JP2018115713A - Vibration isolation device - Google Patents

Vibration isolation device Download PDF

Info

Publication number
JP2018115713A
JP2018115713A JP2017007178A JP2017007178A JP2018115713A JP 2018115713 A JP2018115713 A JP 2018115713A JP 2017007178 A JP2017007178 A JP 2017007178A JP 2017007178 A JP2017007178 A JP 2017007178A JP 2018115713 A JP2018115713 A JP 2018115713A
Authority
JP
Japan
Prior art keywords
liquid chamber
main body
communication portion
liquid
opposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017007178A
Other languages
Japanese (ja)
Other versions
JP6853674B2 (en
Inventor
植木 哲
Satoru Ueki
哲 植木
康寿之 長島
Yasuyuki Nagashima
康寿之 長島
信吾 大野
Shingo Ono
信吾 大野
勇樹 佐竹
Yuki Satake
勇樹 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2017007178A priority Critical patent/JP6853674B2/en
Publication of JP2018115713A publication Critical patent/JP2018115713A/en
Application granted granted Critical
Publication of JP6853674B2 publication Critical patent/JP6853674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress generation of noise caused by cavitation breakdown without lowering vibration isolation characteristics with a simple structure.SOLUTION: A restriction passage 24 includes: a first communication part 26 opening to a first liquid chamber; a second communication part 27 opening to a second liquid chamber; and a main body flow passage 25 for communicating the first communication part and the second communication part. Out of an internal surface of the main body flow passage, at a pair of opposing surfaces 25a opposing to each other, a plurality of projection parts 34 projecting in the opposing directions opposing to each other are provided along a flow passage direction of the main body flow passage 25. The projection part provided on one opposing surface and, out of the other opposing surface, a portion located between projection parts adjacent to each other in the flow passage direction oppose to each other in the opposing direction. An interval X between the pair of opposing surfaces is larger than two times of the projection height Y from the opposing surface of the projection part.SELECTED DRAWING: Figure 2

Description

本発明は、例えば自動車や産業機械等に適用され、エンジン等の振動発生部の振動を吸収および減衰する防振装置に関する。   The present invention relates to a vibration isolator that is applied to, for example, automobiles and industrial machines and absorbs and attenuates vibrations of a vibration generating unit such as an engine.

この種の防振装置として、従来から、振動発生部および振動受部のうちの一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、これらの両取付部材を連結する弾性体と、液体が封入された第1取付部材内の液室を主液室と副液室とに区画する仕切部材と、を備える構成が知られている。仕切部材には、主液室と副液室とを連通する制限通路が形成されている。この防振装置では、振動入力時に、両取付部材が弾性体を弾性変形させながら相対的に変位し、主液室の液圧を変動させて制限通路に液体を流通させることで、振動を吸収および減衰している。   Conventionally, as this type of vibration isolator, a cylindrical first attachment member connected to one of the vibration generating portion and the vibration receiving portion, a second attachment member connected to the other, and both of these attachments A configuration is known that includes an elastic body that couples members, and a partition member that partitions a liquid chamber in a first mounting member in which a liquid is sealed into a main liquid chamber and a sub liquid chamber. The partition member is formed with a restriction passage that communicates the main liquid chamber and the sub liquid chamber. In this vibration isolator, at the time of vibration input, both mounting members are relatively displaced while elastically deforming the elastic body, and the vibration is absorbed by changing the liquid pressure in the main liquid chamber and flowing the liquid through the restricted passage. And is decaying.

ところで、この防振装置では、例えば路面の凹凸等から大きな荷重(振動)が入力され、主液室の液圧が急激に上昇した後、弾性体のリバウンド等によって逆方向に荷重が入力されたときに、主液室が急激に負圧化されることがある。すると、この急激な負圧化により液中に多数の気泡が生成されるキャビテーションが発生し、さらに生成した気泡が崩壊するキャビテーション崩壊に起因して、異音が生じることがある。
そこで、例えば下記特許文献1に示される防振装置のように、制限通路内に弁体を設けることで、大きな振幅の振動が入力されたときであっても、主液室の負圧化を抑制する構成が知られている。
By the way, in this vibration isolator, for example, a large load (vibration) is input from the unevenness of the road surface, etc., and the load is input in the reverse direction due to the rebound of the elastic body after the fluid pressure in the main fluid chamber suddenly increases. Sometimes, the main liquid chamber is suddenly depressurized. Then, cavitation in which a large number of bubbles are generated in the liquid due to this sudden negative pressure is generated, and abnormal noise may be generated due to cavitation collapse in which the generated bubbles collapse.
Therefore, for example, by providing a valve body in the restriction passage as in the vibration isolator shown in Patent Document 1 below, the main liquid chamber can be negatively pressured even when large amplitude vibration is input. Suppressing configurations are known.

特開2012−172832号公報JP2012-172832A

しかしながら、前記従来の防振装置では、弁体が設けられることで構造が複雑になり、弁体のチューニングも必要となるため、製造コストが増加するといった課題がある。また、弁体を設けることで設計自由度が低下し、結果として防振特性が低下するおそれもある。   However, in the conventional vibration isolator, since the structure is complicated by providing the valve body, and tuning of the valve body is necessary, there is a problem that the manufacturing cost increases. Further, the provision of the valve body reduces the degree of freedom in design, and as a result, the vibration isolation characteristics may be reduced.

本発明は前記事情に鑑みてなされたもので、簡易な構造で防振特性を低下させることなく、キャビテーション崩壊に起因する異音の発生を抑えることができる防振装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a vibration isolator capable of suppressing the occurrence of abnormal noise due to cavitation collapse without reducing the vibration isolation characteristics with a simple structure. To do.

前記課題を解決するために、本発明は以下の手段を提案している。
本発明に係る防振装置は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、これら両取付部材を弾性的に連結する弾性体と、液体が封入された前記第1取付部材内の液室を第1液室と第2液室とに区画する仕切部材と、を備えるとともに、前記仕切部材に、前記第1液室と前記第2液室とを連通する制限通路が形成された液体封入型の防振装置であって、前記制限通路は、前記第1液室に開口する第1連通部、前記第2液室に開口する第2連通部、および前記第1連通部と前記第2連通部とを連通する本体流路を備え、前記本体流路の内面のうち、互いに対向する一対の対向面には、互いに対向する対向方向に突出する突部が、前記本体流路の流路方向に沿って複数設けられ、一方の前記対向面に設けられた前記突部と、他方の前記対向面のうち、前記流路方向で互いに隣り合う前記突部同士の間に位置する部分と、が、前記対向方向で互いに対向し、前記一対の対向面間の間隔が、前記突部の前記対向面からの突出高さの2倍より大きくなっていることを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
A vibration isolator according to the present invention includes a cylindrical first mounting member coupled to one of a vibration generating unit and a vibration receiving unit, a second mounting member coupled to the other, and both the mounting members. An elastic body that elastically connects the liquid chamber, and a partition member that divides the liquid chamber in the first mounting member in which the liquid is sealed into a first liquid chamber and a second liquid chamber, and the partition member A liquid-filled vibration isolator having a restriction passage communicating the first liquid chamber and the second liquid chamber, wherein the restriction passage opens to the first liquid chamber. A second communication portion that opens to the second liquid chamber, and a main body channel that communicates the first communication portion and the second communication portion, and a pair of opposed inner surfaces of the main body channel. On the opposing surface, there are a plurality of protrusions protruding in the opposing direction facing each other along the channel direction of the main body channel. The protruding portion provided on one of the opposing surfaces and a portion of the other opposing surface located between the protruding portions adjacent to each other in the flow path direction are in the opposing direction. And the distance between the pair of facing surfaces is greater than twice the height of the protrusion protruding from the facing surface.

本発明によれば、振動入力時に、両取付部材が弾性体を弾性変形させながら相対的に変位して第1液室および第2液室の液圧が変動し、液体が制限通路を通って第1液室と第2液室との間を流通しようとする。このとき液体は、第1連通部および第2連通部のうちの一方を通して制限通路に流入し、本体流路内を通過した後、第1連通部および第2連通部のうちの他方を通して制限通路から流出する。
ここで、防振装置に大きな荷重(振動)が入力されると、液体が、一対の対向面に設けられた突部に衝突しながら本体流路を流通するので、液体が突部に衝突したことによるエネルギー損失、および液体と突部との間の摩擦によるエネルギー損失等が生ずることで、制限通路を流通する液体の圧力損失を高めることが可能になり、第1連通部および第2連通部を通過する液体の流速を低減させることができる。これにより、第1連通部および第2連通部のうちの一方を通過して第1液室または第2液室に流入した液体と、第1液室内または第2液室内の液体と、の間で生じる流速差を小さく抑え、流速差に起因する渦の発生、およびこの渦に起因する気泡の発生を抑えることができる。
また、本体流路における一対の対向面間の間隔が、突部の対向面からの突出高さの2倍より大きくなっているので、本体流路のなかで、突部に干渉することなく流路方向に延びる領域が確保されることとなる。したがって、防振装置に通常の荷重が入力されたときには、前述の圧力損失を生じさせにくくすることが可能になり、所期した防振特性を安定して発揮させることができる。
According to the present invention, at the time of vibration input, both the attachment members are relatively displaced while elastically deforming the elastic body, the liquid pressure in the first liquid chamber and the second liquid chamber fluctuates, and the liquid passes through the restriction passage. An attempt is made to flow between the first liquid chamber and the second liquid chamber. At this time, the liquid flows into the restriction passage through one of the first communication portion and the second communication portion, passes through the main body flow path, and then passes through the other of the first communication portion and the second communication portion. Spill from.
Here, when a large load (vibration) is input to the vibration isolator, the liquid circulates through the main body channel while colliding with the protrusions provided on the pair of opposed surfaces, so that the liquid collides with the protrusions. It is possible to increase the pressure loss of the liquid flowing through the restricted passage, and the first communication portion and the second communication portion. The flow rate of the liquid passing through can be reduced. As a result, between the liquid that has passed through one of the first communication portion and the second communication portion and has flowed into the first liquid chamber or the second liquid chamber, and the liquid in the first liquid chamber or the second liquid chamber. The flow velocity difference caused by the vortex can be kept small, and the generation of vortices due to the flow velocity difference and the generation of bubbles due to the vortices can be suppressed.
In addition, since the interval between the pair of opposing surfaces in the main body channel is larger than twice the height of the protrusion from the opposing surface, the main channel can flow without interfering with the projections. An area extending in the road direction is secured. Therefore, when a normal load is input to the vibration isolator, it is possible to make the above-described pressure loss difficult to occur, and the desired vibration isolating characteristics can be stably exhibited.

ここで、前記第1連通部および前記第2連通部のうちの少なくとも一方は、前記第1液室または前記第2液室に、前記流路方向および前記対向方向と直交する方向に開口してもよい。   Here, at least one of the first communication portion and the second communication portion opens into the first liquid chamber or the second liquid chamber in a direction orthogonal to the flow path direction and the facing direction. Also good.

この場合、本体流路内を突部に沿いながら流通する液体が、その流れの向きが直角に曲げられて、第1連通部および第2連通部のうちの一方から第1液室または第2液室に流入することとなる。したがって、防振装置に大きな荷重が入力されたとしても、第1液室または第2液室に流入する液体の流速を確実に低減することができる。   In this case, the liquid flowing along the protrusion in the main body flow path is bent at a right angle, and the first liquid chamber or the second liquid is supplied from one of the first communication portion and the second communication portion. It will flow into the liquid chamber. Therefore, even if a large load is input to the vibration isolator, the flow rate of the liquid flowing into the first liquid chamber or the second liquid chamber can be reliably reduced.

また、前記第1連通部および前記第2連通部のうちの少なくとも一方は、前記第1液室または前記第2液室に面する障壁を貫く複数の細孔を備えてもよい。   In addition, at least one of the first communication part and the second communication part may include a plurality of pores that pass through a barrier facing the first liquid chamber or the second liquid chamber.

この場合、液体が、第1連通部および第2連通部のうちの一方に備えられた複数の細孔を通して、第1液室または第2液室に流入する際に、これらの細孔が形成された障壁により圧力損失させられながら各細孔を流通するので、第1液室または第2液室に流入する液体の流速を抑えることができる。しかも、液体が、単一の細孔ではなく複数の細孔を流通するので、液体を複数に分岐させて流通させることが可能になり、個々の細孔を通過した液体の流速を低減させることができる。さらに、仮に制限通路で気泡が発生したとしても、細孔が複数配置されているので、発生した気泡同士を、第1液室内または第2液室内で離間させることが可能になり、気泡が合流して成長するのを抑えて気泡を細かく分散させた状態に維持しやすくすることができる。   In this case, when the liquid flows into the first liquid chamber or the second liquid chamber through the plurality of pores provided in one of the first communication portion and the second communication portion, these pores are formed. Since each pore circulates while being subjected to pressure loss by the formed barrier, the flow rate of the liquid flowing into the first liquid chamber or the second liquid chamber can be suppressed. In addition, since the liquid flows through a plurality of pores instead of a single pore, it is possible to divide the liquid into a plurality of channels and reduce the flow rate of the liquid that has passed through the individual pores. Can do. Furthermore, even if bubbles are generated in the restricted passage, since a plurality of pores are arranged, the generated bubbles can be separated from each other in the first liquid chamber or the second liquid chamber, and the bubbles merge. Thus, the growth can be suppressed and the bubbles can be easily maintained in a finely dispersed state.

また、前記第1連通部および前記第2連通部のうちの少なくとも一方は、前記本体流路のうち、前記突部が前記流路方向に沿って複数配設された部分から前記流路方向に離れた部分に開口してもよい。   In addition, at least one of the first communication portion and the second communication portion may be configured such that, in the main body flow path, a plurality of the protrusions are disposed along the flow path direction from the portion in the flow path direction. You may open in the distant part.

この場合、防振装置に大きな荷重が入力されたときに、液体の流速を複数の突部によって前述のように低減させた後に、液体を第1液室または第2液室に流入させることができる。したがって、防振装置に大きな荷重が入力されたとしても、第1液室または第2液室に流入する液体の流速をより一層確実に低減することができる。   In this case, when a large load is input to the vibration isolator, the liquid is allowed to flow into the first liquid chamber or the second liquid chamber after the flow velocity of the liquid is reduced as described above by the plurality of protrusions. it can. Therefore, even if a large load is input to the vibration isolator, the flow rate of the liquid flowing into the first liquid chamber or the second liquid chamber can be further reliably reduced.

本発明によれば、簡易な構造で防振特性を低下させることなく、キャビテーション崩壊に起因する異音の発生を抑えることができる。   According to the present invention, it is possible to suppress the generation of abnormal noise caused by cavitation collapse without reducing the vibration isolation characteristics with a simple structure.

本発明の一実施形態に係る防振装置の縦断面図である。It is a longitudinal cross-sectional view of the vibration isolator which concerns on one Embodiment of this invention. 図1に示す防振装置を構成する仕切部材の平面図である。It is a top view of the partition member which comprises the vibration isolator shown in FIG.

以下、本発明に係る防振装置の実施の形態について、図1および図2に基づいて説明する。
図1に示すように、防振装置10は、振動発生部および振動受部のいずれか一方に連結される筒状の第1取付部材11と、振動発生部および振動受部のいずれか他方に連結される第2取付部材12と、第1取付部材11および第2取付部材12を互いに弾性的に連結する弾性体13と、第1取付部材11内を後述する主液室(第1液室)14と副液室(第2液室)15とに区画する仕切部材16と、を備える液体封入型の防振装置である。
Hereinafter, an embodiment of a vibration isolator according to the present invention will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1, the vibration isolator 10 includes a cylindrical first attachment member 11 connected to one of the vibration generating unit and the vibration receiving unit, and one of the vibration generating unit and the vibration receiving unit. The second mounting member 12 to be connected, the elastic body 13 that elastically connects the first mounting member 11 and the second mounting member 12 to each other, and the main liquid chamber (first liquid chamber) to be described later in the first mounting member 11 ) 14 and a partition member 16 that divides into a secondary liquid chamber (second liquid chamber) 15.

以下、第1取付部材11の中心軸線Oに沿う方向を軸方向という。また、軸方向に沿う第2取付部材12側を上側、仕切部材16側を下側という。また、防振装置10を軸方向から見た平面視において、中心軸線Oに直交する方向を径方向といい、中心軸線O周りに周回する方向を周方向という。
なお、第1取付部材11、第2取付部材12、および弾性体13はそれぞれ、平面視した状態で円形状若しくは円環状に形成されるとともに、中心軸線Oと同軸に配置されている。
Hereinafter, the direction along the central axis O of the first mounting member 11 is referred to as an axial direction. Further, the second mounting member 12 side along the axial direction is referred to as an upper side, and the partition member 16 side is referred to as a lower side. Further, in a plan view of the vibration isolator 10 viewed from the axial direction, a direction orthogonal to the central axis O is referred to as a radial direction, and a direction around the central axis O is referred to as a circumferential direction.
The first mounting member 11, the second mounting member 12, and the elastic body 13 are each formed in a circular shape or an annular shape in a plan view, and are disposed coaxially with the central axis O.

この防振装置10が例えば自動車に装着される場合、第2取付部材12が振動発生部としてのエンジンに連結され、第1取付部材11が振動受部としての車体に連結される。これにより、エンジンの振動が車体に伝達することが抑えられる。   When the vibration isolator 10 is mounted on, for example, an automobile, the second mounting member 12 is connected to an engine as a vibration generating unit, and the first mounting member 11 is connected to a vehicle body as a vibration receiving unit. This suppresses transmission of engine vibration to the vehicle body.

第2取付部材12は、軸方向に延在する柱状部材であり、下端部が下方に向けて膨出する半球面状に形成されるとともに、この半球面状の下端部より上方に鍔部12aを有している。第2取付部材12には、その上端面から下方に向かって延びるねじ孔12bが穿設され、このねじ孔12bにエンジン側の取付け具となるボルト(図示せず)が螺合される。第2取付部材12は、弾性体13を介して、第1取付部材11の上端開口部に配置されている。   The second mounting member 12 is a columnar member extending in the axial direction, and is formed in a hemispherical shape whose lower end bulges downward, and a flange 12a above the lower end of the hemispherical shape. have. A screw hole 12b extending downward from the upper end surface of the second mounting member 12 is formed, and a bolt (not shown) serving as an engine-side mounting tool is screwed into the screw hole 12b. The second mounting member 12 is disposed in the upper end opening of the first mounting member 11 via the elastic body 13.

弾性体13は、第1取付部材11の上端開口部と第2取付部材12の下部の外周面とにそれぞれ加硫接着されて、これらの間に介在させられたゴム体であって、第1取付部材11の上端開口部を上側から閉塞している。弾性体13は、その上端部が第2取付部材12の鍔部12aに当接することで、第2取付部材12に充分に密着し、第2取付部材12の変位により良好に追従するようになっている。弾性体13の下端部には、第1取付部材11における内周面と下端開口縁の内周部とを液密に被覆するゴム膜17が一体に形成されている。なお、弾性体13としては、ゴム以外にも合成樹脂等からなる弾性体を用いることも可能である。   The elastic body 13 is a rubber body that is vulcanized and bonded to the upper end opening of the first mounting member 11 and the outer peripheral surface of the lower portion of the second mounting member 12, respectively, and interposed between them. The upper end opening of the mounting member 11 is closed from above. The elastic body 13 is sufficiently in close contact with the second mounting member 12 by the upper end of the elastic body 13 coming into contact with the flange portion 12a of the second mounting member 12, and follows better due to the displacement of the second mounting member 12. ing. A rubber film 17 is integrally formed on the lower end portion of the elastic body 13 to liquid-tightly cover the inner peripheral surface of the first mounting member 11 and the inner peripheral portion of the lower end opening edge. As the elastic body 13, an elastic body made of synthetic resin or the like can be used in addition to rubber.

第1取付部材11は、下端部にフランジ18を有する円筒状に形成され、フランジ18を介して振動受部としての車体等に連結される。第1取付部材11の内部のうち、弾性体13より下方に位置する部分が、液室19となっている。本実施形態では、第1取付部材11の下端部に仕切部材16が設けられ、さらにこの仕切部材16の下方にダイヤフラム20が設けられている。仕切部材16の外周部22の上面は、第1取付部材11の下端開口縁に当接している。   The first attachment member 11 is formed in a cylindrical shape having a flange 18 at a lower end portion, and is connected to a vehicle body or the like as a vibration receiving portion via the flange 18. A portion of the inside of the first attachment member 11 located below the elastic body 13 is a liquid chamber 19. In the present embodiment, a partition member 16 is provided at the lower end portion of the first attachment member 11, and a diaphragm 20 is further provided below the partition member 16. The upper surface of the outer peripheral portion 22 of the partition member 16 is in contact with the lower end opening edge of the first mounting member 11.

ダイヤフラム20は、ゴムや軟質樹脂等の弾性材料からなり、有底円筒状に形成されている。ダイヤフラム20の上端部は、仕切部材16の外周部22の下面と、仕切部材16より下方に位置するリング状の保持具21と、によって軸方向に挟まれている。仕切部材16の外周部22の上面に、ゴム膜17の下端部が液密に当接している。   The diaphragm 20 is made of an elastic material such as rubber or soft resin, and has a bottomed cylindrical shape. The upper end portion of the diaphragm 20 is sandwiched between the lower surface of the outer peripheral portion 22 of the partition member 16 and the ring-shaped holder 21 positioned below the partition member 16 in the axial direction. The lower end portion of the rubber film 17 is in liquid-tight contact with the upper surface of the outer peripheral portion 22 of the partition member 16.

このような構成のもとに、第1取付部材11の下端開口縁に、仕切部材16の外周部22、および保持具21が下方に向けてこの順に配置されるとともに、ねじ23によって一体に固定されることにより、ダイヤフラム20は、仕切部材16を介して第1取付部材11の下端開口部に取り付けられている。なお図示の例では、ダイヤフラム20の底部が、外周側で深く中央部で浅い形状になっている。ただし、ダイヤフラム20の形状としては、このような形状以外にも、従来公知の種々の形状を採用することができる。   Under such a configuration, the outer peripheral portion 22 of the partition member 16 and the holder 21 are arranged in this order on the lower end opening edge of the first mounting member 11 in this order downward, and are fixed integrally with the screw 23. Thus, the diaphragm 20 is attached to the lower end opening of the first attachment member 11 via the partition member 16. In the illustrated example, the bottom portion of the diaphragm 20 has a shape that is deep on the outer peripheral side and shallow at the center. However, as the shape of the diaphragm 20, various conventionally known shapes can be adopted in addition to such a shape.

そして、このように第1取付部材11に仕切部材16を介してダイヤフラム20が取り付けられたことにより、前記したように第1取付部材11内に液室19が形成されている。液室19は、第1取付部材11内、すなわち平面視して第1取付部材11の内側に配設され、弾性体13とダイヤフラム20とにより液密に封止された密閉空間となっている。そして、この液室19に液体Lが封入(充填)されている。   As described above, the liquid chamber 19 is formed in the first mounting member 11 by attaching the diaphragm 20 to the first mounting member 11 via the partition member 16 in this manner. The liquid chamber 19 is disposed in the first mounting member 11, that is, inside the first mounting member 11 in plan view, and is a sealed space that is liquid-tightly sealed by the elastic body 13 and the diaphragm 20. . The liquid chamber 19 is filled (filled) with the liquid L.

液室19は、仕切部材16によって主液室14と副液室15とに区画されている。主液室14は、弾性体13の下面13aを壁面の一部として形成されたもので、この弾性体13と第1取付部材11の内周面を液密に覆うゴム膜17と仕切部材16とによって囲まれた空間であり、弾性体13の変形によって内容積が変化する。副液室15は、ダイヤフラム20と仕切部材16とによって囲まれた空間であり、ダイヤフラム20の変形によって内容積が変化する。このような構成からなる防振装置10は、主液室14が鉛直方向上側に位置し、副液室15が鉛直方向下側に位置するように取り付けられて用いられる、圧縮式の装置である。   The liquid chamber 19 is divided into a main liquid chamber 14 and a sub liquid chamber 15 by a partition member 16. The main liquid chamber 14 is formed by using the lower surface 13a of the elastic body 13 as a part of the wall surface. The rubber film 17 and the partition member 16 that cover the elastic body 13 and the inner peripheral surface of the first mounting member 11 in a liquid-tight manner. And the inner volume changes due to the deformation of the elastic body 13. The auxiliary liquid chamber 15 is a space surrounded by the diaphragm 20 and the partition member 16, and the internal volume changes due to the deformation of the diaphragm 20. The vibration isolator 10 having such a configuration is a compression-type device that is mounted and used so that the main liquid chamber 14 is positioned on the upper side in the vertical direction and the auxiliary liquid chamber 15 is positioned on the lower side in the vertical direction. .

仕切部材16には、主液室14と副液室15とを連通する制限通路24が設けられている。制限通路24は、図2に示されるように、仕切部材16内に配置された本体流路25と、本体流路25と主液室14とを連通する第1連通部26と、本体流路25と副液室15とを連通する第2連通部27と、を備えている。   The partition member 16 is provided with a restriction passage 24 that allows the main liquid chamber 14 and the sub liquid chamber 15 to communicate with each other. As shown in FIG. 2, the restriction passage 24 includes a main body flow path 25 disposed in the partition member 16, a first communication portion 26 that connects the main body flow path 25 and the main liquid chamber 14, and a main body flow path. 25 and a second communication portion 27 that communicates the auxiliary liquid chamber 15 with each other.

本体流路25は、仕切部材16内で周方向に沿って延びていて、本体流路25の流路方向と周方向とは同等の方向になっている。なお、本体流路25は、周方向に交差する方向に延びてもよい。本体流路25は、中心軸線Oと同軸に配置された円弧状に形成され、周方向に沿って仕切部材16のほぼ全周にわたって延びている。本体流路25は、仕切部材16のうち、主液室14に面する第1障壁28、および副液室15に面する第2障壁29により画成されている。第1障壁28および第2障壁29はいずれも、表裏面が軸方向を向く板状に形成されている。第1障壁28は、本体流路25と主液室14とにより軸方向に挟まれ、本体流路25と主液室14との間に位置している。第2障壁29は、本体流路25と副液室15とにより軸方向に挟まれ、本体流路25と副液室15との間に位置している。   The main body flow path 25 extends along the circumferential direction in the partition member 16, and the flow path direction and the circumferential direction of the main body flow path 25 are in the same direction. In addition, the main body flow path 25 may extend in a direction intersecting the circumferential direction. The main body flow path 25 is formed in an arc shape arranged coaxially with the central axis O, and extends over substantially the entire circumference of the partition member 16 along the circumferential direction. The main body flow path 25 is defined by a first barrier 28 facing the main liquid chamber 14 and a second barrier 29 facing the sub liquid chamber 15 in the partition member 16. Both the first barrier 28 and the second barrier 29 are formed in a plate shape whose front and back surfaces face the axial direction. The first barrier 28 is sandwiched between the main body flow path 25 and the main liquid chamber 14 in the axial direction, and is positioned between the main body flow path 25 and the main liquid chamber 14. The second barrier 29 is sandwiched between the main body flow path 25 and the auxiliary liquid chamber 15 in the axial direction, and is positioned between the main body flow path 25 and the auxiliary liquid chamber 15.

第2連通部27は、第2障壁29を軸方向に貫通する1つの開口部32を備えている。開口部32は、第2障壁29のうち、本体流路25の周方向に沿う一方の端部を形成する部分に配置されている。
第1連通部26は、第1障壁28を軸方向に貫通し、周方向(本体流路25の流路方向)に沿って配置された複数の細孔31を備えている。複数の細孔31は、第1障壁28のうち、本体流路25の周方向に沿う他方の端部を形成する部分に配置されている。複数の細孔31の少なくとも一部は、中心軸線Oを中心とする同心円上に、周方向に間隔をあけて配置された孔列をなしている。
以下では、周方向に沿って、本体流路25の前記一方の端部側を一方側といい、前記他方の端部側を他方側という。
The second communication portion 27 includes one opening 32 that penetrates the second barrier 29 in the axial direction. The opening 32 is disposed in a portion of the second barrier 29 that forms one end along the circumferential direction of the main body flow path 25.
The first communication portion 26 includes a plurality of pores 31 that penetrate the first barrier 28 in the axial direction and are arranged along the circumferential direction (the flow path direction of the main body flow path 25). The plurality of pores 31 are disposed in a portion of the first barrier 28 that forms the other end along the circumferential direction of the main body flow path 25. At least some of the plurality of pores 31 form a row of holes arranged on a concentric circle with the central axis O as the center and spaced in the circumferential direction.
In the following, along the circumferential direction, the one end side of the main body channel 25 is referred to as one side, and the other end side is referred to as the other side.

複数の細孔31はいずれも、本体流路25の流路断面積より小さく、平面視において第1障壁28および本体流路25の各内側に配置されている。図示の例では、複数の細孔31の長さは、互いに同等になっている。複数の細孔31の内径は、互いに同等になっている。なお、複数の細孔31の長さおよび内径をそれぞれ互いに異ならせてもよい。
細孔31は、第1障壁28に径方向に間隔をあけて複数形成されている。すなわち、前記孔列が、第1障壁28に径方向に間隔をあけて複数配置されている。図示の例では、細孔31は、第1障壁28に径方向に間隔をあけて2つ形成されている。径方向で互いに隣り合う細孔31は、周方向の位置が互いにずらされて配置されている。なお、複数の細孔31は、第1障壁28に、周方向に沿う同等の位置に径方向に間隔をあけて配置してもよい。
Each of the plurality of pores 31 is smaller than the channel cross-sectional area of the main body channel 25 and is disposed inside each of the first barrier 28 and the main body channel 25 in plan view. In the illustrated example, the lengths of the plurality of pores 31 are equal to each other. The inner diameters of the plurality of pores 31 are equal to each other. The lengths and the inner diameters of the plurality of pores 31 may be different from each other.
A plurality of the pores 31 are formed in the first barrier 28 at intervals in the radial direction. That is, a plurality of the hole arrays are arranged in the first barrier 28 with a space in the radial direction. In the example shown in the figure, two pores 31 are formed in the first barrier 28 with a gap in the radial direction. The pores 31 adjacent to each other in the radial direction are arranged with their circumferential positions shifted from each other. Note that the plurality of pores 31 may be disposed in the first barrier 28 at radial positions at equal positions along the circumferential direction.

複数の細孔31はいずれも、軸方向に沿って本体流路25側から主液室14側に向かうに従い、つまり軸方向の内側から外側に向かうに従い漸次縮径し、テーパー角が例えば約30度の円錐台状に形成されていて、全ての細孔31において、主液室14側の開口端(以下、「開口端」という)が内径および流路断面積の最小部分となっている。細孔31の開口端の開口面積は、例えば25mm以下、好ましくは2mm以上8mm以下としてもよい。
なお、複数の細孔31それぞれの開口端における開口面積を複数の細孔31全てについて合計した、第1連通部26全体の流路断面積は、本体流路25における流路断面積の最小値の例えば1.8倍以上4.0倍以下としてもよい。
Each of the plurality of pores 31 is gradually reduced in diameter along the axial direction from the main body flow path 25 side to the main liquid chamber 14 side, that is, from the inner side to the outer side in the axial direction, and the taper angle is, for example, about 30 The opening end on the main liquid chamber 14 side (hereinafter referred to as “opening end”) is the smallest part of the inner diameter and the flow path cross-sectional area. The opening area of the opening end of the pore 31 may be, for example, 25 mm 2 or less, preferably 2 mm 2 or more and 8 mm 2 or less.
In addition, the flow path cross-sectional area of the entire first communication portion 26 obtained by adding the opening areas at the open ends of the plurality of fine holes 31 for all of the plurality of fine holes 31 is the minimum value of the flow path cross-sectional area of the main body flow path 25. For example, it may be 1.8 times or more and 4.0 times or less.

そして、本実施形態では、本体流路25の内面のうち、互いに対向する一対の対向面25aに、互いに対向する対向方向に突出する突部34が周方向に沿って複数設けられている。
図示の例では、突部34は、本体流路25の内面のうち、互いに径方向に対向する一対の対向面25aに形成されている。これにより、第1連通部26が主液室14に開口する方向が、周方向および前記対向方向と直交する方向と一致する。また、第2連通部27が副液室15に開口する方向も、周方向および前記対向方向と直交する方向と一致している。
In the present embodiment, a plurality of protrusions 34 projecting in the facing directions facing each other are provided on the pair of facing surfaces 25a facing each other among the inner surfaces of the main body flow path 25 along the circumferential direction.
In the illustrated example, the protrusions 34 are formed on a pair of opposed surfaces 25 a that are radially opposed to each other on the inner surface of the main body flow path 25. Thus, the direction in which the first communication portion 26 opens into the main liquid chamber 14 coincides with the circumferential direction and the direction orthogonal to the facing direction. Further, the direction in which the second communication portion 27 opens into the auxiliary liquid chamber 15 also coincides with the circumferential direction and the direction orthogonal to the facing direction.

なお、突部34は、本体流路25の内面のうち、例えば互いに軸方向に対向する一対の対向面に形成する等、適宜変更してもよい。この構成において、第1連通部26および第2連通部27が主液室14または副液室15に開口する方向を、径方向としてもよい。
また、第1連通部26および第2連通部27のうちの第1連通部26のみを、主液室14に、周方向および前記対向方向と直交する方向に開口させてもよいし、第1連通部26および第2連通部27の双方を、主液室14または副液室15に、周方向および前記対向方向と直交する方向とは異なる方向に開口させてもよい。
In addition, you may change suitably the protrusion 34, for example in the inner surface of the main body flow path 25, for example, forming in a pair of opposing surface which mutually opposes an axial direction. In this configuration, the direction in which the first communication portion 26 and the second communication portion 27 open to the main liquid chamber 14 or the sub liquid chamber 15 may be the radial direction.
Further, only the first communication portion 26 of the first communication portion 26 and the second communication portion 27 may be opened in the main liquid chamber 14 in the circumferential direction and the direction orthogonal to the facing direction, or the first Both the communication portion 26 and the second communication portion 27 may be opened in the main liquid chamber 14 or the sub liquid chamber 15 in a direction different from the circumferential direction and the direction orthogonal to the facing direction.

複数の突部34は、互いに同等の形状で同等の大きさとなっている。図示の例では、複数の突部34は、互いに同一の形状で同一の大きさとなっている。突部34は、軸方向から見て、3つの角部のうちの2つが本体流路25の対向面25aに位置する三角形状を呈する。図示の例では、突部34は、軸方向から見て、頂角が鈍角となる二等辺三角形状を呈する。突部34は、本体流路25の内面に、本体流路25における半周以上にわたって配設されている。複数の突部34は、周方向に連ねられて配設されている。   The plurality of protrusions 34 have the same shape and the same size. In the illustrated example, the plurality of protrusions 34 have the same shape and the same size. The protrusion 34 has a triangular shape in which two of the three corners are located on the facing surface 25 a of the main body flow path 25 when viewed from the axial direction. In the illustrated example, the protrusion 34 has an isosceles triangle shape with an apex angle being an obtuse angle when viewed from the axial direction. The protrusion 34 is disposed on the inner surface of the main body flow path 25 over a half circumference of the main body flow path 25. The plurality of protrusions 34 are arranged in the circumferential direction.

一方の対向面25aに設けられた突部34と、他方の対向面25aのうち、周方向で互いに隣り合う突部34同士の間に位置する部分と、が、前記対向方向で互いに対向している。図示の例では、一方の対向面25aに設けられた突部34の頂部が、他方の対向面25aのうち、周方向で互いに隣り合う突部34同士の間に位置する部分に、前記対向方向で対向している。以上の構成において、本体流路25のうち、突部34が周方向に沿って複数配設された部分(以下、突部領域という)の平面視形状は、径方向に屈曲しつつ周方向に延びる波形状となっている。図示の例では、本体流路25の前記突部領域の平面視形状は、その全周にわたって同等の振幅、かつ同等の周期で、径方向に屈曲しつつ周方向に延びる波形状となっている。
そして、一対の対向面25a間の間隔Xが、突部34の対向面25aからの突出高さYの2倍より大きくなっている。前記間隔Xは、一対の対向面25aそれぞれにおける、突部34の非配設部分、若しくは突部34との接続部分を、周方向(流路方向)に延在させた仮想面同士の間の、前記突部領域における径方向の距離となっている。前記突出高さYは、前記仮想面から突部34の頂部までの径方向の距離となっている。
A protrusion 34 provided on one facing surface 25a and a portion of the other facing surface 25a located between the protrusions 34 adjacent to each other in the circumferential direction face each other in the facing direction. Yes. In the example shown in the drawing, the top of the protrusion 34 provided on one facing surface 25a is located on the portion of the other facing surface 25a located between the protrusions 34 adjacent to each other in the circumferential direction. Are facing each other. In the configuration described above, the planar view shape of a portion (hereinafter, referred to as a protrusion region) in which a plurality of protrusions 34 are disposed along the circumferential direction in the main body flow path 25 is circumferentially bent in the radial direction. It has a wave shape that extends. In the illustrated example, the shape of the projection region of the main body channel 25 in plan view is a wave shape extending in the circumferential direction while being bent in the radial direction with the same amplitude and the same period over the entire circumference. .
And the space | interval X between a pair of opposing surfaces 25a is larger than 2 times the protrusion height Y from the opposing surface 25a of the protrusion 34. FIG. The interval X is defined between the virtual surfaces in which the non-arranged portions of the protrusions 34 or the connection portions with the protrusions 34 extend in the circumferential direction (flow channel direction) in each of the pair of opposing surfaces 25a. The radial distance in the projecting region. The protrusion height Y is a radial distance from the virtual surface to the top of the protrusion 34.

第1連通部26および第2連通部27のうちの少なくとも一方は、本体流路25の前記突部領域から周方向に離れた部分に開口している。図示の例では、第1連通部26は、本体流路25のうち、前記突部領域に対して周方向の他方側に連なる部分から、周方向の他方側の端縁にわたる領域に開口している。第2連通部27は、本体流路25のうち、前記突部領域に対して周方向の一方側に連なる部分から、周方向の一方側の端縁にわたる領域に開口している。第1連通部26および第2連通部27それぞれの周方向の長さは、本体流路25の前記突部領域における周方向の長さより短くなっている。第1連通部26の周方向の長さは、第2連通部27の周方向の長さより長くなっている。   At least one of the first communication portion 26 and the second communication portion 27 is open to a portion of the main body flow path 25 that is away from the protrusion region in the circumferential direction. In the example shown in the drawing, the first communication portion 26 opens from the portion of the main body channel 25 that extends from the other side in the circumferential direction to the protruding region to the region that extends from the other circumferential edge. Yes. The second communication portion 27 opens from a portion of the main body flow path 25 that extends from one side in the circumferential direction to the protruding region to a region that extends from one end in the circumferential direction. The circumferential lengths of the first communication portion 26 and the second communication portion 27 are shorter than the circumferential length in the projecting region of the main body flow path 25. The circumferential length of the first communicating portion 26 is longer than the circumferential length of the second communicating portion 27.

本体流路25の内面のうち、軸方向に沿う主液室14側を向く底面における周方向の他方側の端部には、周方向の一方側から他方側に向かうに従い漸次、軸方向の流路幅を狭くする傾斜面25bが形成されている。傾斜面25bの周方向の長さは、本体流路25のうち、前記突部領域に対して周方向の他方側に連なる部分から、周方向の他方側の端縁にわたる領域の周方向の長さの半分程度となっている。傾斜面25bは、本体流路25における周方向の他方側の端縁に達している。本体流路25のうち、周方向の他方側の端縁における軸方向の流路幅は、他の部分における軸方向の流路幅の半分程度となっている。   Of the inner surface of the main body flow path 25, the end of the bottom surface facing the main liquid chamber 14 along the axial direction is gradually flown in the axial direction as it goes from one side of the circumferential direction to the other side. An inclined surface 25b for narrowing the road width is formed. The circumferential length of the inclined surface 25b is the length in the circumferential direction of the region extending from the portion of the main body channel 25 that is continuous with the other side in the circumferential direction to the protruding region to the other edge in the circumferential direction. It is about half of that. The inclined surface 25 b reaches the end edge on the other side in the circumferential direction of the main body flow path 25. Of the main body channel 25, the axial channel width at the other edge in the circumferential direction is about half of the axial channel width in the other part.

このような構成からなる防振装置10では、振動入力時に、両取付部材11、12が弾性体13を弾性変形させながら相対的に変位する。すると、主液室14の液圧が変動し、主液室14内の液体Lが制限通路24を通って副液室15に流入し、また、副液室15内の液体Lが制限通路24を通って主液室14に流入する。   In the vibration isolator 10 having such a configuration, both attachment members 11 and 12 are relatively displaced while elastically deforming the elastic body 13 at the time of vibration input. Then, the liquid pressure in the main liquid chamber 14 fluctuates, the liquid L in the main liquid chamber 14 flows into the sub liquid chamber 15 through the restriction passage 24, and the liquid L in the sub liquid chamber 15 flows into the restriction passage 24. Through the main liquid chamber 14.

そして本実施形態に係る防振装置10によれば、大きな荷重(振動)が入力されると、液体Lが、一対の対向面25aに設けられた突部34に衝突しながら本体流路25を流通するので、液体Lが突部34に衝突したことによるエネルギー損失、および液体Lと突部34との間の摩擦によるエネルギー損失等が生ずることで、制限通路24を流通する液体Lの圧力損失を高めることが可能になり、第1連通部26および第2連通部27を通過する液体Lの流速を低減させることができる。これにより、第1連通部26および第2連通部27のうちの一方を通過して主液室14または副液室15に流入した液体Lと、主液室14内または副液室15内の液体Lと、の間で生じる流速差を小さく抑え、流速差に起因する渦の発生、およびこの渦に起因する気泡の発生を抑えることができる。   And according to the vibration isolator 10 which concerns on this embodiment, when a big load (vibration) is input, the liquid L will collide with the protrusion 34 provided in a pair of opposing surface 25a, and the main body flow path 25 is made. Since the liquid L circulates, the energy loss due to the collision of the liquid L with the protrusion 34, the energy loss due to the friction between the liquid L and the protrusion 34, and the like occur, so that the pressure loss of the liquid L flowing through the restriction passage 24 occurs. And the flow velocity of the liquid L passing through the first communication portion 26 and the second communication portion 27 can be reduced. Accordingly, the liquid L that has passed through one of the first communication portion 26 and the second communication portion 27 and has flowed into the main liquid chamber 14 or the sub liquid chamber 15, and the main liquid chamber 14 or the sub liquid chamber 15. The difference in flow velocity generated between the liquid L and the liquid L can be suppressed, and the generation of vortices due to the flow velocity difference and the generation of bubbles due to the vortices can be suppressed.

また、本体流路25における一対の対向面25a間の間隔Xが、突部34の対向面25aからの突出高さYの2倍より大きくなっているので、本体流路25のなかで、突部34に干渉することなく周方向に延びる領域が確保されることとなる。したがって、防振装置10に通常の荷重が入力されたときには、前述の圧力損失を生じさせにくくすることが可能になり、所期した防振特性を安定して発揮させることができる。   Further, since the distance X between the pair of opposed surfaces 25a in the main body flow path 25 is larger than twice the protruding height Y of the protruding portion 34 from the opposed surface 25a, A region extending in the circumferential direction without interfering with the portion 34 is secured. Therefore, when a normal load is input to the vibration isolator 10, it is possible to make the above-mentioned pressure loss difficult to occur, and the desired vibration isolating characteristics can be stably exhibited.

また、第1連通部26および第2連通部27が、主液室14または副液室15に、周方向および前記対向方向と直交する軸方向に開口しているので、本体流路25内を突部34に沿いながら流通する液体Lが、その流れの向きが直角に曲げられて、第1連通部26および第2連通部27のうちの一方から主液室14または副液室15に流入することとなる。したがって、防振装置10に大きな荷重が入力されたとしても、主液室14または副液室15に流入する液体Lの流速を確実に低減することができる。   Further, since the first communication portion 26 and the second communication portion 27 are open to the main liquid chamber 14 or the sub liquid chamber 15 in the circumferential direction and the axial direction orthogonal to the facing direction, The liquid L flowing along the projection 34 is bent at a right angle and flows into the main liquid chamber 14 or the sub liquid chamber 15 from one of the first communication portion 26 and the second communication portion 27. Will be. Therefore, even if a large load is input to the vibration isolator 10, the flow rate of the liquid L flowing into the main liquid chamber 14 or the sub liquid chamber 15 can be reliably reduced.

また、液体Lが、複数の細孔31を通して、主液室14に流入する際に、これらの細孔31が形成された第1障壁28により圧力損失させられながら各細孔31を流通するので、主液室14に流入する液体Lの流速を抑えることができる。しかも、液体Lが、単一の細孔31ではなく複数の細孔31を流通するので、液体Lを複数に分岐させて流通させることが可能になり、個々の細孔31を通過した液体Lの流速を低減させることができる。さらに、仮に制限通路24で気泡が発生したとしても、細孔31が複数配置されているので、発生した気泡同士を、主液室14内で離間させることが可能になり、気泡が合流して成長するのを抑えて気泡を細かく分散させた状態に維持しやすくすることができる。   Further, when the liquid L flows into the main liquid chamber 14 through the plurality of pores 31, each of the pores 31 is circulated while being subjected to pressure loss by the first barrier 28 in which these pores 31 are formed. The flow rate of the liquid L flowing into the main liquid chamber 14 can be suppressed. In addition, since the liquid L circulates through the plurality of pores 31 instead of the single pore 31, the liquid L can be branched and circulated, and the liquid L that has passed through the individual pores 31 can be circulated. The flow rate of can be reduced. Furthermore, even if bubbles are generated in the restriction passage 24, since the plurality of pores 31 are arranged, the generated bubbles can be separated from each other in the main liquid chamber 14, and the bubbles merge. The growth can be suppressed and the bubbles can be easily maintained in a finely dispersed state.

また、第1連通部26および第2連通部27が、本体流路25のうち、前記突部領域から周方向に離れた部分に開口しているので、防振装置10に大きな荷重が入力されたときに、液体Lの流速を複数の突部34によって前述のように低減させた後に、液体Lを主液室14または副液室15に流入させることができる。したがって、防振装置10に大きな荷重が入力されたとしても、主液室14または副液室15に流入する液体Lの流速をより一層確実に低減することができる。   Moreover, since the 1st communication part 26 and the 2nd communication part 27 are opened in the part away from the said protrusion area | region in the circumferential direction among the main body flow paths 25, a big load is input into the vibration isolator 10. When the flow rate of the liquid L is reduced by the plurality of protrusions 34 as described above, the liquid L can be flowed into the main liquid chamber 14 or the sub liquid chamber 15. Therefore, even if a large load is input to the vibration isolator 10, the flow rate of the liquid L flowing into the main liquid chamber 14 or the sub liquid chamber 15 can be reduced more reliably.

なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、突部34を軸方向から見た形状は、三角形状に限らず、半円形状、若しくは角形状にする等、適宜変更してもよい。また、第1連通部26および第2連通部27それぞれの周方向の長さを、本体流路25の前記突部領域における周方向の長さ以上としてもよい。また、第1連通部26の周方向の長さを、第2連通部27の周方向の長さ以下としてもよい。また、突部34を、本体流路25の内面に、本体流路25における半周未満にわたって配設してもよいし、本体流路25における全周にわたって配設してもよい。複数の突部34は、周方向に間隔をあけて配設してもよい。
また、第1連通部26および第2連通部27それぞれにおける少なくとも一部を、本体流路25の前記突部領域に開口させてもよい。
また、傾斜面25bを、本体流路25の内面のうち、軸方向に沿う副液室15側を向く天面における周方向に沿う一方側の端部に形成してもよい。また、傾斜面25bを本体流路25の内面に配設しなくてもよい。
For example, the shape of the protrusion 34 viewed from the axial direction is not limited to a triangular shape, and may be appropriately changed to a semicircular shape or a square shape. The circumferential lengths of the first communication portion 26 and the second communication portion 27 may be equal to or longer than the circumferential length in the protruding region of the main body flow path 25. Further, the circumferential length of the first communication portion 26 may be equal to or less than the circumferential length of the second communication portion 27. Further, the protrusion 34 may be disposed on the inner surface of the main body flow path 25 over less than a half circumference of the main body flow path 25 or may be disposed over the entire circumference of the main body flow path 25. The plurality of protrusions 34 may be arranged at intervals in the circumferential direction.
Further, at least a part of each of the first communication portion 26 and the second communication portion 27 may be opened in the protruding region of the main body flow path 25.
Moreover, you may form the inclined surface 25b in the edge part of the one side along the circumferential direction in the top | upper surface which faces the secondary liquid chamber 15 side along an axial direction among the inner surfaces of the main body flow path 25. FIG. Further, the inclined surface 25 b may not be disposed on the inner surface of the main body flow path 25.

また、前記実施形態では、細孔31を、第1障壁28に形成したが、第2障壁29に形成してもよいし、第1障壁28および第2障壁29の双方に形成してもよい。
また、前記実施形態では細孔31を、漸次縮径する円錐台状に形成したが、円柱状(真っ直ぐな円孔形状)に形成する等してもよい。
また、前記実施形態では、複数の細孔31を、横断面視円形状に形成したが、本発明はこれに限られない。例えば、複数の細孔31を、横断面視角形状に形成する等適宜変更してもよい。
また、前記実施形態では、第1連通部26が複数の細孔31を備えているが、例えば細孔31を有しない構成、或いは、細孔31より大径の開口、および細孔31の双方を有する構成等を採用してもよい。また、第2連通部27が、周方向(本体流路25の流路方向)に沿って配置された複数の開口部32を備えていてもよい。
In the above embodiment, the pores 31 are formed in the first barrier 28, but may be formed in the second barrier 29, or may be formed in both the first barrier 28 and the second barrier 29. .
Moreover, in the said embodiment, although the pore 31 was formed in the truncated cone shape which diameter is gradually reduced, you may form in a column shape (straight circular hole shape).
Moreover, in the said embodiment, although the several fine pore 31 was formed in the cross-sectional view circular shape, this invention is not limited to this. For example, the plurality of pores 31 may be appropriately changed, for example, formed in a cross-sectional viewing angle shape.
Moreover, in the said embodiment, although the 1st communication part 26 is provided with the some pore 31, for example, the structure which does not have the pore 31, or a larger diameter opening than the pore 31, and both the pores 31 You may employ | adopt the structure etc. which have. Moreover, the 2nd communication part 27 may be provided with the some opening part 32 arrange | positioned along the circumferential direction (flow path direction of the main body flow path 25).

また、前記実施形態では、仕切部材16を第1取付部材11の下端部に配置し、仕切部材16の外周部22を第1取付部材11の下端開口縁に当接させているが、例えば仕切部材16を第1取付部材11の下端開口縁より充分上方に配置し、この仕切部材16の下側、すなわち第1取付部材11の下端部にダイヤフラム20を配設することで、第1取付部材11の下端部からダイヤフラム20の底面にかけて副液室15を形成するようにしてもよい。   Moreover, in the said embodiment, although the partition member 16 is arrange | positioned in the lower end part of the 1st attachment member 11, and the outer peripheral part 22 of the partition member 16 is made to contact | abut to the lower end opening edge of the 1st attachment member 11, for example, partition The member 16 is disposed sufficiently above the lower end opening edge of the first mounting member 11, and the diaphragm 20 is disposed on the lower side of the partition member 16, that is, the lower end portion of the first mounting member 11. The sub liquid chamber 15 may be formed from the lower end of 11 to the bottom surface of the diaphragm 20.

また、前記実施形態では、支持荷重が作用することで主液室14に正圧が作用する圧縮式の防振装置10について説明したが、主液室14が鉛直方向下側に位置し、かつ副液室15が鉛直方向上側に位置するように取り付けられ、支持荷重が作用することで主液室14に負圧が作用する吊り下げ式の防振装置にも適用可能である。
また、前記実施形態では、仕切部材16が、第1取付部材11内の液室19を、弾性体13を壁面の一部に有する主液室14、および副液室15に仕切るものとしたが、これに限られるものではない。例えば、ダイヤフラム20を設けるのに代えて弾性体13を設け、副液室15を設けるのに代えて、弾性体13を壁面の一部に有する受圧液室を設けてもよい。例えば、仕切部材16が、液体Lが封入される第1取付部材11内の液室19を、第1液室14および第2液室15に仕切り、第1液室14および第2液室15のうちの少なくとも1つが、弾性体13を壁面の一部に有する他の構成に適宜変更することが可能である。
また、本発明に係る防振装置10は、車両のエンジンマウントに限定されるものではなく、エンジンマウント以外に適用することも可能である。例えば、建設機械に搭載された発電機のマウントにも適用することも可能であり、或いは、工場等に設置される機械のマウントに適用することも可能である。
Moreover, in the said embodiment, although the compression type vibration isolator 10 which a positive pressure acts on the main liquid chamber 14 by the support load acting was demonstrated, the main liquid chamber 14 is located in the vertical lower side, and The auxiliary liquid chamber 15 is mounted so as to be positioned on the upper side in the vertical direction, and can be applied to a suspension type vibration isolator in which a negative pressure is applied to the main liquid chamber 14 when a support load is applied.
Moreover, in the said embodiment, although the partition member 16 partitioned off the liquid chamber 19 in the 1st attachment member 11 into the main liquid chamber 14 and the sub liquid chamber 15 which have the elastic body 13 in a part of wall surface. However, it is not limited to this. For example, instead of providing the diaphragm 20, the elastic body 13 may be provided, and instead of providing the secondary liquid chamber 15, a pressure receiving liquid chamber having the elastic body 13 at a part of the wall surface may be provided. For example, the partition member 16 partitions the liquid chamber 19 in the first mounting member 11 in which the liquid L is sealed into the first liquid chamber 14 and the second liquid chamber 15, and the first liquid chamber 14 and the second liquid chamber 15. At least one of the above can be appropriately changed to another configuration having the elastic body 13 in a part of the wall surface.
The vibration isolator 10 according to the present invention is not limited to an engine mount of a vehicle, and can be applied to other than the engine mount. For example, the present invention can be applied to a mount of a generator mounted on a construction machine, or can be applied to a mount of a machine installed in a factory or the like.

その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。   In addition, it is possible to appropriately replace the constituent elements in the embodiment with known constituent elements without departing from the spirit of the present invention, and the above-described modified examples may be appropriately combined.

10 防振装置
11 第1取付部材
12 第2取付部材
13 弾性体
14 主液室(第1液室)
15 副液室(第2液室)
16 仕切部材
19 液室
24 制限通路
25 本体流路
25a 対向面
26 第1連通部
27 第2連通部
28 第1障壁
29 第2障壁
31 細孔
34 突部
L 液体
X 間隔
Y 突出高さ
DESCRIPTION OF SYMBOLS 10 Vibration isolator 11 1st attachment member 12 2nd attachment member 13 Elastic body 14 Main liquid chamber (1st liquid chamber)
15 Secondary liquid chamber (second liquid chamber)
16 Partition member 19 Liquid chamber 24 Restriction passage 25 Main body flow passage 25a Opposing surface 26 First communication portion 27 Second communication portion 28 First barrier 29 Second barrier 31 Pore 34 Projection L Liquid X Interval Y Projection height

Claims (4)

振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、
これら両取付部材を弾性的に連結する弾性体と、
液体が封入された前記第1取付部材内の液室を第1液室と第2液室とに区画する仕切部材と、を備えるとともに、
前記仕切部材に、前記第1液室と前記第2液室とを連通する制限通路が形成された液体封入型の防振装置であって、
前記制限通路は、前記第1液室に開口する第1連通部、前記第2液室に開口する第2連通部、および前記第1連通部と前記第2連通部とを連通する本体流路を備え、
前記本体流路の内面のうち、互いに対向する一対の対向面には、互いに対向する対向方向に突出する突部が、前記本体流路の流路方向に沿って複数設けられ、
一方の前記対向面に設けられた前記突部と、他方の前記対向面のうち、前記流路方向で互いに隣り合う前記突部同士の間に位置する部分と、が、前記対向方向で互いに対向し、
前記一対の対向面間の間隔が、前記突部の前記対向面からの突出高さの2倍より大きくなっていることを特徴とする防振装置。
A cylindrical first mounting member coupled to one of the vibration generating unit and the vibration receiving unit, and a second mounting member coupled to the other;
An elastic body that elastically connects both the mounting members;
A partition member that divides the liquid chamber in the first mounting member in which the liquid is sealed into a first liquid chamber and a second liquid chamber, and
A liquid-sealed vibration isolator in which a restriction passage communicating the first liquid chamber and the second liquid chamber is formed in the partition member,
The restriction passage includes a first communication portion that opens to the first liquid chamber, a second communication portion that opens to the second liquid chamber, and a main body channel that communicates the first communication portion and the second communication portion. With
Of the inner surface of the main body channel, a pair of opposing surfaces facing each other is provided with a plurality of protrusions protruding in the facing direction facing each other along the channel direction of the main body channel,
The projections provided on one of the opposing surfaces and the portion of the other opposing surface located between the projections adjacent to each other in the flow path direction oppose each other in the opposing direction. And
An anti-vibration device according to claim 1, wherein an interval between the pair of opposing surfaces is greater than twice a protruding height of the protruding portion from the opposing surface.
前記第1連通部および前記第2連通部のうちの少なくとも一方は、前記第1液室または前記第2液室に、前記流路方向および前記対向方向と直交する方向に開口していることを特徴とする請求項1に記載の防振装置。   At least one of the first communication portion and the second communication portion is open to the first liquid chamber or the second liquid chamber in a direction orthogonal to the flow path direction and the facing direction. The vibration isolator according to claim 1, wherein 前記第1連通部および前記第2連通部のうちの少なくとも一方は、前記第1液室または前記第2液室に面する障壁を貫く複数の細孔を備えることを特徴とする請求項1または2に記載の防振装置。   2. The at least one of the first communication part and the second communication part includes a plurality of pores penetrating a barrier facing the first liquid chamber or the second liquid chamber. 2. The vibration isolator according to 2. 前記第1連通部および前記第2連通部のうちの少なくとも一方は、前記本体流路のうち、前記突部が前記流路方向に沿って複数配設された部分から前記流路方向に離れた部分に開口していることを特徴とする請求項1から3のいずれか1項に記載の防振装置。   At least one of the first communication portion and the second communication portion is separated in the flow channel direction from a portion of the main body flow channel where the plurality of protrusions are disposed along the flow channel direction. The vibration isolator according to any one of claims 1 to 3, wherein the anti-vibration device has an opening in the portion.
JP2017007178A 2017-01-19 2017-01-19 Anti-vibration device Active JP6853674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017007178A JP6853674B2 (en) 2017-01-19 2017-01-19 Anti-vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017007178A JP6853674B2 (en) 2017-01-19 2017-01-19 Anti-vibration device

Publications (2)

Publication Number Publication Date
JP2018115713A true JP2018115713A (en) 2018-07-26
JP6853674B2 JP6853674B2 (en) 2021-03-31

Family

ID=62985201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017007178A Active JP6853674B2 (en) 2017-01-19 2017-01-19 Anti-vibration device

Country Status (1)

Country Link
JP (1) JP6853674B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11428290B2 (en) 2017-12-26 2022-08-30 Prospira Corporation Vibration isolating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183675A (en) * 2004-12-24 2006-07-13 Tokai Rubber Ind Ltd Fluid-filled vibration-resistant device
JP2011241928A (en) * 2010-05-19 2011-12-01 Yamashita Rubber Co Ltd Liquid-sealed vibration control device
US20140327198A1 (en) * 2013-05-03 2014-11-06 Trelleborg Automotive Usa, Inc. Hydraulic engine mount inertia track with multiple restrictions
US20140339035A1 (en) * 2013-05-17 2014-11-20 Ford Global Technologies, Llc Flow modification for a hydromount
JP2016176509A (en) * 2015-03-19 2016-10-06 株式会社ブリヂストン Vibration prevention device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183675A (en) * 2004-12-24 2006-07-13 Tokai Rubber Ind Ltd Fluid-filled vibration-resistant device
JP2011241928A (en) * 2010-05-19 2011-12-01 Yamashita Rubber Co Ltd Liquid-sealed vibration control device
US20140327198A1 (en) * 2013-05-03 2014-11-06 Trelleborg Automotive Usa, Inc. Hydraulic engine mount inertia track with multiple restrictions
US20140339035A1 (en) * 2013-05-17 2014-11-20 Ford Global Technologies, Llc Flow modification for a hydromount
JP2016176509A (en) * 2015-03-19 2016-10-06 株式会社ブリヂストン Vibration prevention device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11428290B2 (en) 2017-12-26 2022-08-30 Prospira Corporation Vibration isolating device

Also Published As

Publication number Publication date
JP6853674B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP6450619B2 (en) Vibration isolator
JP6995113B2 (en) Anti-vibration device
JP6619702B2 (en) Vibration isolator
JP6674334B2 (en) Anti-vibration device
WO2018198444A1 (en) Vibration damping device
WO2018211754A1 (en) Vibration damping device
JP6853674B2 (en) Anti-vibration device
WO2018193895A1 (en) Vibration dampening device
JP6822860B2 (en) Anti-vibration device
JP7350627B2 (en) Vibration isolator
JP6836458B2 (en) Anti-vibration device
JP7326121B2 (en) Anti-vibration device
JP6577911B2 (en) Vibration isolator
JP7027147B2 (en) Anti-vibration device
JP6975628B2 (en) Anti-vibration device
JP7161842B2 (en) Anti-vibration device
JP6871050B2 (en) Anti-vibration device
JP6986489B2 (en) Anti-vibration device
JP2019203541A (en) Vibration isolation device
JP2020118251A (en) Vibration control device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210312

R150 Certificate of patent or registration of utility model

Ref document number: 6853674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250