JP2018116032A - 被計測物の形状を計測する計測装置 - Google Patents

被計測物の形状を計測する計測装置 Download PDF

Info

Publication number
JP2018116032A
JP2018116032A JP2017009016A JP2017009016A JP2018116032A JP 2018116032 A JP2018116032 A JP 2018116032A JP 2017009016 A JP2017009016 A JP 2017009016A JP 2017009016 A JP2017009016 A JP 2017009016A JP 2018116032 A JP2018116032 A JP 2018116032A
Authority
JP
Japan
Prior art keywords
pattern
light
pattern light
measured
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017009016A
Other languages
English (en)
Inventor
剛資 山崎
Tsuyoshi Yamazaki
剛資 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017009016A priority Critical patent/JP2018116032A/ja
Publication of JP2018116032A publication Critical patent/JP2018116032A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Manipulator (AREA)

Abstract

【課題】被計測物の反射率分布による精度悪化の影響を低減できる計測装置、計測方法を提供する。
【解決手段】計測装置は、第1のパターン光と第2のパターン光を生成して被計測物4に投影する投影部1と、第1のパターン光が投影された被計測物を撮像して第1の輝度分布を取得し、第2のパターン光が投影された被計測物を撮像して第2の輝度分布を取得する撮像部2と、第1と第2の輝度分布の交点を算出する処理部3と、を含む。投影部1は、光路内で合波された第1のパターン光と第2のパターン光を被計測物に投影する。第1のパターン光と第2のパターン光は、分光が可能な異なる特性を有する。撮像部2は、反射された第1のパターン光と第2のパターン光とを分光する分光手段13と、分光された第1のパターン光の第1の輝度分布を取得する第1の撮像素子14と、分光された第2のパターン光の第2の輝度分布を取得する第2の撮像素子15と、を備える。
【選択図】図1

Description

本発明は、被計測物の形状(3次元形状、2次元形状、位置、姿勢など)を計測する計測装置、計測方法などに関する。例えば、パターン投影により三次元形状を計測する装置、被計測物の反射率分布の影響を低減可能な三次元計測装置に関する。
物体の表面形状を評価する技術の一つに光学式の三次元計測装置が挙げられる。そして、光学式の三次元計測装置にも様々な方式の装置が存在する。その一つに、パターン投影法と称される方式がある。この方式は所定の投影パターンを被計測物に投影して、被計測物からの反射光の撮像を行い、三角測量の原理に基づき各画素位置における距離情報を算出し、被計測物の三次元表面情報を計測するものである。パターン投影法はパターンの投影方法により、更に複数の方式に分類され、位相シフト法や空間コード法のような複数のパターンが投影されるマルチショット方式と、パターン投影回数が1回であるシングルショット方式が存在する。
これらの計測法においては、撮像画像から得られる輝度の空間分布情報に基づき、ドットやラインなどを検出し、投影されたパターンの各ラインの座標情報を復元する。しかし、輝度の空間分布情報は、被計測物表面の反射率分布、光源の照度分布偏りなどの影響が含まれたデータである。光源の照度分布偏りなど、事前に計測して補正できる輝度の空間分布はあるものの、被計測物の表面の反射率分布は、被計測物ごと、計測箇所ごとに異なるため、輝度の空間分布の補正が難しい。従って、これらにより、ドットやラインの検出に誤差が発生する、或いは検出自体が不可能なものとなる状況が考えられ、結果として、計測される三次元形状は精度が悪いものとなる。特に、幅広い被計測物の種類に対応可能な計測装置を考えた場合、被計測物表面の反射率分布がもたらす影響は極力除去する必要がある。
これに対して、特許文献1は、次の技術を用いることを開示している。即ち、空間コード法を用いて、輝度の明部と暗部を有するポジティブパターン(以下、ポジパターン)と、ポジパターンに対して輝度の明部と暗部との関係が反転したネガティブパターン(以下、ネガパターン)を被計測物に投影する。そして、被計測物からの反射光を撮像することで、ポジパターンとネガパターンの輝度分布の交点(2つのパターン光の輝度が同じとなる位置)を検出する方式を用いている。これは、ポジパターンとネガパターンの輝度分布の交点検出を行うことで、交点検出演算時にネガパターンとポジパターンで同様の反射率分布が除去される演算方法となるため、被計測物表面の反射率分布の影響を受けづらい方式である。そのため、被計測物の形状、位置などを高精度で計測することが可能である。
特開2013―210262号公報
特許文献1に開示の技術において、空間コード法を用いて複数のパターンを投影するマルチショット方式においては、上記の被計測物表面の反射率分布の影響を受けづらい方式である。しかし、被計測物がベルトコンベア上を移動し、移動する被計測物の三次元形状をリアルタイムで取得する必要がある場合や、被計測物を把持する際に、移動する把持部と被計測物との相対位置をリアルタイムに算出したい場合がある。こうした場合において、次のようになることがある。即ち、マルチショット方式では、各取得画像が、移動に伴い異なる視野で撮像されることになり易い。こうした場合、交点検出に用いるネガパターンとポジパターンが異なる視野での画像であるために、交点位置を精度よく算出することは容易ではない。
上記課題に鑑み、本発明の一側面による計測装置は、第1のパターン光と第2のパターン光を生成して被計測物に投影する投影部と、前記第1のパターン光が投影された前記被計測物を撮像して第1の輝度分布を取得し、前記第2のパターン光が投影された前記被計測物を撮像して第2の輝度分布を取得する撮像部と、前記第1の輝度分布と前記第2の輝度分布の交点を算出する処理部と、を含み、前記投影部は、前記投影部の光路内で合波された前記第1のパターン光と前記第2のパターン光を前記被計測物に投影し、前記第1のパターン光と前記第2のパターン光は、分光が可能な異なる特性を有し、前記撮像部は、前記被計測物で反射された前記第1のパターン光と前記第2のパターン光とを分光する分光手段と、前記分光手段で分光された前記第1のパターン光の前記第1の輝度分布を取得する第1の撮像素子と、前記分光手段で分光された前記第2のパターン光の前記第2の輝度分布を取得する第2の撮像素子と、を備える。
本発明の一側面によれば、計測を行う際に、被計測物の反射率分布による精度悪化の影響を低減することが可能である。
本発明の第1実施形態に係る計測装置の例を示す図。 投影部のパターン生成部の例を示す図。 分光した後の波長λ1のパターン状態の例を示す図。 分光した後の波長λ2のパターン状態の例を示す図。 反射率分布がない時の輝度分布の断面の状態の例を示す図。 反射率分布がある時の輝度分布の断面の状態の例を示す図。 本発明の第2実施形態に係る計測装置の投影部の例を示す図。 本発明の第2実施形態に係る計測装置の投影部の例を示す図。 計測装置とロボットアームを含む制御システムの例を示す図。
本発明による被計測物の計測では、合波された2つのパターン光を被計測物に投影し、被計測物で反射される2つのパターン光が投影された状態の被計測物を撮像して2つの輝度分布をそれぞれ取得し、2つの輝度分布の交点を算出する。ここにおいて、2つのパターン光は分光が可能な異なる特性(異なる波長、互いに直交する偏光状態)を有する。また、反射光の2つのパターン光は分光されて、2つの撮像素子によりそれぞれ輝度分布が取得される。取得された輝度分布は、例えば、交点の位置と三角測量の原理に基づき、交点の画素位置から被計測物の対応する箇所までの距離を算出するのに用いられる。
以下、添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略ないし簡略化する。
〔第1実施形態〕
図1は、本発明の一側面による第1実施形態にかかる三次元計測装置の簡易図である。これは、移動する被計測物の反射率分布による測距誤差影響をリアルタイムに除去し、正確な三次元形状を計測するのに適するものである。
本実施形態の三次元計測装置は、投影部1と撮像部2と演算処理部3を有している。被計測物4にパターン光を投影するための投影部1は、波長λ1を有する光源5と、波長λ1とは異なる波長である波長λ2を有する光源6を含む。光源5、6から出射した光は各々照明光学系7、8を透過し、波長λ1の光線と波長λ2の光線はプリズム等を用いた合波部9で合波される。合波した光からは、パターンマスクなどのパターン生成部10により、パターン光が生成される。
本実施形態において使用されるパターン生成部10に関して説明する。パターン生成部10は、投影部1の光路内で合波された、波長が異なる2つのパターン光を生成する。具体的には、例えば、図2に示したような領域ごとに分光透過特性が異なるカラーフィルタを有するマスクを用いる。パターン領域Aにおけるカラーフィルタは、光源5で出射される波長λ1の光を透過させ、光源6で出射される波長λ2の光を吸収する。パターン領域Bにおけるカラーフィルタは、光源6で出射される波長λ2の光を透過させて、光源5で出射される波長λ1を吸収する。このような空間的に分光特性が異なるカラーフィルタを用いることで、領域Aにおいては、ほぼ波長λ1のみの光を有するパターンが生成され、領域Bにおいては、ほぼ波長λ2のみの光を有するパターンが生成される。つまり、領域Aと領域Bに対応する投影部1の光路内の有効領域において合波されたパターン光が生成される。こうして、輝度の明部と暗部との関係がほぼ反転した2つのパターン光を生成することができる。
次に、各波長のパターンに関して説明する。各波長のパターンの形態は計測方式により様々であるが、例えば、ラインの識別のためにラインパターンのライン上にドットが配置されたドットラインパターンや、ランダムにドットが配列されたランダムドットパターン(Kinectなど)などが挙げられる。図2ではドットラインパターンを例に図示している。
パターンはレンズなどの投影レンズ11を含む投影部1により被計測物4に投影され、被計測物4からの反射光は、撮像部2により、被計測物4に投影されたパターン光として撮像される。このために、撮像部2は、撮像レンズ12と、ダイクロイックフィルタ等を用いた分光部13と、を含む。撮像レンズ12は、波長λ1の光と波長λ2の光を含むパターン光をそれぞれ撮像素子14、15に結像させる。また、分光部13は、撮像レンズ12を通過したパターン光を、波長λ1から成るパターン光と波長λ2から成るパターン光に分光する。分光されて波長λ1のみを含むパターン光は、CCDまたはCMOS等の第1の撮像素子14に結像されて、波長λ1のパターン光が取得される。一方、分光されて波長λ2のみを含むパターン光は、第2の撮像素子15に結像されて、波長λ2のパターン光が取得される。撮像部2において、分光部13により波長ごとにパターンを空間的に分離し、2つの撮像素子14、15を用いることで、波長λ1を有するパターン画像と波長λ2を有するパターン画像を同時に取得することが可能となる。
これら同時に取得された各波長のパターン画像は演算処理部3に格納される。演算処理部は、パターン投影法を用いて、被計測物の形状(3次元形状、2次元形状、位置、姿勢等)を計測する。具体的には、2つの画像を利用してモデルフィッティングすることにより、被計測物の位置姿勢を計測する。尚、モデルフィッティングは、事前に作成された被計測物のCADモデルに対して行うものであり、被計測物の三次元形状が既知であることを前提とする。以下に、2つの異なる波長を有するそれぞれのパターン画像から得られる輝度分布の交点の位置を検出し、三角測量の原理に基づき、交点位置の情報を用いて被計測物4までの距離を算出する方法に関して説明する。
図3に、分光されて波長λ1のみを含むパターン光が第1の撮像素子14に結像されて形成されたパターンの画像の輝度分布を示す。黒領域では第1の撮像素子14からの出力が小さく、一方、白領域では出力が多いことを示している。つまり、白領域では、第1の撮像素子14上に結像された波長λ1を有する光の光量が大きいことを意味している。また、図4では、分光されて波長λ2のみを含むパターン光が第2の撮像素子15に結像されて形成されたパターンの画像を出力した状態を示している。光量の大小関係と白黒の関係は上記説明と同じであり、白領域では、第2の撮像素子15上に結像された波長λ2を有する光の光量が大きいことを意味している。ここでは、パターン画像のピクセル座標と被計測物面との位置関係を把握しておく必要がある。しかし、メカ公差や配置誤差や光学系の収差等が存在する。そのため、出力された波長λ1を有するパターン画像のピクセル座標と波長λ2を有するパターン画像のピクセル座標と被計測物面の位置関係を、キャリブレボード等を用いて校正しておく必要がある。こうした校正については、本発明の本質ではないので説明は省略する。
図3と図4において、C−C’の断面の輝度分布に着目する。波長λ1と波長λ2のパターンそれぞれのC−C’断面における輝度分布をグラフにした図が図5である。撮像素子14、15上に結像された波長λ1と波長λ2のそれぞれの輝度分布から交点位置を算出する方法の一例は、次のように行われる。交点位置の算出は演算処理部3にて行われる。
まず、波長λ1の輝度分布と波長λ2の輝度分布との大小関係が反転する撮像素子の画素位置nを次の式により特定する。
[Iλ1(n)−Iλ2(n)]*[Iλ1(n+1)−Iλ2(n+1)]≦0
ここで、λ1、λ2は波長、nは撮像素子の画素位置、Iは撮像素子の出力値とする。この画素位置nに対して、以下の式から交点の検出を行う。交点前後の画素での撮像素子の出力値を用いて、交点前後の画素での出力値を通る直線の方程式として以下のように表すことができる。
y=aλ1x+bλ1 (1−1)
y=aλ2x+bλ2 (1−2)
ここで、aは傾き、bは切片を表し、これらは次のように表わされる。
λ1=Iλ1(n+1)−Iλ1(n),aλ2=Iλ2(n+1)−Iλ2(n)
λ1=Iλ1(n)−naλ1,bλ2=Iλ2(n)−naλ2
上記の直線の方程式から交点xを算出すると、次のようになる。
x=−(bλ1−bλ2)/(aλ1−aλ2
以上の算出方法を用いて交点検出を行う。本実施形態では、直線近似を用いて交点位置を算出する例を述べたが、近似方法は三角関数で近似したり、2次関数で近似したりしてもよく、直線近似には限らない。
次に、このような交点検出が、反射率分布の影響を受けづらいことを、図6を用いて説明する。反射率分布がある場合の波長λ1と波長λ2のそれぞれの輝度分布をグラフにした図が図6である。実線が波長λ1の輝度分布、点線が波長λ2の輝度分布、一点鎖線が反射率分布を表わしている。図5と比較して、各波長での輝度分布は反射率分布の影響を受けて大きく変化しているのにもかかわらず、交点の位置の変化量は小さいことが分かる
この理由は、前述の式(1−1)、(1−2)に反射率分布Rの影響を入れた時の直線の方程式は、次のように表されるからである。
y=Rλ1(x)(aλ1x+bλ1
y=Rλ2(x)(aλ2x+bλ2
従って、交点xは次のようになる。
x=−(Rbλ1−bλ2)/(Raλ1−aλ2
R=Rλ1(x)/Rλ2(x)
Rは、交点位置での波長λ1と波長λ2の反射率の比を表わしている。この反射率比が1であれば、つまり、系の波長λ1と波長λ2の反射率において波長差がなければ、交点位置は空間的な反射率分布がない場合と同じ交点位置になる。つまり、反射率分布の影響を受けないことになる。例えば、反射率の波長差がない金属のような被計測物を計測する場合においては、この条件がよく当てはまる。加えて、リアルタイム計測に好適な本実施形態は、波長の異なる2つのパターンを合波して同時に投影し、被計測物からの反射パターンの交点検出を行うことでリアルタイム計測に適用可能である。付言すれば、波長λ1と波長λ2が同じ波長を用いる場合には、つまり、先行技術例であるネガパターンとポジパターンで交点検出を算出する場合には、空間的な反射率分布があっても交点位置はずれないことを意味している。
次に、さらに波長λ1と波長λ2の2つの反射率を同じにするための方法に関して述べる。波長λ1と波長λ2の2つの反射率を同じにするためには、以下の構成を取ることが望ましい。例えば図1に示した構成の場合、撮像光学系や投影光学系の透過率、マスク10の透過率、ダイクロイックミラー13の透過率や反射率等の波長λ1と波長λ2の差を小さくしておくことが望ましい。また、波長λ1と波長λ2の上記反射率や透過率の差を小さくすることが困難な場合には、Rの補正値を作成することが望ましい。
例えば、波長λ1と波長λ2の反射率依存がない被計測物、もしくは既に反射率差が分かっている被計測物を用いる。この被計測物を用いて、第1の撮像素子14で波長λ1に対応する輝度を取得し、第2の撮像素子15で波長λ2に対応する輝度を取得して、これらの輝度比からRを算出して、光学系全体の波長λ1と波長λ2の反射率差の補正値とする。この補正値は、必要であれば、第1の撮像素子14と第2の撮像素子15の任意の面内の対応画素に対して、上記同様の補正値を算出することが可能であり、面内の対応画素ごとに補正値を取得して補正テーブルを作成することができる。
さらに、上記ではプローブの光学系全体で発生する波長λ1と波長λ2の反射率または透過率差の補正に関して説明したが、被計測物の材質起因でも波長λ1と波長λ2の反射率差をもつため、これを補正することが望ましい。例えば、事前に被計測物への光の入射角度ごとに波長λ1と波長λ2の反射率差を計測しておき、その角度ごとの反射率差を補正テーブルとして保持しておく。または、被計測物の材質の波長λ1と波長λ2の屈折率等が分かっている場合は、それらの情報を用いて、入射角度ごとの波長λ1と波長λ2の反射率差を事前に計算しておき、その角度ごとの反射率差を補正テーブルとして保持しておく。波長λ1と波長λ2の被計測物起因の反射率差の補正をするには、まず補正前に波長λ1と波長λ2のパターンの交点位置検出を行い、被計測物の形状を算出する。補正前の被計測物の形状から、被計測物に入射する光の入射角度分布が分かるので、事前に計測した波長λ1と波長λ2の反射率差、または事前に計算して算出した波長λ1と波長λ2の反射率差を適用してパターン輝度分布の補正を行う。波長λ1と波長λ2の補正したパターン輝度分布を基に上述同様の交点検出を行う。
上記の方法は、被計測物の波長λ1と波長λ2の反射率差を事前に計測または計算してパターン強度の補正に用いる方法である。これに対して、投影しているパターンのディテクタで検出されるパターン輝度そのものを用いて、被計測物の波長λ1と波長λ2の反射率差を算出する方法もある。例えば、上述した計測装置の光学系で発生する被計測物の波長λ1と波長λ2の反射率差が十分に校正されていれば、第1の撮像素子14と第2の撮像素子15で発生する交点の近傍のパターン輝度の極大値の差は、被計測物の波長λ1と波長λ2の反射率差になる。そのため、波長λ1と波長λ2のパターン輝度の補正に用いることができ、事前に計測または計算しておかなくても、計測中の取得したパターン輝度の極大値などの特徴量に基づいてリアルタイムに波長λ1と波長λ2のパターン輝度の補正を行うことが可能になる。他の方法としてパターン輝度の極大値の波長差のみでなく、パターンをガウスや三角関数等でフィッティングした際のピーク値の波長差に基づいて、波長λ1と波長λ2のパターン輝度の補正を行ってもよい。
演算処理部3は、撮像部2で取得された画像に基づいて、被計測物の形状を求める。処理部3は、一般的なコンピュータで構成されており、情報処理装置として機能する。処理部3は、CPU、MPU、DSPやFPGAなどの演算装置で構成されており、DRAMなどの記憶装置を有する。また、制御部、画像記憶部( メモリ)、画像処理部、距離情報算出部などを含む。制御部は、投影部1や撮像部2の動作を制御する。具体的には、2つのパターン光が、被計測物4へ照射され、制御部の指令により撮像部2により撮像される。これら2つの光の照射、撮像は同じタイミングで行われるように制御される。同じタイミングで行うことによって、被計測物と撮像部2の相対位置が変化する場合においても、2つのパターン投影画像を同一の視点から取得することができる。パターン投影画像のデータは距離情報算出部に送信され、画像処理部で補正された画像に基づいて被計測物の形状の情報が求められる。具体的には、補正された画像におけるパターン光の交点を検出してパターンの座標、即ち、画像におけるパターン光の位置を求める。そして、検出対象とする位置(座標)の情報とドットから識別した各ラインの指標を用いて、三角測量の原理から、各画素位置における被計測物の距離画像(3次元情報)が算出される。
上記の装置構成および三次元距離算出プロセスおいては、波長λ1のパターン光と波長λ2のパターン光は合波して被計測物に投影されている。さらに、波長λ1と波長λ2での画像は同期され同じタイミングで撮像される。そのため、上述のような被計測物が移動する場合や、把持する際にプローブが移動する場合においても、リアルタイムで計測することが可能である。さらに、これらの撮像画像での各波長の輝度分布を基に交点検出を行うことで、三次元形状などにおける被計測物の反射率分布の影響は低減され、精度の高い情報となる。このように、本実施形態によれば、三次元計測などを行う際に被計測物の表面反射率分布の測距精度悪化の影響をリアルタイムに低減することが可能であり、移動計測においても良好な測距精度が得られる。
〔第2実施形態〕
次に本発明の第2の実施形態を説明する。第1実施形態では、波長λ1の照明部5から出射した光と波長λ2の照明部6から出射した光が合波されてパターン生成部10を透過する投影部1の構成である。この構成により、波長λ1のパターン光と、波長λ1とは異なる波長λ2のパターン光と、を同時に被計測物4の面に投影することが可能になる。一方、第2実施形態は、その投影部の構成が第1実施形態とは異なる。図7に基づいて第2実施形態について説明する。
投影部1は、波長λ1を有する光源5と、光源5から出射した波長λ1の光をパターン生成部10に略均一に照明する照明光学系7を含む。また、投影部1は、波長λ2を有する光源6と、光源6から出射した波長λ2の光をパターン生成部10に略均一に照明する照明光学系8を含む。パターン生成部10は、例えば、波長λ1の光を透過してパターンを生成し、かつ、波長λ2の光を反射してパターンを生成する。
パターン生成部10は、1つの基材に対して誘電体コーティングを組み合わせたパターンを可能にしたマイクロパターンフィルタ等により、ダイクロイック機能を持つパターンコーティングを行うことにより形成可能である。それにより、波長λ1の照明光学系7から出射した光は、パターン生成部10を透過した後、波長λ1のパターンを生成する。また、波長λ2の照明光学系8から出射した光はパターン生成部10で反射した後、波長λ2のパターンを生成する。つまり、投影部1の光路内で合波された波長λ1のパターンと波長λ2のパターンを生成する。以上により、投影部1から出射されるパターンは、波長λ1から成る第1のパターン光と、波長λ1とは異なる波長λ2から成る第2のパターン光と、を同時に被計測物4に投影することができる。
さらに、上記に説明した投影部と異なる構成を、図8を用いて説明する。投影部1は、波長λ1を有する光源5と、光源5から出射した波長λ1の光をパターン生成部101に略均一に照明する照明光学系7を含む。また、投影部1は、波長λ2を有する光源6と、光源6から出射した波長λ2の光をパターン生成部102に略均一に照明する照明光学系8を含む。パターン生成部101、102は、例えばCr膜でパターンを形成したマスクから成っている。Cr膜でパターンを形成することで、Cr膜がない箇所では光は透過し、Cr膜がある箇所では光が反射する。これにより、パターン光が生成される。パターン生成部101から出射した波長λ1のパターンと、パターン生成部102から出射した波長λ2のパターンは、プリズム9により合波される。そして、投影部1の光路内で合波された波長λ1のパターンと波長λ2のパターンを、投影レンズ11により被計測物4に投影することができる。
本実施形態によっても、三次元計測などを行う際に被計測物の表面反射率分布の測距精度悪化の影響をリアルタイムに低減することが可能であり、移動計測においても良好な測距精度が得られる。
〔第3実施形態〕
上記実施形態では、波長が異なる2つのパターン光を用いたが、偏光状態が異なる2つのパターン光を用いることもできる。第3実施形態はこうした変形例である。ここでは、例えば、円偏光を出射する光源からの光で、一方向のスリットと該一方向に直交する方向のスリットを例えば図2のA領域とB領域にそれぞれ切り込んで形成したパターン生成部を照射する。これにより、偏光状態が互いに直交する2つのパターン光を同時に被計測物に投影することができる。ここでも、2つのパターン光の明部と暗部はそれぞれ図3と図4に示すようになっている。撮像部の分光は、偏光ビームスプリッタなどにより行うことができる。その他の点は、上記実施形態と同様である。
〔第4実施形態〕
上述の計測装置は、ある支持部材に支持された状態で使用されうる。本実施形態では、一例として、図9のようにロボットアーム300(把持装置)に備え付けられて使用される制御システムについて説明する。計測装置100は、支持台350に置かれた被計測物210にパターン光を投影して撮像し、画像を取得する。そして、計測装置100の制御部が、又は、計測装置100の制御部から画像データを取得した制御部310が、被計測物210の位置および姿勢を求め、計測結果である位置および姿勢の情報を制御部310が取得する。制御部310は、その位置および姿勢の情報に基づいて、ロボットアーム300に駆動指令を送ってロボットアーム300を制御する。ロボットアーム300は先端のロボットハンドなど(把持部)で被計測物210を保持して、並進や回転などの移動をさせる。さらに、ロボットアーム300によって被計測物210を他の部品に組み付けることにより、複数の部品で構成された物品、例えば電子回路基板や機械などを製造することができる。また、移動された被計測物210を加工することにより、物品を製造することができる。制御部310は、CPUなどの演算装置やメモリなどの記憶装置を有する。なお、ロボットを制御する制御部を制御部310の外部に設けても良い。また、計測装置100により計測された計測データや得られた画像をディスプレイなどの表示部320に表示してもよい。
1・・投影部
2・・撮像部
3・・演算処理部(処理部)
4・・被計測物
5、6・・光源
7、8・・照明光学系
9・・パターン合波部
10・・パターン生成部
11・・投影光学系
12・・撮像光学系
13・・分光部(分光手段)
14、15・・撮像素子

Claims (16)

  1. 第1のパターン光と第2のパターン光を生成して被計測物に投影する投影部と、
    前記第1のパターン光が投影された前記被計測物を撮像して第1の輝度分布を取得し、前記第2のパターン光が投影された前記被計測物を撮像して第2の輝度分布を取得する撮像部と、
    前記第1の輝度分布と前記第2の輝度分布の交点を算出する処理部と、
    を含み、
    前記投影部は、前記投影部の光路内で合波された前記第1のパターン光と前記第2のパターン光を前記被計測物に投影し、
    前記第1のパターン光と前記第2のパターン光は、分光が可能な異なる特性を有し、
    前記撮像部は、
    前記被計測物で反射された前記第1のパターン光と前記第2のパターン光とを分光する分光手段と、
    前記分光手段で分光された前記第1のパターン光の前記第1の輝度分布を取得する第1の撮像素子と、
    前記分光手段で分光された前記第2のパターン光の前記第2の輝度分布を取得する第2の撮像素子と、を備える、
    ことを特徴とする計測装置。
  2. 前記処理部は、前記交点の位置と三角測量の原理に基づき、前記被計測物までの距離を算出し、前記被計測物の形状の情報を求める、ことを特徴とする請求項1に記載の計測装置。
  3. 前記第1のパターン光と前記第2のパターン光は、波長が互いに異なる、ことを特徴とする請求項1または2に記載の計測装置。
  4. 前記第1のパターン光と前記第2のパターン光は、偏光状態が互いに直交する、ことを特徴とする請求項1または2に記載の計測装置。
  5. 前記投影部は、波長λ1を有する光を出射する第1の照明部と、前記波長λ1とは異なる波長λ2を有する光を出射する第2の照明部を有し、
    前記第1の照明部と前記第2の照明部からそれぞれ出射した光は、前記波長λ1の光を透過または反射させるパターン領域と、前記波長λ2の光を透過または反射させるパターン領域を有するマスクを透過または反射することで、前記波長が互いに異なる第1のパターン光と第2のパターン光を生成する、ことを特徴とする請求項3に記載の計測装置。
  6. 前記投影部は、光を出射する照明部を有し、
    前記照明部から出射した光は、一方向にスリットを形成したパターン領域と、前記一方向と直交する方向にスリットを形成したパターン領域を有するマスクを透過することで、前記偏光状態が互いに直交する第1のパターン光と第2のパターン光を生成する、ことを特徴とする請求項4に記載の計測装置。
  7. 前記第2のパターン光は、前記第1のパターン光に対して、明部と暗部とが反転したパターン光である、ことを特徴とする請求項1から6の何れか1項に記載の計測装置。
  8. 前記処理部は、
    前記第1の輝度分布と前記第2の輝度分布の輝度を補正するための補正値を取得し、 前記補正値に基づいて、前記第1の輝度分布と前記第2の輝度分布を補正し、前記補正された第1の輝度分布と前記補正された第2の輝度分布から前記交点を算出する、ことを特徴とする請求項1から7の何れか1項に記載の計測装置。
  9. 前記処理部は、
    前記波長λ1の光と前記波長λ2の光それぞれに対して入射角度ごとに前記被計測物の反射率のテーブルを作成し、前記第1の輝度分布と前記第2の輝度分布の前記交点の位置から前記被計測物の形状を求め、前記被計測物の形状から前記被計測物に投影する前記第1のパターン光と前記第2のパターン光の入射角度分布を作成し、前記入射角度分布と前記反射率のテーブルから補正値を取得する、ことを特徴とする請求項8に記載の計測装置。
  10. 前記処理部は、
    前記第1の輝度分布と前記第2の輝度分布の前記交点の近傍における各々の輝度分布の特徴量に基づいて補正値を算出する、ことを特徴とする請求項8に記載の計測装置。
  11. 合波された2つのパターン光を被計測物に投影する工程と、
    前記被計測物で反射された2つのパターン光を分光する工程と、
    前記分光された2つのパターン光をそれぞれ撮像して前記2つのパターン光がそれぞれ投影された状態の前記被計測物の2つの輝度分布をそれぞれ取得する工程と、
    前記2つの輝度分布の交点を算出する工程と、
    を有し、
    前記2つのパターン光は、分光が可能な互いに異なる特性を有する、
    ことを特徴とする被計測物の形状の計測方法。
  12. 前記2つのパターン光のパターンは、ドットラインパターンまたはランダムドットパターンである、ことを特徴とする請求項11に記載の計測方法。
  13. 前記2つのパターン光は、波長が互いに異なる、ことを特徴とする請求項11または12に記載の計測方法。
  14. 前記2つのパターン光は、偏光状態が互いに直交する、ことを特徴とする請求項11または12に記載の計測方法。
  15. 請求項1から10の何れか1項に記載の計測装置と、
    前記計測装置による計測結果に基づいて前記被計測物を保持して移動させるロボットと、を有する、
    ことを特徴とするシステム。
  16. 請求項1から10の何れか1項に記載の計測装置を用いて被計測物を計測する工程と、
    該計測結果に基づいて被計測物を処理することにより物品を製造する工程と、
    を有する、
    ことを特徴とする物品の製造方法。
JP2017009016A 2017-01-20 2017-01-20 被計測物の形状を計測する計測装置 Pending JP2018116032A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017009016A JP2018116032A (ja) 2017-01-20 2017-01-20 被計測物の形状を計測する計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017009016A JP2018116032A (ja) 2017-01-20 2017-01-20 被計測物の形状を計測する計測装置

Publications (1)

Publication Number Publication Date
JP2018116032A true JP2018116032A (ja) 2018-07-26

Family

ID=62984131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017009016A Pending JP2018116032A (ja) 2017-01-20 2017-01-20 被計測物の形状を計測する計測装置

Country Status (1)

Country Link
JP (1) JP2018116032A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196081A (ja) * 2019-05-31 2020-12-10 株式会社デンソー ビジュアルサーボシステム
WO2021161986A1 (ja) * 2020-02-13 2021-08-19 浜松ホトニクス株式会社 膜厚測定装置及び膜厚測定方法
WO2023238736A1 (ja) * 2022-06-06 2023-12-14 キヤノン株式会社 計測装置、ロボットシステム、計測方法、物品の製造方法、及び記憶媒体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196081A (ja) * 2019-05-31 2020-12-10 株式会社デンソー ビジュアルサーボシステム
WO2021161986A1 (ja) * 2020-02-13 2021-08-19 浜松ホトニクス株式会社 膜厚測定装置及び膜厚測定方法
EP4067842A4 (en) * 2020-02-13 2023-12-06 Hamamatsu Photonics K.K. HEIGHT MEASURING DEVICE AND HEIGHT MEASURING METHOD
WO2023238736A1 (ja) * 2022-06-06 2023-12-14 キヤノン株式会社 計測装置、ロボットシステム、計測方法、物品の製造方法、及び記憶媒体

Similar Documents

Publication Publication Date Title
US5193120A (en) Machine vision three dimensional profiling system
US10223575B2 (en) Measurement apparatus for measuring shape of object, system and method for producing article
CN201974159U (zh) 包括mems反射镜的轮廓传感器
JP6478713B2 (ja) 計測装置および計測方法
CN107735645B (zh) 三维形状测量装置
JP6532325B2 (ja) 被計測物の形状を計測する計測装置
TWI723129B (zh) 用於光學三維構形量測之方法及系統
US20080117438A1 (en) System and method for object inspection using relief determination
JP2002071328A (ja) 表面形状の決定方法
CA2799705C (en) Method and apparatus for triangulation-based 3d optical profilometry
JP2018116032A (ja) 被計測物の形状を計測する計測装置
US20170309035A1 (en) Measurement apparatus, measurement method, and article manufacturing method and system
US20160238380A1 (en) Image measuring method and image measuring apparatus
JP2015108582A (ja) 3次元計測方法と装置
KR20180053119A (ko) 3차원 형상 측정 장치 및 측정 방법
JP6273127B2 (ja) 計測装置、および物品の製造方法
JP4209023B2 (ja) 画像計測システム及びその画像校正方法
US10060733B2 (en) Measuring apparatus
US10068350B2 (en) Measurement apparatus, system, measurement method, determination method, and non-transitory computer-readable storage medium
JP6047764B2 (ja) 白色干渉計、画像処理方法及び画像処理プログラム
JP2004020536A (ja) 三次元形状計測装置
JP7332417B2 (ja) 測定装置、及び測定方法
JP2018044863A (ja) 計測装置、計測方法、システム及び物品の製造方法
KR20130022415A (ko) 측정장치 및 이의 보정방법
JP2010038695A (ja) 形状測定装置および形状測定装置の校正方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20181204