-section of the structure in which soft magnetic metal powder, which is the starting point of peeling, is regularly stacked, is exposed on the end face of the composite magnetic body, simple rounding processing starts from the ridge or corner of the end face. It is difficult to prevent the flat powder from peeling off or falling off.

そこで本発明は、端面の稜線部、または稜線部が合一する角部を起点とする扁平状粉末の剥離や脱落、クラックが発生し難い磁心、インダクタ、およびその製造方法の提供を目的とする。   Accordingly, an object of the present invention is to provide a magnetic core, an inductor, and a method for manufacturing the same, in which the flat powder starting from the edge portion of the end face or the corner portion where the ridge line portions are united, and the cracks are not easily generated. .

本発明によれば、扁平状の軟磁性金属粉末を、酸化ケイ素を主成分とするバインダで結着させた複合磁性体からなり、前記複合磁性体は、60体積%以上の前記軟磁性金属粉末と、10体積%以上、30体積%以下の前記バインダと、10体積%以上、25体積%以下の空孔を含み、弾性を備えると共に多面体の形状を有し、前記多面体の少なくとも一部の稜線部と角部は丸み付けされ、前記丸み付けされた部位の少なくとも一部の前記軟磁性金属粉末は、端部が褶曲していることを特徴とする磁心が得られる。   According to the present invention, the soft magnetic metal powder is composed of a composite magnetic body obtained by binding a flat soft magnetic metal powder with a binder mainly composed of silicon oxide, and the composite magnetic body is 60% by volume or more of the soft magnetic metal powder. And 10% by volume or more and 30% by volume or less of the binder, and 10% by volume or more and 25% by volume or less of pores, having elasticity and a polyhedral shape, and at least a part of the ridgeline of the polyhedron The core is characterized in that the corners and corners are rounded, and at least a part of the rounded portion of the soft magnetic metal powder has a bent end.

また、本発明によれば、前記丸み付けされた部位の曲率半径が0.15mm以上である磁心が得られる。   Moreover, according to the present invention, a magnetic core having a radius of curvature of the rounded portion of 0.15 mm or more can be obtained.

また、本発明によれば、前記丸み付けされた部位の曲率半径が0.3mm以上、0.8mm以下である磁心が得られる。   Further, according to the present invention, a magnetic core having a radius of curvature of the rounded portion of 0.3 mm or more and 0.8 mm or less is obtained.

また、本発明によれば、前記軟磁性金属粉末の前記端部が褶曲する角度は、10度以上、180度未満である磁心が得られる。   In addition, according to the present invention, a magnetic core in which the end portion of the soft magnetic metal powder is bent is 10 degrees or more and less than 180 degrees.

また、本発明によれば、前記軟磁性金属粉末の前記端部が褶曲する角度は、20度以上、180度未満である磁心が得られる。   In addition, according to the present invention, a magnetic core having an angle at which the end of the soft magnetic metal powder is bent is 20 degrees or more and less than 180 degrees.

また、本発明によれば、前記磁心は、前記多面体の対向する二面を貫通する貫通部を、1つ以上備える磁心が得られる。   Moreover, according to this invention, the said magnetic core can obtain a magnetic core provided with one or more penetration parts which penetrate the two surfaces which the said polyhedron opposes.

また、本発明によれば、前記磁心は、ISO7619−typeDによるゴム硬度が92以上、96以下である磁心が得られる。   Further, according to the present invention, a magnetic core having a rubber hardness of 92 or more and 96 or less according to ISO7619-type D can be obtained.

また、本発明によれば、前記磁心の電気抵抗率が、10KΩ・cm以上である磁心が得られる。   Further, according to the present invention, a magnetic core having an electrical resistivity of 10 KΩ · cm or more can be obtained.

また、本発明によれば、前記空孔の少なくとも一部に、熱可塑性または熱硬化性樹脂が含浸している磁心が得られる。   In addition, according to the present invention, a magnetic core in which at least a part of the pores is impregnated with a thermoplastic or thermosetting resin can be obtained.

また、本発明によれば、前記多面体の対向する二面と前記貫通部を経て接続されるコイルを備える、前記の磁心を用いたインダクタが得られる。   In addition, according to the present invention, an inductor using the magnetic core including a coil connected to two opposing faces of the polyhedron via the through portion can be obtained.

また、本発明によれば、扁平状の軟磁性金属粉末と酸化ケイ素を主成分とするバインダを混合して複合磁性体を調整する工程と、前記複合磁性体を円盤状の砥石を回転させて個片に切断する工程と、前記個片の少なくとも一部の稜線部と角部を研磨加工により丸み付けする工程と、前記研磨加工を施した前記複合磁性体の前記バインダの有機成分を、熱処理により分解する工程を含むことを特徴とする、磁心の製造方法が得られる。   According to the present invention, the step of adjusting the composite magnetic body by mixing a flat soft magnetic metal powder and a binder mainly composed of silicon oxide, and rotating the composite magnetic body with a disk-shaped grindstone A step of cutting into individual pieces, a step of rounding at least a part of ridge lines and corners of the individual pieces by polishing, and an organic component of the binder of the composite magnetic body subjected to the polishing, In this way, a method for manufacturing a magnetic core is provided, which includes a step of disassembling.

また、本発明によれば、扁平状の軟磁性金属粉末と酸化ケイ素を主成分とするバインダを混合して複合磁性体を調整する工程と、前記複合磁性体の対向する二面を貫通する貫通部を1つ以上設ける工程と、前記複合磁性体を円盤状の砥石を回転させて個片に切断する工程と、前記個片の少なくとも一部の稜線部と角部を研磨加工により丸み付けする工程と、前記研磨加工を施した前記複合磁性体の前記バインダの有機成分を、熱処理により分解する工程を含むことを特徴とする、磁心の製造方法が得られる。   In addition, according to the present invention, the step of adjusting the composite magnetic body by mixing a flat soft magnetic metal powder and a binder mainly composed of silicon oxide, and the penetrating through the two opposing surfaces of the composite magnetic body A step of providing at least one portion, a step of rotating the composite magnetic body into pieces by rotating a disc-shaped grindstone, and rounding at least a part of the ridge line portions and corner portions of the pieces by polishing. A method of manufacturing a magnetic core is provided, including a step and a step of decomposing an organic component of the binder of the composite magnetic body subjected to the polishing process by heat treatment.

また、本発明によれば、前記磁心に導体を巻回してコイルを形成すること特徴とする、インダクタの製造方法が得られる。   In addition, according to the present invention, there is obtained an inductor manufacturing method, wherein a coil is formed by winding a conductor around the magnetic core.

また、本発明によれば、前記磁心の対向する二面と前記貫通部を経て導体を接続してコイルを形成すること特徴とする、インダクタの製造方法が得られる。   In addition, according to the present invention, there is obtained an inductor manufacturing method, wherein a coil is formed by connecting a conductor through two opposing surfaces of the magnetic core and the penetrating portion.

本発明は、多面体形状に成形した複合磁性体の稜線部と角部を丸み付け加工するとともに、丸み付け加工した部位の一部の軟磁性金属粉末を、端部が褶曲するよう構成するものである。軟磁性金属粉末の端部の褶曲変形により、整然と積み重なった構造となることが回避され、複合磁性体の端面の稜線部や角部が起点となるような連鎖的な剥離や脱落が発生し難くなる。   The present invention is configured to round a ridge line portion and a corner portion of a composite magnetic body formed into a polyhedron shape, and to configure a part of the soft magnetic metal powder of the rounded portion so that the end portion is bent. is there. Due to the bending deformation of the end of the soft magnetic metal powder, it is avoided that the structure is stacked in an orderly manner, and it is difficult for chain peeling and dropping to start from the ridges and corners of the end face of the composite magnetic body. Become.

本発明の磁心の製造方法は、扁平状の軟磁性金属粉末と酸化ケイ素を主成分とするバインダを混合して複合磁性体を作製し、各種加工機等で所望の形状に成形し、バレル研磨やショットブラスト加工等の研磨加工を施して稜線部と角部を丸み付けすることで、未だ柔軟性を有する複合磁性体の軟磁性金属粉末の端部が褶曲変形し、その後に複合磁性体のバインダの有機成分を熱処理により分解することで、所望の特性と強度、耐熱性を兼ね備えた磁心を得るものである。この磁心にコイル巻線を施すとインダクタを構成することができる。   The method of manufacturing a magnetic core according to the present invention is to produce a composite magnetic body by mixing a flat soft magnetic metal powder and a binder mainly composed of silicon oxide, and mold the barrel into a desired shape using various processing machines. The edge of the soft magnetic metal powder of the composite magnetic body still having flexibility is bent and curved, and then the composite magnetic body By decomposing the organic component of the binder by heat treatment, a magnetic core having desired characteristics, strength and heat resistance is obtained. An inductor can be formed by applying a coil winding to the magnetic core.

また、本発明の磁心の製造方法としては、複合磁性体を多面体形状に加工した後、多面体の対向する二面を貫通する貫通部を1つ以上設けてから研磨加工による丸み付けを行っても良い。磁心の対向する二面と貫通部を経て導体を接続してコイルを形成することにより、インダクタを構成することができる。   In addition, as a method of manufacturing a magnetic core according to the present invention, after processing a composite magnetic body into a polyhedron shape, it is possible to provide one or more penetrating portions that penetrate two opposing surfaces of the polyhedron and then round by polishing. good. An inductor can be configured by forming a coil by connecting a conductor through two opposing surfaces of a magnetic core and a penetrating portion.

前記個片に切断する工程では、切断加工を行う部位にダイヤモンド砥粒を用いた円盤状の砥石を高速で回転させ、対象物を切断や溝入れ加工を行う外周刃切断機や、内周刃切断機を用いることができる。   In the step of cutting into individual pieces, an outer peripheral cutting machine or an inner peripheral blade that rotates a disk-shaped grindstone using diamond abrasive grains at a high speed to cut or grooving an object. A cutting machine can be used.

複合磁性体の熱処理前に切断等の成形加工を行うのは、熱処理後の複合磁性体が非常に堅固で硬くて脆いことから、後加工に適用できる加工方法が限定されることによるコスト高と、複合磁性体の加工時のダメージ(角部のチッピングや層間のクラックの発生等)を避けるために、望ましい。   Forming such as cutting before the heat treatment of the composite magnetic body is because the composite magnetic body after the heat treatment is very solid, hard and brittle, so that the processing method applicable to the post-processing is limited and the cost is high It is desirable to avoid damages during processing of the composite magnetic material (such as chipping at corners and generation of cracks between layers).

本発明によれば、端面の稜線部、または稜線部が合一する角部を起点とする扁平状粉末の剥離や脱落、クラックが発生し難い磁心、インダクタ、およびその製造方法の提供が可能となる。   According to the present invention, it is possible to provide a magnetic core, an inductor, and a method of manufacturing the same, which are less likely to cause peeling and dropping of flat powder starting from a ridge line part of an end face or a corner part where the ridge line parts are united, and a crack. Become.

本発明の実施例による磁心の稜線部、角部を含む端面を示す画像である。It is an image which shows the end surface containing the ridgeline part of a magnetic core by the Example of this invention, and a corner | angular part. 本発明の実施例による磁心の角部を含む断面を示す画像である。It is an image which shows the cross section containing the corner | angular part of the magnetic core by the Example of this invention. 比較例による磁心の稜線部、角部を含む端面を示す画像である。It is an image which shows the end surface containing the ridgeline part of a magnetic core by a comparative example, and a corner | angular part. 比較例による磁心の角部を含む断面を示す画像である。It is an image which shows the cross section containing the corner | angular part of the magnetic core by a comparative example. 比較例による磁心の層間剥離を示す画像である。It is an image which shows delamination of the magnetic core by a comparative example. 本発明の実施の形態における、個片に切断した磁心の一例を示す斜視図である。It is a perspective view which shows an example of the magnetic core cut | disconnected in the piece in embodiment of this invention. 本発明の実施の形態における、インダクタの一例を示す正面図である。It is a front view showing an example of an inductor in an embodiment of the invention.

以下、本発明の実施の形態について、図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態)
本実施の形態の磁心に用いる複合磁性体は、扁平状の軟磁性金属粉末を、酸化ケイ素を主成分とするバインダ(絶縁材料)で結着させたものであり、60体積%以上の軟磁性金属粉末と、10体積%以上、30体積%以下のバインダと、10体積%以上、25体積%以下の空孔を含み、弾性を備える。
(Embodiment)
The composite magnetic body used in the magnetic core of the present embodiment is obtained by binding flat soft magnetic metal powder with a binder (insulating material) mainly composed of silicon oxide, and has a soft magnetic content of 60% by volume or more. It contains metal powder, 10% by volume or more and 30% by volume or less of binder, and 10% by volume or more and 25% by volume or less of pores, and has elasticity.

扁平状の軟磁性金属粉末は、例えば粒子状の軟磁性金属粉末を、ボールミル等を使用して扁平化することで作製される。軟磁性金属粉末は、磁気特性の良好なFe系合金を用いることが好ましく、軟磁気特性が良好なFe−Si系合金や、Fe−Si−Cr系合金、センダスト(登録商標)と呼ばれるFe−Si−Al系合金からなることが好ましい。軟磁性金属粉末がSi及びAlを含む場合、結晶磁気異方性定数及び磁歪定数が低下して磁気特性が向上することから、Siの比率は3重量%以上、18重量%以下であることが好ましく、Alの比率は1重量%以上、12重量%以下であることが好ましい。   The flat soft magnetic metal powder is produced, for example, by flattening a particulate soft magnetic metal powder using a ball mill or the like. As the soft magnetic metal powder, an Fe-based alloy having good magnetic properties is preferably used. Fe-Si based alloys, Fe-Si-Cr based alloys having good soft magnetic properties, or Fe-- called Sendust (registered trademark). It is preferable to consist of a Si-Al type alloy. When the soft magnetic metal powder contains Si and Al, the magnetocrystalline anisotropy constant and the magnetostriction constant are lowered and the magnetic properties are improved. Therefore, the ratio of Si may be 3 wt% or more and 18 wt% or less. Preferably, the Al ratio is preferably 1% by weight or more and 12% by weight or less.

扁平状の軟磁性金属粉末を結着するバインダとしては、酸化ケイ素を主成分とするものとして、例えばメチル系シリコーンレジン、メチルフェニル系シリコーンレジンを使用すれば良い。   As a binder for binding the flat soft magnetic metal powder, for example, a methyl silicone resin or a methylphenyl silicone resin may be used as a main component of silicon oxide.

軟磁性金属粉末にバインダと溶媒、必要によって増粘剤等の添加剤を加えて混合し、スラリーを調整する。スラリーを剥離基板等に塗布して加熱乾燥および硬化させ、シート状の複合磁性体を得る。この状態の複合磁性体は、バインダ成分が柔軟性を保持していることから加圧成型が可能であり、複合磁性体のシートを磁心の構成に応じて複数枚重ねて加圧し、予備成型体としての積層体を得る。所望の寸法の磁心とするには、積層体を切断して多面体形状の個片とする。   To the soft magnetic metal powder, a binder, a solvent, and, if necessary, an additive such as a thickener are added and mixed to prepare a slurry. The slurry is applied to a release substrate, etc., dried by heating and cured to obtain a sheet-like composite magnetic body. The composite magnetic body in this state can be pressure-molded because the binder component retains flexibility, and a plurality of sheets of the composite magnetic body are pressed according to the configuration of the magnetic core, and the pre-molded body is pressed. To obtain a laminate. In order to obtain a magnetic core having a desired size, the laminated body is cut into pieces having a polyhedral shape.

また、磁心の構成により、積層体の対向する二面を貫通する貫通部やスリット状の長穴等を設けることもできる。予備成型体の状態であれば、複合磁性体の成形加工は比較的容易であり、貫通部の加工は、ドリル、フライス、金型プレス等の手段を適宜用いることができる。   Further, depending on the configuration of the magnetic core, a penetrating portion penetrating through two opposing surfaces of the laminate, a slit-like long hole, or the like can be provided. If it is in the state of a preformed body, the forming process of the composite magnetic body is relatively easy, and means such as a drill, a milling machine, and a mold press can be used as appropriate for the processing of the penetrating part.

必要な加工を行った後、複合磁性体の積層体を、所望する寸法の個片に切断する。切断には、ダイヤモンド砥粒を用いた円盤状の砥石を高速で回転させ、加工部位に当てて対象物の切断や溝入れ加工を行う、外周刃切断機や内周刃切断機を用いることが望ましい。   After performing the necessary processing, the laminate of the composite magnetic material is cut into individual pieces having a desired size. For cutting, it is necessary to use a peripheral blade cutter or an inner blade cutter that rotates a disk-shaped grindstone using diamond abrasive grains at high speed and cuts or grooving the target object against the processing site. desirable.

図6は、本発明の実施の形態における、個片に切断した磁心の一例を示す斜視図である。図中において、複合磁性体である磁心1には、所定位置に貫通部2を四個設けている。貫通部2の寸法、個数、形状、位置等は、必要に応じて適宜設定することができ、磁心1に直接巻線する場合は設けなくとも良い。   FIG. 6 is a perspective view showing an example of a magnetic core cut into individual pieces in the embodiment of the present invention. In the figure, a magnetic core 1 which is a composite magnetic body is provided with four through portions 2 at predetermined positions. The dimensions, number, shape, position, and the like of the penetrating portion 2 can be appropriately set as necessary, and may not be provided when the core 1 is directly wound.

複合磁性体を個片に切断して多面体を形成後、研磨加工を施して稜線部と角部の丸み付けを行う。ここで、研磨加工とは砥粒を用いて対象物表面を物理的に削る加工方法を意味するものであり、砥粒は遊離砥粒でも固定砥粒でも良く、加工自体も乾式でも湿式でも良い。本実施の形態ではバレル研磨について詳述するが、加工方法はバレル研磨に限定されるものではなく、砥粒を空気圧や羽根車の遠心力で投射するサンドブラスト(ショットブラスト)や、磁性メディアを磁力で運動させる磁気研磨を用いることもできる。   After the composite magnetic body is cut into individual pieces to form a polyhedron, polishing is performed to round the ridge line portion and the corner portion. Here, the term “polishing” refers to a processing method that physically grinds the surface of an object using abrasive grains. The abrasive grains may be free abrasive grains or fixed abrasive grains, and the processing itself may be dry or wet. . In this embodiment, barrel polishing will be described in detail. However, the processing method is not limited to barrel polishing. Sand blasting (shot blasting) in which abrasive grains are projected by air pressure or centrifugal force of an impeller, or magnetic media is magnetically applied. It is also possible to use magnetic polishing that is moved by.

バレル研磨では、加工は応力の集中する角部や稜線部ほど進行し、所謂「角が取れた」状態となるため本発明の磁心の加工方法として適しているが、加工が対象物全体に及ぶことから、局所的な加工や、高速な加工を必要とする場合はショットブラストを選択しても良い。   In barrel polishing, the processing proceeds to the corners and ridges where stress is concentrated and is in a so-called “rounded” state, which is suitable as a method for processing a magnetic core of the present invention. However, the processing covers the entire object. Therefore, shot blasting may be selected when local processing or high-speed processing is required.

バレル研磨は、研磨槽中に対象物とメディア(研磨材)を入れて相互運動させ、研磨を行う加工方法であり、研磨槽を回転させる回転式、研磨槽を振動させる振動式、各々が自転する偶数個の研磨槽を有して全体を自転とは逆方向に公転させる遠心式、底部回転盤を回転させて固定槽内壁に流動状態を作り出す流動式(渦流式)などの方式が、それぞれの特徴に応じて利用されている。本発明の複合磁性体の丸み付け加工はいずれの方式でも可能であるが、回転式のバレル研磨装置は小型で安価なものがあり、導入に際してのコストが低い利点がある。   Barrel polishing is a processing method in which an object and media (abrasive material) are placed in a polishing tank and moved together to perform polishing. A rotary type that rotates the polishing tank and a vibration type that vibrates the polishing tank, each of which rotates automatically. There are an even number of polishing tanks that have an entire number of polishing tanks that revolve in the opposite direction of rotation, and a flow type that creates a fluid state on the inner wall of the fixed tank by rotating the bottom rotating disk (vortex type). It is used according to the characteristics of The rounding process of the composite magnetic body of the present invention can be performed by any method, but there is an advantage that a rotary barrel polishing apparatus is small and inexpensive, and the cost for introduction is low.

メディアの形状や直径は、加工条件により適宜選択されるが、貫通部の直径よりも大きいメディアを用いると、貫通部の丸み付けはあまり進行しない。貫通部の角部も丸み付けする場合は、少なくとも貫通部開口の数分の一以下の直径を有するメディアを選択する必要がある。貫通部に丸み付け加工を全く行いたくない場合は、バレル研磨後に複合磁性体に穴開けやスリット加工を施しても良い。また、ショットブラスト等の砥粒の運動に方向性のある加工手段を用いれば、複合磁性体の一部や片面のみを研磨することもできる。   The shape and diameter of the medium are appropriately selected depending on the processing conditions, but if a medium larger than the diameter of the penetrating part is used, the rounding of the penetrating part does not progress much. When the corner portion of the through portion is also rounded, it is necessary to select a medium having a diameter that is at least a fraction of the opening of the through portion. When it is not desired to round the penetrating portion at all, the composite magnetic body may be perforated or slitted after barrel polishing. Further, if a processing means having directionality in the movement of abrasive grains such as shot blasting is used, only a part or one side of the composite magnetic body can be polished.

丸み付け加工を施した複合磁性体の個片を、高温(例えば600℃以上)で熱処理を行うことで、所望の磁気特性や物理的特性を得ることができる。ここでの熱処理温度は、シリコーンレジンの縮合反応による硬化温度(100〜250℃程度)を大きく越え、バインダの有機成分が分解して酸化ケイ素を主成分とするガラス質となることで、軟磁性金属粉末を結着するために十分な温度である。この際、バインダは加熱減量するため、複合磁性体の組織内部に空孔が形成され、弾性を備えるものとなる。このようにして作製された磁心は、260℃程度の高温によるリフローにも耐えると共に、優れた周波数特性と、高い電気抵抗率を有する。   Desired magnetic properties and physical properties can be obtained by heat-treating the individual pieces of the composite magnetic material subjected to rounding processing at a high temperature (for example, 600 ° C. or higher). The heat treatment temperature here greatly exceeds the curing temperature (about 100 to 250 ° C.) due to the condensation reaction of the silicone resin, and the organic component of the binder decomposes to become vitreous mainly composed of silicon oxide. The temperature is sufficient to bind the metal powder. At this time, since the binder loses heat, voids are formed inside the structure of the composite magnetic body, thereby providing elasticity. The magnetic core thus manufactured can withstand reflow caused by a high temperature of about 260 ° C., and has excellent frequency characteristics and high electrical resistivity.

本発明の磁心は、軟磁性金属粉末が絶縁性のバインダによって結着された複合磁性体を用いるため、高い電気抵抗率を備える。具体的には、10KΩ・cm以上の電気抵抗率を有するため、良好な絶縁性を示し、絶縁被覆を有していない導体を直接表面に接触させてコイルを形成することができる。   Since the magnetic core of the present invention uses a composite magnetic material in which soft magnetic metal powder is bound by an insulating binder, it has a high electrical resistivity. Specifically, since it has an electric resistivity of 10 KΩ · cm or more, a coil can be formed by directly contacting the surface of a conductor that exhibits good insulation and does not have an insulating coating.

複合磁性体が含む空孔の比率(空孔率)は、10体積%以上、25体積%以下であることが望ましく、スラリー中のバインダの量や、積層体の予備成型時の加圧力を調整することで、所望の空孔率を得ることができる。空孔率が10体積%以上において複合磁性体は弾性を有し、空孔率が25体積%以下であれば、磁気特性が良好となる60体積%以上の軟磁性金属粉末を含有させることができる。このような磁心のISO7619−typeDによるゴム硬度は、92以上、96以下であり、弾性変形可能なものとなる。   The ratio of the pores (porosity) included in the composite magnetic body is preferably 10% by volume or more and 25% by volume or less, and the amount of binder in the slurry and the pressing force at the time of preforming the laminate are adjusted. By doing so, a desired porosity can be obtained. When the porosity is 10% by volume or more, the composite magnetic body has elasticity, and when the porosity is 25% by volume or less, it is possible to contain 60% by volume or more of soft magnetic metal powder that provides good magnetic properties. it can. The rubber hardness according to ISO7619-type D of such a magnetic core is 92 or more and 96 or less, and can be elastically deformed.

複合磁性体に含まれるバインダ成分の体積比率は、10体積%以上、30体積%以下であることが好ましい。バインダ成分の体積比率が10体積%よりも小さい場合、複合磁性体は十分な強度を有しない。また、バインダ成分の体積比率が30体積%よりも大きい場合、軟磁性金属粉末の体積比率を60体積%以上としつつ、空孔率を10体積%以上とすることができない。   The volume ratio of the binder component contained in the composite magnetic body is preferably 10% by volume to 30% by volume. When the volume ratio of the binder component is smaller than 10% by volume, the composite magnetic body does not have sufficient strength. Further, when the volume ratio of the binder component is larger than 30% by volume, the porosity cannot be made 10% by volume or more while the volume ratio of the soft magnetic metal powder is made 60% by volume or more.

本実施の形態によって得られる磁心に導体を巻回するか、磁心の対向する二面と貫通部を経て導体を接続してコイルを形成することで、本発明のインダクタの製造が可能となる。   The inductor of the present invention can be manufactured by winding a conductor around the magnetic core obtained by this embodiment, or by connecting a conductor through two opposing surfaces of the magnetic core and a through portion to form a coil.

図7は、本発明の実施の形態における、インダクタの一例を示す正面図である。図中において、複合磁性体である磁心3の貫通部4には導体が挿入され、磁心3の一方の面に配する第1の連結部5と、磁心3の他方の面に配する第2の連結部6および端子部7を、電気的に接続することでコイルを形成し、インダクタを得ることができる。   FIG. 7 is a front view showing an example of an inductor in the embodiment of the present invention. In the drawing, a conductor is inserted into the penetrating portion 4 of the magnetic core 3 that is a composite magnetic body, and a first connecting portion 5 disposed on one surface of the magnetic core 3 and a second disposed on the other surface of the magnetic core 3. A coil can be formed by electrically connecting the connecting portion 6 and the terminal portion 7 to obtain an inductor.

(実施例)
以下、本発明の実施例について説明する。
(Example)
Examples of the present invention will be described below.

図1は、本発明の実施例による磁心の稜線部、角部を含む端面を示す画像であり、複合磁性体を切断後、バレル研磨によって稜線部と角部を丸み付け加工し、熱処理を施した磁心の端面の画像である。また、図2は、本発明の実施例による磁心の角部を含む断面を示す画像であり、図1の磁心を更に切断し、切断面を研磨することで軟磁性金属粉末の積層状態を示した断面拡大画像である。   FIG. 1 is an image showing an end surface including a ridge line part and a corner part of a magnetic core according to an embodiment of the present invention, and after cutting the composite magnetic body, the ridge line part and the corner part are rounded by barrel polishing and subjected to heat treatment. It is an image of the end face of the magnetic core. FIG. 2 is an image showing a cross section including the corners of the magnetic core according to the embodiment of the present invention, and shows the laminated state of the soft magnetic metal powder by further cutting the magnetic core of FIG. 1 and polishing the cut surface. It is a cross-sectional enlarged image.

本実施例の複合磁性体に用いる軟磁性金属粉末として、メジアン径(D50)55μmのFe−Si−Al合金のガスアトマイズ粉末を準備し、ボールミルにて8時間粉砕後、窒素雰囲気中で700℃、3時間の熱処理を行って、扁平状の軟磁性金属粉末を得た。   As a soft magnetic metal powder used for the composite magnetic body of this example, a gas atomized powder of Fe-Si-Al alloy having a median diameter (D50) of 55 μm was prepared, pulverized with a ball mill for 8 hours, and then at 700 ° C. in a nitrogen atmosphere. A heat treatment for 3 hours was performed to obtain a flat soft magnetic metal powder.

扁平状の軟磁性金属粉末を、走査電子顕微鏡を用いて観察し、粉末の長径(D)と、最も厚い部位の厚さ(t)からアスペクト比(D/t)を算出した。得られた粉末の平均アスペクト比は20であった。なお、発明者らの知見によれば、磁心として好ましい磁気的および物理的特性を得るための平均アスペクト比は、10以上であれば良い。   The flat soft magnetic metal powder was observed using a scanning electron microscope, and the aspect ratio (D / t) was calculated from the major axis (D) of the powder and the thickness (t) of the thickest part. The average aspect ratio of the obtained powder was 20. According to the knowledge of the inventors, the average aspect ratio for obtaining magnetic and physical characteristics preferable as a magnetic core may be 10 or more.

次に、得られた扁平状の軟磁性金属粉末に、バインダとしてメチル系シリコーンレジンと、増粘剤としてポリアクリル酸エステルと、溶媒としてエタノールを混合してスラリーを調整し、ダイスロット法によりPET(ポリエチレンテレフタレート)フィルム上に塗布し、60℃で1時間乾燥して溶媒を除去した後、PETフィルムを剥離除去して複合磁性体シートを得た。   Next, the obtained flat soft magnetic metal powder is mixed with a methyl silicone resin as a binder, a polyacrylic ester as a thickener, and ethanol as a solvent to prepare a slurry, and PET is obtained by a die slot method. After coating on a (polyethylene terephthalate) film and drying at 60 ° C. for 1 hour to remove the solvent, the PET film was peeled off to obtain a composite magnetic sheet.

複合磁性体シートを所定枚数積層して金型に封入し、150℃の温度下で2MPaの圧力を1時間加え、加圧成型を施して予備成型体を得た。予備成型後の複合磁性体の厚さは、1.2mmであった。更に、予備成型体の所定位置に、コイルを形成するための対向する二面を貫通する貫通部を設けるため、ドリル切削にて直径1.2mmの貫通孔を所定個数設けた後、外周刃切断機を用いて、15mm×11mmの個片に切断した。なお、コイルの形状やインダクタの構成によっては、貫通孔の形成が不要な場合や、スリット状の長穴を設ける場合がある。   A predetermined number of composite magnetic material sheets were laminated and sealed in a mold, and a pressure of 2 MPa was applied at a temperature of 150 ° C. for 1 hour, and pressure molding was performed to obtain a preform. The thickness of the composite magnetic body after preforming was 1.2 mm. Further, in order to provide a through portion that penetrates two opposing surfaces for forming a coil at a predetermined position of the preform, a predetermined number of through holes having a diameter of 1.2 mm are provided by drill cutting, and then the outer peripheral blade is cut. Using a machine, it was cut into 15 mm × 11 mm pieces. Depending on the shape of the coil and the configuration of the inductor, it may not be necessary to form a through hole or a slit-like long hole may be provided.

個片とした複合磁性体を、回転式のバレル研磨機で研磨加工を行った。まず、研磨槽に複合磁性体、メディア(研磨材)、コンパウンド(洗浄剤)、水を投入した。メディアはSiC系の球状カーボランダムで、直径3mmのものを使用した。メディアの材質や形状、サイズは処理条件により最適なものが異なる。処理物とメディアの比率も、処理条件によって最適値は異なるが、本実施例では複合磁性体1に対してメディア4の体積比とした。コンパウンドは水に1%の濃度で添加し、研磨槽内部で複合磁性体とメディアの運動に差支えない、適当な空間が生じるように調整した。   The composite magnetic material as individual pieces was polished by a rotary barrel polishing machine. First, a composite magnetic body, media (abrasive material), compound (cleaning agent), and water were put into a polishing tank. The media was a SiC-based spherical carborundum having a diameter of 3 mm. The media material, shape, and size differ depending on the processing conditions. Although the optimum value of the ratio of the processed material and the medium varies depending on the processing conditions, the volume ratio of the medium 4 to the composite magnetic body 1 is used in this embodiment. The compound was added to water at a concentration of 1% and adjusted so as to create an appropriate space that would not interfere with the movement of the composite magnetic material and the media inside the polishing tank.

次に、バレル研磨機を45rpmにて30分間回転させた後、内容物を篩分けして複合磁性体を回収した。更に、丸み付けされた複合磁性体を、窒素雰囲気中で650℃、1時間の熱処理を施し、バインダ成分を熱分解することで、本実施例の磁心を得た。   Next, after rotating the barrel polishing machine at 45 rpm for 30 minutes, the contents were sieved to recover the composite magnetic material. Further, the rounded composite magnetic material was subjected to heat treatment at 650 ° C. for 1 hour in a nitrogen atmosphere, and the binder component was thermally decomposed to obtain the magnetic core of this example.

(比較例)
以下、比較例について説明する。
(Comparative example)
Hereinafter, a comparative example will be described.

複合磁性体の予備成型体を個片に切断する工程までを実施例と同様の条件で作製し、丸み付けのバレル研磨を省略して高温熱処理を行い、比較例の磁心を得た。   The process up to the step of cutting the composite magnetic body preform into individual pieces was made under the same conditions as in the example, and the high temperature heat treatment was performed without rounding barrel polishing to obtain a magnetic core of a comparative example.

図3は、比較例による磁心の稜線部、角部を含む端面を示す画像であり、複合磁性体を切断後、高温熱処理を施した磁心の端面の画像である。また、図4は、比較例による磁心の角部を含む断面を示す画像であり、図3の磁心を更に切断し、切断面を研磨することで軟磁性金属粉末の積層状態を示した断面拡大画像である。   FIG. 3 is an image showing an end surface including a ridge line portion and a corner portion of a magnetic core according to a comparative example, and is an image of the end surface of the magnetic core subjected to high-temperature heat treatment after cutting the composite magnetic body. FIG. 4 is an image showing a cross section including the corners of the magnetic core according to the comparative example. The cross section of the magnetic core of FIG. 3 is further cut, and the cut surface is polished to show a laminated state of the soft magnetic metal powder. It is an image.

実施例、比較例の磁心をそれぞれ100個作製し、個片切断から高温熱処理後までに発生した磁心の層間剥離やクラック等の破損を、外観検査によって選別した不良率A(%)と、組み立てから実装に至る取り扱い時の破損し易さを推測するために、実施例のバレル研磨からメディアを除外した構成で、45rmpにて10分間処理した場合の磁心の不良率B(%)を表1に示す。   100 magnetic cores of the examples and comparative examples were each produced, and the defect rate A (%) selected by visual inspection for damage such as delamination and cracks of the magnetic core generated from the cutting of the individual pieces to after the high-temperature heat treatment was assembled. Table 1 shows the defect rate B (%) of the magnetic core when processed for 10 minutes at 45 rpm with the configuration in which the media is excluded from the barrel polishing of the example in order to estimate the ease of breakage during handling from mounting to mounting. Shown in

表1において、比較例で不良率A、不良率Bともに高い値となるのは、個片切断時の加工応力によって、複合磁性体内部に層間剥離やクラックのきっかけとなる欠陥が内在し、それが高温熱処理によって拡大したものと考えられる。図5は、比較例による磁心の層間剥離を示す画像であり、端面や稜線部、角部を起点として、相対的に結合力が低い部分から剥離や破壊が拡大する。   In Table 1, both the defect rate A and the defect rate B are high in the comparative example because of the processing stress at the time of cutting the piece, there are defects that cause delamination and cracks inside the composite magnetic body. Is considered to have been expanded by high-temperature heat treatment. FIG. 5 is an image showing the delamination of the magnetic core according to the comparative example, and the peeling and destruction expand from a portion having a relatively low bonding force starting from the end face, the ridge line portion, and the corner portion.

実施例では、バレル研磨によって磁心の稜線部と角部が丸み付けされ、かつ図2に示すように丸み付けされた部分の軟磁性金属粉末の端部が褶曲するため、端面の稜線部や角部に発生する層間剥離や軟磁性金属粉末の脱落、クラック等の起点となる微小な破壊が拡大するのを防いでいるものと考えられる。   In the example, the edge and corner of the magnetic core are rounded by barrel polishing, and the end of the soft magnetic metal powder in the rounded portion is bent as shown in FIG. This is considered to prevent the expansion of minute breakage that becomes the starting point of delamination, soft magnetic metal powder falling off, cracks and the like generated in the part.

以上、本発明の実施例を説明したが、本発明は実施例の構成に限定されるものではなく、本発明の要旨を逸脱しない範囲で、構成の変更や修正が可能である。すなわち、当業者であればなし得るであろう各種変形、修正もまた本発明に含まれる。   As mentioned above, although the Example of this invention was described, this invention is not limited to the structure of an Example, A change and correction of a structure are possible in the range which does not deviate from the summary of this invention. That is, various changes and modifications that can be made by those skilled in the art are also included in the present invention.

1、3 磁心
2、4 貫通部
5 第1の連結部
6 第2の連結部
7 端子部
DESCRIPTION OF SYMBOLS 1, 3 Magnetic core 2, 4 Through part 5 1st connection part 6 2nd connection part 7 Terminal part

Claims (14)

扁平状の軟磁性金属粉末を、酸化ケイ素を主成分とするバインダで結着させた複合磁性体からなり、前記複合磁性体は、60体積%以上の前記軟磁性金属粉末と、10体積%以上、30体積%以下の前記バインダと、10体積%以上、25体積%以下の空孔を含み、弾性を備えると共に多面体の形状を有し、前記多面体の少なくとも一部の稜線部と角部は丸み付けされ、前記丸み付けされた部位の少なくとも一部の前記軟磁性金属粉末は、端部が褶曲していることを特徴とする磁心。   It consists of a composite magnetic body obtained by binding a flat soft magnetic metal powder with a binder containing silicon oxide as a main component, and the composite magnetic body includes 60% by volume or more of the soft magnetic metal powder and 10% by volume or more. 30% by volume or less of the binder and 10% by volume or more and 25% by volume or less of pores, having elasticity and having a polyhedral shape, and at least a part of the ridges and corners of the polyhedron are rounded. At least a part of the soft magnetic metal powder attached to the rounded portion is bent at the end. 前記丸み付けされた部位の曲率半径が0.15mm以上であることを特徴とする、請求項1に記載の磁心。   The magnetic core according to claim 1, wherein a radius of curvature of the rounded portion is 0.15 mm or more. 前記丸み付けされた部位の曲率半径が0.3mm以上、0.8mm以下であることを特徴とする、請求項1に記載の磁心。   The magnetic core according to claim 1, wherein a radius of curvature of the rounded portion is 0.3 mm or more and 0.8 mm or less. 前記軟磁性金属粉末の前記端部が褶曲する角度は、10度以上、180度未満であることを特徴とする、請求項1乃至請求項3のいずれかに記載の磁心。   The magnetic core according to any one of claims 1 to 3, wherein an angle at which the end portion of the soft magnetic metal powder is bent is 10 degrees or more and less than 180 degrees. 前記軟磁性金属粉末の前記端部が褶曲する角度は、20度以上、180度未満であることを特徴とする、請求項1乃至請求項3のいずれかに記載の磁心。   The magnetic core according to any one of claims 1 to 3, wherein an angle at which the end portion of the soft magnetic metal powder is bent is 20 degrees or more and less than 180 degrees. 前記磁心は、前記多面体の対向する二面を貫通する貫通部を、1つ以上備えることを特徴とする、請求項1乃至請求項5のいずれかに記載の磁心。   The magnetic core according to any one of claims 1 to 5, wherein the magnetic core includes one or more penetrating portions penetrating through two opposing surfaces of the polyhedron. 前記磁心は、ISO7619−typeDによるゴム硬度が92以上、96以下である、請求項1乃至請求項6のいずれかに記載の磁心。   The magnetic core according to any one of claims 1 to 6, wherein the magnetic core has a rubber hardness of 92 or more and 96 or less according to ISO7619-type D. 前記磁心の電気抵抗率が、10KΩ・cm以上である、請求項1乃至請求項7のいずれかに記載の磁心。   The magnetic core according to claim 1, wherein the magnetic core has an electrical resistivity of 10 KΩ · cm or more. 前記空孔の少なくとも一部に、熱可塑性または熱硬化性樹脂が含浸している、請求項1乃至請求項8のいずれかに記載の磁心。   The magnetic core according to any one of claims 1 to 8, wherein at least a part of the pores is impregnated with a thermoplastic or thermosetting resin. 前記多面体の対向する二面と前記貫通部を経て接続されるコイルを備える、請求項6乃至請求項9のいずれかに記載の磁心を用いたインダクタ。   The inductor using the magnetic core according to any one of claims 6 to 9, comprising a coil connected to two opposing faces of the polyhedron through the through portion. 扁平状の軟磁性金属粉末と酸化ケイ素を主成分とするバインダを混合して複合磁性体を調整する工程と、前記複合磁性体を円盤状の砥石を回転させて個片に切断する工程と、前記個片の少なくとも一部の稜線部と角部を研磨加工により丸み付けする工程と、前記研磨加工を施した前記複合磁性体の前記バインダの揮発成分を、熱処理により除去する工程を含むことを特徴とする、磁心の製造方法。   A step of mixing a flat soft magnetic metal powder and a binder mainly composed of silicon oxide to adjust a composite magnetic body; a step of rotating the composite magnetic body into pieces by rotating a disc-shaped grindstone; Rounding at least some ridges and corners of the individual pieces by polishing, and removing the volatile components of the binder of the composite magnetic body subjected to the polishing by heat treatment. A method of manufacturing a magnetic core, which is characterized. 扁平状の軟磁性金属粉末と酸化ケイ素を主成分とするバインダを混合して複合磁性体を調整する工程と、前記複合磁性体の対向する二面を貫通する貫通部を1つ以上設ける工程と、前記複合磁性体を円盤状の砥石を回転させて個片に切断する工程と、前記個片の少なくとも一部の稜線部と角部を研磨加工により丸み付けする工程と、前記研磨加工を施した前記複合磁性体の前記バインダの揮発成分を、熱処理により除去する工程を含むことを特徴とする、磁心の製造方法。   A step of mixing a flat soft magnetic metal powder and a binder containing silicon oxide as a main component to prepare a composite magnetic body; and a step of providing one or more penetrating portions that penetrate two opposing surfaces of the composite magnetic body; A step of rotating the composite magnetic body into pieces by rotating a disk-shaped grindstone, a step of rounding at least a part of the ridge line and corner of the piece by polishing, and performing the polishing. A method of manufacturing a magnetic core, comprising: removing a volatile component of the binder of the composite magnetic body by heat treatment. 請求項11に記載の磁心の製造方法を用いて製造した磁心に導体を巻回してコイルを形成すること特徴とする、インダクタの製造方法。   A method for manufacturing an inductor, wherein a coil is formed by winding a conductor around a magnetic core manufactured using the method for manufacturing a magnetic core according to claim 11. 請求項12に記載の磁心の製造方法を用いて製造した磁心の対向する二面と前記貫通部を経て導体を接続してコイルを形成すること特徴とする、インダクタの製造方法。   A method for manufacturing an inductor, comprising: forming a coil by connecting a conductor through two through surfaces and two opposite surfaces of a magnetic core manufactured by using the magnetic core manufacturing method according to claim 12.
JP2017005750A 2017-01-17 2017-01-17 Magnetic core, inductor, and its manufacturing method Active JP6851204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017005750A JP6851204B2 (en) 2017-01-17 2017-01-17 Magnetic core, inductor, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017005750A JP6851204B2 (en) 2017-01-17 2017-01-17 Magnetic core, inductor, and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018117004A true JP2018117004A (en) 2018-07-26
JP6851204B2 JP6851204B2 (en) 2021-03-31

Family

ID=62984095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017005750A Active JP6851204B2 (en) 2017-01-17 2017-01-17 Magnetic core, inductor, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6851204B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020191353A (en) * 2019-05-21 2020-11-26 Tdk株式会社 Coil component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325978A (en) * 1993-05-11 1994-11-25 Taiyo Yuden Co Ltd Composite electronic component and manufacture thereof
JPH08213719A (en) * 1995-01-31 1996-08-20 Kyocera Corp Ceramic board for chip-like electronic device and production thereof
JP2005269599A (en) * 2004-02-18 2005-09-29 Sony Corp Magnetic core member for antenna module and its manufacturing method
JP2012129352A (en) * 2010-12-15 2012-07-05 Sony Chemical & Information Device Corp Electromagnetic wave suppression sheet, manufacturing method of the electromagnetic wave suppression sheet, sheet laminate, and flexible material
JP2013051276A (en) * 2011-08-30 2013-03-14 Murata Mfg Co Ltd Method for manufacturing ceramic electronic component
JP2014168038A (en) * 2013-02-04 2014-09-11 Nec Tokin Corp Magnetic core, inductor, and module having inductor
JP2016171160A (en) * 2015-03-12 2016-09-23 Tdk株式会社 Laminated impedance element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325978A (en) * 1993-05-11 1994-11-25 Taiyo Yuden Co Ltd Composite electronic component and manufacture thereof
JPH08213719A (en) * 1995-01-31 1996-08-20 Kyocera Corp Ceramic board for chip-like electronic device and production thereof
JP2005269599A (en) * 2004-02-18 2005-09-29 Sony Corp Magnetic core member for antenna module and its manufacturing method
JP2012129352A (en) * 2010-12-15 2012-07-05 Sony Chemical & Information Device Corp Electromagnetic wave suppression sheet, manufacturing method of the electromagnetic wave suppression sheet, sheet laminate, and flexible material
JP2013051276A (en) * 2011-08-30 2013-03-14 Murata Mfg Co Ltd Method for manufacturing ceramic electronic component
JP2014168038A (en) * 2013-02-04 2014-09-11 Nec Tokin Corp Magnetic core, inductor, and module having inductor
JP2016171160A (en) * 2015-03-12 2016-09-23 Tdk株式会社 Laminated impedance element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020191353A (en) * 2019-05-21 2020-11-26 Tdk株式会社 Coil component

Also Published As

Publication number Publication date
JP6851204B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
KR101652198B1 (en) Inductor component and method of manufacturing the same
CN110021477B (en) Method for manufacturing powder magnetic core and powder magnetic core
TWI453776B (en) An electronic component and its manufacturing method
JP2023075079A (en) Method for manufacturing material layers and material layer structures for dynamoelectric rotating machines
CN1372272A (en) Coil closed moulded powder core and method for making same
JP2010087240A (en) Electronic component and method for manufacturing electronic component
JP2015156432A (en) Method of manufacturing inductor
JP2008132573A (en) Cmp conditioner
JP2024026699A (en) Manufacturing method of cutting blade
CN113385987A (en) Method for manufacturing aluminum nitride wafer and aluminum nitride wafer
JP6851204B2 (en) Magnetic core, inductor, and its manufacturing method
JP5886331B2 (en) Cut and sintered ceramic sheet and manufacturing method thereof
JP5428482B2 (en) Method of manufacturing field pole magnet body and permanent magnet motor
JP2009231656A (en) Chip inductor, and manufacturing method thereof
JP2005289655A (en) Composite porous body, molded body of and thermal insulating material of this composite porous body
JP2014522740A (en) Grinding tool for machining brittle materials and method of making a grinding tool
JP4825622B2 (en) Multi-layered thin blade and manufacturing method thereof
JP2007273965A (en) Anode element for solid electrolytic capacitor, and method of manufacturing same
JP2005191409A (en) Method for manufacturing laminated ceramic capacitor
JP2015074573A (en) Sagger for firing and method for producing electronic component
JP5528064B2 (en) Cutting blade
JP6956493B2 (en) Composite magnetic material, magnetic parts, and method for manufacturing composite magnetic material
JP5512362B2 (en) Wire tool
JP6415938B2 (en) Magnetic member and manufacturing method thereof
JP3905856B2 (en) Green sheet for manufacturing laminated parts, method for producing the same, and method for producing laminated parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210309

R150 Certificate of patent or registration of utility model

Ref document number: 6851204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250