JP2018114917A - Cruise control device - Google Patents

Cruise control device Download PDF

Info

Publication number
JP2018114917A
JP2018114917A JP2017008228A JP2017008228A JP2018114917A JP 2018114917 A JP2018114917 A JP 2018114917A JP 2017008228 A JP2017008228 A JP 2017008228A JP 2017008228 A JP2017008228 A JP 2017008228A JP 2018114917 A JP2018114917 A JP 2018114917A
Authority
JP
Japan
Prior art keywords
vehicle
speed
constant
target
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017008228A
Other languages
Japanese (ja)
Other versions
JP6871744B2 (en
Inventor
隆良 仲井
Takayoshi Nakai
隆良 仲井
真士 加藤
Shinji Kato
真士 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2017008228A priority Critical patent/JP6871744B2/en
Publication of JP2018114917A publication Critical patent/JP2018114917A/en
Application granted granted Critical
Publication of JP6871744B2 publication Critical patent/JP6871744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable the best drive performance to be always obtained without giving the acceleration insufficient feeling and the uncomfortable feeling due to the fluctuation in the engine speed to a driver when following up the preceding vehicle.SOLUTION: A constant revolution speed calculation unit 15 sets the constant revolution speed Nec necessary for allowing the own vehicle 1 to travel at the constant speed to follow up a preceding vehicle P. A target revolution speed calculation unit 16 sets the target revolution speed Neo necessary for accelerating the own vehicle 1 following acceleration of the preceding vehicle P. A time constant calculation unit 18 sets the time constant T of the primary delay on the basis of the revolution difference between the target revolution speed Neo and the constant revolution speed Nec. A filter processing unit 19 sets the instruction revolution speed Net to be instructed to engine control means by performing filter processing on the target revolution speed Neo with the transfer function of the time constant T.SELECTED DRAWING: Figure 3

Description

本発明は、先行車に追従するオートクルーズコントロール(ACC)による走行において、先行車の走行状態に応じてエンジン回転数を制御するようにしたクルーズコントロール装置に関する。   The present invention relates to a cruise control device that controls the engine speed in accordance with the traveling state of a preceding vehicle during traveling by auto cruise control (ACC) that follows the preceding vehicle.

一般に、この種のクルーズコントロール装置では、運転者の設定した車速(セット車速)と自車両の車速(自車速)との差(速度差)に応じてエンジンの目標トルク及び、自動変速機の入力軸の目標回転数を演算周期毎に設定し、これにより自車速がセット車速に基づいて設定した目標車速に収束するように制御している。   Generally, in this type of cruise control device, the target torque of the engine and the input of the automatic transmission according to the difference (speed difference) between the vehicle speed (set vehicle speed) set by the driver and the vehicle speed (vehicle speed) of the host vehicle. The target rotational speed of the shaft is set for each calculation cycle, and thereby the own vehicle speed is controlled to converge to the target vehicle speed set based on the set vehicle speed.

又、クルーズコントロールによる走行中に、登坂路のような走行負荷の大きい路面にさしかかり、車速が低下すると、クルーズコントロール装置では、自車速を直ちに目標車速に到達させるべく、エンジン制御ではスロットル弁開度を大きくしてエンジン出力を増加させ、一方、変速制御では変速比をダウンシフトさせてトルクアップを図り、これにより加速させることで自車速の落ち込みを防止するようにしている。   In addition, when the vehicle is running under cruise control, when it reaches a road surface with a large traveling load such as an uphill road and the vehicle speed decreases, the cruise control device uses the throttle valve opening in engine control so that the host vehicle speed can immediately reach the target vehicle speed. Is increased to increase the engine output, while in the shift control, the gear ratio is downshifted to increase the torque, thereby accelerating the vehicle to prevent the vehicle speed from dropping.

この場合、排気量が比較的大きなエンジンを搭載する車両(以下、「高排気量車」と称する)では、走行負荷が増加してもスロットル弁の開度を開き、エンジントルクを増大させることで、自動変速機の変速比を大きくシフトダウさせることなく自車速を目標車速へ比較的容易に収束させることができる。   In this case, in a vehicle equipped with an engine with a relatively large displacement (hereinafter referred to as a “high displacement vehicle”), the throttle valve is opened to increase the engine torque even when the traveling load increases. The vehicle speed can be converged relatively easily to the target vehicle speed without greatly shifting down the gear ratio of the automatic transmission.

これに対し、低排気量のエンジンを搭載する車両(以下「低排気量車」と称する)が、高地走行、登坂路走行、高速走行、高車重等、大きい走行負荷が発生する条件下において、上述した高排気量両と同等の加速性能を得ようとした場合、当然、エンジン回転数を上昇させると共に、変速比を大きくダウンシフトさせる必要がある。しかし、このような加速運転は、振動、騒音が増大し、乗り心地が悪化してしまう。   On the other hand, a vehicle equipped with a low displacement engine (hereinafter referred to as a “low displacement vehicle”) has a high traveling load such as high altitude traveling, uphill traveling, high speed traveling, and high vehicle weight. When trying to obtain acceleration performance equivalent to both of the above-mentioned high displacements, naturally, it is necessary to increase the engine speed and to greatly downshift the gear ratio. However, such acceleration operation increases vibration and noise and deteriorates the ride comfort.

そのため、本出願人は、特許文献1(特開2015−189286号公報)において、クルーズコントロールによる走行中に走行負荷が増大した場合であっても、エンジン回転数の急激な増加を抑制して、運転者に与える不快感を軽減させる技術を提案した。   Therefore, in the case of Patent Document 1 (Japanese Patent Application Laid-Open No. 2015-189286), the present applicant suppresses a rapid increase in the engine speed even when the traveling load increases during traveling by cruise control. A technology to reduce discomfort for the driver was proposed.

特開2015−189286号公報Japanese Patent Laying-Open No. 2015-189286

しかし、上述した文献に開示されている技術では、走行負荷に応じて目標加速度を一律に抑制する制御を行っているため、先行車に追従して登坂走行している状態では、先行車が加速しても、自車両を応答性良く追従させることができず、運転者に加速不足感を与えてしまう不都合が生じる。   However, in the technique disclosed in the above-described document, since the target acceleration is uniformly controlled according to the traveling load, the preceding vehicle accelerates in a state where the vehicle travels uphill following the preceding vehicle. Even so, there is a problem that the host vehicle cannot be followed with good responsiveness and the driver is given a feeling of insufficient acceleration.

この対策として、先行車に対する追従応答性を高くすれば、先行車が定速走行している場合に、走行負荷が増大して先行車との車間距離が離れた場合に、エンジン回転数を上昇させると共に変速機をダウンシフトさせることになるが、定速走行時にエンジン回転数が頻繁に変動することとなり、運転者に不快感を与えてしまう不都合がある。   As a countermeasure, if the follow-up response to the preceding vehicle is increased, the engine speed is increased when the preceding vehicle is traveling at a constant speed and the driving load increases and the distance from the preceding vehicle increases. In addition, the transmission is downshifted. However, the engine speed frequently fluctuates during constant speed travel, which may cause inconvenience to the driver.

本発明は、上記事情に鑑み、先行車を追従走行している際に、この先行車の走行条件に拘わらず、運転者に加速不足感や不快感を与えることなく、常に最良の運転性能を得ることのできるクルーズコントロール装置を提供することを目的とする。   In view of the above circumstances, the present invention always provides the best driving performance without causing the driver to feel underaccelerated or uncomfortable regardless of the driving conditions of the preceding vehicle when following the preceding vehicle. An object is to provide a cruise control device that can be obtained.

本発明は、先行車に追従して自車両を走行させるクルーズコントロール装置において、自車両の走行負荷を設定する走行負荷演算手段と、前記先行車の加速に追従して前記自車両を前記走行負荷に抗して加速させるために必要な目標回転数を設定する目標回転数演算手段と、前記先行車に対して前記自車両を前記走行負荷に抗して一定速で追従走行させるために必要な定速回転数を設定する定速回転数演算手段と、前記目標回転数と前記定速回転数との回転差分に基づき一次遅れの時定数を設定する時定数演算手段と、前記目標回転数を前記時定数の伝達関数でフィルタ処理してエンジン制御手段へ指示する指示回転数を設定するフィルタ処理手段とを備える。   The present invention provides a cruise control device for driving a host vehicle following a preceding vehicle, a driving load calculating means for setting a driving load of the host vehicle, and driving the host vehicle following the acceleration of the preceding vehicle. A target rotational speed calculation means for setting a target rotational speed necessary for accelerating against the vehicle and necessary for causing the host vehicle to follow the vehicle at a constant speed against the traveling load with respect to the preceding vehicle. A constant speed rotational speed calculating means for setting a constant speed rotational speed, a time constant calculating means for setting a time constant of a first-order delay based on a rotational difference between the target rotational speed and the constant speed rotational speed, and the target rotational speed. Filter processing means for setting an instruction rotational speed to be instructed to the engine control means by performing filtering with the time constant transfer function.

本発明によれば、先行車の加速に追従して自車両を加速させるために必要な目標回転数と、先行車に対して自車両を一定速で追従走行させるために必要な定速回転数とを設定し、その回転差分に基づき一次遅れの時定数を設定し、この時定数による伝達関数で目標回転数をフィルタ処理してエンジン制御手段へ指示する指示回転数を設定するようにしたので、自車両が先行車を追従走行している際に、走行負荷が増加した場合であっても、一定速で追従走行している場合はエンジン回転数の急激な上昇が抑制され、又、先行車が加速した場合には応答性良く追従させることができる。   According to the present invention, the target rotational speed necessary for accelerating the host vehicle following the acceleration of the preceding vehicle and the constant speed rotational speed necessary for causing the host vehicle to follow the preceding vehicle at a constant speed. Is set, and the time constant of the first-order lag is set based on the rotation difference. The target rotation speed is filtered by the transfer function based on this time constant, and the instruction rotation speed for instructing the engine control means is set. When the host vehicle is following the preceding vehicle and the driving load increases, if the vehicle is following at a constant speed, the rapid increase in engine speed is suppressed. When the vehicle accelerates, it can follow with good responsiveness.

従って、一定速での追従走行においてはエンジン回転数の上昇による不快感を運転者に与えることがなく、又、先行車が加速した場合にはエンジン回転数を上昇させて直ちに追従させることができるため、運転者に加速不足感を与えることがない。その結果、先行車の走行条件に拘わらず、常に最良の運転性能を得ることができる。   Therefore, in the follow-up traveling at a constant speed, the driver does not feel uncomfortable due to the increase in the engine speed, and when the preceding vehicle accelerates, the engine speed can be increased to immediately follow the driver. Therefore, the driver is not given a lack of acceleration. As a result, the best driving performance can always be obtained regardless of the traveling conditions of the preceding vehicle.

登坂路を走行している、車両制御ユニットを搭載する車両の概略図Schematic diagram of a vehicle equipped with a vehicle control unit traveling on an uphill road 車両制御ユニットの全体構成図Overall configuration diagram of the vehicle control unit クルーズコントロール装置に設けられているエンジン回転数制御ユニットの機能ブロック図Functional block diagram of the engine speed control unit provided in the cruise control device 変速線マップの概念図Conceptual diagram of shift line map 一次遅れ時定数設定テーブルの概念図Conceptual diagram of primary delay time constant setting table

以下、図面に基づいて本発明の一実施形態を説明する。図1の符号1は車両(自車両)であり、左右前輪1a、左右後輪1bが駆動する四輪駆動車、或いは左右前輪1aのみ、又は左右後輪1bのみが駆動する二輪駆動車である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Reference numeral 1 in FIG. 1 denotes a vehicle (own vehicle), which is a four-wheel drive vehicle driven by the left and right front wheels 1a and the left and right rear wheels 1b, or a two-wheel drive vehicle driven by only the left and right front wheels 1a or only the left and right rear wheels 1b. .

この自車両1に、自車両1の周辺の走行環境を撮像する車載カメラ2が設けられている。車載カメラ2として本実施形態では、メインカメラ2aとサブカメラ2bとを有するステレオカメラを採用している。この両カメラ2a,2bは車室内前部の上部(例えば、ルームミラーの両側)に一定の間隔を保持した状態で固設されている。この両カメラ2a,2bで撮像した自車前方の走行環境の画像信号が画像処理ユニット(IPU)3に送信される。   The host vehicle 1 is provided with an in-vehicle camera 2 that captures an image of the traveling environment around the host vehicle 1. In this embodiment, a stereo camera having a main camera 2a and a sub camera 2b is adopted as the in-vehicle camera 2. Both the cameras 2a and 2b are fixed to the upper part of the front part of the vehicle interior (for example, both sides of the rearview mirror) with a certain distance therebetween. An image signal of the traveling environment in front of the host vehicle captured by both the cameras 2a and 2b is transmitted to the image processing unit (IPU) 3.

IPU3は車載カメラ2からの画像情報に基づき、自車両1の周辺及び前方の走行環境情報を取得する。そして、この走行環境情報に基づいて自車両1の前方走行する先行車P等を認識し、認識した各種情報を、自車両1を後述するACC制御ユニット(ACC_ECU)11に送信する。   Based on the image information from the in-vehicle camera 2, the IPU 3 obtains the driving environment information around and around the host vehicle 1. Then, based on the traveling environment information, the preceding vehicle P traveling forward of the host vehicle 1 is recognized, and the recognized various information is transmitted to the ACC control unit (ACC_ECU) 11 described later.

又、自車両1にはエンジン5が搭載され、このエンジン5に自動変速機6が連設されている。この自動変速機6は、本実施形態では無段変速機(CVT)であり、この自動変速機6の出力軸が駆動輪(四輪駆動車であれば、左右前輪1a及び左右後輪1b)に連設されている。   The host vehicle 1 is equipped with an engine 5, and an automatic transmission 6 is connected to the engine 5. This automatic transmission 6 is a continuously variable transmission (CVT) in this embodiment, and the output shaft of this automatic transmission 6 is a drive wheel (if it is a four-wheel drive vehicle, left and right front wheels 1a and left and right rear wheels 1b). It is connected to.

このエンジン5の回転数がエンジン制御ユニット(E/G_ECU)21で制御され、自動変速機6の変速比がトランスミッション制御ユニット(T/M_ECU)22で制御される。これら各制御ユニット11、21,22はCPU、ROM、RAM等を備えた周知のマイクロコンピュータを主体に構成されており、ROMには予め設定した動作を実現するための制御プログラムや各種テーブル等の固定データが記憶されている。又、この各制御ユニット11、21,22が、CAN(Controller Area Network)通信等の車内通信回線23を通じて、双方向通信自在に接続されている。   The rotational speed of the engine 5 is controlled by an engine control unit (E / G_ECU) 21, and the gear ratio of the automatic transmission 6 is controlled by a transmission control unit (T / M_ECU) 22. Each of these control units 11, 21, 22 is mainly composed of a well-known microcomputer equipped with a CPU, ROM, RAM, etc. The ROM has control programs and various tables for realizing preset operations. Fixed data is stored. The control units 11, 21, and 22 are connected via a vehicle communication line 23 such as CAN (Controller Area Network) communication so that bidirectional communication is possible.

又、図2に示すように、このACC_ECU11の入力側に、IPU3以外に、駆動輪の回転速度を検出する車輪速センサ7、自車両1の前後加速度、及び車体の前後傾斜角を検出する前後G(加速度)センサ8が接続されている。   Further, as shown in FIG. 2, on the input side of the ACC_ECU 11, in addition to the IPU 3, a wheel speed sensor 7 for detecting the rotational speed of the drive wheel, the longitudinal acceleration of the host vehicle 1, and the longitudinal inclination angle of the vehicle body are detected. A G (acceleration) sensor 8 is connected.

ACC_ECU11は、走行中に運転者が図示しないクルコンスイッチを操作して、所望の定速車速をセットすると、ACC制御を開始し、IPU3で取得した走行環境情報に基づき先行車Pが捕捉されているか否かを判定し、捕捉されている場合は先行車Pとの相対車速、及び車間距離等の先行車情報を読込み、自車両1を先行車Pに追従させる目標車速を設定する。又、先行車Pが捕捉されていない場合は、運転者がセットした定速車速(セット車速)を目標車速として設定する。   The ACC_ECU 11 starts the ACC control when the driver operates a cruise control switch (not shown) during driving to set a desired constant speed vehicle speed, and whether the preceding vehicle P is captured based on the traveling environment information acquired by the IPU 3. If it is determined that the vehicle has been captured, the relative vehicle speed with respect to the preceding vehicle P and the preceding vehicle information such as the inter-vehicle distance are read, and the target vehicle speed for causing the host vehicle 1 to follow the preceding vehicle P is set. If the preceding vehicle P is not captured, the constant vehicle speed (set vehicle speed) set by the driver is set as the target vehicle speed.

そして、この目標車速に対応するエンジン5の目標回転数を求め、これを所定にフィルタ処理して、E/G_ECU21に指示する指示回転数Netを設定する。又、T/M_ECU22は、指示回転数Netを目標入力軸回転数として設定し、この目標入力軸回転数と目標車速とに基づき、現在の車速が目標車速に収束するような自動変速機(CVT)6の変速比を設定する。   Then, the target rotational speed of the engine 5 corresponding to the target vehicle speed is obtained, and this is subjected to a predetermined filtering process to set an instruction rotational speed Net instructed to the E / G_ECU 21. Further, the T / M_ECU 22 sets the instruction rotational speed Net as the target input shaft rotational speed, and based on the target input shaft rotational speed and the target vehicle speed, an automatic transmission (CVT) that converges the current vehicle speed to the target vehicle speed. ) Set the gear ratio of 6.

又、図3に示すように、ACC_ECU11は、指示回転数Netを設定する機能として、勾配推定値演算部12、目標車速演算部13、推定車重演算部14、定速回転数演算手段としての定速回転数演算部15、目標回転数演算手段としての目標回転数演算部16、差分器17、時定数演算手段としての時定数演算部18,及びフィルタ処理手段としてのフィルタ処理部19が備えられている。   Further, as shown in FIG. 3, the ACC_ECU 11 functions as a function of setting the command rotational speed Net as a gradient estimated value calculation unit 12, a target vehicle speed calculation unit 13, an estimated vehicle weight calculation unit 14, and a constant speed rotation number calculation unit. A constant speed rotation number calculation unit 15, a target rotation number calculation unit 16 as a target rotation number calculation unit, a differentiator 17, a time constant calculation unit 18 as a time constant calculation unit, and a filter processing unit 19 as a filter processing unit are provided. It has been.

勾配推定値演算部12は、自車両1が停車中の場合は前後Gセンサ8で検出した前後G情報に基づいて路面勾配値を設定する。又、走行中は、前後G情報から各車輪速センサ7で検出した駆動輪の車輪速を時間微分して車輪加速度を求め、その平均値を前後G情報から減算(補正)し、加速成分を除去して路面勾配値を推定する。   The estimated gradient value calculation unit 12 sets the road gradient value based on the front and rear G information detected by the front and rear G sensor 8 when the host vehicle 1 is stopped. While traveling, the wheel speed of the drive wheel detected by each wheel speed sensor 7 is time-differentiated from the front and rear G information to obtain the wheel acceleration, and the average value is subtracted (corrected) from the front and rear G information to obtain the acceleration component. Remove and estimate the road slope value.

又、目標車速演算部13は、先行車Pが捕捉されている場合は先行車Pとの相対車速、及び車間距離等から自車両1を先行車Pに追従させる目標車速を設定する。又、先行車Pが捕捉されていない場合は、運転者の設定したセット車速を目標車速として設定する。   In addition, when the preceding vehicle P is captured, the target vehicle speed calculation unit 13 sets a target vehicle speed that causes the host vehicle 1 to follow the preceding vehicle P from the relative vehicle speed with respect to the preceding vehicle P, the inter-vehicle distance, and the like. When the preceding vehicle P is not captured, the set vehicle speed set by the driver is set as the target vehicle speed.

更に、推定車重演算部14は、自車両1の走行状態から乗員が乗車している状態や、荷物が積載されている状態等、現在の車体重量(車重)を推定する。この推定車重は、例えば、先ず、駆動輪の軸トルク(=タイヤトルク)から、車体加速度の期待値を推定し、又、各車輪速センサ7で検出した駆動輪の車輪速を時間微分して加速度を求め、それを平均して実際の車体加速度を算出する。尚、車体に車重計を取付け、停車時の車重を直接計測するようにしても良い。   Further, the estimated vehicle weight calculation unit 14 estimates the current vehicle body weight (vehicle weight) such as a state in which an occupant is on board and a state in which luggage is loaded from the traveling state of the host vehicle 1. For example, the estimated vehicle weight is estimated by first estimating the expected value of the vehicle body acceleration from the axial torque (= tire torque) of the drive wheel, and time-differentiating the wheel speed of the drive wheel detected by each wheel speed sensor 7. The acceleration is obtained and averaged to calculate the actual vehicle acceleration. In addition, a vehicle weight meter may be attached to the vehicle body, and the vehicle weight when the vehicle is stopped may be directly measured.

そして、軸トルクから求めた期待される車体加速度と車輪速から求めた実際の車体加速度との比から車体増量分を求め、この車体増量分で予め設定されている車体重量を補正して実車体重量(実車重)を推定する。尚、軸トルクは、例えば、吸入空気量或いはスロットル開度と燃料噴射量或いは車速とに基づいて算出したエンジントルクから駆動軸のねじり角速度までの特性をモデル化した車両モデルに基づいて求める。   Then, the amount of increase in the vehicle body is obtained from the ratio of the expected vehicle body acceleration obtained from the shaft torque and the actual vehicle body acceleration obtained from the wheel speed, and the vehicle body weight set in advance is corrected by this vehicle body increase amount. Estimate the weight (actual vehicle weight). The shaft torque is obtained based on, for example, a vehicle model that models characteristics from engine torque calculated based on the intake air amount or throttle opening and fuel injection amount or vehicle speed to the torsional angular velocity of the drive shaft.

定速回転数演算部15は、ある負荷において一定速度で走るのに必要なエンジン回転数(定速回転数)Necを算出する。すなわち、勾配推定値演算部12で算出した路面勾配値と、目標車速演算部13で算出した目標車速と、推定車重演算部14で求めた推定車重に基づいて走行負荷を算出する。尚、この各演算部12〜14が、本発明の走行負荷演算手段に対応している。   The constant speed rotational speed calculation unit 15 calculates an engine rotational speed (constant speed rotational speed) Nec necessary for running at a constant speed under a certain load. That is, the traveling load is calculated based on the road surface gradient value calculated by the gradient estimated value calculation unit 12, the target vehicle speed calculated by the target vehicle speed calculation unit 13, and the estimated vehicle weight obtained by the estimated vehicle weight calculation unit 14. Each of the calculation units 12 to 14 corresponds to the traveling load calculation means of the present invention.

そして、この走行負荷に抗して自車両1を走行させるために必要なトルク(走行負荷トルク)を算出し、この走行負荷トルクと車体加速度が0(一定速)となるエンジン回転数(定速回転数)Necを、図4に示すような変速線マップを参照して演算する。同図に示す変速機マップは無段変速機で採用されているものが例示されており、変速比(目標プライマリ回転数≒目標回転数)が最大となる低速側変速線LOWと、変速比が最小となる高速側変速線ODとで囲まれた領域に、スロットル開度が設定されている。そして、設定した定速回転数(図においては目標プライマリ回転数)と車速に基づき、エンジン回転数を一定に保持するスロットル開度が決定される。   Then, a torque (traveling load torque) necessary for traveling the host vehicle 1 against the traveling load is calculated, and the engine speed (constant speed) at which the traveling load torque and the vehicle body acceleration become 0 (constant speed). The number of revolutions (Nec) is calculated with reference to a shift line map as shown in FIG. The transmission map shown in the figure is exemplified by a continuously variable transmission, and the low speed side transmission line LOW at which the speed ratio (target primary rotational speed≈target rotational speed) is maximized, and the speed ratio is The throttle opening is set in a region surrounded by the minimum high-speed shift line OD. Then, based on the set constant speed rotational speed (target primary rotational speed in the figure) and the vehicle speed, a throttle opening degree that keeps the engine rotational speed constant is determined.

一方、目標回転数演算部16は、ある負荷から加速するのに必要なエンジン回転数(目標回転数)Neoを算出する。すなわち、先ず、上述した定速回転数演算部15と同様、路面勾配値と目標車速と推定車重に基づいて走行負荷を算出する。更に、目標車速と自車速との差分及び路面勾配値、或いは目標車速と自車速との差分及び先行車Pとの車間距離と目標車間距離との差分に基づいてACC目標加速度を設定する。   On the other hand, the target rotational speed calculation unit 16 calculates an engine rotational speed (target rotational speed) Neo necessary for accelerating from a certain load. That is, first, similarly to the above-described constant speed rotation speed calculation unit 15, the traveling load is calculated based on the road surface gradient value, the target vehicle speed, and the estimated vehicle weight. Further, the ACC target acceleration is set based on the difference between the target vehicle speed and the own vehicle speed and the road surface gradient value, the difference between the target vehicle speed and the own vehicle speed, and the difference between the inter-vehicle distance from the preceding vehicle P and the target inter-vehicle distance.

次いで、ACC目標加速度に車量を乗算し、それに各種走行抵抗を加算した上で、トルク換算係数を乗算して、ACC目標加速度を実現するエンジントルクを算出する。そして、このエンジントルクを発生させるスロットル開度を設定し、このスロットル開度と車速とに基づき、上述した図4に示す変速線マップを参照して、必要なエンジン回転数(目標回転数)Neoを算出する。   Next, the ACC target acceleration is multiplied by the vehicle amount, various running resistances are added to the ACC target acceleration, and then the torque conversion coefficient is multiplied to calculate the engine torque that realizes the ACC target acceleration. Then, a throttle opening for generating the engine torque is set, and a necessary engine speed (target speed) Neo is referred to the shift line map shown in FIG. 4 based on the throttle opening and the vehicle speed. Is calculated.

差分器17では、目標回転数演算部16で求めた目標回転数Neoから定速回転数演算部15で求めた定速回転数Necを減算して、回転差分(Neo−Nec)を算出する。時定数演算部18は、図5に示す時定数テーブルを参照して、回転差分(Neo−Nec)に応じた一次遅れの時定数Tを設定する。この時定数テーブルは回転差分(Neo−Nec)が増加するに従い、時定数Tを反比例的に減少(短縮)させる特性に設定されている。従って、自車両1が先行車Pに追従して定速走行している場合、目標回転数Neoと定速回転数Necとはほぼ同じとなるため、延長された(図においては100[%]に近づく)時定数Tが設定される。一方、先行車Pが加速し、自車両1がそれに追従しようとした場合、目標回転数Neoが増加するため、その増加に伴い次第に短縮された(図においては0[%]側に近づく)時定数Tが設定される。   The subtractor 17 subtracts the constant speed rotational speed Nec obtained by the constant speed rotational speed computing section 15 from the target rotational speed Neo obtained by the target rotational speed computing section 16 to calculate a rotational difference (Neo−Nec). The time constant calculation unit 18 refers to the time constant table shown in FIG. 5 and sets the time constant T of the first-order lag according to the rotation difference (Neo-Nec). This time constant table is set to a characteristic that decreases (shortens) the time constant T in an inverse proportion as the rotation difference (Neo-Nec) increases. Accordingly, when the host vehicle 1 is traveling at a constant speed following the preceding vehicle P, the target rotational speed Neo and the constant speed rotational speed Nec are substantially the same, and thus extended (in the figure, 100 [%]). A time constant T is set. On the other hand, when the preceding vehicle P accelerates and the host vehicle 1 tries to follow it, the target rotational speed Neo increases, and therefore when the vehicle gradually decreases with the increase (approaching the 0% side in the figure) A constant T is set.

フィルタ処理部19は、目標回転数演算部16で求めた目標回転数Neoを、時定数演算部18で求めた一次遅れ時定数Tの伝達関数にてフィルタ処理を行い、指示回転数Netを算出する。
Net←Neo/(1+T・s)
ここで、sはラプラス演算子である
目標回転数Neoを一次遅れ時定数Tでフィルタ処理されて得られた指示回転数Netは、先行車Pを定速追従している場合は比較的遅い応答性となり、又、先行車Pの加速に追従しようとした場合は早い応答性となる。
The filter processing unit 19 performs a filter process on the target rotational speed Neo obtained by the target rotational speed calculating unit 16 using a transfer function of the first-order lag time constant T obtained by the time constant calculating unit 18, and calculates the designated rotational speed Net. To do.
Net ← Neo / (1 + T ・ s)
Here, s is a Laplace operator. The indicated rotational speed Net obtained by filtering the target rotational speed Neo with a first-order lag time constant T is a relatively slow response when the preceding vehicle P follows at a constant speed. In addition, when trying to follow the acceleration of the preceding vehicle P, quick response is obtained.

ACC_ECU11で求めた指示回転数Netは、E/G_ECU21へ送信され、エンジン回転数が指示回転数Netとなるようにスロットル開度等をフィードバック制御するエンジン制御を行う。一方、T/M_ECU22は、図示しない変速比マップを参照する等して、スロットル開度と車速に応じた変速比を設定する変速制御を行う。   The command rotational speed Net obtained by the ACC_ECU 11 is transmitted to the E / G_ECU 21 to perform engine control for feedback control of the throttle opening and the like so that the engine rotational speed becomes the command rotational speed Net. On the other hand, the T / M_ECU 22 performs shift control for setting a gear ratio according to the throttle opening and the vehicle speed by referring to a gear ratio map (not shown).

このように、本実施形態では、ACC制御により先行車Pを、一定速で追従走行している場合、定速回転数演算部15で設定する定速回転数Necと目標回転数演算部16で設定される目標回転数Neoとに大きな差が生じないため、時定数演算部18では大きな一次遅れ時定数Tが設定される。その結果、フィルタ処理部19において目標回転数Neoを一時遅れフィルタ処理して設定される指示回転数Netは、その応答性が遅くなり、空気の薄い高地走行、勾配のきつい登坂路走行、高速道路等での高速走行、荷物を多く積載した高車重等、大きい走行負荷が発生している条件下での走行であっても、負荷の増加によりエンジン回転数が急激に増加することがなく、運転者に与える不快感を軽減させることができる。   As described above, in the present embodiment, when the preceding vehicle P is traveling following at a constant speed by the ACC control, the constant speed rotation speed Nec set by the constant speed rotation speed calculation section 15 and the target rotation speed calculation section 16 are used. Since a large difference does not occur with the set target rotational speed Neo, the time constant calculation unit 18 sets a large first-order lag time constant T. As a result, the command rotational speed Net set by temporarily delaying the target rotational speed Neo in the filter processing unit 19 is slowed down, and the responsiveness is slow. Even when traveling under conditions where a large traveling load is generated, such as high-speed traveling at high speeds such as high vehicle weight loaded with a lot of luggage, the engine speed does not increase rapidly due to the increase in load, The discomfort given to the driver can be reduced.

一方、先行車Pが加速した場合は、目標回転数演算部16で設定される目標回転数Neoが、定速回転数演算部15で設定する定速回転数Necよりも大きくなるため、時定数演算部18では小さな一次遅れ時定数Tが設定される。その結果、フィルタ処理部19において一時遅れフィルタ処理して設定される指示回転数Netは、その応答性が早くなり、エンジン回転数の上昇により、運転者にもたつき感や加速不足感を覚えさせることなく良好な加速性能を得ることができる。   On the other hand, when the preceding vehicle P accelerates, the target rotational speed Neo set by the target rotational speed calculation unit 16 becomes larger than the constant speed rotational speed Nec set by the constant speed rotational speed calculation unit 15, and therefore the time constant. In the calculation unit 18, a small first-order lag time constant T is set. As a result, the indicated rotational speed Net set by the temporary delay filter processing in the filter processing unit 19 becomes faster in response, and causes the driver to feel a sense of rattling or insufficient acceleration due to an increase in the engine rotational speed. And good acceleration performance can be obtained.

その結果、本実施形態によれば、先行車Pを追従走行するに際し、先行車Pが定速走行している場合は、エンジン回転数の急激な上昇が抑制され、一方、先行車Pが加速した場合には、直ちにエンジン回転数を上昇させて追従させることができるため、特に小排気量車において有効であり、常に最良の運転性能を発揮させることができる。   As a result, according to the present embodiment, when the preceding vehicle P follows the preceding vehicle P, when the preceding vehicle P is traveling at a constant speed, a rapid increase in the engine speed is suppressed, while the preceding vehicle P is accelerated. In such a case, the engine speed can be immediately increased to follow, and this is particularly effective in a small displacement vehicle, and can always exhibit the best driving performance.

尚、本発明は、上述した実施形態に限るものではなく、例えば、先行車Pを認識する手段は先行車との車間距離、及び相対車速等の先行車情報を検出することのできるものであれば、車載カメラ2に限らず、単眼カメラと距離センサ(ミリ波レーダ、音波レーダ、又はレーザレーダ等)とを組み合わせたものであっても良い。   The present invention is not limited to the above-described embodiment. For example, the means for recognizing the preceding vehicle P can detect preceding vehicle information such as the inter-vehicle distance from the preceding vehicle and the relative vehicle speed. For example, not only the in-vehicle camera 2 but also a combination of a monocular camera and a distance sensor (such as a millimeter wave radar, a sound wave radar, or a laser radar) may be used.

1…自車両、
1a…左右前輪、
1b…左右後輪、
2…車載カメラ、
2a…メインカメラ、
2b…サブカメラ、
5…エンジン、
6…自動変速機、
7…車輪速センサ、
8…前後Gセンサ、
12…勾配推定値演算部、
13…目標車速演算部、
14…推定車重演算部、
15…定速回転数演算部、
16…目標回転数演算部、
16…各車輪速センサ、
16…目標回転数演算部、
17…差分器、
18,…時定数演算部、
19…フィルタ処理部、
23…車内通信回線、
Nec…定速回転数、
Neo…目標回転数、
Net…指示回転数、
P…先行車、
T…時定数
1 ... own vehicle,
1a ... front left and right wheels,
1b ... left and right rear wheels,
2… In-vehicle camera
2a ... main camera,
2b ... Sub camera,
5 ... Engine,
6 ... Automatic transmission,
7: Wheel speed sensor,
8: Front and rear G sensor,
12 ... gradient estimated value calculation unit,
13 ... Target vehicle speed calculation unit,
14 ... Estimated vehicle weight calculation unit,
15 ... Constant speed rotation speed calculation unit,
16 ... target rotation speed calculation unit,
16: Each wheel speed sensor,
16 ... target rotation speed calculation unit,
17 ... differentiator,
18, Time constant calculation unit,
19: Filter processing unit,
23 ... In-car communication line,
Nec: constant speed,
Neo ... Target speed,
Net ... Indicated rotation speed,
P ... preceding car,
T ... Time constant

Claims (3)

先行車に追従して自車両を走行させるクルーズコントロール装置において、
自車両の走行負荷を設定する走行負荷演算手段と、
前記先行車の加速に追従して前記自車両を前記走行負荷に抗して加速させるために必要な目標回転数を設定する目標回転数演算手段と、
前記先行車に対して前記自車両を前記走行負荷に抗して一定速で追従走行させるために必要な定速回転数を設定する定速回転数演算手段と、
前記目標回転数と前記定速回転数との回転差分に基づき一次遅れの時定数を設定する時定数演算手段と、
前記目標回転数を前記時定数の伝達関数でフィルタ処理してエンジン制御手段へ指示する指示回転数を設定するフィルタ処理手段と
を備えることを特徴とするクルーズコントロール装置。
In the cruise control device that drives the vehicle following the preceding vehicle,
Traveling load calculation means for setting the traveling load of the host vehicle;
Target rotational speed calculation means for setting a target rotational speed necessary for accelerating the host vehicle against the traveling load following the acceleration of the preceding vehicle;
A constant speed rotational speed calculating means for setting a constant speed rotational speed necessary for causing the host vehicle to follow the traveling load at a constant speed against the traveling load;
Time constant calculating means for setting a time constant of a first-order lag based on the rotation difference between the target rotation speed and the constant speed rotation speed;
A cruise control device comprising: a filter processing means for setting an instruction rotational speed for filtering the target rotational speed with the transfer function of the time constant and instructing the engine control means.
前記時定数演算手段では、前記目標回転数から前記定速回転数を減算して前記回転差分を求め、該回転差分が増加するに従い短縮された前記時定数を設定する
ことを特徴とする請求項1記載のクルーズコントロール装置。
The time constant calculating means subtracts the constant speed rotation number from the target rotation number to obtain the rotation difference, and sets the time constant shortened as the rotation difference increases. The cruise control device according to 1.
前記走行負荷演算手段で設定する走行負荷は、少なくとも路面勾配値と車体重量とに基づいて設定する
ことを特徴とする請求項1或いは2記載のクルーズコントロール装置。
The cruise control device according to claim 1 or 2, wherein the travel load set by the travel load calculating means is set based on at least a road surface gradient value and a vehicle body weight.
JP2017008228A 2017-01-20 2017-01-20 Cruise control device Active JP6871744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017008228A JP6871744B2 (en) 2017-01-20 2017-01-20 Cruise control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017008228A JP6871744B2 (en) 2017-01-20 2017-01-20 Cruise control device

Publications (2)

Publication Number Publication Date
JP2018114917A true JP2018114917A (en) 2018-07-26
JP6871744B2 JP6871744B2 (en) 2021-05-12

Family

ID=62984599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017008228A Active JP6871744B2 (en) 2017-01-20 2017-01-20 Cruise control device

Country Status (1)

Country Link
JP (1) JP6871744B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019004188A1 (en) 2018-06-15 2019-12-19 Hodogaya Chemical Co., Ltd. POLYOL FOR A CROSSLINKABLE POLYURETHANE COMPOSITION AND CROSSLINKABLE POLYURETHANE RESIN
CN111824168A (en) * 2019-04-15 2020-10-27 比亚迪股份有限公司 Vehicle control method and device and vehicle
CN113775423A (en) * 2021-09-06 2021-12-10 上海汽车变速器有限公司 Filtering control method, device, storage medium and device for engine target rotating speed

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019004188A1 (en) 2018-06-15 2019-12-19 Hodogaya Chemical Co., Ltd. POLYOL FOR A CROSSLINKABLE POLYURETHANE COMPOSITION AND CROSSLINKABLE POLYURETHANE RESIN
CN111824168A (en) * 2019-04-15 2020-10-27 比亚迪股份有限公司 Vehicle control method and device and vehicle
CN111824168B (en) * 2019-04-15 2022-01-07 比亚迪股份有限公司 Vehicle control method and device and vehicle
CN113775423A (en) * 2021-09-06 2021-12-10 上海汽车变速器有限公司 Filtering control method, device, storage medium and device for engine target rotating speed
CN113775423B (en) * 2021-09-06 2023-10-03 上海汽车变速器有限公司 Filtering control method, device, storage medium and device for target engine rotation speed

Also Published As

Publication number Publication date
JP6871744B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
US9827970B2 (en) Vehicle stopping assist and speed control system
JP6553469B2 (en) Vehicle control device
US9073540B2 (en) Deceleration control system for a vehicle
KR101860192B1 (en) Driving force control system for vehicle
WO2018047873A1 (en) Acceleration/deceleration control system and acceleration/deceleration control method
JP6871744B2 (en) Cruise control device
JP6020510B2 (en) Vehicle control device
US20150151745A1 (en) Vehicle body vibration control device for vehicle
JP4243155B2 (en) Method and apparatus for limiting vehicle speed
JP6531946B2 (en) Control device of electric vehicle, control system of electric vehicle, and control method of electric vehicle
JP6004195B2 (en) Vehicle vibration control device for vehicle
KR102247001B1 (en) Control of a torque demanded from an engine
US20150151744A1 (en) Vehicle body vibration control device for vehicle
JP5333323B2 (en) Braking control system
JP5949735B2 (en) Vehicle vibration control device for vehicle
JP4161822B2 (en) Follow-up control device
JP2015105042A (en) Vehicle body vibration control device of vehicle
JP6998270B2 (en) Vehicle driving control device
JP6068173B2 (en) Vehicle travel control device
JP5100362B2 (en) Shift-down control device
JP6536430B2 (en) Driving force control device
JP6412324B2 (en) Cruise control equipment
CN113135228B (en) System and method for modifying steering of vehicle
KR101846877B1 (en) Cruise CONTROL APPARATUS FOR VEHICLE AND METHOD THEREOF
JP7047708B2 (en) Vehicle driving support device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210416

R150 Certificate of patent or registration of utility model

Ref document number: 6871744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250