JP2018114649A - Method for evaluating sheet breakage of polymer composite material - Google Patents

Method for evaluating sheet breakage of polymer composite material Download PDF

Info

Publication number
JP2018114649A
JP2018114649A JP2017005931A JP2017005931A JP2018114649A JP 2018114649 A JP2018114649 A JP 2018114649A JP 2017005931 A JP2017005931 A JP 2017005931A JP 2017005931 A JP2017005931 A JP 2017005931A JP 2018114649 A JP2018114649 A JP 2018114649A
Authority
JP
Japan
Prior art keywords
polymer
composite material
orientation
polymer composite
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017005931A
Other languages
Japanese (ja)
Other versions
JP6822160B2 (en
Inventor
房恵 金子
Fusae Kaneko
房恵 金子
岸本 浩通
Hiromichi Kishimoto
浩通 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2017005931A priority Critical patent/JP6822160B2/en
Publication of JP2018114649A publication Critical patent/JP2018114649A/en
Application granted granted Critical
Publication of JP6822160B2 publication Critical patent/JP6822160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method capable of accurately evaluating the frequency of occurrence of sheet breakage of a polymer composite material at a laboratory level.SOLUTION: The method for evaluating sheet breakage of a polymer composite material includes evaluating the frequency of occurrence of sheet breakage on the basis of the degree of orientation of the polymer in the polymer composite material after roll forming obtained by irradiating the polymer composite material with high-intensity X-rays and calculating the degree of orientation of the polymer on the basis of an amount of X-ray absorption that is measured while X-ray energy is changed.SELECTED DRAWING: Figure 1

Description

本発明は、高分子複合材料のシート切れ評価方法に関する。 The present invention relates to a sheet breakage evaluation method for a polymer composite material.

ゴム材料のような高分子複合材料は、通常、バンバリーミキサー等の混練機で、ポリマー、フィラー、オイルやその他の薬品が混練された後、カレンダーロール等でシート状に押出成形されてから、次の工程に移されるが、押出成形時にシート切れが発生すると、次の工程へ移すことが難しくなる。そのため、シート切れの発生を抑制する手法が種々検討されている(例えば、特許文献1参照)。 Polymer composite materials such as rubber materials are usually kneaded with polymers, fillers, oils and other chemicals in a kneader such as a Banbury mixer, and then extruded into a sheet shape with a calender roll or the like. However, if sheet breakage occurs during extrusion, it is difficult to move to the next step. Therefore, various methods for suppressing the occurrence of sheet breakage have been studied (for example, see Patent Document 1).

特開2016−89031号公報Japanese Patent Laid-Open No. 2006-89031

一般的に、シート切れは、目視や引裂試験等によって評価されるが、これらの手法では、シート切れが生じた原因を判断することはできない。また、シート切れが生じにくい高分子複合材料となり得る指標(条件)は不明である。そのため、工場の実機で実際にロール成形するまで、シール切れの発生しやすさを正確に評価することは困難であった。 In general, sheet breakage is evaluated by visual inspection, a tear test, or the like, but these methods cannot determine the cause of sheet breakage. In addition, an index (condition) that can be a polymer composite material that hardly causes sheet breakage is unknown. For this reason, it has been difficult to accurately evaluate the likelihood of occurrence of a seal break until roll forming is actually performed on a factory machine.

本発明は、前記課題を解決し、実験室レベルで、高分子複合材料のシート切れの発生しやすさを正確に評価することが可能な評価方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide an evaluation method capable of accurately evaluating the likelihood of sheet breakage of a polymer composite material at a laboratory level.

ロール成形後の高分子複合材料において、高分子は、シートの押出方向に配向していると想像されがちであるが、本発明者らの検討の結果、シート切れが多数発生した高分子複合材料では、シート切れの方向への高分子の配向度が高いことが判明した。そして、本発明者らの更なる検討の結果、ロール成形後の高分子複合材料における高分子の配向度を、シート切れの発生しやすさの指標として用いることで、実験室レベルであっても、シート切れの発生しやすさを正確に評価することが可能となることを見出し、本発明に到達した。
すなわち、本発明は、ロール成形後の高分子複合材料における高分子の配向度に基づき、シート切れの発生のしやすさを評価する高分子複合材料のシート切れ評価方法に関する。
In the polymer composite material after roll forming, it is easy to imagine that the polymer is oriented in the extrusion direction of the sheet. Then, it was found that the degree of orientation of the polymer in the sheet cutting direction was high. As a result of further studies by the present inventors, the degree of orientation of the polymer in the polymer composite material after roll forming is used as an index of the likelihood of sheet breakage, even at the laboratory level. The present inventors have found that it is possible to accurately evaluate the likelihood of sheet breakage and have reached the present invention.
That is, the present invention relates to a sheet breakage evaluation method for a polymer composite material that evaluates the ease of sheet breakage based on the degree of orientation of the polymer in the polymer composite material after roll forming.

本発明では、高分子複合材料に高輝度X線を照射し、X線エネルギーを変えながら測定されるX線吸収量に基づいて高分子の配向度を算出することが好ましい。 In the present invention, it is preferable to calculate the degree of orientation of the polymer based on the amount of X-ray absorption measured while irradiating the polymer composite material with high-intensity X-ray and changing the X-ray energy.

本発明では、高輝度X線を260〜400eVのエネルギー範囲で走査することによって得られる炭素核のK殻吸収端のX線吸収スペクトルを、試料の角度又はX線の偏光の角度を一定間隔で変えて測定し、得られた各角度のX線吸収スペクトルを、下記式(1)に基づいて規格化した後、波形分離を行って高分子の主鎖に対応するピークの面積又は強度を算出し、得られたピーク面積又はピーク強度を下記式(2)に基づいて規格化した後、θiに対してA(θi)をプロットし、得られたグラフにおいて、下記式(3)に基づいてフィッティングを行った後、下記式(4)及び下記式(5)に基づいて高分子の配向度を算出し、下記式(6)に基づいてシート切れの方向への高分子の配向度を算出することが好ましい。

Figure 2018114649
α:各角度の規格化定数
Figure 2018114649
θi:各角度
a(θi):各角度のピーク面積又はピーク強度
A(θi):規格化後の各角度のピーク面積又はピーク強度
Figure 2018114649
b、c、d:任意の定数
Figure 2018114649
Figure 2018114649
Figure 2018114649
In the present invention, the X-ray absorption spectrum at the K-shell absorption edge of the carbon nucleus obtained by scanning high-intensity X-rays in the energy range of 260 to 400 eV is obtained by changing the angle of the sample or the angle of polarization of the X-rays at regular intervals. The X-ray absorption spectrum at each angle obtained after measurement was standardized based on the following formula (1), and then the waveform separation was performed to calculate the peak area or intensity corresponding to the polymer main chain. Then, after normalizing the obtained peak area or peak intensity based on the following formula (2), A (θi) is plotted against θi, and in the obtained graph, based on the following formula (3) After fitting, the degree of orientation of the polymer is calculated based on the following formula (4) and the following formula (5), and the degree of orientation of the polymer in the direction of sheet breakage is calculated based on the following formula (6). It is preferable to do.
Figure 2018114649
α: Normalization constant for each angle
Figure 2018114649
θi: Each angle a (θi): Peak area or peak intensity at each angle A (θi): Peak area or peak intensity at each angle after normalization
Figure 2018114649
b, c, d: Arbitrary constants
Figure 2018114649
Figure 2018114649
Figure 2018114649

高分子複合材料がジエン系ゴムを含むゴム材料であることが好ましい。 The polymer composite material is preferably a rubber material containing a diene rubber.

本発明はまた、シート切れの方向への高分子の配向度が25%以下である高分子複合材料に関する。 The present invention also relates to a polymer composite material in which the degree of orientation of the polymer in the sheet cutting direction is 25% or less.

本発明によれば、ロール成形後の高分子複合材料における高分子の配向度に基づき、シート切れの発生のしやすさを評価する高分子複合材料のシート切れ評価方法であるので、実験室レベルで、高分子複合材料のシート切れを正確に評価することができる。 According to the present invention, since it is a sheet breakage evaluation method for a polymer composite material that evaluates the ease of occurrence of sheet breakage based on the degree of orientation of the polymer in the polymer composite material after roll forming, the laboratory level Thus, the sheet breakage of the polymer composite material can be accurately evaluated.

高輝度X線の偏光と試料の角度との関係を説明する図である。It is a figure explaining the relationship between the polarization | polarized-light of a high-intensity X-ray, and the angle of a sample. 図1の状態で測定される炭素K殻吸収端付近のX線吸収スペクトルを示すグラフである。It is a graph which shows the X-ray absorption spectrum of the carbon K shell absorption edge vicinity measured in the state of FIG. 式(3)に基づくフィッティングのイメージ図である。It is an image figure of the fitting based on Formula (3). 平均配向度、周方向の配向度、軸方向の配向度、及び配向角の関係を示す図である。It is a figure which shows the relationship between an average orientation degree, the orientation degree of the circumferential direction, the orientation degree of an axial direction, and an orientation angle. シートの押出方向とシート切れの方向との関係を示す図である。It is a figure which shows the relationship between the extrusion direction of a sheet | seat, and the sheet cutting direction.

本発明は、ロール成形後の高分子複合材料における高分子の配向度に基づき、シート切れの発生のしやすさを評価する高分子複合材料のシート切れ評価方法である。 The present invention is a sheet breakage evaluation method for a polymer composite material that evaluates the ease of occurrence of sheet breakage based on the degree of orientation of the polymer in the polymer composite material after roll forming.

本発明では、高分子の配向度を指標として用いることで、実験室レベルであっても、シート切れの発生しやすさを正確に評価することができる。これにより、工場での工程問題を未然に防ぐことができる。 In the present invention, by using the degree of orientation of the polymer as an index, it is possible to accurately evaluate the likelihood of sheet breakage even at the laboratory level. Thereby, the process problem in a factory can be prevented beforehand.

また、高分子の配向度をシート切れの発生しやすさの指標として用いることで、シート切れが発生しにくい高分子複合材料の設計指針が明確となる。これにより、例えば、ポリマーの種類や、ポリマーとフィラーとの結合状態を調整し、シート切れの方向への高分子の配向度を低下させることで、シート切れが生じにくい高分子複合材料を得ることが可能となる。 Further, by using the degree of orientation of the polymer as an index of the likelihood of sheet breakage, a design guideline for a polymer composite material that hardly causes sheet breakage is clarified. Thereby, for example, by adjusting the type of polymer and the bonding state between the polymer and the filler, and reducing the degree of orientation of the polymer in the direction of sheet breakage, a polymer composite material that hardly causes sheet breakage is obtained. Is possible.

本発明において、ロール成形の手法としては特に限定されず、カレンダーロール、オープンロール等の公知のロール混練機を用いて成形すればよい。 In this invention, it does not specifically limit as a method of roll forming, What is necessary is just to shape | mold using well-known roll kneading machines, such as a calender roll and an open roll.

本発明において、高分子の配向度は、高分子複合材料に高輝度X線を照射し、X線エネルギーを変えながら測定されるX線吸収量に基づいて算出することが好ましい。X線吸収量の測定には、高輝度X線を用いて着目している特定元素の吸収端付近のX線吸収スペクトルを測定する(NEXAFS(吸収端近傍X線吸収微細構造):Near Edge X−ray Absorption Fine Structure)手法を採用できる。NEXAFS法は、検出深度が浅いため、カーボンブラックなどの影響を受けることなく、高分子複合材料中の高分子のみの配向度を測定することが可能となる。 In the present invention, the degree of orientation of the polymer is preferably calculated based on the amount of X-ray absorption measured while irradiating the polymer composite material with high-intensity X-rays and changing the X-ray energy. For the measurement of the amount of X-ray absorption, an X-ray absorption spectrum near the absorption edge of a specific element of interest is measured using high-intensity X-rays (NEXAFS (X-ray absorption fine structure near the absorption edge): Near Edge X -Ray Abstraction Fine Structure) technique can be adopted. Since the NEXAFS method has a shallow detection depth, it is possible to measure the degree of orientation of only the polymer in the polymer composite material without being affected by carbon black or the like.

NEXAFS法は、X線エネルギーで走査するため光源には連続X線発生装置が必要であり、詳細な化学状態を解析するには高いS/N比及びS/B比のX線吸収スペクトルを測定する必要がある。そのため、シンクロトロンから放射されるX線は、少なくとも1010(photons/s/mrad/mm/0.1%bw)以上の輝度を有し、且つ連続X線源であるため、NEXAFS測定には最適である。尚、bwはシンクロトロンから放射されるX線のband widthを示す。 The NEXAFS method scans with X-ray energy, so the light source requires a continuous X-ray generator, and X-ray absorption spectra with high S / N ratio and S / B ratio are measured to analyze the detailed chemical state. There is a need to. Therefore, the X-ray emitted from the synchrotron has a brightness of at least 10 10 (photons / s / mrad 2 / mm 2 /0.1% bw) and is a continuous X-ray source. Ideal for. Note that bw represents the band width of X-rays emitted from the synchrotron.

上記高輝度X線の輝度(photons/s/mrad/mm/0.1%bw)は、好ましくは1010以上、より好ましくは1012以上であり、上限は特に限定されない。また、上記高輝度X線の光子数(photons/s)は、好ましくは10以上、より好ましくは10以上であり、上限は特に限定されない。更に、上記高輝度X線を用いて走査するエネルギー範囲は、好ましくは4000eV以下、より好ましくは1500eV以下、更に好ましくは1000eV以下であり、下限は特に限定されない。 The luminance (photons / s / mrad 2 / mm 2 /0.1% bw) of the high-intensity X-ray is preferably 10 10 or more, more preferably 10 12 or more, and the upper limit is not particularly limited. The number of photons (photons / s) of the high-intensity X-ray is preferably 10 7 or more, more preferably 10 9 or more, and the upper limit is not particularly limited. Furthermore, the energy range scanned using the high-intensity X-ray is preferably 4000 eV or less, more preferably 1500 eV or less, and still more preferably 1000 eV or less, and the lower limit is not particularly limited.

NEXAFSの測定方法には、透過法、蛍光法、電子収量法の3つの方法が代表的に用いられ、例えば、特開2012−141278号公報記載の方法を適用できる。本発明の実施例では、電子収量法を用いて実施したが、これに限定されるものではなく、様々な検出方法を用いてもよく、組み合わせて同時計測してもよい。 As a measurement method of NEXAFS, three methods of a transmission method, a fluorescence method, and an electron yield method are typically used. For example, a method described in JP 2012-141278 A can be applied. In the embodiment of the present invention, the electron yield method was used. However, the present invention is not limited to this, and various detection methods may be used, or simultaneous measurement may be performed in combination.

上記の電子収量法を用いて高分子複合材料のX線吸収スペクトル測定を行い解析することで、高分子複合材料中の高分子の配向度を算出できる。 By measuring and analyzing the X-ray absorption spectrum of the polymer composite using the above-mentioned electron yield method, the degree of orientation of the polymer in the polymer composite can be calculated.

シート切れの方向への高分子の配向度は、例えば、以下の方法で算出できる。
(i)高輝度X線を260〜400eVのエネルギー範囲で走査することによって得られる炭素核のK殻吸収端のX線吸収スペクトルを、試料の角度又はX線の偏光の角度を一定間隔で変えて測定し、
(ii)得られた各角度のX線吸収スペクトルを、下記式(1)に基づいて規格化した後、波形分離を行って高分子の主鎖に対応するピークの面積又は強度を算出し、
(iii)得られたピーク面積又はピーク強度を下記式(2)に基づいて規格化した後、θiに対してA(θi)をプロットし、
(iv)得られたグラフにおいて、下記式(3)に基づいてフィッティングを行った後、下記式(4)及び下記式(5)に基づいて高分子の配向度を算出し、
(v)下記式(6)に基づいてシート切れの方向への高分子の配向度を算出する。

Figure 2018114649
α:各角度の規格化定数
Figure 2018114649
θi:各角度
a(θi):各角度のピーク面積又はピーク強度
A(θi):規格化後の各角度のピーク面積又はピーク強度
Figure 2018114649
b、c、d:任意の定数
Figure 2018114649
Figure 2018114649
Figure 2018114649
The degree of orientation of the polymer in the sheet cutting direction can be calculated by, for example, the following method.
(I) The X-ray absorption spectrum at the K-shell absorption edge of the carbon nucleus obtained by scanning high-intensity X-rays in the energy range of 260 to 400 eV is changed at constant intervals with the sample angle or the X-ray polarization angle changed. Measure
(Ii) After normalizing the obtained X-ray absorption spectrum of each angle based on the following formula (1), waveform separation is performed to calculate the area or intensity of the peak corresponding to the main chain of the polymer,
(Iii) After normalizing the obtained peak area or peak intensity based on the following formula (2), A (θi) is plotted against θi,
(Iv) In the obtained graph, after fitting based on the following formula (3), the degree of orientation of the polymer is calculated based on the following formula (4) and the following formula (5),
(V) The degree of orientation of the polymer in the direction of sheet breakage is calculated based on the following formula (6).
Figure 2018114649
α: Normalization constant for each angle
Figure 2018114649
θi: Each angle a (θi): Peak area or peak intensity at each angle A (θi): Peak area or peak intensity at each angle after normalization
Figure 2018114649
b, c, d: Arbitrary constants
Figure 2018114649
Figure 2018114649
Figure 2018114649

高分子の主鎖に対応するピークとしては、例えば、C=C結合に対応する285eV付近のπ遷移に帰属されるピークが挙げられる。このピークに基づいて解析することで、ゴム分子など、C=C結合を有する高分子の配向度を算出することが可能となる。 Examples of the peak corresponding to the main chain of the polymer include a peak attributed to a π * transition near 285 eV corresponding to a C═C bond. By analyzing based on this peak, the degree of orientation of a polymer having a C═C bond, such as a rubber molecule, can be calculated.

ここで、上記方法において、上記高輝度X線のエネルギーを260〜350eVの範囲にすることが好ましい。なお、上記方法では、上記式(1)の操作を行う前に、吸収端前のスロープから評価してバックグランドを引くことが行われる。 Here, in the above method, it is preferable that the energy of the high-intensity X-ray is in a range of 260 to 350 eV. In the above method, before performing the operation of the above formula (1), the background is drawn by evaluating from the slope before the absorption end.

上記方法において、上記式(1)におけるX線吸収スペクトルの全面積は、測定範囲内のスペクトルを積分したものであり、測定条件などによってエネルギー範囲を変えることができる。 In the above method, the total area of the X-ray absorption spectrum in the above formula (1) is obtained by integrating the spectrum within the measurement range, and the energy range can be changed depending on the measurement conditions and the like.

図1は、高輝度X線の偏光と試料の角度との関係を説明する図であり、図2は、図1の状態で測定される炭素K殻吸収端付近のX線吸収スペクトルを示すグラフである。図1に示すように、高分子が一定の方向に配向した試料に高輝度X線を照射する場合、高輝度X線の偏光の方向と、高分子の主鎖中のC=Cの方向とが揃っている状態(図1の左側の状態)では、主鎖中のC=Cを検出できるが、試料を回転させ、各方向が揃っていない状態(図1の右側の状態)では、主鎖中のC=Cを充分に検出することができない。そのため、図2に示すように、試料の回転後に測定されるX線吸収スペクトルは、回転前と比較して、C=Cのπのピーク強度が小さくなる。この関係を利用して、X線吸収スペクトルのピーク強度から、高分子の配向度を判断することができる。 FIG. 1 is a diagram for explaining the relationship between the polarization of high-intensity X-rays and the angle of the sample, and FIG. 2 is a graph showing an X-ray absorption spectrum near the carbon K-shell absorption edge measured in the state of FIG. It is. As shown in FIG. 1, when a sample with a polymer oriented in a certain direction is irradiated with high-intensity X-rays, the direction of polarization of the high-intensity X-rays and the direction of C = C in the main chain of the polymer Can be detected in the main chain (state on the left side of FIG. 1), but in the state where the sample is rotated and the directions are not aligned (state on the right side of FIG. 1), C = C in the chain cannot be detected sufficiently. Therefore, as shown in FIG. 2, in the X-ray absorption spectrum measured after the rotation of the sample, the peak intensity of π * of C = C is smaller than that before the rotation. Using this relationship, the degree of orientation of the polymer can be determined from the peak intensity of the X-ray absorption spectrum.

なお、高分子の主鎖中の結合でシャープなピークであれば、C=Cのπのピーク以外のピークを使用してもよい。C−Cのσのピークを使用することも原理的には可能であるが、図2に示すように、このピークはブロードであるため、本発明には不向きである。 Note that a peak other than the C = C π * peak may be used as long as it is a sharp peak due to a bond in the main chain of the polymer. Although it is possible in principle to use a σ * peak of CC, as shown in FIG. 2, this peak is broad and is not suitable for the present invention.

高輝度X線は、通常、図1に示したような水平偏光であるが、偏光可変アンジュレータを用いることで、偏光方向(偏光の角度)を変えることができる。 The high-intensity X-ray is normally horizontally polarized as shown in FIG. 1, but the polarization direction (polarization angle) can be changed by using a polarization variable undulator.

以下、シート切れの方向への高分子の配向度を算出する手順の一例をより詳細に説明する。
なお、X線吸収量は超真空中で測定するため、未加硫ゴム組成物などの成形前の試料を測定する場合、ガスが発生しなくなるまで真空引きを行ってから、以下の操作を行う。
Hereinafter, an example of a procedure for calculating the degree of orientation of the polymer in the sheet cutting direction will be described in more detail.
Since X-ray absorption is measured in an ultra-vacuum, when measuring a pre-molded sample such as an unvulcanized rubber composition, the following operations are performed after evacuating until no gas is generated. .

まず、基準とする方向を定め、その軸方向と高輝度X線の偏光方向とが0°になるようにセットする。そして、260〜400eV(好ましくは260〜350eV)のエネルギー範囲において、炭素核のK殻吸収端の必要な範囲で高輝度X線を走査し、X線吸収スペクトルを得る。この操作を、試料の角度又はX線の偏光の角度を変えて複数回実施する。
以下の説明では、試料の角度を0°、30°、60°、90°にして測定した場合(i=4の場合)を例として説明するが、測定する角度や測定回数はこれに限定されるものではなく、適宜変更可能である。
First, a reference direction is determined, and the axial direction and the polarization direction of the high-intensity X-ray are set to 0 °. Then, in the energy range of 260 to 400 eV (preferably 260 to 350 eV), high-intensity X-rays are scanned within the necessary range of the K-shell absorption edge of the carbon nucleus to obtain an X-ray absorption spectrum. This operation is performed a plurality of times by changing the angle of the sample or the angle of polarization of the X-ray.
In the following description, a case where measurement is performed with the sample angle set to 0 °, 30 °, 60 °, and 90 ° (when i = 4) will be described as an example. However, the angle to be measured and the number of times of measurement are limited to this. It is not a thing and can be changed suitably.

光源からの試料の距離などの微妙な変化がX線吸収スペクトルの大きさに影響を与えるため、NEXAFS法は絶対値測定が困難で、炭素原子のK殻吸収端のNEXAFS測定結果を試料間で単純に比較できない。そこで、上記式(1)を用いて、炭素原子のK殻吸収端のピーク面積が1となるように規格化する。具体的には、先ず、規格化前のX線吸収スペクトルについて式(1)をもとに規格化定数αを算出し、次いで規格化前のX線吸収スペクトルにαを乗じたスペクトルに補正(規格化)することで、各試料間のピークを直接比較できる。この操作を、各角度(0°、30°、60°、90°)のX線吸収スペクトルに対して実施する。 NEXAFS method is difficult to measure absolute value because subtle changes such as the distance of the sample from the light source affect the magnitude of the X-ray absorption spectrum, and the NEXAFS measurement result of the K shell absorption edge of the carbon atom is measured between samples. It cannot simply be compared. Therefore, normalization is performed using the above formula (1) so that the peak area of the K-shell absorption edge of carbon atoms is 1. Specifically, first, a normalization constant α is calculated based on the equation (1) for the X-ray absorption spectrum before normalization, and then corrected to a spectrum obtained by multiplying the X-ray absorption spectrum before normalization by α ( By normalization, the peaks between the samples can be directly compared. This operation is performed on the X-ray absorption spectrum at each angle (0 °, 30 °, 60 °, 90 °).

次に、規格化後のX線吸収スペクトルを波形分離して、高分子の主鎖に対応するピークであるC=Cのπのピークの面積又は強度を算出する。この操作を、各角度のX線吸収スペクトルに対して実施してから、上記式(2)を用いて、各角度のピーク面積又はピーク強度a(θi)を規格化する。今回の例では、式(2)は以下のようになる。この式に基づき、規格化後の各角度のピーク面積又はピーク強度A(θi)を算出する。

Figure 2018114649
Next, the normalized X-ray absorption spectrum is waveform-separated, and the area or intensity of the C = C π * peak, which is the peak corresponding to the main chain of the polymer, is calculated. After this operation is performed on the X-ray absorption spectrum at each angle, the peak area or peak intensity a (θi) at each angle is normalized using the above equation (2). In this example, equation (2) is as follows. Based on this formula, the peak area or peak intensity A (θi) at each angle after normalization is calculated.
Figure 2018114649

次に、図3のように、角度θiに対してA(θi)をプロットし、得られたグラフにおいて、式(3)に基づいてフィッティングを行った後、式(4)及び式(5)に基づいて高分子の配向度(平均配向度)を算出する。配向度の値が小さいほど、高分子が配向していないことを示す。
また、式(3)中の「θi+d」は、高分子の配向角(平均配向角)を示す。
Next, as shown in FIG. 3, A (θi) is plotted against the angle θi, and in the obtained graph, fitting is performed based on Expression (3), and then Expression (4) and Expression (5) are performed. Based on the above, the degree of orientation (average degree of orientation) of the polymer is calculated. The smaller the value of the orientation degree, the more the polymer is not oriented.
In addition, “θi + d” in the formula (3) represents a polymer orientation angle (average orientation angle).

上記で得られた配向度(平均配向度)は、図4に示されているように、周方向の配向度と、軸方向の配向度とに分離することができる。 The degree of orientation (average degree of orientation) obtained above can be separated into a degree of orientation in the circumferential direction and a degree of orientation in the axial direction, as shown in FIG.

シート切れは、通常、シートの押出方向と直交する方向に発生する(図5参照)。そして、シート切れの方向は、タイヤの軸方向と一致する。よって、高分子の配向度(平均配向度)及び配向角(平均配向角)から、式(6)を用いて、シート切れの方向への高分子の配向度(軸方向の配向度)を算出することができる。 Sheet breakage usually occurs in a direction perpendicular to the sheet extrusion direction (see FIG. 5). The sheet cutting direction coincides with the axial direction of the tire. Therefore, from the degree of orientation of the polymer (average orientation degree) and the orientation angle (average orientation angle), the degree of orientation of the polymer in the direction of sheet breakage (axial orientation degree) is calculated using Equation (6). can do.

以上の手順により、高分子複合材料中の高分子のシート切れの方向への配向度を算出することができる。 By the above procedure, the degree of orientation of the polymer in the polymer composite material in the direction of sheet breakage can be calculated.

そして、算出したシート切れの方向への配向度を指標として用いることで、シート切れの発生しやすさを正確に評価することができる。さらに、ポリマーの種類や、ポリマーとフィラーとの結合状態を調整する等の手法により、シート切れの方向への高分子の配向度を、好ましくは25%以下、より好ましくは20%以下まで低下させることで、シート切れが特に発生しにくい高分子複合材料が得られる。 Then, by using the calculated degree of orientation in the sheet cutting direction as an index, the ease of sheet cutting can be accurately evaluated. Further, the degree of orientation of the polymer in the direction of sheet breakage is preferably reduced to 25% or less, more preferably 20% or less by a method such as adjusting the type of polymer or the bonding state between the polymer and filler. Thus, a polymer composite material in which sheet breakage is particularly difficult to occur can be obtained.

本発明に適用できる高分子複合材料としては特に限定されず、従来公知のものが挙げられるが、例えば、1種類以上のジエン系ゴムを含むゴム材料、該ゴム材料と1種類以上の樹脂とが複合された複合材料を好適に使用できる。上記ジエン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X−IIR)、スチレンイソプレンブタジエンゴム(SIBR)などの二重結合を有するポリマーが挙げられる。 The polymer composite material that can be applied to the present invention is not particularly limited and may be a conventionally known material. For example, a rubber material including one or more types of diene rubber, the rubber material and one or more types of resins may be used. A composite material that is composited can be suitably used. Examples of the diene rubber include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), Examples thereof include polymers having a double bond such as halogenated butyl rubber (X-IIR) and styrene isoprene butadiene rubber (SIBR).

上記樹脂としては特に限定されず、例えば、ゴム工業分野で汎用されているものが挙げられ、例えば、C5系脂肪族石油樹脂、シクロペンタジエン系石油樹脂などの石油樹脂が挙げられる。 The resin is not particularly limited, and examples thereof include those widely used in the rubber industry field, and examples thereof include petroleum resins such as C5 aliphatic petroleum resins and cyclopentadiene petroleum resins.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

<試料の作製>
表1に記載する配合内容に従い、硫黄及び加硫促進剤以外の材料を、充填率が58%になるように(株)神戸製鋼製の1.7Lバンバリーに充填し、80rpmで140℃に到達するまで混練し、混練物(試料1〜3)を得た。
<Preparation of sample>
In accordance with the formulation described in Table 1, materials other than sulfur and vulcanization accelerators were filled into 1.7 L Banbury manufactured by Kobe Steel Co., Ltd. so that the filling rate was 58%, and reached 140 ° C. at 80 rpm. Until kneaded, and kneaded materials (samples 1 to 3) were obtained.

Figure 2018114649
(使用薬品)
天然ゴム(NR):TSR20
ブタジエンゴム(BR):宇部興産(株)製のBR150B
スチレンブタジエンゴム(SBR):日本ゼオン(株)製のNipol1502
カーボンブラック:キャボットジャパン(株)製のショウブラックN351(NSA:71m/g)
シリカ:Degussa社製のUltrasil VN3
シランカップリング剤:Degussa社製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
オイル:(株)ジャパンエナジー製のプロセスX−140
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−1,3−ジメチルブチル−N’−フェニル−p−フェニレンジアミン)
ワックス:日本精蝋(株)製のオゾエース0355
酸化亜鉛:東邦亜鉛(株)製の銀嶺R
ステアリン酸:日油(株)製の椿
硫黄:鶴見化学工業(株)製の5%オイル処理粉末硫黄(オイル分5質量%含む可溶性硫黄)
加硫促進剤:大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド)
Figure 2018114649
(Chemicals used)
Natural rubber (NR): TSR20
Butadiene rubber (BR): BR150B manufactured by Ube Industries, Ltd.
Styrene butadiene rubber (SBR): Nipol 1502 manufactured by Nippon Zeon Co., Ltd.
Carbon black: Show Black N351 (N 2 SA: 71 m 2 / g) manufactured by Cabot Japan
Silica: Ultrasil VN3 from Degussa
Silane coupling agent: Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by Degussa
Oil: Process X-140 manufactured by Japan Energy Co., Ltd.
Anti-aging agent: NOCRACK 6C (N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine) manufactured by Ouchi Shinsei Chemical Co., Ltd.
Wax: Ozoace 0355 manufactured by Nippon Seiwa Co., Ltd.
Zinc oxide: Silver candy R made by Toho Zinc Co., Ltd.
Stearic acid: Sulfur Sulfur manufactured by NOF Corporation: 5% oil-treated powdered sulfur manufactured by Tsurumi Chemical Co., Ltd. (soluble sulfur containing 5% by mass of oil)
Vulcanization accelerator: Noxeller CZ (N-cyclohexyl-2-benzothiazylsulfenamide) manufactured by Ouchi Shinsei Chemical Co., Ltd.

<実施例>
カレンダーロールで各試料をシート状に押出成形(ロール成形)した後、NEXAFS手法を用いて、下記条件により、各試料のX線吸収スペクトルを測定し、上述の式(1)〜(6)を用いて、各試料中の高分子の、シート切れの方向への配向度を算出した。測定は、試料毎に3箇所ずつ行い、その平均値を表2に示した。
(使用装置、測定条件)
NEXAFS:佐賀県立九州シンクロトロン光研究センターのBL12ビームライン付属のNEXAFS測定装置
輝度:5×1012(photons/s/mrad/mm/0.1%bw)
光子数:2×10(photons/s)
測定した光子エネルギー領域:275〜320eV
<Example>
After extruding (rolling) each sample into a sheet shape with a calender roll, the X-ray absorption spectrum of each sample is measured under the following conditions using the NEXAFS technique, and the above-mentioned formulas (1) to (6) are obtained. Using, the degree of orientation of the polymer in each sample in the direction of sheet breakage was calculated. The measurement was performed at three locations for each sample, and the average value is shown in Table 2.
(Devices used, measurement conditions)
NEXAFS: NEXAFS measuring device attached to BL12 beam line of Saga Prefectural Kyushu Synchrotron Light Research Center Brightness: 5 × 10 12 (photons / s / mrad 2 / mm 2 /0.1% bw)
Number of photons: 2 × 10 9 (photons / s)
Measured photon energy region: 275-320 eV

<比較例>
カレンダーロールで各試料をシート状に押出する際のシート切れの発生状態を目視で観察し、発生回数をカウントした。5以上であれば工程上問題となるレベルである。
<Comparative example>
The occurrence state of sheet breakage when each sample was extruded into a sheet shape with a calender roll was visually observed, and the number of occurrences was counted. If it is 5 or more, it is a level causing a problem in the process.

Figure 2018114649
Figure 2018114649

表2で示されているように、実施例で算出したシート切れの方向への配向度が小さいほど、比較例でカウントしたシート切れの発生数が少なくなる傾向があった。この結果から、シート切れの方向への配向度と、シート切れの発生のしやすさとに相関関係があることが確認できた。
また、シート切れの方向への配向度が25%以下の試料1、2では、シート切れの発生数が少なく、20%以下の試料1では、シート切れが全く発生しなかった。
As shown in Table 2, there was a tendency that the smaller the degree of orientation in the sheet cutting direction calculated in the example, the smaller the number of sheet cuttings counted in the comparative example. From this result, it was confirmed that there was a correlation between the degree of orientation in the direction of sheet breakage and the ease of occurrence of sheet breakage.
In Samples 1 and 2 having a degree of orientation in the direction of sheet breakage of 25% or less, the number of sheet breakages was small, and in Sample 1 with 20% or less, sheet breakage did not occur at all.

Claims (5)

ロール成形後の高分子複合材料における高分子の配向度に基づき、シート切れの発生のしやすさを評価する高分子複合材料のシート切れ評価方法。 A method for evaluating sheet breakage of a polymer composite material, which evaluates the ease of sheet breakage based on the degree of orientation of the polymer in the polymer composite material after roll forming. 高分子複合材料に高輝度X線を照射し、X線エネルギーを変えながら測定されるX線吸収量に基づいて高分子の配向度を算出する請求項1記載の高分子複合材料のシート切れ評価方法。 The evaluation of sheet breakage of a polymer composite material according to claim 1, wherein the polymer composite material is irradiated with high-intensity X-rays, and the degree of orientation of the polymer is calculated based on the X-ray absorption amount measured while changing the X-ray energy. Method. 高輝度X線を260〜400eVのエネルギー範囲で走査することによって得られる炭素核のK殻吸収端のX線吸収スペクトルを、試料の角度又はX線の偏光の角度を一定間隔で変えて測定し、
得られた各角度のX線吸収スペクトルを、下記式(1)に基づいて規格化した後、波形分離を行って高分子の主鎖に対応するピークの面積又は強度を算出し、
得られたピーク面積又はピーク強度を下記式(2)に基づいて規格化した後、θiに対してA(θi)をプロットし、
得られたグラフにおいて、下記式(3)に基づいてフィッティングを行った後、下記式(4)及び下記式(5)に基づいて高分子の配向度を算出し、
下記式(6)に基づいてシート切れの方向への高分子の配向度を算出する請求項2記載の高分子複合材料のシート切れ評価方法。
Figure 2018114649
α:各角度の規格化定数
Figure 2018114649
θi:各角度
a(θi):各角度のピーク面積又はピーク強度
A(θi):規格化後の各角度のピーク面積又はピーク強度
Figure 2018114649
b、c、d:任意の定数
Figure 2018114649
Figure 2018114649
Figure 2018114649
The X-ray absorption spectrum at the K-shell absorption edge of carbon nuclei obtained by scanning high-intensity X-rays in the energy range of 260 to 400 eV is measured by changing the sample angle or the X-ray polarization angle at regular intervals. ,
After normalizing the obtained X-ray absorption spectrum at each angle based on the following formula (1), waveform separation is performed to calculate the peak area or intensity corresponding to the main chain of the polymer,
After normalizing the obtained peak area or peak intensity based on the following formula (2), A (θi) is plotted against θi,
In the obtained graph, after fitting based on the following formula (3), the degree of orientation of the polymer is calculated based on the following formula (4) and the following formula (5),
The method for evaluating sheet breakage of a polymer composite material according to claim 2, wherein the degree of orientation of the polymer in the sheet breakage direction is calculated based on the following formula (6).
Figure 2018114649
α: Normalization constant for each angle
Figure 2018114649
θi: Each angle a (θi): Peak area or peak intensity at each angle A (θi): Peak area or peak intensity at each angle after normalization
Figure 2018114649
b, c, d: Arbitrary constants
Figure 2018114649
Figure 2018114649
Figure 2018114649
高分子複合材料がジエン系ゴムを含むゴム材料である請求項1〜3のいずれかに記載の高分子複合材料のシート切れ評価方法。 The method for evaluating sheet breakage of a polymer composite material according to any one of claims 1 to 3, wherein the polymer composite material is a rubber material containing a diene rubber. シート切れの方向への高分子の配向度が25%以下である高分子複合材料。 A polymer composite material in which the degree of orientation of the polymer in the direction of sheet cutting is 25% or less.
JP2017005931A 2017-01-17 2017-01-17 Evaluation method for sheet scraping of polymer composite materials Active JP6822160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017005931A JP6822160B2 (en) 2017-01-17 2017-01-17 Evaluation method for sheet scraping of polymer composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017005931A JP6822160B2 (en) 2017-01-17 2017-01-17 Evaluation method for sheet scraping of polymer composite materials

Publications (2)

Publication Number Publication Date
JP2018114649A true JP2018114649A (en) 2018-07-26
JP6822160B2 JP6822160B2 (en) 2021-01-27

Family

ID=62984985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017005931A Active JP6822160B2 (en) 2017-01-17 2017-01-17 Evaluation method for sheet scraping of polymer composite materials

Country Status (1)

Country Link
JP (1) JP6822160B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101456A (en) * 2018-12-21 2020-07-02 Toyo Tire株式会社 Acquisition method of x-ray absorption spectrum, and creation method of calibration curve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326885A (en) * 2006-06-06 2007-12-20 Dainippon Plastics Co Ltd Tubular molded article and method for producing the same
WO2012137770A1 (en) * 2011-04-08 2012-10-11 住友金属工業株式会社 Modified natural graphite particles
JP2013075968A (en) * 2011-09-30 2013-04-25 Sumitomo Bakelite Co Ltd Curable silicone rubber-based composition and measurement method for curable silicone rubber-based composition
JP2016020955A (en) * 2014-07-14 2016-02-04 住友化学株式会社 Method for manufacturing polarizing laminate film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326885A (en) * 2006-06-06 2007-12-20 Dainippon Plastics Co Ltd Tubular molded article and method for producing the same
WO2012137770A1 (en) * 2011-04-08 2012-10-11 住友金属工業株式会社 Modified natural graphite particles
JP2013075968A (en) * 2011-09-30 2013-04-25 Sumitomo Bakelite Co Ltd Curable silicone rubber-based composition and measurement method for curable silicone rubber-based composition
JP2016020955A (en) * 2014-07-14 2016-02-04 住友化学株式会社 Method for manufacturing polarizing laminate film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101456A (en) * 2018-12-21 2020-07-02 Toyo Tire株式会社 Acquisition method of x-ray absorption spectrum, and creation method of calibration curve
JP7275461B2 (en) 2018-12-21 2023-05-18 Toyo Tire株式会社 Method for obtaining X-ray absorption spectrum and method for creating calibration curve

Also Published As

Publication number Publication date
JP6822160B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP6657664B2 (en) Chemical state measurement method
JP6348295B2 (en) How to determine the chemical state of sulfur
JP6743477B2 (en) Vulcanized material analysis method
JP6544098B2 (en) Method of measuring crosslink density in sulfur-containing polymer composites
JP6613637B2 (en) Method for evaluating response characteristics of internal structure of polymer materials
US10794893B2 (en) Method for estimating abrasion resistance and fracture resistance
JP6822160B2 (en) Evaluation method for sheet scraping of polymer composite materials
JP6870309B2 (en) Wear resistance performance prediction method
JP6374355B2 (en) Method for measuring crosslink density in sulfur-containing polymer composites
JP5805043B2 (en) Degradation analysis method
JP7167546B2 (en) Crosslinked structure visualization method
JP2019045196A (en) Measuring method of coupling amount of monosulfide bond, coupling amount of disulfide bond, coupling amount of polysulfide bond, and coupling amount of filler interface in polymer composite containing filler and sulfur
JP6769123B2 (en) Method for measuring crosslink density
JP6769122B2 (en) Method for evaluating the degree of orientation of a polymer in a polymer composite material
JP2015132518A (en) Method for investigating chemical state of sulfur
JP6540337B2 (en) Method to evaluate the crack performance of polymeric materials
JP7069874B2 (en) How to predict changes in wear resistance and fracture resistance
JP5814277B2 (en) Fracture energy prediction method and rubber composition
JP6460730B2 (en) Vulcanized rubber composition for tire and pneumatic tire
EP4249901A1 (en) Method for estimating abrasion resistance
JP2019078669A (en) Method for analyzing sulfur crosslinked structure of high polymer material
JP6371174B2 (en) How to determine the chemical state of sulfur
JP6050174B2 (en) Degradation analysis method
JP6371109B2 (en) How to determine the chemical state of sulfur

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201221

R150 Certificate of patent or registration of utility model

Ref document number: 6822160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250