JP2018116777A - Alkaline battery and manufacturing method of alkaline battery - Google Patents

Alkaline battery and manufacturing method of alkaline battery Download PDF

Info

Publication number
JP2018116777A
JP2018116777A JP2017005203A JP2017005203A JP2018116777A JP 2018116777 A JP2018116777 A JP 2018116777A JP 2017005203 A JP2017005203 A JP 2017005203A JP 2017005203 A JP2017005203 A JP 2017005203A JP 2018116777 A JP2018116777 A JP 2018116777A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
alkaline battery
alkaline
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017005203A
Other languages
Japanese (ja)
Other versions
JP6876442B2 (en
Inventor
賢大 遠藤
Takahiro Endo
賢大 遠藤
武男 野上
Takeo Nogami
武男 野上
祐紀 夏目
Yuki Natsume
祐紀 夏目
晋吾 安西
Shingo Anzai
晋吾 安西
雄也 鈴木
Takeya Suzuki
雄也 鈴木
國谷 繁之
Shigeyuki Kuniya
繁之 國谷
鈴木 拓也
Takuya Suzuki
拓也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2017005203A priority Critical patent/JP6876442B2/en
Priority to PCT/JP2017/044552 priority patent/WO2018131366A1/en
Publication of JP2018116777A publication Critical patent/JP2018116777A/en
Application granted granted Critical
Publication of JP6876442B2 publication Critical patent/JP6876442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/107Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline battery which has excellent high-temperature storage performance and long-term storage performance.SOLUTION: An inside-out type alkaline battery 1a is formed by arranging a positive electrode mixture 3 molded in an annular shape while including a cathode active material in a cylindrical battery can 2 with a bottom which also plays a role as a cathode electrode. The battery can has a plated layer 23 formed by a nickel cobalt alloy on a front surface of the inner surface. The positive electrode mixture includes a manganese dioxide of which an alkali base potential is equal to 270 mV or more and 290 mV or less as a cathode active material, and includes a conducting assistant made of graphite at a rate of 4 wt.% or more and 6 wt.% or less to the cathode active material.SELECTED DRAWING: Figure 2

Description

この発明はアルカリ電池、およびアルカリ電池の製造方法に関する。   The present invention relates to an alkaline battery and a method for producing an alkaline battery.

アルカリ電池は、正極合剤、セパレーター、負極合剤からなるアルカリ発電要素が有底円筒状の金属製電池缶内に収容されているとともに、その電池缶の開口部が樹脂製の封口ガスケットを用いて気密封口された構造を有している。図1にLR6型アルカリ電池1の構造を示した。図1(A)は、円筒軸100の延長方向を上下あるいは縦方向としたときの縦断面図であり、図1(B)は、図1(A)における円101内の拡大図である。このアルカリ電池1は、いわゆる、インサイドアウト型と呼ばれる構造であり、有底筒状の金属製電池缶2、リングコアに似た環状(以下、リングコア状とも言う)に成型された正極合剤3、この正極合剤3の内側に配設された有底円筒状のセパレーター4、亜鉛合金を含んでセパレーター4の内側に充填される負極ゲル5、この負極ゲル5中に挿入された負極集電子6、負極端子板7、封口ガスケット8などにより構成される。この構造において、正極合剤3、セパレーター4、負極ゲル5が、電解液の存在下でアルカリ電池1の発電要素を形成する。   In an alkaline battery, an alkaline power generation element composed of a positive electrode mixture, a separator, and a negative electrode mixture is housed in a bottomed cylindrical metal battery can, and the opening of the battery can uses a resin sealing gasket And has a hermetically sealed structure. FIG. 1 shows the structure of the LR6 type alkaline battery 1. FIG. 1A is a vertical cross-sectional view when the extending direction of the cylindrical shaft 100 is set to the vertical direction or the vertical direction, and FIG. 1B is an enlarged view inside a circle 101 in FIG. The alkaline battery 1 has a so-called inside-out structure, a bottomed cylindrical metal battery can 2, a positive electrode mixture 3 molded into a ring shape (hereinafter also referred to as a ring core shape) similar to a ring core, A bottomed cylindrical separator 4 disposed inside the positive electrode mixture 3, a negative electrode gel 5 containing a zinc alloy and filled inside the separator 4, and a negative electrode current collector 6 inserted into the negative electrode gel 5 , Negative electrode terminal plate 7, sealing gasket 8 and the like. In this structure, the positive electrode mixture 3, the separator 4, and the negative electrode gel 5 form the power generation element of the alkaline battery 1 in the presence of the electrolytic solution.

ここで電池缶2の底部側を下方として上下方向を規定することとすると、電池缶2は、電池ケースを兼ねるとともに、正極合剤3に直接接触することにより、正極集電体として機能する。電池缶2の底面には正極端子9が形成されている。皿状の負極端子板7は、フランジ状の縁がある皿状で、皿を伏せたように底面を上にした状態で電池缶2の開口に封口ガスケット8を介してかしめられている。   Here, when the vertical direction is defined with the bottom side of the battery can 2 as a lower side, the battery can 2 also serves as a battery case and functions as a positive electrode current collector by directly contacting the positive electrode mixture 3. A positive electrode terminal 9 is formed on the bottom surface of the battery can 2. The dish-like negative electrode terminal plate 7 is dish-shaped with a flange-like edge, and is caulked through a sealing gasket 8 at the opening of the battery can 2 with the bottom face up so that the dish is turned down.

負極ゲル5中に挿入された棒状の負極集電子6は、その上端が皿状の負極端子板7の下面7dに溶接されることで立設固定されている。封口ガスケット8は、電池缶2内を上下に仕切る円板状の隔壁部81と、隔壁部81の外周縁に上方に立設する側壁部82と、隔壁部81の中央に形成された中空筒状のボス部83とを有する樹脂製の一体成形品である。負極集電子6は、封口ガスケット8のボス部83の中空孔に挿通され、アルカリ電池1を組み立てる際には、負極端子板7、負極集電子6および封口ガスケット8を封口体としてあらかじめ一体に組み合わせておく。そして、発電要素が収納された電池缶2の開口端側に封口体を挿入するとともに、この電池缶2の開口を内方に縮径加工する。それによって封口ガスケット8の側壁部82が電池缶2の開口縁部と負極端子板7におけるフランジ状の縁との間に挟持され、電池缶2が密閉状態で封口される。   The rod-shaped negative electrode current collector 6 inserted into the negative electrode gel 5 is fixed upright by welding its upper end to the lower surface 7d of the dish-shaped negative electrode terminal plate 7. The sealing gasket 8 includes a disk-shaped partition wall portion 81 that partitions the inside of the battery can 2 up and down, a side wall portion 82 that stands upward on the outer peripheral edge of the partition wall portion 81, and a hollow cylinder formed at the center of the partition wall portion 81. This is an integrally molded product made of resin having a boss portion 83 in the form of a resin. The negative electrode current collector 6 is inserted into the hollow hole of the boss portion 83 of the sealing gasket 8, and when assembling the alkaline battery 1, the negative electrode terminal plate 7, the negative electrode current collector 6 and the sealing gasket 8 are combined in advance as a sealing body. Keep it. And while a sealing body is inserted in the opening end side of the battery can 2 in which the electric power generation element was accommodated, the diameter of the opening of the battery can 2 is reduced inward. As a result, the side wall 82 of the sealing gasket 8 is sandwiched between the opening edge of the battery can 2 and the flange-shaped edge of the negative electrode terminal plate 7, and the battery can 2 is sealed in a sealed state.

なお、封口ガスケット8の隔壁部81において、負極ゲル5に対面する領域には、ボス部83と同心円をなす溝状の薄肉部が形成されており、この薄肉部は、電池缶2内の圧力が異常に上昇した際に封口ガスケット8の他の部位に先行して破断し、最終的に、その内圧の原因となったガスを負極端子板7に設けられた通気孔71を介して大気開放させる防爆安全機構として機能する。   In the partition wall portion 81 of the sealing gasket 8, a groove-like thin portion concentric with the boss portion 83 is formed in a region facing the negative electrode gel 5, and this thin portion is a pressure inside the battery can 2. When the gas rises abnormally, it breaks prior to other parts of the sealing gasket 8 and finally the gas that caused the internal pressure is released to the atmosphere through the vent hole 71 provided in the negative electrode terminal plate 7. It functions as an explosion-proof safety mechanism.

ところで、電池缶2の内面は強アルカリ性の電解液に晒されるため、電池缶2は、図1(B)に拡大して示したように、1.0〜2.0μm程度の厚さのニッケル(Ni)メッキ層22が形成された鋼板21からなり、少なくとも電池缶2の内面側にNiメッキ層22が配置されている。それによって鋼板21を構成する鉄が強アルカリ性の電解液によって腐食されることを防止している。   By the way, since the inner surface of the battery can 2 is exposed to a strong alkaline electrolyte, the battery can 2 is made of nickel having a thickness of about 1.0 to 2.0 μm as shown in an enlarged view in FIG. (Ni) It consists of the steel plate 21 in which the plating layer 22 was formed, and the Ni plating layer 22 is arrange | positioned at the inner surface side of the battery can 2 at least. As a result, iron constituting the steel plate 21 is prevented from being corroded by the strong alkaline electrolyte.

なお以下の特許文献1には、正極缶の内面側に、金属あるいは化合物の形でコバルト(Co)が含まれる被覆を形成することで、電極缶と正極合剤との接触抵抗を長期的に低い状態で維持させる技術について記載されている。また、以下の特許文献2には、電池缶の内面側にニッケルコバルト(Ni−Co)合金のメッキ層を形成したアルカリ電池の電池缶について記載されている。そして、以下の非特許文献1には、アルカリ電池の作製手順が記載されている。   In Patent Document 1 below, by forming a coating containing cobalt (Co) in the form of a metal or a compound on the inner surface side of the positive electrode can, the contact resistance between the electrode can and the positive electrode mixture can be increased for a long time. A technique for maintaining a low state is described. Patent Document 2 below describes a battery can of an alkaline battery in which a nickel cobalt (Ni—Co) alloy plating layer is formed on the inner surface side of the battery can. And the following nonpatent literature 1 describes the preparation procedure of an alkaline battery.

特公平7−70320号公報Japanese Patent Publication No. 7-70320 特開2012−48958号公報JP 2012-48958 A

FDK株式会社、”富士通 アルカリ乾電池のできるまで”、[online]、[平成28年12月13日検索]、インターネット<URL:http://www.fdk.co.jp/denchi_club/denchi_story/arukari.htm>FDK Co., Ltd., “Until Fujitsu Alkaline Batteries are Made”, [online], [Search on December 13, 2016], Internet <URL: http://www.fdk.co.jp/denchi_club/denchi_story/arukari. htm>

上述したように、インサイドアウト型のアルカリ電池では、電池缶2の内面にNiメッキが施されている。しかし内面にNiメッキが施された電池缶を用いたアルカリ電池では、60℃など、使用上限温度に近い高温環境下で保存するとNiが酸化して導電性が低下し、放電性能が劣化するという問題がある。そこで、酸化しても導電性が低下しないCoを含む合金からなるメッキ層を設けることが考えられ、上記特許文献2に記載の電池缶では、Niメッキが施された鋼板の表層にNi−Co合金からなるメッキ層をさらに設け、そのメッキ層の厚さやNi−Co合金中のCoの比率を適正化している。   As described above, in the inside-out type alkaline battery, the inner surface of the battery can 2 is plated with Ni. However, in an alkaline battery using a battery can whose inner surface is plated with Ni, if it is stored in a high temperature environment such as 60 ° C. that is close to the upper limit temperature of use, Ni is oxidized and the conductivity is lowered, and the discharge performance is deteriorated. There's a problem. Therefore, it is conceivable to provide a plating layer made of an alloy containing Co that does not decrease in conductivity even when oxidized. In the battery can described in Patent Document 2, Ni—Co is formed on the surface layer of the steel plate on which Ni plating is applied. A plating layer made of an alloy is further provided to optimize the thickness of the plating layer and the ratio of Co in the Ni—Co alloy.

ところで、近年になって、アルカリ電池などの汎用の電池が、災害時のための懐中電灯やラジオなどの電気器具や電子機器の電源として、非常食などと同様に備蓄用途に供されるようになってきた。しかし電池は、非常食と異なり、消費期限が近くなっても、すぐに消費して新しい備蓄品に交換することができない。すなわち、電池の消費期限が近くなった時点で、日常生活で使用されている電気器具や電子機器に使われている電池が都合良く消耗しているとは限らない。そのためアルカリ電池には、保存期間が5年程度の非常食よりもさらに長い期間(例えば10年間)にわたって保存した後でも各機器の電源として使用できる長期保存性能が求められるようになった。   By the way, in recent years, general-purpose batteries such as alkaline batteries have been used for storage as well as emergency foods as power sources for flashlights, radios, and other electrical appliances and electronic devices. It has become. However, unlike emergency food, batteries cannot be consumed immediately and replaced with new stockpiles even when the expiry date is near. That is, when the expiration date of the battery approaches, the battery used in the electric appliances and electronic devices used in daily life is not always consumed conveniently. Therefore, alkaline batteries have been required to have long-term storage performance that can be used as a power source for each device even after being stored for a longer period (for example, 10 years) than an emergency meal with a storage period of about 5 years.

そこで本発明者は、高温環境下での保存特性(以下、高温貯蔵性能とも言う)に優れた内面の表層にNi−Coメッキ層を有する電池缶を用いたアルカリ電池の長期保存性能について検討してみたところ、極めて長期にわたって保存すると、メッキ層中のCoが電解液中に徐々に溶出し、溶出したCoイオンが負極の亜鉛と反応して水素ガスを発生させることが判明した。電池缶内に発生した水素ガスは電池缶内の圧力を高め、場合によっては、漏液に至る可能性がある。そして漏液したアルカリ電池は、当然のことながら、電子機器や電気器具の電源として使用することができない。   Therefore, the present inventor examined the long-term storage performance of an alkaline battery using a battery can having a Ni—Co plating layer on the inner surface layer excellent in storage characteristics under a high temperature environment (hereinafter also referred to as high temperature storage performance). As a result, when stored for an extremely long period of time, it was found that Co in the plating layer was gradually eluted into the electrolyte, and the eluted Co ions reacted with zinc in the negative electrode to generate hydrogen gas. The hydrogen gas generated in the battery can increases the pressure in the battery can and may lead to leakage in some cases. And the leaked alkaline battery cannot be used as a power source of an electronic device or an electric appliance, as a matter of course.

そこで本発明は、高温貯蔵性能と長期保存性能に優れたアルカリ電池とその製造方法を提供することを目的としている。   Then, this invention aims at providing the alkaline battery excellent in high temperature storage performance and long-term storage performance, and its manufacturing method.

上記目的を達成するための本発明は、正極活物質を含んで環状に成型されてなる正極合剤が正極集電体を兼ねる有底円筒状の電池缶内に配置されてなるインサイドアウト型のアルカリ電池であって、
前記電池缶は、内面の表層にニッケルコバルト合金からなるメッキ層が形成され、
前記正極合剤には、対アルカリベース電位が270mV以上290mV以下の二酸化マンガンが正極活物質として含まれているとともに、黒鉛からなる導電助剤が前記正極活物質に対して4wt%以上6wt%以下の割合で含まれている、
ことを特徴とするアルカリ電池としている。そして前記黒鉛を膨張黒鉛とすればより好ましい。
In order to achieve the above object, the present invention provides an inside-out type in which a positive electrode mixture formed in an annular shape containing a positive electrode active material is disposed in a bottomed cylindrical battery can also serving as a positive electrode current collector. An alkaline battery,
The battery can has a plating layer made of a nickel-cobalt alloy on the inner surface.
The positive electrode mixture contains manganese dioxide having an alkali base potential of 270 mV or more and 290 mV or less as a positive electrode active material, and a conductive additive made of graphite is 4 wt% or more and 6 wt% or less with respect to the positive electrode active material. Is included in the proportion of
The alkaline battery is characterized by this. It is more preferable that the graphite is expanded graphite.

また本発明は、アルカリ電池の製造方法を含み、当該アルカリ電池の製造方法は、
正極活物質を含んで環状に成型されてなる正極合剤が正極集電体を兼ねる有底円筒状の電池缶内に配置されてなるインサイドアウト型のアルカリ電池の製造方法であって、
正極集電子を兼ねて上方が開口する有底円筒状の電池缶内に、環状の前記正極合剤と、当該正極合剤の内方にセパレーターを介して配置される負極ゲルをアルカリ電解液とともに収納するとともに、円板状の負極端子板の下面に接続された棒状の負極集電子を上下方向に立てた状態で前記負極ゲル中に挿入しつつ、前記電池缶の開口を、封口ガスケットを介して前記負極端子板で封口してアルカリ電池を組み立てる組立ステップと、組立後の前記アルカリ電池に対して室温よりも高い所定の温度で所定時間放置するエージングステップを含み、
前記組立ステップでは、内面の表層にニッケルコバルト合金からなるメッキ層が形成された電池缶と、アルカリベース電位が270mV以上290mV以下の二酸化マンガンを正極活物質とするとともに、黒鉛からなる導電助剤が前記正極活物質に対しして4wt%以上6wt%以下の割合で含まれている正極合剤を用い、
前記エージングステップでは、前記電池缶における前記ニッケルコバルト合金中のコバルトを酸化させる、
ことを特徴とするアルカリ電池の製造方法としている。
The present invention also includes a method for producing an alkaline battery, and the method for producing the alkaline battery comprises:
A manufacturing method of an inside-out type alkaline battery in which a positive electrode mixture formed into a ring including a positive electrode active material is disposed in a bottomed cylindrical battery can also serving as a positive electrode current collector,
In the bottomed cylindrical battery can that also serves as the positive electrode current collector, the annular positive electrode mixture and the negative electrode gel disposed through the separator inside the positive electrode mixture together with the alkaline electrolyte While storing the rod-shaped negative electrode current collector connected to the lower surface of the disk-shaped negative electrode terminal plate, the battery can be opened through a sealing gasket while being inserted into the negative electrode gel in an upright direction. An assembly step of assembling the alkaline battery by sealing with the negative electrode terminal plate, and an aging step of leaving the alkaline battery after assembly at a predetermined temperature higher than room temperature for a predetermined time,
In the assembly step, a battery can in which a plating layer made of a nickel cobalt alloy is formed on the inner surface layer, manganese dioxide having an alkali base potential of 270 mV to 290 mV as a positive electrode active material, and a conductive additive made of graphite Using a positive electrode mixture contained in a proportion of 4 wt% or more and 6 wt% or less with respect to the positive electrode active material,
In the aging step, the cobalt in the nickel cobalt alloy in the battery can is oxidized.
It is set as the manufacturing method of the alkaline battery characterized by the above-mentioned.

本発明のアルカリ電池によれば、優れた高温貯蔵性能を備えつつ長期保存性能を向上させることができる。また本発明のアルカリ電池の製造方法によれば、アルカリ電池の長期保存性能をさらに向上させることが可能となる。   According to the alkaline battery of the present invention, long-term storage performance can be improved while having excellent high-temperature storage performance. Moreover, according to the method for producing an alkaline battery of the present invention, the long-term storage performance of the alkaline battery can be further improved.

一般的なアルカリ電池の構造を示す図である。It is a figure which shows the structure of a general alkaline battery. 本発明の実施例に係るアルカリ電池の構造を示す図である。It is a figure which shows the structure of the alkaline battery which concerns on the Example of this invention.

本発明の実施例について、以下に添付図面を参照しつつ説明する。なお以下の説明に用いた図面において、同一または類似の部分に同一の符号を付して重複する説明を省略することがある。ある図面において符号を付した部分について、不要であれば他の図面ではその部分に符号を付さない場合もある。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that in the drawings used for the following description, the same or similar parts may be denoted by the same reference numerals and redundant description may be omitted. In some drawings, reference numerals may be assigned to parts that are not required in other drawings if unnecessary.

===本発明の実施例における技術思想===
上述したように、内面の表層にNiメッキ層が形成されている電池缶を用いたアルカリ電池では、高温環境下で保存するとNiが酸化して電池缶の導電性が低下する。内面の表層にNi−Co合金からなるメッキ層(以下、Ni−Coメッキ層とも言う)が形成されている電池缶を用いたアルカリ電池では、電池缶の内面が酸化しても導電性が低下しない。しかし、Ni−Coメッキ層が形成された電池缶を用いたアルカリ電池であっても、10年以上など、極めて長い期間にわたって保存すると漏液が発生する可能性がある。
=== Technical thought in the embodiment of the present invention ===
As described above, in an alkaline battery using a battery can in which a Ni plating layer is formed on the inner surface layer, Ni is oxidized and the conductivity of the battery can is reduced when stored in a high temperature environment. In an alkaline battery using a battery can in which a plating layer made of a Ni—Co alloy (hereinafter also referred to as a Ni—Co plating layer) is formed on the inner surface layer, the conductivity is reduced even if the inner surface of the battery can is oxidized. do not do. However, even an alkaline battery using a battery can having a Ni—Co plating layer may leak when stored for an extremely long period of time, such as 10 years or longer.

そこで本発明者は、内面の表層にNi−Coメッキ層が形成された電池缶を用いたアルカリ電池の長期保存性能を向上させるために鋭意研究を重ねた結果、正極合剤中の二酸化マンガンのアルカリ電解液に対する電位(以下、アルカリベース電位とも言う)や黒鉛の添加量と、高温環境下で保存した後での放電性能(以下、高温貯蔵性能)や長期保存性能との間に相関関係があることを知見した。本発明は、このような知見に基づいてなされたものである。   Therefore, as a result of intensive studies to improve the long-term storage performance of an alkaline battery using a battery can having a Ni—Co plating layer formed on the inner surface layer, the present inventor has found that manganese dioxide in the positive electrode mixture There is a correlation between the potential with respect to the alkaline electrolyte (hereinafter also referred to as alkali-based potential) and the amount of graphite added to the discharge performance after storage in a high-temperature environment (hereinafter referred to as high-temperature storage performance) and long-term storage performance. I found out that there was. The present invention has been made based on such knowledge.

===本発明の実施例===
図2に、本発明の実施例に係るアルカリ電池1aの構造を示した。図2(A)は、当該アルカリ電池1aの縦断面図であり、(B)は、(A)における円102内の拡大図である。当該アルカリ電池1aの基本的な構造は、図1に示した一般的なアルカリ電池1と同様であるが、本実施例のアルカリ電池1aでは、電池缶2aの内面の表層にNi−Coメッキ層23が形成されており、図2(B)に示したように、電池缶2aを構成する金属素材は、Niメッキ層22が形成された鋼板21を基材として、その基材の表層にNi−Coメッキ層23が形成されたものである。そして、少なくも電池缶2aの内面側に、Niメッキ層22とNi―Coメッキ層23が形成されている。
=== Embodiment of the Invention ===
FIG. 2 shows the structure of an alkaline battery 1a according to an example of the present invention. 2A is a longitudinal sectional view of the alkaline battery 1a, and FIG. 2B is an enlarged view of a circle 102 in FIG. The basic structure of the alkaline battery 1a is the same as that of the general alkaline battery 1 shown in FIG. 1, but in the alkaline battery 1a of the present embodiment, the Ni—Co plating layer is formed on the surface layer of the inner surface of the battery can 2a. 2B, as shown in FIG. 2B, the metal material constituting the battery can 2a is made of a steel plate 21 on which the Ni plating layer 22 is formed as a base material, and Ni is formed on the surface layer of the base material. -Co plating layer 23 is formed. A Ni plating layer 22 and a Ni—Co plating layer 23 are formed at least on the inner surface side of the battery can 2a.

さらに本実施例のアルカリ電池1aは、正極合剤3中の二酸化マンガンのアルカリベース電位と、正極合剤3中に導電助剤として添加される黒鉛の量が最適化されている。それによって、本実施例のアルカリ電池1aは、優れた高温貯蔵性能と長期保存性能を有している。   Further, in the alkaline battery 1a of this example, the alkali base potential of manganese dioxide in the positive electrode mixture 3 and the amount of graphite added as a conductive additive in the positive electrode mixture 3 are optimized. Thereby, the alkaline battery 1a of the present embodiment has excellent high-temperature storage performance and long-term storage performance.

==サンプル===
本実施例のアルカリ電池1aにおける高温貯蔵性能と長期保存性能とを評価するために正極合剤3の作製条件が異なる各種アルカリ電池1aをサンプルとして作製した。また、 図1に示したように、表層にNiメッキ層22のみが形成された鋼板21からなる電池缶2を備えたアルカリ電池1もサンプルとして作製した。なお、電池缶(2、2a)は、約0.15mmの厚さを有する鋼板21を基材として、例えば1.5μm程度の厚さのNiメッキ層22が形成されたものを基本とし、サンプルに応じ、Niメッキ層22の表層に、0.2μm程度の厚さのNi−Coメッキ層23を形成したものである。
== Sample ===
In order to evaluate the high-temperature storage performance and long-term storage performance of the alkaline battery 1a of this example, various alkaline batteries 1a having different preparation conditions for the positive electrode mixture 3 were prepared as samples. Further, as shown in FIG. 1, an alkaline battery 1 including a battery can 2 made of a steel plate 21 having only a Ni plating layer 22 formed on the surface layer was also prepared as a sample. The battery can (2, 2a) is basically a sample in which a Ni plating layer 22 having a thickness of about 1.5 μm is formed using a steel plate 21 having a thickness of about 0.15 mm as a base material. Accordingly, a Ni—Co plating layer 23 having a thickness of about 0.2 μm is formed on the surface of the Ni plating layer 22.

正極合剤3は、サンプルに応じ、正極活物質である電解二酸化マンガン(以下、EMDとも言う)のアルカリベース電位、正極合剤に導電助剤と添加する黒鉛の種類、および導電助剤の添加量を変えた。なお、各サンプルにおけるアルカリベース電位は、当初のアルカリベース電位が290mVのEMDをpHが異なる溶液中で還元処理することで調整した。   Depending on the sample, the positive electrode mixture 3 is an alkaline base potential of electrolytic manganese dioxide (hereinafter also referred to as EMD) which is a positive electrode active material, the kind of graphite added to the positive electrode mixture and the conductive auxiliary agent, and the addition of the conductive auxiliary agent I changed the amount. The alkali base potential in each sample was adjusted by reducing EMD having an initial alkali base potential of 290 mV in solutions having different pHs.

===信頼性試験===
電池缶(2、2a)の構成や正極合剤3の作製条件が異なる各種サンプルにおける高温貯蔵性能や長期保存性能を評価するために、各サンプルに対し、高温環境下で保存した際の放電性能の安定性や常温で長期保存したときの漏液の有無などを調べる試験を行った。ここでは各サンプルについて10個の個体を作製し、全個体に対して60℃の温度で2ヶ月間保存する高温貯蔵試験を行った。また、同様にサンプル毎に10個の個体を作製し、全個体に対して80℃の温度で4ヶ月保存する長期保存試験を行った。
=== Reliability test ===
In order to evaluate the high-temperature storage performance and long-term storage performance of various samples with different configurations of the battery can (2, 2a) and the preparation conditions of the positive electrode mixture 3, the discharge performance when each sample is stored in a high-temperature environment A test was conducted to examine the stability of the liquid and the presence or absence of leakage when stored at room temperature for a long time. Here, 10 individuals were prepared for each sample, and a high temperature storage test was performed in which all individuals were stored at a temperature of 60 ° C. for 2 months. Similarly, 10 individuals were prepared for each sample, and a long-term storage test was performed in which all individuals were stored at a temperature of 80 ° C. for 4 months.

高温貯蔵試験については、その試験の前後での放電性能の変化を調べた。具体的には、各サンプルに対し1.5Wの消費電力で2秒間放電させた後650mWの消費電力で28秒間放電させる放電動作を1サイクルとして、1時間に連続して10サイクル(5分間)放電させたのち55分休止し、次の1時間で再度10サイクル放電させる動作を繰り返すパルス放電試験を行った。そして1.05Vの終止電圧に至るまでのサイクル数を測定した。またサンプルを80℃で4ヶ月間保存する長期保存試験は、常温で13年間保存することに相当し、長期保存試験後の各サンプルについて、漏液の有無を目視で確認し、各サンプルに属する10個の個体のうち漏液が発生した個体数を数えた。   For the high temperature storage test, the change in discharge performance before and after the test was examined. Specifically, each sample was discharged for 2 seconds at a power consumption of 1.5 W and then discharged for 28 seconds at a power consumption of 650 mW as one cycle, and 10 cycles (5 minutes) continuously for 1 hour. After discharging, the test was paused for 55 minutes, and a pulse discharge test was repeated in which the operation of discharging again 10 cycles in the next 1 hour was repeated. The number of cycles to reach a final voltage of 1.05 V was measured. Moreover, the long-term storage test which preserve | saves a sample for 4 months at 80 degreeC is equivalent to preserve | saving for 13 years at normal temperature, and confirms the presence or absence of liquid leakage visually about each sample after a long-term storage test, and belongs to each sample Among the 10 individuals, the number of individuals in which leakage occurred was counted.

以下の表1に各サンプルの作製条件と、各サンプルにおける高温貯蔵試験と長期保存試験の結果を示した。   Table 1 below shows the preparation conditions of each sample and the results of the high-temperature storage test and long-term storage test for each sample.

Figure 2018116777
表1において、サンプル1〜5は、図1に示したアルカリ電池1のように、Ni−Coメッキ層23がない電池缶2を用いたサンプルであり、他のサンプル6〜22は、図2に示した、Niメッキ層22の表層にNi−Coメッキ層23が内面に形成された電池缶2aを用いている。またサンプル1〜15とサンプル16〜22では、導電助剤に用いる黒鉛の種類が異なっており、サンプル1〜15は導電助剤として一般的に使用されている粒径15μm程度の人工黒鉛を用いており、サンプル16〜22はアスペクト比が大きく長径が40μm程度まで伸張された膨張黒鉛を用いている。
Figure 2018116777
In Table 1, samples 1 to 5 are samples using the battery can 2 without the Ni—Co plating layer 23 like the alkaline battery 1 shown in FIG. 1, and the other samples 6 to 22 are those shown in FIG. The battery can 2a having the Ni-Co plating layer 23 formed on the inner surface as the surface layer of the Ni plating layer 22 is used. Samples 1 to 15 and Samples 16 to 22 are different in the type of graphite used for the conductive assistant, and Samples 1 to 15 use artificial graphite having a particle size of about 15 μm, which is generally used as a conductive assistant. Samples 16 to 22 use expanded graphite having a large aspect ratio and a major axis extended to about 40 μm.

また表中の「アニール」とは、電池缶(2、2a)に用いられた鋼板材料、すなわちメッキ層(22、23)が形成された鋼板21が所定の温度と時間で熱処理(例えば、650℃、50時間)されたものであるか否かを示しており、電池缶(2、2a)は、普通、アニールが施された鋼板材料を用いて作製されている。ここではサンプル21と22以外は、全てアニールを施した鋼板材料からなる電池缶(2、2a)を用いた。   “Annealing” in the table means that the steel plate material used for the battery can (2, 2a), that is, the steel plate 21 on which the plating layers (22, 23) are formed is heat-treated at a predetermined temperature and time (for example, 650). The battery can (2, 2a) is usually made using a steel sheet material that has been annealed. Here, except for samples 21 and 22, battery cans (2, 2a) made of a steel plate material that was all annealed were used.

表1より、まず、内面の表層にNiメッキ層22のみを有する電池缶2を用いたサンプル1〜5は、EMDのアルカリベース電位(表中「EMD電位」)が大きいほど初期状態での放電性能が優れていた。しかし、高温貯蔵試験後の放電性能は、いずれも初期の放電性能に対して10〜20%程度であり、大きく劣化していることが分かった。一方、内面の表層にNi−Coメッキ層23を有する電池缶2aを用いたサンプル6〜22では、高温貯蔵試験の前後で最低でも50%以上の放電特性を維持した。そして、黒鉛の種類と添加量が同じでアルカリベース電位のみが異なるサンプル6〜10から、アルカリベース電位が270mV以上290mV以下であれば、高温貯蔵試験後でも初期状態の80%以上の放電性能を維持することが分かった。しかし、アルカリベース電位が260mV以下のサンプル9と10では、高温貯蔵試験後の放電性能が試験前に対し、それぞれ66%と54%であった。他のサンプル6〜8では試験後の放電性能が初期状態に対して80%以上であったことから、アルカリベース電位が260mV以下のEMDを正極合剤に用いたサンプル9と10は相対的に高温貯蔵性能が劣っていることが分かった。また、サンプル9と10は、長期保存試験後に漏液が発生した個体があった。以上より、本実施例のアルカリ電池1aは、内面の表層にNi−Coメッキ層が形成された電池缶2aを用いるとともに、正極合剤3に正極活物質として含まれるEMDのアルカリベース電位が270mV以上290mV以下であることが条件となる。   From Table 1, first, in Samples 1 to 5 using the battery can 2 having only the Ni plating layer 22 on the inner surface, the discharge in the initial state increases as the alkaline base potential of the EMD (“EMD potential” in the table) increases. The performance was excellent. However, the discharge performance after the high-temperature storage test was about 10 to 20% of the initial discharge performance, and it was found that the discharge performance was greatly deteriorated. On the other hand, in Samples 6 to 22 using the battery can 2a having the Ni—Co plating layer 23 on the inner surface, the discharge characteristics of 50% or more were maintained at least before and after the high temperature storage test. And from the samples 6 to 10 having the same kind and added amount of graphite but different only in the alkali base potential, if the alkali base potential is 270 mV or more and 290 mV or less, the discharge performance is 80% or more of the initial state even after the high temperature storage test. I knew it would be maintained. However, in Samples 9 and 10 having an alkali base potential of 260 mV or less, the discharge performance after the high-temperature storage test was 66% and 54%, respectively, before the test. In other samples 6 to 8, the discharge performance after the test was 80% or more with respect to the initial state, so samples 9 and 10 using an EMD with an alkali base potential of 260 mV or less as the positive electrode mixture were relatively It was found that the high-temperature storage performance was inferior. Samples 9 and 10 were individuals in which leakage occurred after a long-term storage test. As described above, the alkaline battery 1a of the present example uses the battery can 2a having the Ni—Co plating layer formed on the inner surface layer, and the alkaline base potential of the EMD contained in the positive electrode mixture 3 as the positive electrode active material is 270 mV. The condition is that it is 290 mV or less.

次に、サンプル11〜15は、アルカリベース電位を280mVとし、導電助剤として人工黒鉛を用いている。そしてその人工黒鉛の添加量が異なっている。なお、人工黒鉛の添加量はEMDに対する質量比である。そしてサンプル11〜15では、人工黒鉛の添加量が3wt%のサンプル15では高温貯蔵試験後の放電性能が試験前に対して50%以下であった。また添加量が8wt%以上のサンプル11と12では長期保存試験後に漏液が発生した個体があった。以上より、導電助剤となる黒鉛の添加量は、4wt%以上6wt%以下であることが望ましい。そしてサンプル1〜16における高温貯蔵試験と長期保存試験の結果より、本発明の実施例に係るアルカリ電池1aは、内面の表層にNi−Coのメッキ層を有する電池缶2aと、アルカリベース電位が270mV以上290mV以下のEMDを正極活物質とするとともに、導電助剤となる黒鉛が当該正極活物質に対して4wt%以上6wt%以の割合で添加された正極合剤3とを備えたものとなる。そして本実施例のアルカリ電池1aによれば、高温貯蔵前後で放電特性が維持され、極めて長期にわたって保存しても漏液が発生せず、優れた高温貯蔵性能と長期保存性能を備えている。   Next, samples 11 to 15 have an alkali base potential of 280 mV, and artificial graphite is used as a conductive additive. And the addition amount of the artificial graphite is different. In addition, the addition amount of artificial graphite is a mass ratio with respect to EMD. In Samples 11 to 15, in Sample 15 in which the amount of artificial graphite added was 3 wt%, the discharge performance after the high-temperature storage test was 50% or less than that before the test. In addition, in Samples 11 and 12 having an addition amount of 8 wt% or more, there was an individual in which leakage occurred after a long-term storage test. From the above, it is desirable that the amount of graphite used as a conductive aid is 4 wt% or more and 6 wt% or less. And from the results of the high-temperature storage test and the long-term storage test in Samples 1 to 16, the alkaline battery 1a according to the example of the present invention has a battery can 2a having a Ni—Co plating layer on the inner surface layer and an alkaline base potential. EMD of 270 mV or more and 290 mV or less is used as a positive electrode active material, and a positive electrode mixture 3 in which graphite serving as a conductive auxiliary agent is added at a ratio of 4 wt% to 6 wt% with respect to the positive electrode active material; Become. And according to the alkaline battery 1a of a present Example, the discharge characteristic is maintained before and after high temperature storage, and even if it preserve | saves for a very long period, a leak does not generate | occur | produce, but it has the outstanding high temperature storage performance and long term storage performance.

なお、サンプル11〜15に対し、導電助剤を人工黒鉛に代えて膨張黒鉛としたサンプル16〜20では、導電助剤となる膨張黒鉛の添加量が3wt%のサンプル20では高温貯蔵試験後の放電性能が試験前に対して59%であった。一方、膨張黒鉛の添加量が4wt%のサンプル16〜19では87%〜94%の放電性能を維持した。しかし、膨張黒鉛を8wt%以上添加したサンプル16,17では、長期保存試験後に漏液が発生した個体があった。したがって黒鉛が膨張黒鉛であってもその最適な添加量は4wt%以上6wt%以下となる。そして、黒鉛の種類のみが異なるサンプル13とサンプル18、およびサンプル14とサンプル19を比較すると、黒鉛を膨張黒鉛としたサンプル18および19は、人工黒鉛を用いたサンプル13および14に対し、初期状態および高温貯蔵試験後での放電性能がともに優れていた。したがって、本実施例のアルカリ電池1aは、正極合剤3に含まれる導電助剤が膨張黒鉛であればより好ましい。なおサンプル21と22は、アニールを施していない鋼板材料からなる電池缶2aを用いており、正極合剤3の作製条件は、それぞれサンプル18と19と同じである。そしてアニールを施した鋼板材料からなる電池缶2aを用いたサンプル18、19の方が初期および高温貯蔵試験後の放電特性が優れていたものの、高温貯蔵試験の前後で80%以上の放電性能を維持し、長期保存試験による漏液も発生しなかった。すなわち、本実施例のアルカリ電池1aでは、内面の表層にNi−Coメッキ層が形成されていれば、アニールが施されていない鋼板材料からなる電池缶2aを用いてもよい。   In addition, in Samples 16 to 20 in which expanded conductive graphite was used instead of artificial graphite as a conductive auxiliary agent for Samples 11 to 15, in Sample 20 in which the amount of expanded graphite serving as a conductive auxiliary agent was 3 wt%, after the high-temperature storage test The discharge performance was 59% compared to before the test. On the other hand, samples 16 to 19 in which the amount of expanded graphite added was 4 wt% maintained discharge performance of 87% to 94%. However, in Samples 16 and 17 to which 8 wt% or more of expanded graphite was added, there were individuals in which leakage occurred after a long-term storage test. Therefore, even if the graphite is expanded graphite, the optimum addition amount is not less than 4 wt% and not more than 6 wt%. When comparing sample 13 and sample 18 and sample 14 and sample 19 that differ only in the type of graphite, samples 18 and 19 in which graphite is expanded graphite are in an initial state compared to samples 13 and 14 using artificial graphite. The discharge performance after the high-temperature storage test was excellent. Therefore, the alkaline battery 1a of the present embodiment is more preferable if the conductive additive contained in the positive electrode mixture 3 is expanded graphite. Samples 21 and 22 use a battery can 2a made of a steel plate material that has not been annealed. The conditions for producing the positive electrode mixture 3 are the same as those of the samples 18 and 19, respectively. And although samples 18 and 19 using battery cans 2a made of annealed steel plate materials had better discharge characteristics after the initial stage and after the high temperature storage test, they had a discharge performance of 80% or more before and after the high temperature storage test. It was maintained, and no liquid leakage due to a long-term storage test occurred. That is, in the alkaline battery 1a of the present embodiment, the battery can 2a made of a steel plate material that has not been annealed may be used as long as the Ni—Co plating layer is formed on the inner surface.

ここで、サンプル6〜8、13、14、18、19、21、22が優れた高温貯蔵性能と長期保存性能を示した理由について考察すると、まず、長期保存性能については、EMDのアルカリベース電位が高いため、Coがより酸化され易くなり、それによってCoの酸化が促進され、Coが溶出し難くなったために優れた高温貯蔵性能を示したものと考えることができる。また、これらのサンプルでは、撥水性を有してアルカリ電解液との親和性が低い黒鉛の添加量が最適化されていることで、Coの酸化が阻害されず、高温貯蔵試験の前後でも放電性能が維持されたものと考えることができる。   Here, considering the reason why Samples 6 to 8, 13, 14, 18, 19, 21, and 22 showed excellent high-temperature storage performance and long-term storage performance, first, regarding long-term storage performance, the alkaline base potential of EMD Therefore, it can be considered that Co is more easily oxidized, thereby promoting the oxidation of Co and making it difficult to elute Co and thus exhibiting excellent high-temperature storage performance. In addition, these samples are optimized for the addition of graphite, which has water repellency and low affinity with alkaline electrolytes, so that Co oxidation is not hindered and discharge is performed before and after the high-temperature storage test. It can be considered that the performance is maintained.

===アルカリ電池の製造方法について===
表1に示した試験結果より、内面の表層にNi−Coメッキ層23が形成された鋼板21からなる電池缶2aを用いるともに、EMDが270mV以上290mV以下のアルカリベース電位を有し、かつ黒鉛がEMDに対して4wt以上%6wt%以下添加されている正極合剤3を用いたアルカリ電池1aは、優れた高温保存性能と長期保存性能を備えたものとなる。そして長期保存性能についてはCoの酸化を促進させることでさらに向上させる余地がある可能性がある。そこで、組立後のアルカリ電池1aに対して熱処理を施すエージング処理を行うことで、電池缶2aの内面に形成されているNi−Coメッキ層23中のCoの酸化をさらに促進させ、長期保存性能をさらに向上させることを試みた。
=== About Manufacturing Method of Alkaline Battery ===
From the test results shown in Table 1, while using the battery can 2a made of the steel plate 21 having the Ni-Co plating layer 23 formed on the inner surface, the EMD has an alkali base potential of 270 mV to 290 mV, and graphite. The alkaline battery 1a using the positive electrode mixture 3 to which 4 wt% or more and 6 wt% or less of EMD is added has excellent high-temperature storage performance and long-term storage performance. And there is a possibility that the long-term storage performance can be further improved by promoting the oxidation of Co. Therefore, by performing an aging treatment for performing heat treatment on the assembled alkaline battery 1a, the oxidation of Co in the Ni—Co plating layer 23 formed on the inner surface of the battery can 2a is further promoted, and long-term storage performance is achieved. Tried to further improve.

ここでは、表1におけるサンプル7および18と同じ条件で作製したアルカリ電池1aと、当該サンプル7および18を45℃の温度下で24時間保存するエージング処理を行ったアルカリ電池1aをサンプルとして作製した。また、各サンプルについて、高温貯蔵試験と長期保存試験のそれぞれに供される個体を10個ずつ作製した。そして、エージング処理の有無による高温貯蔵性能と長期保存性能を調べた。なお、作製したサンプルは、サンプル7,18と同様に優れた長期保存性能を備えていることが予想されることから、試験後に漏液が発生しなかった場合には、試験後のサンプルを水中で分解し、電池缶内のガスを水上置換により捕集し、そのガスの量を測定した。   Here, the alkaline battery 1a produced on the same conditions as the samples 7 and 18 in Table 1 and the alkaline battery 1a which performed the aging process which preserve | saves the said samples 7 and 18 at the temperature of 45 degreeC for 24 hours were produced as a sample. . In addition, for each sample, ten individuals were prepared for each of the high-temperature storage test and the long-term storage test. And the high-temperature storage performance and long-term storage performance with and without aging treatment were investigated. Since the prepared sample is expected to have excellent long-term storage performance like Samples 7 and 18, if no leakage occurs after the test, the sample after the test is submerged in water. The gas in the battery can was collected by water displacement, and the amount of the gas was measured.

以下の表2に、エージング処理の効果を示した。   Table 2 below shows the effect of the aging treatment.

Figure 2018116777
表2において、サンプル23と24は、それぞれ表1におけるサンプル7とサンプル18と同じ条件で作製されたアルカリ電池1aである。そして、サンプル23および24と同じ条件で作製されたアルカリ電池1aに対してエージング処理を行ったアルカリ電池1aがサンプル25および26である。表2に示したように、高温貯蔵性能は、初期特性においてはエージング処理によって1.5%程度低下し、試験後では、1%程度の低下であった。したがって、エージング処理の有無に依らず、高温貯蔵性能はほとんど影響を受けないと言える。一方、長期保存試験については、いずれのサンプルでも試験後に漏液が発生した個体はなかった。しかし、長期保存試験後のガス発生量は、エージング処理を施すことで、ガスの発生量が30%〜35%程度減少することが分かった。すなわち、エージング処理によって長期保存性能をさらに向上させることが確認できた。
Figure 2018116777
In Table 2, samples 23 and 24 are alkaline batteries 1a produced under the same conditions as Sample 7 and Sample 18 in Table 1, respectively. Samples 25 and 26 are alkaline batteries 1a obtained by performing an aging treatment on alkaline batteries 1a manufactured under the same conditions as those of samples 23 and 24. As shown in Table 2, the high-temperature storage performance was reduced by about 1.5% by the aging treatment in the initial characteristics, and was reduced by about 1% after the test. Therefore, it can be said that the high-temperature storage performance is hardly affected regardless of the presence or absence of the aging treatment. On the other hand, in the long-term storage test, none of the samples had any leakage after the test. However, the amount of gas generated after the long-term storage test was found to be reduced by about 30% to 35% by performing aging treatment. That is, it was confirmed that the long-term storage performance was further improved by the aging treatment.

なおエージング処理については、温度を高くするほど、また時間を長くするほど電池缶におけるNi−Coメッキ層のCoの酸化が促進される。しかし、その一方で高温貯蔵性能が劣化する可能性もある。したがって、エージング処理における温度や時間は、目的とする高温貯蔵性能に応じて、適宜に設定すればよい。   As for the aging treatment, the higher the temperature and the longer the time, the more the Co oxidation of the Ni—Co plating layer in the battery can is promoted. However, on the other hand, the high-temperature storage performance may be deteriorated. Therefore, what is necessary is just to set the temperature and time in an aging process suitably according to the target high-temperature storage performance.

1,1a アルカリ電池、2,2a 電池缶、3 正極合剤、4 セパレーター、
5 負極ゲル、6 負極集電子、7 負極端子板、8 封口ガスケット、
9 正極端子、21 鋼鈑、22 Niメッキ層、23 Ni−Coメッキ層
1,1a alkaline battery, 2,2a battery can, 3 positive electrode mixture, 4 separator,
5 Negative gel, 6 Negative current collector, 7 Negative terminal plate, 8 Sealing gasket,
9 positive terminal, 21 steel plate, 22 Ni plating layer, 23 Ni-Co plating layer

Claims (3)

正極活物質を含んで環状に成型されてなる正極合剤が正極集電体を兼ねる有底円筒状の電池缶内に配置されてなるインサイドアウト型のアルカリ電池であって、
前記電池缶は、内面の表層にニッケルコバルト合金からなるメッキ層が形成され、
前記正極合剤には、アルカリベース電位が270mV以上290mV以下の二酸化マンガンが正極活物質として含まれているとともに、黒鉛からなる導電助剤が前記正極活物質に対して4wt%以上6wt%以下の割合で含まれている、
ことを特徴とするアルカリ電池。
An inside-out type alkaline battery in which a positive electrode mixture formed in an annular shape containing a positive electrode active material is disposed in a bottomed cylindrical battery can also serving as a positive electrode current collector,
The battery can has a plating layer made of a nickel-cobalt alloy on the inner surface.
The positive electrode mixture contains manganese dioxide having an alkali base potential of 270 mV or more and 290 mV or less as a positive electrode active material, and a conductive additive made of graphite is 4 wt% or more and 6 wt% or less with respect to the positive electrode active material. Included in percentage,
An alkaline battery characterized by that.
請求項1において、前記黒鉛が膨張黒鉛であることを特徴とするアルカリ電池。   2. The alkaline battery according to claim 1, wherein the graphite is expanded graphite. 正極活物質を含んで環状に成型されてなる正極合剤が正極集電体を兼ねる有底円筒状の電池缶内に配置されてなるインサイドアウト型のアルカリ電池の製造方法であって、
正極集電子を兼ねて上方が開口する有底円筒状の電池缶内に、環状の前記正極合剤と、当該正極合剤の内方にセパレーターを介して配置される負極ゲルをアルカリ電解液とともに収納するとともに、円板状の負極端子板の下面に接続された棒状の負極集電子を上下方向に立てた状態で前記負極ゲル中に挿入しつつ、前記電池缶の開口を、封口ガスケットを介して前記負極端子板で封口してアルカリ電池を組み立てる組立ステップと、組立後の前記アルカリ電池に対して室温よりも高い所定の温度で所定時間放置するエージングステップを含み、
前記組立ステップでは、内面の表層にニッケルコバルト合金からなるメッキ層が形成された電池缶と、アルカリベース電位が270mV以上290mV以下の二酸化マンガンを正極活物質とするとともに、黒鉛からなる導電助剤が前記正極活物質に対しして4wt%以上6wt%以下の割合で含まれている正極合剤を用い、
前記エージングステップでは、前記電池缶における前記ニッケルコバルト合金中のコバルトを酸化させる、
ことを特徴とするアルカリ電池の製造方法。

A manufacturing method of an inside-out type alkaline battery in which a positive electrode mixture formed into a ring including a positive electrode active material is disposed in a bottomed cylindrical battery can also serving as a positive electrode current collector,
In the bottomed cylindrical battery can that also serves as the positive electrode current collector, the annular positive electrode mixture and the negative electrode gel disposed through the separator inside the positive electrode mixture together with the alkaline electrolyte While storing the rod-shaped negative electrode current collector connected to the lower surface of the disk-shaped negative electrode terminal plate, the battery can be opened through a sealing gasket while being inserted into the negative electrode gel in an upright direction. An assembly step of assembling the alkaline battery by sealing with the negative electrode terminal plate, and an aging step of leaving the alkaline battery after assembly at a predetermined temperature higher than room temperature for a predetermined time,
In the assembly step, a battery can in which a plating layer made of a nickel cobalt alloy is formed on the inner surface layer, manganese dioxide having an alkali base potential of 270 mV to 290 mV as a positive electrode active material, and a conductive additive made of graphite Using a positive electrode mixture contained in a proportion of 4 wt% or more and 6 wt% or less with respect to the positive electrode active material,
In the aging step, the cobalt in the nickel cobalt alloy in the battery can is oxidized.
The manufacturing method of the alkaline battery characterized by the above-mentioned.

JP2017005203A 2017-01-16 2017-01-16 Alkaline battery, manufacturing method of alkaline battery Active JP6876442B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017005203A JP6876442B2 (en) 2017-01-16 2017-01-16 Alkaline battery, manufacturing method of alkaline battery
PCT/JP2017/044552 WO2018131366A1 (en) 2017-01-16 2017-12-12 Alkaline battery, and alkaline battery production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017005203A JP6876442B2 (en) 2017-01-16 2017-01-16 Alkaline battery, manufacturing method of alkaline battery

Publications (2)

Publication Number Publication Date
JP2018116777A true JP2018116777A (en) 2018-07-26
JP6876442B2 JP6876442B2 (en) 2021-05-26

Family

ID=62839853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017005203A Active JP6876442B2 (en) 2017-01-16 2017-01-16 Alkaline battery, manufacturing method of alkaline battery

Country Status (2)

Country Link
JP (1) JP6876442B2 (en)
WO (1) WO2018131366A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154514A (en) * 1997-11-20 1999-06-08 Hitachi Maxell Ltd Alkaline dry battery
JP2007220373A (en) * 2006-02-14 2007-08-30 Toshiba Battery Co Ltd Sealed alkaline zinc primary cell
JP2009259706A (en) * 2008-04-18 2009-11-05 Panasonic Corp Aa alkaline battery
JP2011522390A (en) * 2008-06-04 2011-07-28 ザ ジレット カンパニー Alkaline battery
JP2012048958A (en) * 2010-08-26 2012-03-08 Fdk Energy Co Ltd Alkaline battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158280B2 (en) * 2006-05-24 2012-04-17 Eveready Battery Company, Inc. Battery container having cruciform vent and cover
US7572545B2 (en) * 2006-05-24 2009-08-11 Everyready Battery Company, Inc. Battery can having vent and asymmetric welded cover
JP2009043461A (en) * 2007-08-07 2009-02-26 Hitachi Maxell Ltd Alkaline battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154514A (en) * 1997-11-20 1999-06-08 Hitachi Maxell Ltd Alkaline dry battery
JP2007220373A (en) * 2006-02-14 2007-08-30 Toshiba Battery Co Ltd Sealed alkaline zinc primary cell
JP2009259706A (en) * 2008-04-18 2009-11-05 Panasonic Corp Aa alkaline battery
JP2011522390A (en) * 2008-06-04 2011-07-28 ザ ジレット カンパニー Alkaline battery
JP2012048958A (en) * 2010-08-26 2012-03-08 Fdk Energy Co Ltd Alkaline battery

Also Published As

Publication number Publication date
WO2018131366A1 (en) 2018-07-19
JP6876442B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
CN1797811B (en) Negative electrode can, alkaline cell and production method for same
US3673000A (en) Antimagnetic alkaline miniature galvanic cell
CN103119747B (en) Alkaline battery
US3116172A (en) Contact for use with cylindrical anodes
JP2016038991A (en) Sealed battery and outer can for battery
US2572017A (en) Dry battery cell
JP5172292B2 (en) Alkaline battery and manufacturing method thereof
JP2007141673A (en) Bobbin type lithium primary battery
WO2018131366A1 (en) Alkaline battery, and alkaline battery production method
US8057713B2 (en) Method for the production of nickel oxide surfaces having increase conductivity
CN200941406Y (en) Non-mercury button cell
JPH06338327A (en) Negative electrode collector and button-shaped alkaline battery using same
JP2020155202A (en) Steel sheet for alkaline battery can, battery can for alkaline battery, alkaline battery, and method for producing steel sheet for alkaline battery can
JPH11339865A (en) Air electrode and air cell
JP4851708B2 (en) Alkaline battery and manufacturing method thereof
CN103618095A (en) Non-mercury button battery and preparation method thereof
JPH09274916A (en) Alkaline storage battery
JP2012527717A (en) Galvanic element with a mercury-free cathode
JP2020177880A (en) Alkaline battery
CN201196967Y (en) Non-mercury alkaline button battery with anode conductive film
JP2008103222A (en) Alkaline dry cell
JP2010282744A (en) Alkaline dry battery
US721682A (en) Reversible galvanic battery.
JP6560943B2 (en) Positive electrode mixture for alkaline battery and inside-out alkaline battery
JP6349192B2 (en) Steel plate for battery electrode terminal and battery constructed using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R150 Certificate of patent or registration of utility model

Ref document number: 6876442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6876442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250