JP2018114535A - Heating method and heating equipment for continuous casting slab - Google Patents

Heating method and heating equipment for continuous casting slab Download PDF

Info

Publication number
JP2018114535A
JP2018114535A JP2017006941A JP2017006941A JP2018114535A JP 2018114535 A JP2018114535 A JP 2018114535A JP 2017006941 A JP2017006941 A JP 2017006941A JP 2017006941 A JP2017006941 A JP 2017006941A JP 2018114535 A JP2018114535 A JP 2018114535A
Authority
JP
Japan
Prior art keywords
heating
slab
continuous casting
induction heating
casting slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017006941A
Other languages
Japanese (ja)
Other versions
JP6555487B2 (en
Inventor
日野 善道
Yoshimichi Hino
善道 日野
三宅 勝
Masaru Miyake
勝 三宅
拓郎 矢▲崎▼
Takuro Yazaki
拓郎 矢▲崎▼
慎也 山口
Shinya Yamaguchi
慎也 山口
洸介 日向
Kosuke Hyuga
洸介 日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017006941A priority Critical patent/JP6555487B2/en
Publication of JP2018114535A publication Critical patent/JP2018114535A/en
Application granted granted Critical
Publication of JP6555487B2 publication Critical patent/JP6555487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting slab heating method and heating equipment which enable a continuous casting slab to be heated uniformly in a width direction edge part over the full length and is economical.SOLUTION: Heating equipment 20 is provided in a transportation passage of continuous casting slabs S from the outlet side of the continuous casting equipment to the inlet side of hot-rolling equipment. The heating equipment 20 has a plurality of induction heating devices 22 arranged at equal intervals in the transportation direction of continuous casting slabs S to heat the width direction edge part of the continuous casting slab S, and the heating length Lc of induction heating device 22 is almost equal to the interval Ld between the induction heating devices 22. The continuous casting slab S in the heating equipment 20 is heated by a plurality of induction heating devices 22 while being moved by reciprocation in a forward direction and in a reverse direction by a distant equivalent to odd-numbered times of the heating length Lc.SELECTED DRAWING: Figure 2

Description

この発明は、連続鋳造設備で鋳造された連続鋳造スラブ(熱片)の幅方向エッジ部の加熱方法および加熱設備に関し、特には、連続鋳造設備で鋳造された連続鋳造スラブを加熱炉で再加熱せず直接圧延する直送圧延(HDR:Hot direct rolling)に適した連続鋳造スラブの加熱方法および加熱設備に関する。   The present invention relates to a heating method and a heating equipment for a widthwise edge portion of a continuous casting slab (hot piece) cast by a continuous casting equipment, and in particular, reheating the continuous casting slab cast by the continuous casting equipment in a heating furnace. The present invention relates to a heating method and heating equipment for a continuous cast slab suitable for direct feed rolling (HDR).

直送圧延は、連続鋳造設備と熱間圧延設備とを直結し、連続鋳造設備で鋳造された連続鋳造スラブ(以下、単に「スラブ」ともいう。)の顕熱を利用して省エネルギーを図るとともに大幅な工程短縮を可能とする技術である。   Direct feed rolling is a direct connection between continuous casting equipment and hot rolling equipment, and uses the sensible heat of continuous cast slabs (hereinafter also simply referred to as “slabs”) cast by continuous casting equipment to save energy and greatly It is a technology that enables shortening of the process.

連続鋳造の速度は毎分数メートルであってスラブ一枚が鋳造を終えるには数分を要するため、この間にスラブの幅方向エッジ部(以下、単に「エッジ部」ともいう。)の温度が低下し、加熱炉を経由しない直送圧延では何らかの温度補償が必要となる場合がある。   Since the speed of continuous casting is several meters per minute and it takes several minutes for one slab to finish casting, the temperature of the edge portion in the width direction of the slab (hereinafter also simply referred to as “edge portion”) decreases during this time. In some cases, direct temperature rolling without passing through a heating furnace may require some temperature compensation.

これに関して特許文献1では、連続鋳造機のカッタに近接してその前後にスラブ端面を加熱する加熱装置をそれぞれ設けることが提案されている。   In this regard, Patent Document 1 proposes providing a heating device that heats the end surface of the slab in the vicinity of the cutter of the continuous casting machine.

また、特許文献2には、スラブの幅方向エッジ部をバーナで加熱する装置を熱間圧延用のスラブ加熱炉近傍に設置することが提案されている。   Patent Document 2 proposes that an apparatus for heating the edge portion in the width direction of the slab with a burner is installed in the vicinity of the slab heating furnace for hot rolling.

非特許文献1には、スラブの幅方向エッジ部を誘導加熱する方法が開示されている。   Non-Patent Document 1 discloses a method of induction heating a width direction edge portion of a slab.

非特許文献2には、スラブよりも小型のビレットを加熱するため誘導加熱コイル内にビレットを収容した状態で加熱を行う方法が開示されている。   Non-Patent Document 2 discloses a method of heating a billet that is smaller than a slab while the billet is housed in an induction heating coil.

特開昭60−18201号公報Japanese Patent Laid-Open No. 60-18201 特開昭55−41902号公報JP-A-55-41902

製鉄研究第313号(1984年) P.6 新日本製鐵株式会社Steelmaking Research No. 313 (1984) 6 Nippon Steel Corporation 日立評論1967年6月号 P.17Hitachi review June 1967 issue 17

しかしながら、特許文献1の加熱装置では、加熱中のスラブの搬送方向が一方向であり、先に加熱を終えたスラブの先端側のエッジ部は放熱が始まり、尾端部の加熱が終わる頃には先端側のエッジ部の温度は大幅に低下する。特許文献1の第3図に示される、連続鋳造機のカッタ近辺に加熱装置を設置した実施例では、スラブを粗圧延機まで運搬する間に、一旦Al-N再固溶温度を超えたスラブのエッジ部の温度は再び1000℃程度まで降下しており(同文献第2図参照)、その状態で圧延を行うと、近年の厳しい品質管理の視点では1200℃程度で圧延される幅方向中央部と比較してエッジ部の品質への影響が懸念される。   However, in the heating apparatus of Patent Document 1, the conveying direction of the slab being heated is one direction, and the edge portion on the tip side of the slab that has been heated first starts to dissipate and the heating of the tail end ends. The temperature at the edge part on the tip side is greatly reduced. In the embodiment shown in FIG. 3 of Patent Document 1 where a heating device is installed in the vicinity of the cutter of the continuous casting machine, the slab once exceeds the Al-N resolution temperature while the slab is transported to the roughing mill. The temperature of the edge portion of the steel sheet has fallen again to about 1000 ° C. (see FIG. 2 of the same document). When rolling in that state, the center in the width direction is rolled at about 1200 ° C. from the viewpoint of strict quality control in recent years. There is a concern about the influence on the quality of the edge portion as compared with the portion.

また、特許文献1の加熱装置では、加熱時のスラブの搬送速度が連続鋳造機による連続鋳造の速度に依存することから、鋳造速度から独立した速度での加熱を行うことはできない。そのため、加熱時間が10分程度と長くなり(同文献第2図参照)、エッジ部を加熱する10分程度の間、スラブの幅方向中心部の温度は低下し続けている。温度降下が大きくなるとAl-N固溶温度や粗圧延に必要な温度を下回るという問題があり、温度降下を考慮した大きな入熱を行うと省エネルギーの観点で問題がある。   Moreover, in the heating apparatus of patent document 1, since the conveyance speed of the slab at the time of a heating is dependent on the speed of the continuous casting by a continuous casting machine, it cannot heat at the speed independent of the casting speed. Therefore, the heating time becomes as long as about 10 minutes (see FIG. 2 of the same document), and the temperature at the center portion in the width direction of the slab continues to decrease during about 10 minutes for heating the edge portion. When the temperature drop becomes large, there is a problem that the temperature is lower than the Al-N solid solution temperature or the temperature required for rough rolling, and there is a problem in terms of energy saving if large heat input is performed considering the temperature drop.

特許文献2では、スラブを粗圧延機に送る搬送テーブル上にエッジ部加熱装置を配置して圧延直前にスラブの幅方向エッジ部の温度補償を行っているが、加熱はバーナによって行われており、スラブのように熱容量の大きなものを加熱するには10分程度の時間を要してしまい、エッジ部を加熱している間に幅方向中央部の温度が低下するという同様の問題を抱えている。   In Patent Document 2, the edge portion heating device is arranged on the conveyance table for sending the slab to the roughing mill and the temperature compensation of the edge portion in the width direction of the slab is performed immediately before rolling, but the heating is performed by the burner. It takes about 10 minutes to heat a large heat capacity such as a slab, and has the same problem that the temperature in the central portion in the width direction decreases while the edge portion is heated. Yes.

このようにバーナによる加熱では長時間を要するのに対し、非特許文献1に記載されるような誘導加熱による方法では、搬送速度4m/min程度での加熱が可能であり、例えば10mの長さを持つスラブであれば2.5分程度で加熱が完了し、放熱損失を著しく小さくできるとともに、当該加熱工程が製造の律速段階となることを避けることができる。   In this way, the heating by the burner takes a long time, but the method by induction heating as described in Non-Patent Document 1 can heat at a conveyance speed of about 4 m / min, for example, a length of 10 m. If the slab has, the heating is completed in about 2.5 minutes, the heat dissipation loss can be remarkably reduced, and the heating process can be prevented from becoming the rate-limiting step of production.

ところで、スラブを保持、移送するためには多数の保持・搬送用ローラを設置し、その間にスラブの幅方向エッジ部を加熱する誘導加熱コイルを設置せざるを得ず、誘導加熱コイルは間隔を空けて配置される。スラブ加熱の場合は、保持・搬送用ローラは高剛性であり耐熱機能を付与するために、スラブの搬送方向に沿った誘導加熱コイル間の間隔は、コイルの加熱長と同程度か、より長くなる。このため、スラブを停止させて加熱すると、加熱される部分と加熱されない部分が生じ全長に不均一な加熱となるので、スラブを移動させながら加熱する必要がある。また、スラブの移動距離と比べて誘導加熱コイルの加熱長が短いので、十分に熱を与えるためには、スラブを低速で移動しなければならない。   By the way, in order to hold and transfer the slab, a large number of holding and conveying rollers are installed, and an induction heating coil for heating the edge in the width direction of the slab must be installed between them. Arranged to be empty. In the case of slab heating, the holding / conveying roller is highly rigid and has a heat resistance function, so that the interval between the induction heating coils along the slab conveying direction is equal to or longer than the heating length of the coil. Become. For this reason, when the slab is stopped and heated, a heated portion and a non-heated portion are generated, resulting in uneven heating over the entire length. Therefore, it is necessary to heat the slab while moving it. Further, since the heating length of the induction heating coil is shorter than the moving distance of the slab, the slab must be moved at a low speed in order to give sufficient heat.

しかしながら、誘導加熱装置を用いスラブを移動させながら加熱する場合、誘導加熱装置の配設区間をスラブの長さと同程度としただけでは、誘導加熱装置を通過し加熱の終わったスラブの先端側のエッジ部は尾端側が加熱を終えるまで長時間放熱され、その影響で均一な加熱ができなくなる。すなわち、スラブを全長に亘って加熱する間に先に加熱を終えた先端側のエッジ部の温度が低下するという点で、特許文献1と同じ問題を抱えている。一方、スラブの先端側の放熱を考慮した温度補償を実施しようとすると、必要以上に高温に加熱される部分を生じ、不経済であるばかりでなく、圧延時の温度も不均一となり、変形抵抗も不均一となって板厚精度に悪影響を及ぼす。   However, when heating while moving the slab using an induction heating device, the induction section of the slab that has passed through the induction heating device and has been heated only by setting the section of the induction heating device to be approximately the same as the length of the slab. The edge portion is dissipated for a long time until the tail end side finishes heating, and uniform heating is not possible under the influence. That is, it has the same problem as Patent Document 1 in that the temperature of the edge portion on the front end side that has been heated first decreases while the slab is heated over its entire length. On the other hand, if temperature compensation is performed in consideration of heat dissipation on the tip side of the slab, a part that is heated to a higher temperature than necessary is generated, which is not economical, and the temperature at the time of rolling becomes uneven, and deformation resistance Becomes uneven and adversely affects the thickness accuracy.

このため、均一な加熱を行うためには、誘導加熱装置をスラブの長さ以上の範囲に配置する必要があり、全長に亘って一様に熱を与えるためには通常、スラブの2倍の長さに相当する範囲に多数の誘導加熱装置を配置しなければならず、不経済である。   For this reason, in order to perform uniform heating, it is necessary to arrange the induction heating device in a range equal to or longer than the length of the slab, and in order to apply heat uniformly over the entire length, it is usually twice that of the slab. A large number of induction heating devices must be arranged in a range corresponding to the length, which is uneconomical.

これに対して、ビレットのような比較的短い被加熱材を加熱する場合には、非特許文献2に記載されるように、誘導加熱装置のコイル内に被加熱材を収めてその全体を一斉に加熱することは可能である。しかしながら、スラブのように長いものの全長を同時に誘導加熱することは実用的ではない。また、場合によっては30トンにもなるスラブを保持し、スラブを移動する機構をコイル内部に収めることもできないという問題がある。   On the other hand, when heating a relatively short material to be heated such as a billet, as described in Non-Patent Document 2, the material to be heated is housed in a coil of an induction heating device, and the whole is all at once. It is possible to heat to However, it is not practical to simultaneously induction heat the entire length of a long slab. Further, there is a problem that a mechanism for holding the slab of 30 tons and moving the slab in some cases cannot be accommodated inside the coil.

この発明は、上記従来技術の問題を解消し、連続鋳造スラブの全長に亘ってその幅方向エッジ部を均一に加熱することができかつ経済的である連続鋳造スラブの加熱方法および加熱設備を提供することを目的とする。   The present invention provides a heating method and heating equipment for a continuous casting slab that solves the above-described problems of the prior art, can uniformly heat the edge in the width direction over the entire length of the continuous casting slab, and is economical. The purpose is to do.

この発明は、連続鋳造設備で鋳造された連続鋳造スラブを熱間圧延設備で直送圧延する際、その連続鋳造スラブを熱間圧延する前に該連続鋳造スラブの幅方向エッジ部を加熱する連続鋳造スラブの加熱方法であって、連続鋳造設備の出側から熱間圧延設備の入側までの連続鋳造スラブの搬送経路内に、連続鋳造スラブの幅方向エッジ部を加熱する複数の誘導加熱装置が搬送方向に等間隔に配置されるとともに各誘導加熱装置が誘導加熱装置同士の間隔と略等しい加熱長を有する加熱設備を設け、加熱設備において連続鋳造スラブを加熱長の奇数倍に相当する距離だけ順方向およびその逆方向へ往復移動させながら複数の誘導加熱装置により該連続鋳造スラブの幅方向エッジ部を加熱するものである。   In the present invention, when a continuous cast slab cast by a continuous casting facility is directly rolled by a hot rolling facility, the continuous casting slab is heated continuously at the edge in the width direction before hot rolling the continuous cast slab. A plurality of induction heating devices for heating a width direction edge portion of a continuous casting slab in a conveying path of the continuous casting slab from the exit side of the continuous casting facility to the entry side of the hot rolling facility. Heating equipment that is arranged at equal intervals in the conveying direction and each induction heating device has a heating length that is substantially equal to the interval between the induction heating devices is provided, and the continuous casting slab in the heating equipment is only a distance corresponding to an odd multiple of the heating length. A widthwise edge portion of the continuous cast slab is heated by a plurality of induction heating devices while reciprocating in the forward direction and the opposite direction.

なお、この発明の連続鋳造スラブの加熱方法にあっては、加熱設備において連続鋳造スラブを加熱長の1倍に相当する距離だけ順方向およびその逆方向へ往復移動させながら複数の誘導加熱装置により該連続鋳造スラブの幅方向エッジ部を加熱することが好ましい。   In the heating method of the continuous cast slab according to the present invention, the continuous cast slab is reciprocally moved in the forward direction and the reverse direction by a distance corresponding to one time of the heating length in the heating facility by a plurality of induction heating devices. It is preferable to heat the edge in the width direction of the continuous cast slab.

また、この発明の連続鋳造スラブの加熱方法にあっては、複数の誘導加熱装置の少なくも一部が稼動する場合の稼動する誘導加熱装置のうち、最上流に位置する誘導加熱装置から最下流に位置する誘導加熱装置までの加熱区間の長さをLとし、連続鋳造スラブの長さをLsとし、誘導加熱装置同士の間隔をLdとしたとき、Ls≦L≦Ls+Ld の関係を満たすよう加熱区間の長さLを決定することが好ましい。   Further, in the method for heating a continuous cast slab according to the present invention, among the induction heating devices that operate when at least some of the plurality of induction heating devices operate, the most downstream from the induction heating device located at the most upstream. When the length of the heating section to the induction heating device located at L is L, the length of the continuous casting slab is Ls, and the interval between the induction heating devices is Ld, heating is performed so as to satisfy the relationship of Ls ≦ L ≦ Ls + Ld It is preferable to determine the length L of the section.

さらに、この発明の連続鋳造スラブの加熱方法にあっては、連続鋳造設備から加熱設備までの連続鋳造スラブの搬送速度および加熱設備から熱間圧延設備までの連続鋳造スラブの搬送速度を、加熱設備による連続鋳造スラブの加熱中の往復移動速度よりも大きくすることが好ましい。   Furthermore, in the heating method of the continuous casting slab of the present invention, the conveying speed of the continuous casting slab from the continuous casting equipment to the heating equipment and the conveying speed of the continuous casting slab from the heating equipment to the hot rolling equipment are It is preferable to make it larger than the reciprocating speed during heating of the continuous casting slab by.

また、この発明は、連続鋳造設備の出側から熱間圧延設備の入側までの連続鋳造スラブの搬送経路内に配置され、連続鋳造設備で鋳造された連続鋳造スラブを熱間圧延設備で直送圧延する際、その連続鋳造スラブを熱間圧延する前に該連続鋳造スラブの幅方向エッジ部を加熱する連続鋳造スラブの加熱設備であって、連続鋳造スラブの搬送方向に等間隔に配置され、連続鋳造スラブの幅方向エッジ部を加熱する複数の誘導加熱装置と、複数の誘導加熱装置によって加熱される連続鋳造スラブを往復移動させる移動手段と、を備え、各誘導加熱装置は誘導加熱装置同士の間隔と略等しい加熱長を有し、移動手段は、複数の誘導加熱装置による連続鋳造スラブの加熱中、連続鋳造スラブを誘導加熱装置の加熱長の奇数倍に相当する距離だけ順方向およびその逆方向へ往復移動させるよう構成されているものである。   In addition, the present invention is arranged in a continuous casting slab conveyance path from the exit side of the continuous casting facility to the entry side of the hot rolling facility, and the continuous casting slab cast by the continuous casting facility is directly sent by the hot rolling facility. When rolling, the continuous casting slab heating equipment that heats the edge in the width direction of the continuous casting slab before hot rolling the continuous casting slab, arranged at equal intervals in the conveying direction of the continuous casting slab, A plurality of induction heating devices that heat edge portions of the continuous casting slab in the width direction; and a moving means that reciprocates the continuous casting slabs heated by the plurality of induction heating devices. The heating means has a heating length that is substantially equal to the interval of, and during the heating of the continuous casting slab by a plurality of induction heating devices, the moving means moves the continuous casting slab forward by a distance corresponding to an odd multiple of the heating length of the induction heating device. And vice versa are those adapted for reciprocating.

なお、この発明の連続鋳造スラブの加熱設備にあっては、移動手段は、複数の誘導加熱装置による連続鋳造スラブの加熱中、連続鋳造スラブを誘導加熱装置の加熱長の1倍に相当する距離だけ順方向およびその逆方向へ往復移動させるよう構成されていることが好ましい。   In the continuous casting slab heating facility of the present invention, the moving means is a distance corresponding to one time the heating length of the induction heating device while the continuous casting slab is heated by the plurality of induction heating devices. It is preferable to be configured to reciprocate only in the forward direction and in the opposite direction.

また、この発明の連続鋳造スラブの加熱設備にあっては、複数の誘導加熱装置の少なくも一部が稼動する場合の稼動する誘導加熱装置のうち、最上流に位置する誘導加熱装置から最下流に位置する誘導加熱装置までの加熱区間の長さをLとし、連続鋳造スラブの長さをLsとし、誘導加熱装置同士の距離をLdとしたとき、加熱区間の長さLは、Ls≦L≦Ls+Ld の関係を満たすことが好ましい。   Further, in the heating equipment for continuous cast slabs of the present invention, among the induction heating devices that operate when at least some of the plurality of induction heating devices operate, the most downstream from the induction heating device located at the most upstream. When the length of the heating section to the induction heating device located at L is L, the length of the continuous casting slab is Ls, and the distance between the induction heating devices is Ld, the length L of the heating section is Ls ≦ L It is preferable to satisfy the relationship ≦ Ls + Ld.

さらに、この発明の連続鋳造スラブの加熱設備にあっては、移動手段は、連続鋳造スラブの先端および尾端を直接押圧して往復移動させるプッシャーを有することが好ましい。   Furthermore, in the heating apparatus for continuous cast slabs according to the present invention, it is preferable that the moving means has a pusher that reciprocates by directly pressing the tip and tail ends of the continuous cast slab.

この発明によれば、複数の誘導加熱装置を搬送方向に間隔を空けて配置し、誘導加熱装置が配置された区間においてスラブを往復移動させながらエッジ部の加熱を行う構成としたので、スラブの尾端部の加熱が終わるまでの間に先端部が放冷されるのを防止することができるとともに、必要な誘導加熱装置の設置台数を大幅に削減することができる。また、バーナで加熱する場合と比べて短時間で加熱をすることが可能であるので、エッジ部を加熱している間のスラブの幅方向中央部の温度降下を抑制することができる。さらに、誘導加熱装置を等間隔で配置するとともに、各誘導加熱装置の加熱長を誘導加熱装置の間隔と略等しくし、かつ、加熱設備においてスラブを加熱長の奇数倍に相当する距離だけ順方向およびその逆方向へ往復移動させながら複数の誘導加熱装置によりスラブのエッジ部を加熱する構成としたことから、スラブの方向転換による発熱量のばらつきを相殺して、スラブの蓄積熱量を全長に亘ってほぼ均一化することができる。   According to this invention, the plurality of induction heating devices are arranged at intervals in the transport direction, and the edge portion is heated while reciprocating the slab in the section where the induction heating device is arranged. It is possible to prevent the tip portion from being cooled before the heating of the tail end portion is completed, and it is possible to greatly reduce the number of installed induction heating devices. Moreover, since it is possible to heat in a short time compared with the case where it heats with a burner, the temperature fall of the center part of the width direction of a slab while heating an edge part can be suppressed. Furthermore, the induction heating devices are arranged at equal intervals, the heating length of each induction heating device is made substantially equal to the interval of the induction heating devices, and the slab is forwarded by a distance corresponding to an odd multiple of the heating length in the heating equipment. Since the slab edge portion is heated by a plurality of induction heating devices while reciprocating in the opposite direction, the variation in the amount of heat generated by the slab direction change is offset, and the accumulated heat amount of the slab is extended over the entire length. Almost uniform.

図1は、この発明の一実施形態の連続鋳造スラブの加熱設備を備えた熱延鋼板の製造設備を概略して示し、(a)は側面図であり、(b)は平面図である。FIG. 1 schematically shows a hot-rolled steel sheet manufacturing facility equipped with a continuous casting slab heating facility according to an embodiment of the present invention, wherein (a) is a side view and (b) is a plan view. 図2は、この実施形態の連続鋳造スラブの加熱設備を示し、(a)は側面図であり、(b)は正面図である。FIG. 2 shows the heating equipment for the continuous cast slab of this embodiment, where (a) is a side view and (b) is a front view. 図3(a)〜(e)はそれぞれ、スラブを搬送しながらそのスラブのエッジ部を加熱する際の各加熱段階におけるスラブと誘導加熱装置との搬送方向での位置関係を示した説明図である。FIGS. 3A to 3E are explanatory views showing the positional relationship in the transport direction between the slab and the induction heating device in each heating stage when the edge portion of the slab is heated while transporting the slab. is there. 図4は、この発明の他の実施形態の連続鋳造スラブの加熱設備を示す側面図である。FIG. 4 is a side view showing a continuous casting slab heating facility according to another embodiment of the present invention. 図5(a)〜(e)はそれぞれ、比較例1のスラブの加熱設備および加熱方法においてスラブを誘導加熱装置の加熱長の2倍に相当する距離だけ往復移動させて加熱を行う際の各加熱段階のスラブと誘導加熱装置との搬送方向での位置関係を示した説明図である。5 (a) to 5 (e) respectively show the slab heating equipment and heating method of Comparative Example 1 when the slab is reciprocated by a distance corresponding to twice the heating length of the induction heating device to perform heating. It is explanatory drawing which showed the positional relationship in the conveyance direction of the slab of a heating step, and an induction heating apparatus.

以下、この発明の実施の形態を図面に基づき詳細に説明する。図1は、この発明の一実施形態の連続鋳造スラブの加熱設備を備えた熱延鋼板の製造設備を概略的に示し、(a)は側面図であり、(b)は平面図であり、図2は、この実施形態の連続鋳造スラブの加熱設備を示し、(a)は側面図であり、(b)は正面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 schematically shows a hot-rolled steel sheet manufacturing facility equipped with a continuous casting slab heating facility according to an embodiment of the present invention, (a) is a side view, (b) is a plan view, FIG. 2 shows the heating equipment for the continuous cast slab of this embodiment, where (a) is a side view and (b) is a front view.

図1に示す例の熱延鋼板の製造設備10は、連続鋳造設備12で鋳造された連続鋳造スラブ(以下、単に「スラブ」ともいう。)Sを、加熱炉内で加熱することなく熱間圧延設備14に直送し、所定の厚みまで減厚してコイル状に巻き取る直送圧延(HDR)設備である。   The hot-rolled steel sheet manufacturing facility 10 shown in FIG. 1 is hot without heating a continuous cast slab (hereinafter also simply referred to as “slab”) S cast in a continuous casting facility 12 in a heating furnace. This is a direct feed rolling (HDR) equipment that is directly sent to the rolling equipment 14, reduced in thickness to a predetermined thickness and wound in a coil shape.

連続鋳造設備12では、タンディッシュ12aから鋳型12bに注入された溶鋼は、鋳型12bで冷却されて鋳片となり、鋳型12bの下方に設けた図示しない複数のロールに沿って鋳型12bの下方から連続的に引抜かれる。鋳片は、ロールを通過する間冷却水で冷却され、やがて内部までの凝固を完了する。凝固完了した鋳片は、ガス切断機等のカッタ12cによって所定の長さに切断されてスラブSとなる。   In the continuous casting facility 12, the molten steel poured into the mold 12b from the tundish 12a is cooled by the mold 12b to become a slab, and continuously from below the mold 12b along a plurality of rolls (not shown) provided below the mold 12b. Pulled out. The slab is cooled with cooling water while passing through the roll, and eventually solidification to the inside is completed. The slab that has been solidified is cut into a predetermined length by a cutter 12c such as a gas cutter to form a slab S.

連続鋳造設備12で製造されたスラブSは搬送ローラ16によって熱間圧延設備14へ搬送される。熱間圧延設備14へ送られたスラブは、粗圧延機14aおよび仕上圧延機14bによって所定の厚みまで圧延され、圧延された鋼板は水冷設備18によって所定の材質とされた後、コイル状に巻き取られて熱間圧延コイル製品となる。   The slab S manufactured by the continuous casting facility 12 is transported to the hot rolling facility 14 by the transport roller 16. The slab sent to the hot rolling facility 14 is rolled to a predetermined thickness by the roughing mill 14a and the finishing mill 14b, and the rolled steel sheet is made into a predetermined material by the water cooling facility 18 and then wound in a coil shape. Taken into a hot rolled coil product.

連続鋳造設備12で製造されたスラブSは、熱間圧延設備14へ搬送されるまでの間にその幅方向エッジ部(以下、単に「エッジ部」といもいう。)の温度が降下すると品質への影響が懸念される。そこで、この熱延鋼板の製造設備10ではカッタ12cの出側から熱間圧延設備14の入側までのスラブSの搬送経路内に加熱設備20を設けてスラブSのエッジ部の温度補償を実施する構成としている。   The quality of the slab S manufactured by the continuous casting facility 12 is improved when the temperature of the edge portion in the width direction (hereinafter also simply referred to as an “edge portion”) is lowered until the slab S is conveyed to the hot rolling facility 14. Is concerned about the impact of Therefore, in this hot-rolled steel sheet manufacturing facility 10, a heating facility 20 is provided in the transport path of the slab S from the exit side of the cutter 12c to the entrance side of the hot rolling facility 14 to compensate the temperature of the edge portion of the slab S. It is configured to do.

具体的には、この実施形態の加熱設備20はスラブSの左右両エッジ部を加熱するものであり、図2(a)に示すように搬送方向に互いに等しい間隔Ldを空けて配置された複数の誘導加熱装置22を備えている。各誘導加熱装置22は図2(b)に示すように搬送方向に沿って見て略C字状をなす、鉄やフェライト等からなる左右一対のコア材24a,24bと、該コア材24a,24bの外周に巻装されたコイル導体26とを有するものであり、その開口部内にスラブSのエッジ部が位置するようにコア材24a,24bを対向配置し、該コイル導体26に高周波電流を通電してコア材24a,24bの内部に高周波磁束を発生させ、該磁束により発生する渦電流によりスラブSのエッジ部を加熱するものである。各誘導加熱装置22は、誘導加熱装置22同士の間隔Ldと略等しい加熱長Lcを有している。加熱長Lcは、コア材24a,24bの、コイル導体26が巻回された部位の、搬送方向に沿った長さを指す。ここで、「略等しい」とは、後述するように加熱設備20においてスラブSを誘導加熱装置22の加熱長Lcの奇数倍に相当する距離だけ往復移動する場合に均一な加熱が行うことができる程度に等しいことを意味し、したがって、現実的には、加熱長Lcは誘導加熱装置22の間隔Ldに対して±20%の範囲内にあればよく、±10%の範囲内にあるのがより好ましい。   Specifically, the heating equipment 20 of this embodiment heats the left and right edge portions of the slab S, and as shown in FIG. 2 (a), a plurality of heaters 20 are arranged at equal intervals Ld in the transport direction. The induction heating device 22 is provided. Each induction heating device 22 includes a pair of left and right core members 24a and 24b made of iron, ferrite, or the like, which are substantially C-shaped when viewed in the conveying direction, as shown in FIG. 24b and a coil conductor 26 wound around the outer periphery of the core 24b. The core members 24a and 24b are arranged opposite to each other so that the edge portion of the slab S is located in the opening, and a high-frequency current is applied to the coil conductor 26. A high frequency magnetic flux is generated inside the core members 24a and 24b by energization, and the edge portion of the slab S is heated by an eddy current generated by the magnetic flux. Each induction heating device 22 has a heating length Lc substantially equal to the interval Ld between the induction heating devices 22. The heating length Lc indicates the length of the core material 24a, 24b where the coil conductor 26 is wound along the transport direction. Here, “substantially equal” means that uniform heating can be performed when the slab S is reciprocated by a distance corresponding to an odd multiple of the heating length Lc of the induction heating device 22 in the heating equipment 20 as described later. Therefore, in practice, the heating length Lc only needs to be within a range of ± 20% with respect to the interval Ld of the induction heating device 22, and is within a range of ± 10%. More preferred.

誘導加熱装置22は、隣接する搬送ローラ16の間に配置されており、誘導加熱装置22のピッチは搬送ローラ16のピッチと同じとするのが好ましい。また、誘導加熱装置22のピッチが誘導加熱装置22の加熱長Lcの略2倍となるので、スラブSを支持する搬送ローラ16を誘導加熱装置22から十分に離間させて熱影響から保護することができる。   The induction heating device 22 is disposed between the adjacent conveyance rollers 16, and the pitch of the induction heating device 22 is preferably the same as the pitch of the conveyance rollers 16. Further, since the pitch of the induction heating device 22 is approximately twice the heating length Lc of the induction heating device 22, the conveyance roller 16 that supports the slab S is sufficiently separated from the induction heating device 22 to be protected from the thermal effect. Can do.

搬送ローラ16は自由継手30を介して駆動モータ32に接続され正逆回転可能に構成されている。これにより、複数の誘導加熱装置22が配置された区間において、スラブSを連続鋳造設備12から熱間圧延設備14に向かう順方向およびその逆方向へ往復移動させながら、複数の誘導加熱装置22によってスラブSのエッジ部を加熱することができる。このように、搬送ローラ16は誘導加熱装置22による加熱中、スラブSを往復移動させる移動手段を構成するものである。   The transport roller 16 is connected to a drive motor 32 via a free joint 30 and is configured to be able to rotate forward and reverse. Thereby, in the section where the plurality of induction heating devices 22 are arranged, the slab S is reciprocated in the forward direction from the continuous casting facility 12 toward the hot rolling facility 14 and in the reverse direction by the plurality of induction heating devices 22. The edge part of the slab S can be heated. Thus, the conveyance roller 16 constitutes a moving means for reciprocating the slab S during heating by the induction heating device 22.

移動手段としての搬送ローラ16は、加熱設備20においてスラブSを加熱長Lcの奇数倍に相当する距離だけ順方向およびその逆方向で往復移動させるよう構成されている。これにより、スラブSの方向転換に伴うスラブSの実質的な停止時に誘導加熱装置22によりスラブSの異なる部分が加熱されるので、スラブSを全長にわたって均一に加熱することができる。より好適な形態では、搬送ローラ16は、加熱設備20においてスラブSを加熱長Lcの1倍に相当する距離だけ順方向およびその逆方向で往復移動させるよう構成されており、これによれば、スラブSの往復移動距離が少なくて済み、スラブSのエッジ部の加熱に要する時間を短くすることができる。   The conveying roller 16 as the moving means is configured to reciprocate the slab S in the heating facility 20 by a distance corresponding to an odd multiple of the heating length Lc in the forward direction and in the opposite direction. Thereby, since the different part of the slab S is heated by the induction heating device 22 when the slab S is substantially stopped due to the direction change of the slab S, the slab S can be heated uniformly over the entire length. In a more preferred form, the transport roller 16 is configured to reciprocate the slab S in the heating facility 20 in the forward direction and in the opposite direction by a distance corresponding to one time the heating length Lc. The reciprocating distance of the slab S is small, and the time required for heating the edge portion of the slab S can be shortened.

また、この実施形態の加熱設備20では、図2に示すように、複数の誘導加熱装置22の少なくとも一部を稼動させる場合の稼動する誘導加熱装置のうち、搬送方向最上流に位置する誘導加熱装置から最下流に位置する誘導加熱装置までの加熱区画の長さをLとし、スラブSの長さをLsとし、誘導加熱装置同士の間隔をLdとしたとき、加熱区間の長さLは、Ls≦L≦Ls+Ld の範囲とすることが好ましい。加熱設備20においてエッジ加熱を行うスラブSが一種類の場合には、そのスラブSの長さLsを基準にしてLs≦L≦Ls+Ldを満たすように誘導加熱装置22の設置台数を決定することで、スラブSのエッジ部の全長に亘る均一な加熱を達成しつつ、誘導加熱装置22の設置台数を最小化することができる。あるいは、加熱設備20において長さの異なる複数種類のスラブSのエッジ加熱を行う場合には、最長のスラブSの長さLsを基準にして、Ls≦L≦Ls+Ldを満たすように誘導加熱装置22の設置台数を求め、最長のスラブSよりも短いスラブSを加熱する場合には、そのスラブSの長さLsを基準にしてLs≦L≦Ls+Ldを満たすように誘導加熱装置22の使用台数(稼動台数)を決定することで、スラブSのエッジ部の全長に亘る均一な加熱を達成しつつ、使用する電力を最小化することができる。   Moreover, in the heating equipment 20 of this embodiment, as shown in FIG. 2, among the induction heating devices that operate when operating at least a part of the plurality of induction heating devices 22, the induction heating that is located at the most upstream in the conveying direction. When the length of the heating section from the device to the induction heating device located on the most downstream side is L, the length of the slab S is Ls, and the interval between the induction heating devices is Ld, the length L of the heating section is: It is preferable to set it as the range of Ls <= L <= Ls + Ld. In the case where there is only one type of slab S that performs edge heating in the heating facility 20, the number of induction heating devices 22 is determined so as to satisfy Ls ≦ L ≦ Ls + Ld with reference to the length Ls of the slab S. Further, the number of installed induction heating devices 22 can be minimized while achieving uniform heating over the entire length of the edge portion of the slab S. Alternatively, when performing edge heating of a plurality of types of slabs S having different lengths in the heating facility 20, the induction heating device 22 satisfies Ls ≦ L ≦ Ls + Ld based on the length Ls of the longest slab S. When the slab S shorter than the longest slab S is heated, the number of induction heating devices 22 used so that Ls ≦ L ≦ Ls + Ld is satisfied with reference to the length Ls of the slab S ( By determining the number of operating units), it is possible to minimize the power used while achieving uniform heating over the entire length of the edge portion of the slab S.

図3を参照し、この実施形態の加熱設備20を用いた、この発明に従う一実施形態の連続鋳造スラブの加熱方法について説明する。図3(a)〜(e)はそれぞれ、スラブSを搬送しながらそのスラブSのエッジ部を加熱する際の各加熱段階におけるスラブと誘導加熱装置との搬送方向での位置関係を示した説明図である。   With reference to FIG. 3, the heating method of the continuous casting slab of one Embodiment according to this invention using the heating equipment 20 of this embodiment is demonstrated. 3 (a) to 3 (e) each show a positional relationship in the transport direction between the slab and the induction heating device in each heating stage when the edge portion of the slab S is heated while transporting the slab S. FIG.

この実施形態のスラブの加熱方法は、図1および図2を参照して説明したように、連続鋳造設備12と熱間圧延設備14との間に複数の誘導加熱装置22を搬送方向に等しい間隔Ldを空けて配置し、誘導加熱装置22が配置された加熱設備20の区間においてスラブSを往復移動させてスラブSのエッジ部を加熱するものであり、スラブSの往復移動は、搬送方向に隣接する誘導加熱装置22間に配置された正逆回転駆動可能な搬送ローラ16により行う。   As described with reference to FIG. 1 and FIG. 2, the slab heating method of this embodiment has a plurality of induction heating devices 22 between the continuous casting equipment 12 and the hot rolling equipment 14 at equal intervals in the conveying direction. Ld is disposed, and the slab S is reciprocated in the section of the heating equipment 20 in which the induction heating device 22 is disposed to heat the edge portion of the slab S. This is performed by a conveyance roller 16 that is arranged between adjacent induction heating devices 22 and that can be driven forward and backward.

連続鋳造設備12から加熱設備20までのスラブSの搬送および加熱設備20から熱間圧延設備14までのスラブの搬送は、加熱設備20による加熱中のスラブSの往復移動よりも速い速度で行うのが好ましく、これによれば連続鋳造設備12から加熱設備20までおよび加熱設備20から熱間圧延設備14までの搬送中のスラブの温度降下を抑制することができる。   The conveyance of the slab S from the continuous casting facility 12 to the heating facility 20 and the conveyance of the slab from the heating facility 20 to the hot rolling facility 14 are performed at a speed faster than the reciprocating movement of the slab S during heating by the heating facility 20. Preferably, according to this, the temperature drop of the slab during conveyance from the continuous casting equipment 12 to the heating equipment 20 and from the heating equipment 20 to the hot rolling equipment 14 can be suppressed.

この実施形態のスラブの加熱方法ではまず、図3(a)に示すように連続鋳造設備12で鋳造されたスラブSを加熱設備20へ進入させる。連続鋳造設備12から加熱設備20までのスラブSの搬送は比較的高速(例えば120mpm)で行い、スラブSが所定の加熱開始位置に到達するまでに加熱時のスラブSの搬送速度(例えば3mpm)まで減速する。この減速に要する時間は短い程よく、このようにすれば、搬送中の温度降下を抑制することができる。減速に要する時間は、例えば10秒以内とすることが好ましい。図示例では、加熱開始位置は、スラブSの先端が搬送方向最下流に位置する誘導加熱装置22の上流側端と一致する位置とし、スラブSの先端がこの上流側端位置に到達した時またはその直前に誘導加熱装置22に通電し、スラブSを順方向に低速(例えば3mpm)で移動しながらエッジ部の加熱を行う。   In the slab heating method of this embodiment, first, the slab S cast by the continuous casting facility 12 is caused to enter the heating facility 20 as shown in FIG. The slab S is transported from the continuous casting facility 12 to the heating facility 20 at a relatively high speed (for example, 120 mpm), and the slab S is transported at a heating speed (for example, 3 mpm) until the slab S reaches a predetermined heating start position. To slow down. The shorter the time required for this deceleration is, the better. In this way, the temperature drop during conveyance can be suppressed. The time required for deceleration is preferably within 10 seconds, for example. In the illustrated example, the heating start position is a position where the leading end of the slab S coincides with the upstream end of the induction heating device 22 located on the most downstream side in the transport direction, and when the leading end of the slab S reaches this upstream end position or Immediately before that, the induction heating device 22 is energized, and the edge portion is heated while moving the slab S in the forward direction at a low speed (for example, 3 mpm).

図3(b)は、スラブSを図3(a)の加熱開始位置から順方向(下流側)へ誘導加熱装置22の加熱長Lcの1倍に相当する距離だけ移動させた状態を示している。その後、スラブSは逆方向(上流側)へ方向転換される。この方向転換に伴いスラブSは一時的に停止し、このときスラブSのエッジ部のうち誘導加熱装置22と対峙する部分の発熱量は他の部分よりも大きくなる。   FIG. 3B shows a state in which the slab S is moved from the heating start position in FIG. 3A in the forward direction (downstream) by a distance corresponding to one time the heating length Lc of the induction heating device 22. Yes. Thereafter, the slab S is turned in the reverse direction (upstream side). With this change of direction, the slab S temporarily stops. At this time, the amount of heat generated in the portion of the edge portion of the slab S facing the induction heating device 22 becomes larger than that in the other portions.

図3(c)は、スラブSを図3(b)の位置から上流側へ誘導加熱装置22の加熱長Lcの1倍に相当する距離だけ、つまり元の加熱開始位置まで移動させた状態を示す。その後、スラブSは下流側へ方向転換される。この方向転換に伴ってスラブSは一時的に停止し、このときスラブSのエッジ部のうち誘導加熱装置22と対峙する部分の発熱量は他の部分よりも大きくなるが、この部分は前回の方向転換に伴うスラブSの実質的な停止時に加熱されなかった部分であるので、方向転換によるスラブSの発熱量のばらつきは相殺されて、スラブSの蓄積熱量は全長に亘ってほぼ均一となる。   FIG. 3C shows a state in which the slab S is moved from the position shown in FIG. 3B to the upstream side by a distance corresponding to one heating length Lc of the induction heating device 22, that is, to the original heating start position. Show. Thereafter, the slab S is turned to the downstream side. With this change of direction, the slab S is temporarily stopped. At this time, the amount of heat generated in the portion of the edge portion of the slab S facing the induction heating device 22 is larger than that in the other portions. Since the slab S is not heated when the slab S is substantially stopped due to the change of direction, the variation in the amount of heat generated by the slab S due to the change of direction is offset, and the accumulated heat amount of the slab S becomes substantially uniform over the entire length. .

続いて、図3(d)および図3(e)に示すように、図3(b)および図3(c)と同様にしてスラブSを誘導加熱装置22の加熱長Lcの1倍に相当する距離だけ往復移動させて誘導加熱を行う。加熱設備20による加熱中のスラブSの往復移動速度(低速搬送速度)Vと往復回数mは、実測等によりあらかじめ求めた、スラブSのエッジ部を所定の温度まで加熱するのに必要な加熱時間tとの関係で、m×2×Lc÷V=tを満たすように決定することができる。図3(e)は、加熱設備20においてスラブSのエッジ部の誘導加熱が完了した状態を示しており、この時点で、スラブSの全長に亘ってほぼ同時に加熱が完了するので誘導加熱装置22の出力はゼロにし、スラブSを加熱設備20から退出させ次工程の熱間圧延設備14に搬送する。この際、熱間圧延設備14へ向けたスラブSの搬送速度は加熱中のスラブSの往復移動速度よりも大きくすることが好ましく、例えば120mpmとすることができる。   Subsequently, as shown in FIGS. 3 (d) and 3 (e), the slab S is equivalent to one heating length Lc of the induction heating device 22 in the same manner as FIGS. 3 (b) and 3 (c). Inductive heating is performed by reciprocating the distance. The reciprocating speed (low speed conveyance speed) V and the number of reciprocations m of the slab S during heating by the heating equipment 20 are the heating time required to heat the edge portion of the slab S to a predetermined temperature, which is obtained in advance by actual measurement or the like. It can be determined so as to satisfy m × 2 × Lc ÷ V = t in relation to t. FIG. 3 (e) shows a state where the induction heating of the edge portion of the slab S is completed in the heating facility 20, and at this time, the heating is completed almost simultaneously over the entire length of the slab S. Is output to zero, and the slab S is withdrawn from the heating equipment 20 and conveyed to the hot rolling equipment 14 in the next step. At this time, the conveying speed of the slab S toward the hot rolling facility 14 is preferably larger than the reciprocating speed of the slab S being heated, and can be set to 120 mpm, for example.

この実施形態のスラブの加熱設備20および加熱方法によれば、複数の誘導加熱装置22を搬送方向に間隔を空けて配置し、誘導加熱装置22が配置された区間においてスラブSを往復移動させながらエッジ部の加熱を行う構成としたので、スラブSの尾端部の加熱が終わるまでの間に先端部が放冷されるのを防止することができるとともに、必要な誘導加熱装置22の設置台数を少なくすることができ、経済的である。また、誘導加熱装置22を用いることで、バーナで加熱する場合と比べて短時間での加熱が可能であり、エッジ部を加熱している間にスラブSの幅方向中央部の温度が降下するのを抑制することができる。さらに、誘導加熱装置22を等間隔Ldで配置するとともに、各誘導加熱装置22の加熱長Lcを誘導加熱装置22の間隔Ldと略等しくし、かつ、加熱設備20においてスラブSを加熱長Lcの奇数倍に相当する距離だけ順方向およびその逆方向へ往復移動させながら複数の誘導加熱装置22によりスラブSのエッジ部を加熱する構成としたことから、スラブSの方向転換による発熱量のばらつきを相殺して、スラブSの蓄積熱量を全長に亘ってほぼ等しくすることができる。   According to the slab heating equipment 20 and the heating method of this embodiment, a plurality of induction heating devices 22 are arranged at intervals in the transport direction, and the slab S is reciprocated in a section where the induction heating devices 22 are arranged. Since the edge portion is heated, it is possible to prevent the tip portion from being cooled until the heating of the tail end portion of the slab S is completed, and the necessary number of induction heating devices 22 to be installed. Can be reduced, and it is economical. In addition, by using the induction heating device 22, heating in a shorter time is possible as compared with the case of heating with a burner, and the temperature of the center portion in the width direction of the slab S decreases while the edge portion is heated. Can be suppressed. Further, the induction heating devices 22 are arranged at equal intervals Ld, the heating length Lc of each induction heating device 22 is made substantially equal to the interval Ld of the induction heating devices 22, and the slab S is heated to the heating length Lc in the heating facility 20. Since the edge portion of the slab S is heated by the plurality of induction heating devices 22 while reciprocating in the forward direction and the opposite direction by a distance corresponding to an odd multiple, the variation in the amount of heat generated due to the change of direction of the slab S is caused. By offsetting, the accumulated heat amount of the slab S can be made substantially equal over the entire length.

また、この実施形態のスラブの加熱設備20および加熱方法によれば、複数の誘導加熱装置22の少なくも一部が稼動する場合の稼動する誘導加熱装置22のうち、最上流に位置する誘導加熱装置22から最下流に位置する誘導加熱装置22までの加熱区間の長さをLとし、スラブSの長さをLsとし、誘導加熱装置22同士の距離をLdとしたとき、加熱区間の長さLを、Ls≦L≦Ls+Ldの関係を満たす構成としたことから、スラブSのエッジ部の全長に亘る加熱を実現しつつ、誘導加熱装置22の設置台数または使用台数を最小限とすることができる。   Further, according to the slab heating equipment 20 and the heating method of this embodiment, the induction heating device 22 that is in the most upstream of the induction heating devices 22 that operates when at least a part of the plurality of induction heating devices 22 operates is used. When the length of the heating section from the apparatus 22 to the induction heating apparatus 22 located on the most downstream side is L, the length of the slab S is Ls, and the distance between the induction heating apparatuses 22 is Ld, the length of the heating section Since L is configured to satisfy the relationship of Ls ≦ L ≦ Ls + Ld, it is possible to minimize the number of installed or used induction heating devices 22 while realizing heating over the entire length of the edge portion of the slab S. it can.

さらに、この実施形態のスラブの加熱設備20および加熱方法によれば、連続鋳造設備12から加熱設備20までのスラブSの搬送速度および加熱設備から熱間圧延設備14までのスラブSの搬送速度を、加熱設備20によるスラブSの加熱中の往復移動速度よりも大きくする構成としたことから、スラブSの加熱時以外の搬送中のスラブSの温度降下を抑制しスラブSを高温のまま熱間圧延設備14で圧延することができるようになり、高品質の鋼板を製造することができる。   Furthermore, according to the heating equipment 20 and heating method of the slab of this embodiment, the conveyance speed of the slab S from the continuous casting equipment 12 to the heating equipment 20 and the conveyance speed of the slab S from the heating equipment to the hot rolling equipment 14 are as follows. In addition, since the reciprocating speed during heating of the slab S by the heating equipment 20 is set to be larger, the temperature drop of the slab S during conveyance other than during the heating of the slab S is suppressed, and the slab S is kept hot at a high temperature. It becomes possible to roll with the rolling equipment 14, and a high quality steel plate can be manufactured.

図4は、この発明に従う他の実施形態のスラブの加熱設備20および加熱方法を示すものであり、この実施形態のスラブの加熱設備20は移動手段が加熱設備20においてスラブSを往復移動させるプッシャー34を有するものである。プッシャー34は、加熱設備20を前後に挟み込むように一対配置されるとともに昇降機構を介して上下に進退可能に構成され、加熱設備20にスラブSが進入する際には上方へ退避し、その後に降下してスラブSの先端部および尾端部をそれぞれ直接押圧してスラブSを誘導加熱装置22の加熱長Lcの奇数倍に相当する距離だけ前後に反復移動させ、加熱終了後には上方へ退避してスラブSの搬出を可能とするものである。プッシャー34は例えば油圧シリンダにより駆動することができるが、駆動形式はこれに限定されない。このようなプッシャー34を用いることにより、スラブSの方向転換を正確な位置で行うことができるので、スラブSのエッジ部を全長に亘ってより均一に加熱することができる。また、移動方向切替えに際してのスラブSの停止時間を短くすることができ、加熱開始から終了までに必要な時間を短くすることができる。なお、プッシャー34の稼働中、駆動モータ32に接続された正逆回転可能な搬送ローラ16を併用しスラブSを往復移動させるようにしてもよい。この場合、プッシャー34と正逆回転可能な搬送ローラ16は協働してこの発明の移動手段を構成する。   FIG. 4 shows a slab heating facility 20 and a heating method of another embodiment according to the present invention. The slab heating facility 20 of this embodiment is a pusher in which the moving means reciprocates the slab S in the heating facility 20. 34. A pair of pushers 34 are arranged so as to sandwich the heating equipment 20 back and forth, and are configured to be able to advance and retract up and down via an elevating mechanism. When the slab S enters the heating equipment 20, the pushers 34 are retracted upward. The lower end of the slab S and the tail end of the slab S are directly pressed to repeatedly move the slab S back and forth by a distance corresponding to an odd multiple of the heating length Lc of the induction heating device 22 and retract upward after heating. Thus, the slab S can be carried out. The pusher 34 can be driven by, for example, a hydraulic cylinder, but the drive type is not limited to this. By using such a pusher 34, the direction of the slab S can be changed at an accurate position, so that the edge portion of the slab S can be heated more uniformly over the entire length. Moreover, the stop time of the slab S when switching the moving direction can be shortened, and the time required from the start to the end of heating can be shortened. During operation of the pusher 34, the slab S may be reciprocated by using the conveyance roller 16 connected to the drive motor 32 and capable of rotating in the forward and reverse directions. In this case, the pusher 34 and the transport roller 16 capable of rotating in the forward and reverse directions constitute a moving means of the present invention.

次に、この発明の実施例について説明する。   Next, examples of the present invention will be described.

実施例1は、図2に示した加熱設備20を用いスラブSを往復移動させながら複数の誘導加熱装置22によりスラブSの幅方向エッジ部の加熱を行ったものである。   In the first embodiment, the edge portion in the width direction of the slab S is heated by the plurality of induction heating devices 22 while reciprocating the slab S using the heating equipment 20 shown in FIG.

実施例1ではスラブSは厚さ280mm、幅1500mm、長さ8000mmであり、加熱設備20に進入する直前では、スラブSの幅方向中央部の表面温度は1100℃であり、幅方向エッジ部の表面温度は950℃であった。表面温度の測定はいずれも放射温度計により行った。   In Example 1, the slab S has a thickness of 280 mm, a width of 1500 mm, and a length of 8000 mm. Immediately before entering the heating facility 20, the surface temperature of the center portion in the width direction of the slab S is 1100 ° C. The surface temperature was 950 ° C. The surface temperature was measured with a radiation thermometer.

加熱設備20は、9台の誘導加熱装置22を搬送方向に等間隔に並べたもので構成した。誘導加熱装置22のピッチは、搬送ローラ16のピッチと同じであり1000mmとした。また、誘導加熱装置22の間隔Ldは500mmとした。誘導加熱装置22は、搬送方向に長さLcの有効加熱長を持っており、この実施例では誘導加熱装置22の間隔Ldと等しい500mmとした。したがって、搬送方向最上流に位置する誘導加熱装置22から最下流に位置する誘導加熱装置22までの距離である加熱区間の長さLは8500mmであり、Ls≦L≦Ls+Ldを満たしている。   The heating equipment 20 was composed of nine induction heating devices 22 arranged at equal intervals in the transport direction. The pitch of the induction heating device 22 is the same as the pitch of the conveying rollers 16 and is 1000 mm. The interval Ld between the induction heating devices 22 was 500 mm. The induction heating device 22 has an effective heating length of a length Lc in the transport direction, and in this embodiment, the induction heating device 22 is set to 500 mm which is equal to the interval Ld of the induction heating device 22. Therefore, the length L of the heating section, which is the distance from the induction heating device 22 located on the most upstream side in the conveying direction to the induction heating device 22 located on the most downstream side, is 8500 mm and satisfies Ls ≦ L ≦ Ls + Ld.

各誘導加熱装置22は、スラブSのエッジ部に対向する部分同士が350mm程度離間したC型鉄心24a,24bの当該部分にコイル導体26を巻回したものであり、駆動周波数は300Hz、スラブSの幅方向エッジ部を加熱する2つのコイル導体26のペアを1台として、各々の出力は1MW、ペア合計で2MWとした。   Each induction heating device 22 is obtained by winding a coil conductor 26 around the portions of the C-type iron cores 24a and 24b in which the portions facing the edge portion of the slab S are separated by about 350 mm, the drive frequency is 300 Hz, and the slab S The pair of two coil conductors 26 that heat the edge in the width direction is taken as one, the output of each is 1 MW, and the total of the pairs is 2 MW.

実施例1では、スラブSを連続鋳造設備12から加熱設備20に向けて120mpmで高速搬送し、加熱設備20内ではスラブSの先端が加熱開始位置(搬送方向最下流の誘導加熱装置22の上流側端)の手前側300mm〜0mmに至るまでに速度3mpmまで減速し、この減速に要する時間は10秒以内であった。   In the first embodiment, the slab S is transported at a high speed of 120 mpm from the continuous casting facility 12 to the heating facility 20, and the leading end of the slab S is in the heating facility 20 at the heating start position (upstream of the induction heating device 22 at the most downstream in the transport direction). The speed was reduced to 3 mpm before reaching 300 mm to 0 mm on the front side of the side end), and the time required for this deceleration was within 10 seconds.

スラブSが加熱開始位置に到達した時点で各誘導加熱装置22の各コイル導体26に通電し、スラブSを誘導加熱装置22の加熱長Lcの1倍に相当する500mmだけ順方向およびその逆方向へそれぞれ往復させながらスラブSの幅方向エッジ部を加熱した。実施例1では順方向への送り(順送)2回、逆方向への送り(逆送)2回で加熱完了とした。加熱中の搬送速度V(最大値)は3mpmとした。   When the slab S reaches the heating start position, the coil conductors 26 of the induction heating devices 22 are energized, and the slab S is forwarded by 500 mm corresponding to one time the heating length Lc of the induction heating device 22 and its reverse direction. The edge in the width direction of the slab S was heated while reciprocating to each other. In Example 1, the heating was completed by two forward feeds (forward feed) and two reverse feeds (back feed). The conveyance speed V (maximum value) during heating was 3 mpm.

順送2回、逆送2回のスラブSのエッジ部の加熱が完了した後、誘導加熱装置22を停止し、速度を120mpmに増速してスラブSを次工程の熱間圧延設備14に送った。加熱完了直後のスラブSの幅方向エッジ部の表面温度を測定したところ1100℃であった。   After the heating of the edge portion of the slab S in the two forward feeds and the two reverse feeds is completed, the induction heating device 22 is stopped, the speed is increased to 120 mpm, and the slab S is transferred to the hot rolling facility 14 in the next process. sent. It was 1100 degreeC when the surface temperature of the width direction edge part of the slab S immediately after completion of a heating was measured.

そして、スラブSをその後の熱間圧延設備14で板厚3mmまで熱間圧延を実施し、熱間圧延コイルを製造したところ、スラブSの幅方向エッジ部の温度を高く保てたため熱間圧延コイルのエッジ部に材質異常は全く発生せず、熱間圧延前にスラブ再加熱炉で加熱したスラブを圧延して製造した従来の熱間圧延コイルと比べて品質に差はなかった。   And when the slab S was hot-rolled to the plate | board thickness of 3 mm with the subsequent hot-rolling equipment 14, and the hot-rolled coil was manufactured, since the temperature of the width direction edge part of the slab S was kept high, it was hot-rolled. No material abnormality occurred at the edge of the coil, and there was no difference in quality compared to a conventional hot rolled coil produced by rolling a slab heated in a slab reheating furnace before hot rolling.

実施例2は、図4に示す加熱設備20を用い、スラブSの加熱に際して、搬送ローラ16によらず油圧シリンダ駆動のプッシャー34によりスラブSの往復移動を行った点のみで実施例1と異なる。   The second embodiment is different from the first embodiment only in that the heating equipment 20 shown in FIG. 4 is used and the slab S is reciprocated by the pusher 34 driven by the hydraulic cylinder regardless of the conveying roller 16 when the slab S is heated. .

実施例2の加熱設備20を用いることにより、スラブSの方向転換時の位置決め精度が±10mmとなり、加熱設備20による加熱後のスラブSのエッジ部の長さ方向の温度分布は実施例1よりも均一となり、製造された熱間圧延コイルの板厚変動は、熱間圧延前にスラブ再加熱炉で加熱したスラブを圧延して製造した従来の熱間圧延コイルの3分の2に減少した。   By using the heating equipment 20 of Example 2, the positioning accuracy at the time of changing the direction of the slab S becomes ± 10 mm, and the temperature distribution in the length direction of the edge portion of the slab S after heating by the heating equipment 20 is from Example 1. The thickness variation of the manufactured hot rolled coil was reduced to two thirds of the conventional hot rolled coil manufactured by rolling a slab heated in a slab reheating furnace before hot rolling. .

図5に比較例1を示す。比較例1は、実施例1と同様の設備を用いて圧延コイルを製造したが、加熱設備20における加熱時のスラブSの往復移動距離を誘導加熱装置22の加熱長Lc(500mm)の2倍(1000mm)としたものである。比較例1では、スラブSの方向転換に伴う実質的な停止時に同じ部分が加熱されたことにより、当該部分が他の部分に比べて高温となり、製造された圧延コイルのエッジ部にスケール欠陥が生じた。   FIG. 5 shows Comparative Example 1. Although the comparative example 1 manufactured the rolling coil using the same installation as Example 1, the reciprocation distance of the slab S at the time of the heating in the heating equipment 20 is twice the heating length Lc (500 mm) of the induction heating device 22 (1000 mm). In Comparative Example 1, when the same part was heated at the time of substantial stop accompanying the change of direction of the slab S, the part became a higher temperature than the other parts, and scale defects were generated at the edge part of the manufactured rolled coil. occured.

この発明により、連続鋳造スラブの全長に亘ってその幅方向エッジ部を均一に加熱することができかつ経済的である連続鋳造スラブの加熱方法および加熱設備を提供することが可能となった。   By this invention, it became possible to provide the heating method and heating equipment of the continuous casting slab which can heat the edge part of the width direction uniformly over the full length of the continuous casting slab, and is economical.

10 熱延鋼板の製造設備
12 連続鋳造設備
14 熱間圧延設備
16 搬送ローラ
18 水冷設備
20 加熱設備
22 誘導加熱装置
24a,24b コア材
26 コイル導体
28 出力調整手段
30 自由継手
32 駆動モータ
34 プッシャー
DESCRIPTION OF SYMBOLS 10 Manufacturing equipment of hot-rolled steel sheet 12 Continuous casting equipment 14 Hot rolling equipment 16 Conveying roller 18 Water cooling equipment 20 Heating equipment 22 Induction heating device 24a, 24b Core material 26 Coil conductor 28 Output adjustment means 30 Free joint 32 Drive motor 34 Pusher

Claims (8)

連続鋳造設備で鋳造された連続鋳造スラブを熱間圧延設備で直送圧延する際、その連続鋳造スラブを熱間圧延する前に該連続鋳造スラブの幅方向エッジ部を加熱する連続鋳造スラブの加熱方法であって、
連続鋳造設備の出側から熱間圧延設備の入側までの連続鋳造スラブの搬送経路内に、連続鋳造スラブの幅方向エッジ部を加熱する複数の誘導加熱装置が搬送方向に等間隔に配置されるとともに各誘導加熱装置が誘導加熱装置同士の間隔と略等しい加熱長を有する加熱設備を設け、
前記加熱設備において連続鋳造スラブを前記加熱長の奇数倍に相当する距離だけ前記順方向およびその逆方向へ往復移動させながら前記複数の誘導加熱装置により該連続鋳造スラブの幅方向エッジ部を加熱することを特徴とする連続鋳造スラブの加熱方法。
A method for heating a continuous cast slab in which when a continuous cast slab cast by a continuous casting facility is directly fed and rolled by a hot rolling facility, the edge in the width direction of the continuous cast slab is heated before hot rolling the continuous cast slab Because
In the continuous casting slab transport path from the exit side of the continuous casting facility to the entrance side of the hot rolling facility, a plurality of induction heating devices that heat the edges in the width direction of the continuous casting slab are arranged at equal intervals in the transport direction. In addition, each induction heating device is provided with heating equipment having a heating length substantially equal to the interval between the induction heating devices,
In the heating facility, the widthwise edge portion of the continuous casting slab is heated by the plurality of induction heating devices while the continuous casting slab is reciprocated in the forward direction and the opposite direction by a distance corresponding to an odd multiple of the heating length. A method of heating a continuously cast slab characterized by the above.
前記加熱設備において連続鋳造スラブを前記加熱長の1倍に相当する距離だけ前記順方向およびその逆方向へ往復移動させながら前記複数の誘導加熱装置により該連続鋳造スラブの幅方向エッジ部を加熱することを特徴とする請求項1に記載の連続鋳造スラブの加熱方法。   In the heating facility, the widthwise edge portion of the continuous casting slab is heated by the plurality of induction heating devices while reciprocating the continuous casting slab in the forward direction and the opposite direction by a distance corresponding to one time the heating length. The heating method of the continuous casting slab of Claim 1 characterized by the above-mentioned. 前記複数の誘導加熱装置の少なくも一部が稼動する場合の稼動する誘導加熱装置のうち、最上流に位置する誘導加熱装置から最下流に位置する誘導加熱装置までの加熱区間の長さをLとし、連続鋳造スラブの長さをLsとし、誘導加熱装置同士の間隔をLdとしたとき、Ls≦L≦Ls+Ldの関係を満たすよう加熱区間の長さLを決定することを特徴とする請求項1または2に記載の連続鋳造スラブの加熱方法。   Of the induction heating devices that operate when at least some of the plurality of induction heating devices are operated, the length of the heating section from the induction heating device located at the most upstream to the induction heating device located at the most downstream is L The length L of the heating section is determined so as to satisfy the relationship of Ls ≦ L ≦ Ls + Ld, where Ls is the length of the continuous casting slab and Ld is the interval between the induction heating devices. The heating method of the continuous casting slab of 1 or 2. 連続鋳造設備から加熱設備までの連続鋳造スラブの搬送速度および加熱設備から熱間圧延設備までの連続鋳造スラブの搬送速度を、加熱設備による連続鋳造スラブの加熱中の往復移動速度よりも大きくすることを特徴とする請求項1から3までのいずれか一項に記載の連続鋳造スラブの加熱方法。   The continuous casting slab conveyance speed from the continuous casting equipment to the heating equipment and the continuous casting slab conveyance speed from the heating equipment to the hot rolling equipment should be larger than the reciprocating speed during heating of the continuous casting slab by the heating equipment. The heating method of the continuous casting slab as described in any one of Claim 1 to 3 characterized by these. 連続鋳造設備の出側から熱間圧延設備の入側までの連続鋳造スラブの搬送経路内に配置され、連続鋳造設備で鋳造された連続鋳造スラブを熱間圧延設備で直送圧延する際、その連続鋳造スラブを熱間圧延する前に該連続鋳造スラブの幅方向エッジ部を加熱する連続鋳造スラブの加熱設備であって、
連続鋳造スラブの搬送方向に等間隔に配置され、連続鋳造スラブの幅方向エッジ部を加熱する複数の誘導加熱装置と、
前記複数の誘導加熱装置によって加熱される連続鋳造スラブを往復移動させる移動手段と、を備え、
各誘導加熱装置は誘導加熱装置同士の間隔と略等しい加熱長を有し、
前記移動手段は、前記複数の誘導加熱装置による連続鋳造スラブの加熱中、連続鋳造スラブを誘導加熱装置の前記加熱長の奇数倍に相当する距離だけ前記順方向およびその逆方向へ往復移動させるよう構成されていることを特徴とする連続鋳造スラブの加熱設備。
When continuous casting slabs placed in the continuous casting slab transport path from the continuous casting equipment delivery side to the hot rolling equipment entry side are directly fed by the hot rolling equipment, the continuous A heating equipment for a continuous casting slab that heats a widthwise edge portion of the continuous casting slab before hot rolling the casting slab,
A plurality of induction heating devices that are arranged at equal intervals in the conveying direction of the continuous casting slab and heat the edge in the width direction of the continuous casting slab;
Moving means for reciprocating the continuous casting slab heated by the plurality of induction heating devices,
Each induction heating device has a heating length substantially equal to the interval between the induction heating devices,
The moving means is configured to reciprocate the continuous cast slab in the forward direction and the opposite direction by a distance corresponding to an odd multiple of the heating length of the induction heating device during heating of the continuous cast slab by the plurality of induction heating devices. Heating equipment for continuous cast slabs, characterized in that it is configured.
前記移動手段は、前記複数の誘導加熱装置による連続鋳造スラブの加熱中、連続鋳造スラブを誘導加熱装置の前記加熱長の1倍に相当する距離だけ前記順方向およびその逆方向へ往復移動させるよう構成されていることを特徴とする請求項5に記載の連続鋳造スラブの加熱設備。   During the heating of the continuous casting slab by the plurality of induction heating devices, the moving means reciprocates the continuous casting slab in the forward direction and the opposite direction by a distance corresponding to one time the heating length of the induction heating device. It is comprised, The heating equipment of the continuous casting slab of Claim 5 characterized by the above-mentioned. 前記複数の誘導加熱装置の少なくも一部が稼動する場合の稼動する誘導加熱装置のうち、最上流に位置する誘導加熱装置から最下流に位置する誘導加熱装置までの加熱区間の長さをLとし、連続鋳造スラブの長さをLsとし、誘導加熱装置同士の距離をLdとしたとき、加熱区間の長さLは、Ls≦L≦Ls+Ld の関係を満たすことを特徴とする請求項5または6に記載の連続鋳造スラブの加熱設備。   Of the induction heating devices that operate when at least some of the plurality of induction heating devices are operated, the length of the heating section from the induction heating device located at the most upstream to the induction heating device located at the most downstream is L And the length of the continuous casting slab is Ls, and the distance between the induction heating devices is Ld, the length L of the heating section satisfies the relationship Ls ≦ L ≦ Ls + Ld. 6. The continuous casting slab heating equipment according to 6. 前記移動手段は、連続鋳造スラブの先端および尾端を直接押圧して往復移動させるプッシャーを有することを特徴とする請求項5から7までのいずれか一項に記載の連続鋳造スラブの加熱設備。   The said moving means has a pusher which directly presses the front-end | tip and tail end of a continuous casting slab, and reciprocates, The heating apparatus of the continuous casting slab as described in any one of Claim 5-7 characterized by the above-mentioned.
JP2017006941A 2017-01-18 2017-01-18 Heating method and heating equipment for continuous casting slab Active JP6555487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017006941A JP6555487B2 (en) 2017-01-18 2017-01-18 Heating method and heating equipment for continuous casting slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017006941A JP6555487B2 (en) 2017-01-18 2017-01-18 Heating method and heating equipment for continuous casting slab

Publications (2)

Publication Number Publication Date
JP2018114535A true JP2018114535A (en) 2018-07-26
JP6555487B2 JP6555487B2 (en) 2019-08-07

Family

ID=62983534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017006941A Active JP6555487B2 (en) 2017-01-18 2017-01-18 Heating method and heating equipment for continuous casting slab

Country Status (1)

Country Link
JP (1) JP6555487B2 (en)

Also Published As

Publication number Publication date
JP6555487B2 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
JP6562223B2 (en) Heating method and heating equipment for continuous casting slab
CN105121042B (en) Method for manufacturing metal tape by casting rolling
JP4001617B2 (en) CSP continuous casting equipment with roller hearth furnace and swivel table
KR20080091779A (en) Roller hearth furnace for heating and/or temperature equalisation of steel or steel alloy continuous cast products and arrangement thereof before a hot strip final rolling mill
KR101630911B1 (en) continuous casting and rolling method
RU2316401C2 (en) Method for semi-endless or endless rolling of cast metal such as continuously cast steel billet optionally subjected to cross cutting after crystallization and casting-rolling aggregate for performing the same
EP1657004B1 (en) Process and production line for manufacturing hot ultrathin steel strips with two casting lines for a single endless rolling line
KR101594717B1 (en) Rolling method, continuous casting and rolling method and apparatus
JP6555487B2 (en) Heating method and heating equipment for continuous casting slab
EP0904861B1 (en) Method of producing thin hot rolled steel sheet, and apparatus to carry out the method
JP3418739B2 (en) Continuous casting hot rolling equipment and continuous casting hot rolling method
JP6439938B2 (en) Heating method after cutting continuous cast slab
JP2006021246A (en) Equipment for manufacturing high-strength hot-rolled steel sheet
JPS6254501A (en) Layout of continuous casting line and hot rolling line
JP4165723B2 (en) Hot rolling method and equipment
JP2006239777A (en) Method for manufacturing hot-rolled steel sheet
JPS58221602A (en) Rolling device
JP3980740B2 (en) Hot rolling method and equipment
US20240009724A1 (en) Process and apparatus for producing metallurgical products, in particular of the merchant type, in particular in an endless mode
JPH1133601A (en) Rolling equipment
KR20110034356A (en) Roller for hot rolling mill
JP3160518B2 (en) Hot rolling line
KR101051295B1 (en) Hot Rolling Equipment
JPH11169910A (en) Manufacture of hot rolled steel sheet
KR101043075B1 (en) Device of rolling for stainless coil in cold rolling line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190625

R150 Certificate of patent or registration of utility model

Ref document number: 6555487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250