以下に、本願発明を具体化した実施形態を、8条植え式の乗用型田植機1(以下、単に田植機1という)に適用した場合の図面に基づいて説明する。なお、以下の説明では、走行機体2の進行方向に向かって左側を単に左側と称し、同じく進行方向に向かって右側を単に右側と称する。
Hereinafter, an embodiment embodying the present invention will be described with reference to the drawings in a case where the invention is applied to an 8-row planting type rice transplanter 1 (hereinafter simply referred to as a rice transplanter 1). In the following description, the left side in the traveling direction of the traveling machine body 2 is simply referred to as the left side, and the right side in the traveling direction is also simply referred to as the right side.
まず、図1から図5を参照しながら、田植機1の概要について説明する。実施形態の田植機1は、走行部としての左右一対の前車輪3及び同じく左右一対の後車輪4によって支持された走行機体2を備えている。走行機体2の前部にはエンジン5が搭載されている。エンジン5からの動力を後方のミッションケース6に伝達して、前車輪3及び後車輪4を駆動させることにより、走行機体2が前後進走行するように構成されている。ミッションケース6の左右側方にフロントアクスルケース7を突出させ、フロントアクスルケース7から左右外向きに延びる前車軸36に前車輪3が舵取り可能に取り付けられている。ミッションケース6の後方に筒状フレーム8を突出させ、筒状フレーム8の後端側にリヤアクスルケース9を固設し、リヤアクスルケース9から左右外向きに延びる後車軸37に後車輪4が取り付けられている。
First, the outline | summary of the rice transplanter 1 is demonstrated, referring FIGS. 1-5. The rice transplanter 1 according to the embodiment includes a traveling machine body 2 supported by a pair of left and right front wheels 3 and a pair of left and right rear wheels 4 as a traveling unit. An engine 5 is mounted on the front portion of the traveling machine body 2. Power from the engine 5 is transmitted to the rear transmission case 6 to drive the front wheels 3 and the rear wheels 4 so that the traveling machine body 2 travels forward and backward. A front axle case 7 projects from the left and right sides of the transmission case 6, and the front wheels 3 are attached to a front axle 36 extending from the front axle case 7 to the left and right so as to be steerable. A cylindrical frame 8 protrudes behind the transmission case 6, a rear axle case 9 is fixed to the rear end side of the cylindrical frame 8, and the rear wheel 4 is attached to a rear axle 37 that extends outward from the rear axle case 9 to the left and right. ing.
図1及び図2に示されるように、走行機体2の前部及び中央部の上面側には、オペレータ搭乗用の作業ステップ(車体カバー)10が設けられている。作業ステップ10の前部の上方にはフロントボンネット11が配置され、フロントボンネット11の内部にエンジン5を設置している。作業ステップ10の上面のうちフロントボンネット11の後部側方に、足踏み操作用の走行変速ペダル12が配置されている。詳細は省略するが、実施形態の田植機1は、走行変速ペダル12の踏み込み量に応じた変速電動モータの駆動にて、ミッションケース6の油圧無段変速機40から出力される変速動力を調節するように構成されている。
As shown in FIGS. 1 and 2, an operator boarding work step (vehicle body cover) 10 is provided on the upper surface side of the front part and the center part of the traveling machine body 2. A front bonnet 11 is disposed above the front part of the work step 10, and the engine 5 is installed inside the front bonnet 11. A traveling speed change pedal 12 for stepping operation is disposed on the upper side of the work step 10 on the rear side of the front bonnet 11. Although details are omitted, the rice transplanter 1 according to the embodiment adjusts the shift power output from the hydraulic continuously variable transmission 40 of the transmission case 6 by driving the variable speed electric motor according to the depression amount of the travel shift pedal 12. Is configured to do.
また、フロントボンネット11の後部上面側にある運転操作部13には、操縦ハンドル14と走行主変速レバー15と昇降操作具としての作業レバー16とが設けられている(図5参照)。作業ステップ10の上面のうちフロントボンネット11の後方には、シートフレーム17を介して操縦座席18が配置されている。なお、フロントボンネット11の左右側方には、作業ステップ10を挟んで左右の予備苗載台24が設けられている。
Further, the driving operation unit 13 on the rear upper surface side of the front bonnet 11 is provided with a steering handle 14, a traveling main transmission lever 15, and a work lever 16 as a lifting operation tool (see FIG. 5). A steering seat 18 is disposed via a seat frame 17 behind the front bonnet 11 on the upper surface of the work step 10. Note that left and right spare seedling platforms 24 are provided on the left and right sides of the front bonnet 11 with the operation step 10 interposed therebetween.
走行機体2の後端部にリンクフレーム19が立設されている。リンクフレーム19には、ロワーリンク20及びトップリンク21からなる昇降リンク機構22を介して、8条植え用の苗植付装置23が昇降可能に連結されている。この場合、苗植付装置23の前面側に、ローリング支点軸(図示省略)を介してヒッチブラケット38を設けている。昇降リンク機構22の後部側にヒッチブラケット38を連結することによって、走行機体2の後方に苗植付装置23を昇降動可能に配置している。筒状フレーム8の上面後部に、油圧式の昇降シリンダ39(油圧昇降制御機構)のシリンダ基端側を上下回動可能に支持させる。昇降シリンダ39のロッド先端側はロワーリンク20に連結している。昇降シリンダ39の伸縮動にて昇降リンク機構22を上下回動させる結果、苗植付装置23が昇降動する。なお、苗植付装置23は上記ローリング支点軸回りに回動して左右方向の傾斜姿勢を変更可能に構成している。
A link frame 19 is erected at the rear end of the traveling machine body 2. An eight-row seedling planting device 23 is connected to the link frame 19 via an elevating link mechanism 22 including a lower link 20 and a top link 21 so as to be elevable. In this case, a hitch bracket 38 is provided on the front side of the seedling planting device 23 via a rolling fulcrum shaft (not shown). By connecting a hitch bracket 38 to the rear side of the lifting link mechanism 22, the seedling planting device 23 is disposed behind the traveling machine body 2 so as to be movable up and down. A cylinder base end side of a hydraulic lift cylinder 39 (hydraulic lift control mechanism) is supported on the rear upper surface of the cylindrical frame 8 so as to be vertically rotatable. The rod tip side of the lifting cylinder 39 is connected to the lower link 20. As a result of vertically moving the lifting link mechanism 22 by the expansion and contraction of the lifting cylinder 39, the seedling planting device 23 moves up and down. Note that the seedling planting device 23 is configured to be rotatable about the rolling fulcrum axis so as to be able to change the inclined posture in the left-right direction.
オペレータは、作業ステップ10の側方にある乗降ステップ25から作業ステップ10上に搭乗し、運転操作にて圃場内を移動しながら、苗植付装置23を駆動させて圃場に苗を植え付ける苗植え作業(田植え作業)を実行する。なお、苗植え作業中において、苗植付装置23には、予備苗載台24上の苗マットをオペレータが随時補給する。
The operator gets on the work step 10 from the boarding / alighting step 25 on the side of the work step 10 and drives the seedling planting device 23 to move the seedling planting device 23 and move the seedling planting in the field while moving in the field by the driving operation. Perform work (rice planting work). During the seedling planting operation, the operator replenishes the seedling planting device 23 with a seedling mat on the preliminary seedling mounting table 24 as needed.
図1及び図2に示すように、苗植付装置23は、エンジン5からミッションケース6を経由した動力が伝達される植付入力ケース26と、植付入力ケース26に連結する8条用4組(2条で1組)の植付伝動ケース27と、各植付伝動ケース27の後端側に設けられた苗植機構28と、8条植え用の苗載台29と、各植付伝動ケース27の下面側に配置された田面均平用のフロート32とを備えている。苗植機構28には、1条分2本の植付爪30を有する植付伝動ケース27が設けられている。植付伝動ケース27に2条分の植付伝動ケース27が配置されている。植付伝動ケース27の出力軸の一回転によって、二本の植付爪30が各々一株ずつの苗を切り取ってつかみ、フロート32にて整地された田面に植え付ける。苗植付装置23の前面側には、圃場面を均す(整地する)整地ロータ85を昇降動可能に設けている。図20に示すように、苗植付装置23には、苗載台29に載置された苗マットに箱施用剤を散布する箱施用剤散布機(薬剤散布機)400を設けている。
As shown in FIGS. 1 and 2, the seedling planting device 23 includes a planting input case 26 to which power is transmitted from the engine 5 via the mission case 6, and an 8-strip 4 connected to the planting input case 26. A set (one set of two) of planting transmission cases 27, a seedling planting mechanism 28 provided on the rear end side of each planting transmission case 27, a seedling mounting base 29 for eight-row planting, and each planting And a float 32 for surface flattening disposed on the lower surface side of the transmission case 27. The seedling planting mechanism 28 is provided with a planting transmission case 27 having two planting claws 30 for one strip. Two planting transmission cases 27 are arranged in the planting transmission case 27. By one rotation of the output shaft of the planting transmission case 27, the two planting claws 30 cut out and hold each one of the seedlings and plant them on the rice field leveled by the float 32. On the front side of the seedling planting device 23, a leveling rotor 85 for leveling (leveling) the farm scene is provided so as to be movable up and down. As shown in FIG. 20, the seedling planting device 23 is provided with a box application agent spreader (medicine spreader) 400 that spreads the box application agent on the seedling mat placed on the seedling mount 29.
詳細は後述するが、エンジン5からミッションケース6を経由した動力は、前車輪3及び後車輪4に伝達されるだけでなく、苗植付装置23の植付入力ケース26にも伝達される。この場合、ミッションケース6から苗植付装置23に向かう動力は、リヤアクスルケース9の右側上部に設けられた株間変速ケース75に一旦伝達され、株間変速ケース75から植付入力ケース26に動力伝達される。当該伝達された動力にて、各苗植機構28や苗載台29が駆動する。株間変速ケース75には、植え付けられる苗の株間を例えば疎植、標準植又は密植等に切り換える株間変速機構76と、苗植付装置23への動力伝達を継断する植付クラッチ77とが内蔵されている(図6参照)。
Although details will be described later, the power from the engine 5 via the transmission case 6 is transmitted not only to the front wheels 3 and the rear wheels 4, but also to the planting input case 26 of the seedling planting device 23. In this case, the power from the transmission case 6 toward the seedling planting device 23 is once transmitted to the inter-plant transmission case 75 provided on the upper right side of the rear axle case 9, and is transmitted from the inter-plant transmission case 75 to the planting input case 26. The The seedling planting mechanism 28 and the seedling mount 29 are driven by the transmitted power. The inter-strain shifting case 75 includes an inter-strain shifting mechanism 76 that switches between planted seedlings to, for example, sparse planting, standard planting, or dense planting, and a planting clutch 77 that interrupts power transmission to the planting planting device 23. (See FIG. 6).
なお、苗植付装置23の左右外側にはラインマーカ33を備えている。ラインマーカ33は、筋引き用のマーカ輪体34と、マーカ輪体34を回転可能に軸支するマーカアーム35とを有している。各マーカアーム35の基端側が苗植付装置23の左右外側に左右回動可能に軸支されている。ラインマーカ33は、運転操作部13にある作業レバー16の操作に基づき、次工程での基準となる軌跡を田面に着地して形成する作業姿勢と、マーカ輪体34を上昇させて田面から離間させた非作業姿勢とに回動可能に構成されている。
A line marker 33 is provided on the left and right outside of the seedling planting device 23. The line marker 33 includes a marker ring body 34 for muscle pulling, and a marker arm 35 that rotatably supports the marker ring body 34. The base end side of each marker arm 35 is pivotally supported on the left and right outer sides of the seedling planting device 23 so as to be rotatable left and right. The line marker 33 is based on the operation of the operation lever 16 in the driving operation unit 13 and the work posture formed by landing on the surface as a reference trajectory in the next process, and the marker ring body 34 is lifted away from the surface. The non-working posture is configured to be rotatable.
図3及び図4に示すように、走行機体2は前後に延びる左右一対の機体フレーム50を備えている。各機体フレーム50は前部フレーム51と後部フレーム52とに二分割されている。前部フレーム51の後端部と後部フレーム52の前端部とが左右横長の中間連結フレーム53に溶接固定されている。左右一対の前部フレーム51の前端部は前フレーム54に溶接固定されている。左右一対の後部フレーム52の後端側は後フレーム55に溶接固定されている。前フレーム54、左右両前部フレーム51及び中間連結フレーム53は平面視四角枠状に構成されている。同様に、中間連結フレーム53、左右両後部フレーム52及び後フレーム55も平面視四角枠状に構成されている。
As shown in FIGS. 3 and 4, the traveling machine body 2 includes a pair of left and right machine body frames 50 extending in the front-rear direction. Each body frame 50 is divided into a front frame 51 and a rear frame 52. The rear end portion of the front frame 51 and the front end portion of the rear frame 52 are welded and fixed to a laterally long intermediate connection frame 53. The front ends of the pair of left and right front frames 51 are fixed to the front frame 54 by welding. The rear end sides of the left and right rear frames 52 are fixed to the rear frame 55 by welding. The front frame 54, the left and right front frames 51, and the intermediate connection frame 53 are configured in a square frame shape in plan view. Similarly, the intermediate connection frame 53, the left and right rear frames 52, and the rear frame 55 are also configured in a square frame shape in plan view.
図4に示すように、左右両前部フレーム51の前寄り部位は、前後二本のベースフレーム56によって連結されている。当該各ベースフレーム56の中間部は、左右両前部フレーム51よりも低く位置するようにU字形に折り曲げられた形状に形成されている。各ベースフレーム56の左右端部は、対応する前部フレーム51に溶接固定されている。略平板状のエンジン台57及び複数の防振ゴム(図示省略)を介して、前後両ベースフレーム56にエンジン5が搭載され防振支持されている。後側のベースフレーム56は、後中継ブラケット60を介してミッションケース6の前部に連結されている。
As shown in FIG. 4, the front portions of the left and right front frames 51 are connected by two front and rear base frames 56. An intermediate portion of each base frame 56 is formed in a shape bent into a U shape so as to be positioned lower than the left and right front frames 51. The left and right end portions of each base frame 56 are fixed to the corresponding front frame 51 by welding. The engine 5 is mounted on and supported by the front and rear base frames 56 via a substantially flat engine stand 57 and a plurality of vibration isolating rubbers (not shown). The rear base frame 56 is connected to the front portion of the transmission case 6 via the rear relay bracket 60.
図4から分かるように、左右両前部フレーム51の後寄り部位は、ミッションケース6の左右両側に突出したフロントアクスルケース7に連結されている。中間連結フレーム53の中央側には、側面視で後斜め下向きに延びるU字状フレーム61の左右両端部が溶接固定されている。U字状フレーム61の中間部がミッションケース6とリヤアクスルケース9とをつなぐ筒状フレーム8の中途部に連結されている(図3及び図4参照)。後フレーム55の中間部には、左右二本の縦フレーム62の上端側が溶接固定されている。左右両縦フレーム62の下端側には左右横長のリヤアクスル支持フレーム63の中間部が溶接固定されている。リヤアクスル支持フレーム63の左右両端部がリヤアクスルケース9に連結されている。なお、左側の前部フレーム51に外向き突設されたステップ支持台64の下方に、エンジン5の排気音を低減させるマフラー65が配置されている。
As can be seen from FIG. 4, the rear portions of the left and right front frames 51 are connected to a front axle case 7 projecting from the left and right sides of the mission case 6. The left and right ends of a U-shaped frame 61 extending rearward and obliquely downward in a side view are welded and fixed to the center side of the intermediate connection frame 53. The middle part of the U-shaped frame 61 is connected to the middle part of the cylindrical frame 8 that connects the transmission case 6 and the rear axle case 9 (see FIGS. 3 and 4). The upper end sides of the left and right vertical frames 62 are welded and fixed to the middle portion of the rear frame 55. An intermediate portion of a laterally long rear axle support frame 63 is fixed by welding to the lower ends of the left and right vertical frames 62. The left and right ends of the rear axle support frame 63 are connected to the rear axle case 9. A muffler 65 for reducing the exhaust noise of the engine 5 is disposed below the step support base 64 projecting outward from the left front frame 51.
図3及び図4に示すように、エンジン5の後方に配置されたミッションケース6の前部には、パワーステアリングユニット66が設けられている。詳細は省略するが、パワーステアリングユニット66の上面に立設されるハンドルポストの内部にハンドル軸が回動可能に配置される。ハンドル軸の上端側に操縦ハンドル14が固定されている。パワーステアリングユニット66の下面側には操舵出力軸(図示省略)が下向きに突出している。当該操舵出力軸には、左右の前車輪3を操舵する操舵杆68(図4参照)がそれぞれ連結されている。
As shown in FIGS. 3 and 4, a power steering unit 66 is provided at the front portion of the transmission case 6 disposed behind the engine 5. Although details are omitted, a handle shaft is rotatably disposed inside a handle post erected on the upper surface of the power steering unit 66. A steering handle 14 is fixed to the upper end side of the handle shaft. On the lower surface side of the power steering unit 66, a steering output shaft (not shown) protrudes downward. A steering rod 68 (see FIG. 4) for steering the left and right front wheels 3 is connected to the steering output shaft.
実施形態のエンジン5は、出力軸70(クランク軸)を左右方向に向けて前後両ベースフレーム56の中間部上に配置されている。エンジン5及びエンジン台57の左右幅は左右両前部フレーム51間の内法寸法よりも小さく、エンジン5の下部側及びエンジン台57は、前後両ベースフレーム56の中間部上に配置された状態で、左右両前部フレーム51よりも下側に露出している。この場合、エンジン5の出力軸70(軸線)は、側面視で左右両前部フレーム51と重なる位置にある。エンジン5の左右一側面(実施形態では左側面)には、エンジン5の排気系に連通する排気管69が配置されている。排気管69の基端側がエンジン5の各気筒に接続され、排気管69の先端側がマフラー65の排気入口側に接続されている。
The engine 5 of the embodiment is disposed on an intermediate portion of the front and rear base frames 56 with the output shaft 70 (crank shaft) directed in the left-right direction. The left and right widths of the engine 5 and the engine stand 57 are smaller than the inner dimensions between the left and right front frames 51, and the lower side of the engine 5 and the engine stand 57 are disposed on the middle part of the front and rear base frames 56. Thus, it is exposed below the left and right front frames 51. In this case, the output shaft 70 (axis line) of the engine 5 is in a position overlapping the left and right front frames 51 in a side view. An exhaust pipe 69 communicating with the exhaust system of the engine 5 is disposed on one of the left and right side surfaces (left side surface in the embodiment) of the engine 5. The proximal end side of the exhaust pipe 69 is connected to each cylinder of the engine 5, and the distal end side of the exhaust pipe 69 is connected to the exhaust inlet side of the muffler 65.
図5に示す運転操作部13において、走行主変速レバー15は、操縦ハンドル14を挟んだ左右一方側(実施形態では左側に位置している。運転操作部13に形成したガイド溝83に沿って走行主変速レバー15を操作することによって、田植機1の走行モードを前進、中立、後進、苗継及び移動の各モードに切り換えるように構成している。作業レバー16は、操縦ハンドル14を挟んだ左右他方側(実施形態では右側)に位置している。作業レバー16は、苗植付装置23の昇降操作、植付クラッチ77の継断操作及び左右ラインマーカ33の選択操作という複数の操作を単独で担うものであり、十字方向に操作可能に構成している。
In the driving operation unit 13 shown in FIG. 5, the traveling main speed change lever 15 is located on the left and right sides (in the embodiment, on the left side) sandwiching the steering handle 14. Along the guide groove 83 formed in the driving operation unit 13. The traveling mode of the rice transplanter 1 is switched to forward, neutral, reverse, seedling and movement modes by operating the traveling main speed change lever 15. The work lever 16 holds the steering handle 14 between them. It is located on the other side of the right and left sides (right side in the embodiment) The work lever 16 is operated in a plurality of operations such as raising / lowering the seedling planting device 23, switching operation of the planting clutch 77, and selecting operation of the left / right line marker 33. Is configured to be operable in the cross direction.
この場合、作業レバー16を一回前傾操作すると苗植付装置23が下降し、もう一回前傾操作すると植付クラッチ77が入り作動する(動力接続状態になる)。逆に、作業レバー16を一回後傾操作すると植付クラッチ77が切り作動し(動力遮断状態になり)、もう一回後傾操作すると苗植付装置23が上昇する。苗植付装置23の昇降動作を取り止める場合は、作業レバー16を逆方向に傾動操作する。例えば苗植付装置23の下降動を途中で停止させる場合は作業レバー16を後傾操作すればよい。作業レバー16を一回左へ傾動操作すると左側のラインマーカ33が作業姿勢となり、もう一回左へ傾動操作すると左側のラインマーカ33が非作業姿勢に戻る。作業レバー16を一回右へ傾動操作すると右側のラインマーカ33が作業姿勢となり、もう一回右へ傾動操作すると右側のラインマーカ33が非作業姿勢に戻る。
In this case, if the operation lever 16 is tilted forward once, the seedling planting device 23 is lowered, and if it is tilted forward once again, the planting clutch 77 is engaged and activated (becomes a power connection state). Conversely, when the operation lever 16 is tilted once backward, the planting clutch 77 is turned off (becomes in a power cut-off state), and when it is tilted again once, the seedling planting device 23 is raised. When stopping the raising / lowering operation of the seedling planting device 23, the operation lever 16 is tilted in the reverse direction. For example, when the lowering movement of the seedling planting device 23 is stopped halfway, the work lever 16 may be tilted backward. When the operation lever 16 is tilted once to the left, the left line marker 33 is in the working posture, and when it is tilted once again to the left, the left line marker 33 returns to the non-working posture. When the work lever 16 is tilted once to the right, the right line marker 33 is in the working position, and when it is tilted right again, the right line marker 33 is returned to the non-working position.
次に、図6を参照しながら、田植機1の駆動系統について説明する。エンジン5の出力軸70はエンジン5の左右両側面から外向きに突出している。出力軸70のうちエンジン5左側面から突出した突端部にエンジン出力プーリ72を設け、ミッションケース6から左外側に突出したミッション入力軸71にミッション入力プーリ73を設け、両プーリ72,73に伝達ベルトを巻き掛けている。両プーリ72,73及び伝達ベルトを介して、エンジン5からミッションケース6に動力伝達する。
Next, the drive system of the rice transplanter 1 will be described with reference to FIG. The output shaft 70 of the engine 5 protrudes outward from the left and right side surfaces of the engine 5. An engine output pulley 72 is provided at the protruding end of the output shaft 70 that protrudes from the left side of the engine 5, a mission input pulley 73 is provided at the mission input shaft 71 that protrudes outward from the mission case 6, and is transmitted to both pulleys 72, 73. A belt is wrapped around. Power is transmitted from the engine 5 to the transmission case 6 via both pulleys 72 and 73 and a transmission belt.
ミッションケース6内には、油圧ポンプ40a及び油圧モータ40bからなる油圧無段変速機40、遊星歯車装置41、油圧無段変速機40及び遊星歯車装置41を経由した変速動力を複数段に変速する歯車式副変速機構42、遊星歯車装置41から歯車式副変速機構42への動力伝達を継断する主クラッチ43、並びに、歯車式副変速機構42からの出力を制動させる走行ブレーキ44等を備えている。ミッション入力軸71からの動力で油圧ポンプ40aを駆動させ、油圧ポンプ40aから油圧モータ40bに作動油を供給し、油圧モータ40bから変速動力が出力される。油圧モータ40bの変速動力は、遊星歯車装置41及び主クラッチ43を介して歯車式副変速機構42に伝達される。そして、歯車式副変速機構42から、前後車輪3,4と苗植付装置23との二方向に分岐して動力伝達される。
In the transmission case 6, the transmission power through the hydraulic continuously variable transmission 40, the planetary gear device 41, the hydraulic continuously variable transmission 40, and the planetary gear device 41 including the hydraulic pump 40 a and the hydraulic motor 40 b is shifted to a plurality of stages. A gear-type sub-transmission mechanism 42, a main clutch 43 that interrupts power transmission from the planetary gear unit 41 to the gear-type sub-transmission mechanism 42, a traveling brake 44 that brakes the output from the gear-type sub-transmission mechanism 42, and the like. ing. The hydraulic pump 40a is driven by power from the mission input shaft 71, hydraulic oil is supplied from the hydraulic pump 40a to the hydraulic motor 40b, and variable speed power is output from the hydraulic motor 40b. The speed change power of the hydraulic motor 40 b is transmitted to the gear type subtransmission mechanism 42 via the planetary gear device 41 and the main clutch 43. Then, power is transmitted from the gear-type sub-transmission mechanism 42 by branching in the two directions of the front and rear wheels 3 and 4 and the seedling planting device 23.
前後車輪3,4に向かう分岐動力の一部は、歯車式副変速機構42から差動歯車機構45を介して、フロントアクスルケース7の前車軸36に伝達され、左右前車輪3を回転駆動させる。前後車輪3,4に向かう分岐動力の残りは、歯車式副変速機構42から、自在継手軸46、リヤアクスルケース9内のリヤ駆動軸47、左右一対の摩擦クラッチ48及び歯車式減速機構49を介して、リヤアクスルケース9の後車軸37に伝達され、左右後車輪4を回転駆動させる。走行ブレーキ44を作動させた場合は、歯車式副変速機構42からの出力がなくなるので、前後車輪3,4共にブレーキがかかる。また、田植機1を旋回させる場合は、リヤアクスルケース9内の旋回内側の摩擦クラッチ48を切り作動させて旋回内側の後車輪4を自由回転させ、動力伝達される旋回外側の後車輪4の回転駆動によって旋回する。
Part of the branching power toward the front and rear wheels 3 and 4 is transmitted from the gear-type auxiliary transmission mechanism 42 via the differential gear mechanism 45 to the front axle 36 of the front axle case 7 to drive the left and right front wheels 3 to rotate. . The remainder of the branching power toward the front and rear wheels 3, 4 is transferred from the gear-type sub-transmission mechanism 42 through the universal joint shaft 46, the rear drive shaft 47 in the rear axle case 9, a pair of left and right friction clutches 48, and a gear-type reduction mechanism 49. Thus, the rear axle case 9 is transmitted to the rear axle 37 to drive the left and right rear wheels 4 to rotate. When the traveling brake 44 is operated, the output from the gear-type subtransmission mechanism 42 is lost, so that the front and rear wheels 3 and 4 are braked. When the rice transplanter 1 is turned, the friction clutch 48 inside the turning inside the rear axle case 9 is turned off to rotate the rear wheel 4 inside the turning freely, and the rotation of the rear wheel 4 outside the turning to which power is transmitted is rotated. It turns by driving.
リヤアクスルケース9内には、整地ロータ85への動力継断用の整地ロータクラッチを有するロータ駆動ユニット86を備えている。歯車式副変速機構42から自在継手軸46に伝達された動力はロータ駆動ユニット86にも分岐して伝達され、ロータ駆動ユニット86から自在継手軸87を介して整地ロータ85に動力伝達される。整地ロータ85の回転駆動によって圃場面が均される。
In the rear axle case 9, a rotor drive unit 86 having a leveling rotor clutch for power transmission to the leveling rotor 85 is provided. The power transmitted from the gear-type subtransmission mechanism 42 to the universal joint shaft 46 is also branched and transmitted to the rotor drive unit 86, and is transmitted from the rotor drive unit 86 to the leveling rotor 85 via the universal joint shaft 87. The farm scene is leveled by the rotational drive of the leveling rotor 85.
苗植付装置23に向かう分岐動力は、自在継手軸付きのPTO伝動軸機構74を介して株間変速ケース75に伝達される。株間変速ケース75内には、植え付けられる苗の株間を例えば疎植、標準植又は密植等に切り換える株間変速機構76と、苗植付装置23への動力伝達を継断する植付クラッチ77とを備えている。株間変速ケース75に伝達された動力は、株間変速機構76、植付クラッチ77及び自在継手軸78を介して植付入力ケース26に伝達される。
The branching power toward the seedling planting device 23 is transmitted to the inter-strain transmission case 75 via the PTO transmission shaft mechanism 74 with a universal joint shaft. In the inter-strain shifting case 75, an inter-strain shifting mechanism 76 that switches between seedlings to be planted, for example, to sparse planting, standard planting, or dense planting, and a planting clutch 77 that interrupts power transmission to the planting planting device 23 are provided. I have. The power transmitted to the inter-plant transmission case 75 is transmitted to the planting input case 26 via the inter-plant transmission mechanism 76, the planting clutch 77, and the universal joint shaft 78.
植付入力ケース26内には、苗載台29を横送り移動させる苗台横送り機構79と、苗載台29上の苗マットを縦送り搬送させる苗縦送り機構80と、植付入力ケース26から各植付伝動ケース27に動力伝達する植付出力軸81とを備えている。植付入力ケース26に伝達された動力によって、苗台横送り機構79及び苗縦送り機構80が駆動し、苗載台29を連続的に往復で横送り移動させ、苗載台29が往復移動端(往復移動の折返し点)に到達したときに苗載台29上の苗マットを間欠的に縦送り搬送する。植付入力ケース26から植付出力軸81を経由した動力は各植付伝動ケース27に伝達され、各植付伝動ケース27の植付伝動ケース27並びに植付爪30を回転駆動させる。なお、施肥装置を設ける場合は株間変速ケース75から施肥装置に動力伝達される。
In the planting input case 26, a seedling horizontal feed mechanism 79 that moves the seedling platform 29 laterally, a seedling vertical feed mechanism 80 that transports the seedling mat on the seedling platform 29 vertically, and a planting input case 26 and a planting output shaft 81 that transmits power to each planting transmission case 27. The seedling table lateral feed mechanism 79 and the seedling vertical feed mechanism 80 are driven by the power transmitted to the planting input case 26, and the seedling stage 29 is continuously reciprocally moved laterally, so that the seedling stage 29 is reciprocated. When reaching the end (the turning point of the reciprocating movement), the seedling mat on the seedling placing table 29 is intermittently transported vertically. Power from the planting input case 26 via the planting output shaft 81 is transmitted to each planting transmission case 27, and the planting transmission case 27 and the planting claw 30 of each planting transmission case 27 are driven to rotate. In addition, when providing a fertilizer, motive power is transmitted from the inter-strain transmission case 75 to a fertilizer.
植付入力ケース26内部には、左右長手の中間軸211と苗載台駆動軸212とを平行状に配置している。植付入力ケース26に伝わった動力は、中間軸211及び苗載台駆動軸212を経由して苗台横送り機構79及び苗縦送り機構80に伝達される。苗載台駆動軸212には複数枚の横送り調節従動ギヤ214を固定する一方、中間軸211には、横送り調節従動ギヤ214に対応する横送り調節駆動ギヤ213を遊嵌している。複数枚の横送り調節駆動ギヤ213のうちいずれか1つのみに、植付入力ケース26に設けたスライドレバー(図示省略)でスライド操作可能なスライドキー215によって、中間軸211から選択的に動力伝達され、苗載台駆動軸212を回転させる。
Inside the planting input case 26, a left-right longitudinal intermediate shaft 211 and a seedling stage drive shaft 212 are arranged in parallel. The power transmitted to the planting input case 26 is transmitted to the seedling table lateral feed mechanism 79 and the seedling vertical feed mechanism 80 via the intermediate shaft 211 and the seedling stage drive shaft 212. A plurality of lateral feed adjustment driven gears 214 are fixed to the seedling table drive shaft 212, while a lateral feed adjustment drive gear 213 corresponding to the lateral feed adjustment driven gear 214 is loosely fitted to the intermediate shaft 211. Only one of the plural lateral feed adjusting drive gears 213 is selectively powered from the intermediate shaft 211 by a slide key 215 that can be slid by a slide lever (not shown) provided in the planting input case 26. Then, the seedling stage drive shaft 212 is rotated.
横送り調節ギヤ213,214の各組はそれぞれ歯数の比率が相違していて、横送り調節ギヤ213,214の組合せを変えると、苗載台駆動軸212の回転比率が変わる。その結果、苗載台29の横送りピッチが変化して、苗マットの苗の掻取り量が変化する。実施形態では、横送り調節ギヤ213,214の組合せが4種類あり、横送り回数が18回、20回、26回及び30回のいずれかに設定される。ここで、横送り回数とは、苗載台29を左右いずれかの移動端まで横送りする間に、1条分2本の植付爪30が苗マットから苗を掻き取る回数を意味している。横送り回数が30回に対応した横送り調節ギヤ213,214の組合せが高密度育苗の苗マットを用いる場合に適用される。
Each pair of the transverse feed adjusting gears 213 and 214 has a different ratio of the number of teeth. When the combination of the transverse feed adjusting gears 213 and 214 is changed, the rotation ratio of the seedling stage drive shaft 212 is changed. As a result, the lateral feed pitch of the seedling mount 29 changes, and the amount of seedling scraping of the seedling mat changes. In the embodiment, there are four types of combinations of the transverse feed adjusting gears 213 and 214, and the number of transverse feeds is set to any one of 18, 20, 26, and 30 times. Here, the number of times of horizontal feeding means the number of times the two planting claws 30 scrape seedlings from the seedling mat while the seedling mounting base 29 is laterally fed to the left or right moving end. Yes. The combination of the transverse feed adjusting gears 213 and 214 corresponding to the number of transverse feeds of 30 is applied when using a seedling mat for high-density seedling raising.
次に、図7を参照しながら、田植機1の油圧回路構造について説明する。田植機1の油圧回路90には、油圧無段変速機40の構成要素である油圧ポンプ40a及び油圧モータ40bと、チャージポンプ91及び作業ポンプ92とを備える。油圧ポンプ40a、チャージポンプ91及び作業ポンプ92がエンジン5の動力によって駆動する。油圧ポンプ40aと油圧モータ40bとは、閉ループ油路93を介してそれぞれの吸入側及び吐出側に接続している。チャージポンプ91を閉ループ油路93に接続している。走行変速ペダル12の踏み込み量に応じた変速電動モータの駆動によって、油圧ポンプ40aの斜板角度を調節し、油圧モータ40bを正転又は逆転駆動させるように構成している。
Next, the hydraulic circuit structure of the rice transplanter 1 will be described with reference to FIG. The hydraulic circuit 90 of the rice transplanter 1 includes a hydraulic pump 40 a and a hydraulic motor 40 b that are components of the hydraulic continuously variable transmission 40, a charge pump 91, and a work pump 92. The hydraulic pump 40a, the charge pump 91, and the work pump 92 are driven by the power of the engine 5. The hydraulic pump 40 a and the hydraulic motor 40 b are connected to the respective suction side and discharge side via a closed loop oil passage 93. A charge pump 91 is connected to the closed loop oil passage 93. The swash plate angle of the hydraulic pump 40a is adjusted by driving the speed change electric motor according to the depression amount of the travel speed change pedal 12, and the hydraulic motor 40b is driven forward or reverse.
作業ポンプ92は、操縦ハンドル14の操作を補助するパワーステアリングユニット66に接続している。パワーステアリングユニット66は、操向油圧切換弁94及び操向油圧モータ95を備えている。操縦ハンドル14の操作によって操向油圧切換弁94を切換作動させて操向油圧モータ95を駆動させ、操縦ハンドル14の操作を補助する。その結果、左右前車輪3を小さい操作力で簡単に操舵できる。
The work pump 92 is connected to a power steering unit 66 that assists the operation of the steering handle 14. The power steering unit 66 includes a steering hydraulic pressure switching valve 94 and a steering hydraulic motor 95. By operating the steering handle 14, the steering hydraulic pressure switching valve 94 is switched to drive the steering hydraulic motor 95 to assist the operation of the steering handle 14. As a result, the left and right front wheels 3 can be easily steered with a small operating force.
パワーステアリングユニット66はフローデバイダ96に接続している。フローデバイダ96は第一油路97と第二油路98とに分岐している。第一油路97は、昇降シリンダ39に作動油を供給する昇降切換弁99に接続している。昇降切換弁99は、昇降シリンダ39に作動油を供給する供給位置99aと、昇降シリンダ39から作動油を排出する排出位置99bとの二位置に切換可能な4ポート2置切換形の機械式切換弁である。作業レバー16の操作で昇降切換弁99を切換作動させて昇降シリンダ39を伸縮動させることによって、昇降リンク機構22を介して苗植付装置23が昇降動する。なお、フローデバイダ96や昇降切換弁99は、ミッションケース6後部に設けたバルブユニット89内に収容している。
The power steering unit 66 is connected to the flow divider 96. The flow divider 96 is branched into a first oil passage 97 and a second oil passage 98. The first oil passage 97 is connected to a lift switching valve 99 that supplies hydraulic oil to the lift cylinder 39. The lift switching valve 99 is a four-port / two-switch mechanical switching that can be switched between two positions, a supply position 99a for supplying hydraulic oil to the lift cylinder 39 and a discharge position 99b for discharging hydraulic oil from the lift cylinder 39. It is a valve. The seedling planting device 23 moves up and down via the lifting link mechanism 22 by operating the work lever 16 to switch the lifting switching valve 99 to expand and contract the lifting cylinder 39. The flow divider 96 and the up / down switching valve 99 are accommodated in a valve unit 89 provided at the rear of the mission case 6.
昇降切換弁99から昇降シリンダ39に至るシリンダ油路100中に電磁開閉弁101を設けている。電磁開閉弁101は、昇降シリンダ39に対して作動油を給排する開位置101aと、昇降シリンダ39に対する作動油の給排を停止する閉位置101bとの二位置に切換可能な電磁制御弁である。従って、電磁ソレノイド102を励磁して電磁開閉弁101を開位置101aにすると、昇降シリンダ39は伸縮動可能になり、苗植付装置23が昇降動可能になる。電磁ソレノイド102を非励磁にして戻しバネ103によって電磁開閉弁101を閉位置101bにすると、昇降シリンダ39は伸縮動不能に保持され、苗植付装置23が任意の高さ位置で昇降停止する。
An electromagnetic on-off valve 101 is provided in a cylinder oil passage 100 from the up / down switching valve 99 to the up / down cylinder 39. The electromagnetic on-off valve 101 is an electromagnetic control valve that can be switched between two positions: an open position 101a for supplying and discharging hydraulic oil to and from the lift cylinder 39 and a closed position 101b for stopping supply and discharge of hydraulic oil to and from the lift cylinder 39. is there. Accordingly, when the electromagnetic solenoid 102 is excited to open the electromagnetic on-off valve 101 to the open position 101a, the lifting cylinder 39 can be expanded and contracted, and the seedling planting device 23 can be moved up and down. When the electromagnetic solenoid 102 is de-energized and the electromagnetic on-off valve 101 is moved to the closed position 101b by the return spring 103, the elevating cylinder 39 is held so as not to expand and contract, and the seedling planting device 23 stops elevating at an arbitrary height position.
なお、シリンダ油路100のうち電磁開閉弁101と昇降シリンダ39との間には、アキュムレータ油路104を介してアキュムレータ105を接続している。昇降シリンダ39内の急激な作動油圧変動の際は、アキュムレータ105によって作動油圧変動を吸収し、昇降切換弁99及び電磁開閉弁101の組合せによって、昇降シリンダ39をスムーズに伸縮動させ、苗植付装置23を軽快に昇降動させる。
An accumulator 105 is connected between the electromagnetic on-off valve 101 and the lift cylinder 39 in the cylinder oil passage 100 via an accumulator oil passage 104. When the operating hydraulic pressure in the elevating cylinder 39 changes suddenly, the operating hydraulic pressure fluctuation is absorbed by the accumulator 105, and the elevating cylinder 39 is smoothly expanded and contracted by the combination of the elevating switching valve 99 and the electromagnetic on-off valve 101, so The device 23 is moved up and down easily.
フローデバイダ96の第二油路98は、苗植付装置23の左右傾斜姿勢を制御するローリング制御ユニット106に接続している。ローリング制御ユニット106には、ローリングシリンダ108に作動油を供給する電磁制御弁107を内蔵している。電磁制御弁107の切換作動によって、ローリング制御ユニット106に一体的に設けたローリングシリンダ108を作動させる結果、苗植付装置23が水平姿勢に保持される。なお、田植機1の油圧回路90は、リリーフ弁や流量調整弁、チェック弁、オイルフィルタ等も備えている。
The second oil passage 98 of the flow divider 96 is connected to a rolling control unit 106 that controls the right / left inclined posture of the seedling planting device 23. The rolling control unit 106 incorporates an electromagnetic control valve 107 that supplies hydraulic oil to the rolling cylinder 108. As a result of operating the rolling cylinder 108 provided integrally with the rolling control unit 106 by the switching operation of the electromagnetic control valve 107, the seedling planting device 23 is held in a horizontal posture. The hydraulic circuit 90 of the rice transplanter 1 also includes a relief valve, a flow rate adjustment valve, a check valve, an oil filter, and the like.
次に、図8から図11を参照して、苗植付装置23の構成について説明する。苗植付装置23は、8条用4組の植付伝動ケース27の前端間を連結する植付フレーム111を備えている。植付フレーム111は左右方向に延設されている。植付フレーム111の中央部に植付入力ケース26が取り付けられている。植付入力ケース26は、苗載台29の左右方向の横送りを行う苗台横送り機構79の横送り軸と、苗載台29上の苗の縦送りを行う苗縦送り機構80の縦送り駆動軸80aと、苗植機構28の植付出力軸81を回転させる。
Next, the configuration of the seedling planting device 23 will be described with reference to FIGS. The seedling planting device 23 includes a planting frame 111 that connects the front ends of the four sets of planting transmission cases 27 for 8 strips. The planting frame 111 extends in the left-right direction. A planting input case 26 is attached to the center of the planting frame 111. The planting input case 26 includes a horizontal feed shaft of a seedling table lateral feed mechanism 79 that laterally feeds the seedling stage 29 and a vertical direction of a seedling vertical feed mechanism 80 that vertically feeds the seedlings on the seedling stage 29. The feed drive shaft 80a and the planting output shaft 81 of the seedling planting mechanism 28 are rotated.
植付伝動ケース27の前端部下側に植深さ調節軸121が回動自在に枢支されている。植深さ調節軸121に、各フロート32a,32b後端部上面に配置されたブラケット113a,113bが植深さ調節リンク114a,114bを介して連結されている。また、植深さ調節軸121に、基準植付深さの調節を行う植深さ調節部材122の基端部が固着されている。植深さ調節部材122は、後述する植深さ調節アクチュエータ機構によって植深さ調節軸121を回動支点として回動されて位置調節される。植深さ調節部材122が位置調節されることにより、植深さ調節軸121及び植深さ調節リンク114a,114bを介してブラケット113a,113bの高さ位置、ひいてはフロート32a,32b(被調節体)が所望の植深さ設定高さに配置される。センターフロート32aの前端部に昇降センサ機構311のセンシングアームが取り付けられている。昇降センサ機構311はフロート傾斜角度(植付深さ)の変化を検出する。センターフロート32aの上方に、植付フレーム111の前面に取り付けられた表面検知センサ機構331が配置されている。表面検知センサ機構331は圃場の表面位置の変化を検出する。サイドフロート32bの前端部に、サイドフロート32b前端部の上下移動範囲を規制するフロート融通機構116が取り付けられている。
A planting depth adjusting shaft 121 is pivotally supported under the front end of the planting transmission case 27 so as to be rotatable. Brackets 113a and 113b disposed on the upper surfaces of the rear end portions of the floats 32a and 32b are connected to the planting depth adjusting shaft 121 through planting depth adjusting links 114a and 114b. Further, a proximal end portion of a planting depth adjusting member 122 that adjusts the reference planting depth is fixed to the planting depth adjusting shaft 121. The planting depth adjusting member 122 is rotated and adjusted by a planting depth adjusting actuator mechanism, which will be described later, with the planting depth adjusting shaft 121 as a pivot point. By adjusting the position of the planting depth adjusting member 122, the height positions of the brackets 113a and 113b via the planting depth adjusting shaft 121 and the planting depth adjusting links 114a and 114b, and the floats 32a and 32b (adjusted bodies) ) Is arranged at a desired planting depth setting height. A sensing arm of the lift sensor mechanism 311 is attached to the front end portion of the center float 32a. The lift sensor mechanism 311 detects a change in the float inclination angle (planting depth). A surface detection sensor mechanism 331 attached to the front surface of the planting frame 111 is disposed above the center float 32a. The surface detection sensor mechanism 331 detects a change in the surface position of the field. A float accommodation mechanism 116 that restricts the vertical movement range of the front end portion of the side float 32b is attached to the front end portion of the side float 32b.
次に、ローリング制御装置109について説明する。図9に示されるように、ヒッチブラケット38下端部は、植付フレーム111略中央に固設された支点部材141にローリング支点軸142を介して回動自在に連結されている。ヒッチブラケット38上端側に設けられた取付座143に油圧ローリングシリンダ108が取り付けられている。シリンダ108のピストンロッド145先端は、ローリングアーム146に取り付けられた固定ブラケット147に連結されている。シリンダ108に、複動型のシリンダ108を往復駆動するローリング制御ユニット106が一体的に設けられている。取付座143上面に固設された受板148と、苗載台29裏側面の上レールフレーム151に、上レールフレーム151中央を挟んで設けられた一対のバネフックとの間に、ローリング補正バネ149が張設されている。振子型ローリングセンサ(図示は省略)が苗植付装置23の傾斜を検出するとき、シリンダ108のピストンロッド145を進退制御してローリング支点軸142回りに苗植付装置23を左右に揺動させて苗植付装置23の水平保持を図るように構成されている。
Next, the rolling control device 109 will be described. As shown in FIG. 9, the lower end portion of the hitch bracket 38 is rotatably connected to a fulcrum member 141 fixed at the substantially center of the planting frame 111 via a rolling fulcrum shaft 142. A hydraulic rolling cylinder 108 is attached to a mounting seat 143 provided on the upper end side of the hitch bracket 38. The tip of the piston rod 145 of the cylinder 108 is connected to a fixed bracket 147 attached to the rolling arm 146. The cylinder 108 is integrally provided with a rolling control unit 106 that reciprocates the double-acting cylinder 108. A rolling correction spring 149 is provided between a receiving plate 148 fixed on the upper surface of the mounting seat 143 and a pair of spring hooks provided on the upper rail frame 151 on the back side of the seedling mount 29 with the center of the upper rail frame 151 interposed therebetween. Is stretched. When a pendulum type rolling sensor (not shown) detects the inclination of the seedling planting device 23, the piston rod 145 of the cylinder 108 is controlled to advance and retreat, and the seedling planting device 23 is swung left and right around the rolling fulcrum shaft 142. The seedling planting device 23 is configured to be held horizontally.
また、植付入力ケース26には苗台横送り機構79と苗縦送り機構80が接続されている。苗台横送り機構79の送り体79aは苗載台29の裏面下部側に連結されており、上レールフレーム151及び下レールフレーム152に沿った左右幅方向に苗載台29を横送り移動させる。このため、苗載台29上の苗マットは連続的に往復で横送り搬送される。
A seedling horizontal feed mechanism 79 and a seedling vertical feed mechanism 80 are connected to the planting input case 26. The feed body 79 a of the seedling table lateral feed mechanism 79 is connected to the lower back side of the seedling table 29 and moves the seedling table 29 in the lateral direction along the upper rail frame 151 and the lower rail frame 152. . For this reason, the seedling mat on the seedling placing table 29 is continuously fed back and forth in a reciprocating manner.
一方、苗縦送り機構80の縦送り駆動軸80aには一対の縦送り駆動カム80bが固着されている。苗載台29が往復移動端(往復移動の折返し点)に到達するとき、縦送り駆動軸80aにより回転駆動される各縦送り駆動カム80bが従動カム153の先端部に当接して従動カム153を回動させる。これによって無端帯状の苗縦送りベルト155が間欠駆動され、苗載台29上の苗マットが苗取出し側(苗載台29の傾斜下端側)に向けて間欠的に縦送り搬送される。
On the other hand, a pair of vertical feed drive cams 80b are fixed to the vertical feed drive shaft 80a of the seedling vertical feed mechanism 80. When the seedling stage 29 reaches the reciprocating end (return point of reciprocating movement), each vertical feed drive cam 80b that is rotationally driven by the vertical feed drive shaft 80a comes into contact with the tip of the driven cam 153 and follows the driven cam 153. Rotate. As a result, the endless belt-shaped seedling vertical feeding belt 155 is intermittently driven, and the seedling mat on the seedling mounting base 29 is intermittently transported vertically toward the seedling extraction side (the inclined lower end side of the seedling mounting base 29).
苗縦送りベルト155は、苗載台29の下端側に設けた左右横長の縦送り駆動ローラ軸154に取り付けられた縦送り駆動ローラと、苗載台29の中途部に設けた左右横長の縦送り従動ローラ軸157に取り付けられた縦送り従動ローラに巻き掛けられる。苗載台29の苗マット載面に矩形状の2枚の苗マットを直列に載せ、苗縦送りベルト155を間欠駆動させることによって、苗載台29の苗マット載面の傾斜下端側(苗取出し側)に向けて苗マットが縦送り搬送される。苗縦送りベルト155の苗送り作用面の長さは1枚の苗マットの長さより長い。また、苗取調節軸136に固着された苗取連動カム138と、縦送り駆動ローラ軸154に取り付けられた従動カム153を、連動ワイヤ156を介して連結させ、苗縦取量の変化に対応させて苗縦送り量も変化させて、苗縦取量に応じた適正な苗縦送りを行う。
The seedling vertical feed belt 155 includes a vertical feed drive roller attached to a left and right horizontally long vertical feed drive roller shaft 154 provided on the lower end side of the seedling mount 29, and a left and right horizontally long vertical feed provided in the middle part of the seedling mount 29. It is wound around a vertical feed driven roller attached to the feed driven roller shaft 157. By placing two rectangular seedling mats in series on the seedling mat mounting surface of the seedling mounting table 29 and intermittently driving the seedling vertical feeding belt 155, the lower end side of the inclined surface of the seedling mat mounting surface of the seedling mounting table 29 (seedlings) The seedling mat is transported vertically toward the take-out side). The length of the seedling feeding surface of the seedling vertical feeding belt 155 is longer than the length of one seedling mat. In addition, the seedling collection interlocking cam 138 fixed to the seedling collection adjusting shaft 136 and the driven cam 153 attached to the vertical feed drive roller shaft 154 are connected via an interlocking wire 156 to cope with a change in the seedling vertical harvesting amount. Then, the vertical seedling feed amount is also changed, and appropriate vertical seedling feed according to the vertical seedling collection amount is performed.
また、図12に示されるように、苗植付装置23には、苗載台29下端の苗取出板131を上下動させて苗縦取量を調節する苗取調節具132が設けられている。苗取調節具132は、植付伝動ケース27にボルト締結されたガイド部材133に上下動自在に支持されたガイドロッド134上部に固着されている。左右方向に延設された苗取調節軸136に苗取調節カム135の基端部が固着されている。苗取調節カム135の先端部は苗取調節具132に挿入されている。また、苗取調節軸136に苗取調節部材137の基端部が固着されている。後述する苗取調節アクチュエータ機構181によって苗取調節部材137が位置調節されることによって、苗取調節軸136及び苗取調節カム135を介して苗取出板131、苗取調節具132及びガイドロッド134が上下移動されて、植付爪30が取り出す1株分の苗量の調節が行われる。苗取調節軸136は、植付伝動ケース27上部に固設する各軸受板に回動自在に支持される。
In addition, as shown in FIG. 12, the seedling planting device 23 is provided with a seedling adjustment tool 132 that adjusts the vertical seedling collection amount by moving the seedling extraction plate 131 at the lower end of the seedling mount 29 up and down. . The seedling adjustment tool 132 is fixed to an upper portion of a guide rod 134 supported by a guide member 133 bolted to the planting transmission case 27 so as to be movable up and down. A base end portion of a seedling adjustment cam 135 is fixed to a seedling adjustment shaft 136 extending in the left-right direction. The tip of the seedling adjustment cam 135 is inserted into the seedling adjustment tool 132. Further, a base end portion of the seedling adjustment member 137 is fixed to the seedling adjustment shaft 136. The position of the seedling adjustment member 137 is adjusted by a seedling adjustment actuator mechanism 181 to be described later, whereby the seedling extraction plate 131, the seedling adjustment tool 132, and the guide rod 134 are connected via the seedling adjustment shaft 136 and the seedling adjustment cam 135. Is moved up and down, and the amount of seedlings for one strain taken out by the planting claws 30 is adjusted. The seedling adjustment shaft 136 is rotatably supported by each bearing plate fixed to the upper part of the planting transmission case 27.
次に、図13から図17を参照しながら、植深さ調節アクチュエータ機構171と苗取調節アクチュエータ機構181を有する調節アクチュエータ機構群161の構成について説明する。調節アクチュエータ機構群161は、植深さ調節アクチュエータ機構171と苗取調節アクチュエータ機構181とアクチュエータ機構カバー162を備えている。調節アクチュエータ機構群161はローリング支点軸142よりも左側方位置で植付フレーム111に取り付けられている。調節アクチュエータ機構群161において調節アクチュエータ機構171,181は左右方向に隣り合って配置されている。苗取調節アクチュエータ機構181は、植深さ調節アクチュエータ機構171よりも走行機体2中央側に配置されている。
Next, the configuration of the adjusting actuator mechanism group 161 including the planting depth adjusting actuator mechanism 171 and the seedling adjusting actuator mechanism 181 will be described with reference to FIGS. 13 to 17. The adjustment actuator mechanism group 161 includes a planting depth adjustment actuator mechanism 171, a seedling adjustment actuator mechanism 181, and an actuator mechanism cover 162. The adjustment actuator mechanism group 161 is attached to the planting frame 111 at a position on the left side of the rolling fulcrum shaft 142. In the adjustment actuator mechanism group 161, the adjustment actuator mechanisms 171 and 181 are arranged adjacent to each other in the left-right direction. The seedling adjustment actuator mechanism 181 is disposed closer to the center of the traveling machine body 2 than the planting depth adjustment actuator mechanism 171.
植深さ調節アクチュエータ機構171と苗取調節アクチュエータ機構181は基本的に同様の構成を有している。調節アクチュエータ機構171,181は、送りねじ172,182と、滑り子173,183と、電動式の調節モータ174,184と、送りねじ上部支持部材175,185と、送りねじ下部支持部材176,186を備えている。調節モータ174,184によって送りねじ172,182が回転されることにより、送りねじ172,182上で滑り子173,183が直線運動される。送りねじ上部支持部材175,185は送りねじ172,182の上端側(調節モータ側)を回転自在に支持する。送りねじ下部支持部材176,186は送りねじ172,182の下端部を回転自在に支持する。なお、調節アクチュエータ機構171,181は、電動式の調節モータ174,184に替えて、送りねじ172,182を回転させる油圧モータを備えた構成であってもよい。
The planting depth adjusting actuator mechanism 171 and the seedling adjusting actuator mechanism 181 basically have the same configuration. The adjustment actuator mechanisms 171 and 181 include feed screws 172 and 182, sliders 173 and 183, electric adjustment motors 174 and 184, feed screw upper support members 175 and 185, and feed screw lower support members 176 and 186. It has. As the feed screws 172 and 182 are rotated by the adjusting motors 174 and 184, the sliders 173 and 183 are linearly moved on the feed screws 172 and 182. The feed screw upper support members 175 and 185 rotatably support the upper end side (adjustment motor side) of the feed screws 172 and 182. The feed screw lower support members 176 and 186 rotatably support the lower ends of the feed screws 172 and 182. The adjustment actuator mechanisms 171 and 181 may be configured to include hydraulic motors that rotate the feed screws 172 and 182 instead of the electric adjustment motors 174 and 184.
アクチュエータ機構カバー162には、送りねじ172に沿って開口された滑り子回転防止溝164dと、送りねじ182に沿って開口された滑り子回転防止溝164eが形成されている。滑り子回転防止溝164d,164eに滑り子173,183の回転防止突起部173a,183aが挿入されている。
The actuator mechanism cover 162 is formed with a slider rotation prevention groove 164 d opened along the feed screw 172 and a slider rotation prevention groove 164 e opened along the feed screw 182. Anti-rotation protrusions 173a and 183a of the sliders 173 and 183 are inserted into the slider rotation prevention grooves 164d and 164e, respectively.
図14及び図15を参照しながら、植深さ調節アクチュエータ機構171の動作について説明する。植深さ調節アクチュエータ機構171の滑り子173に、前述の植深さ調節部材122が融通機構を介して連結されている。基端部が植深さ調節軸121に固着された植深さ調節部材122の先端部は、植付フレーム111の上方側で植深さ調節アクチュエータ機構171右方近傍に配置されている。植深さ調節部材122の先端部に前下方へ延伸する棒状部材123の基端部が取り付けられている。棒状部材123の先端部に、植深さ調節アクチュエータ機構171側へ突設されたピン部材124が取り付けられている。一方、滑り子173には、ピン部材124の先端部が係合される溝を有する係合部材173bが取り付けられている。このようにして、植深さ調節アクチュエータ機構171の滑り子173と植深さ調節部材122は連結されている。
The operation of the planting depth adjustment actuator mechanism 171 will be described with reference to FIGS. 14 and 15. The above-described planting depth adjusting member 122 is connected to the slider 173 of the planting depth adjusting actuator mechanism 171 through an accommodation mechanism. The distal end portion of the planting depth adjusting member 122 whose base end portion is fixed to the planting depth adjusting shaft 121 is disposed near the right side of the planting depth adjusting actuator mechanism 171 on the upper side of the planting frame 111. A proximal end portion of a rod-like member 123 extending forward and downward is attached to the distal end portion of the planting depth adjusting member 122. A pin member 124 projecting toward the planting depth adjusting actuator mechanism 171 is attached to the tip of the rod-shaped member 123. On the other hand, an engagement member 173 b having a groove with which the tip end portion of the pin member 124 is engaged is attached to the slider 173. In this way, the slider 173 of the planting depth adjusting actuator mechanism 171 and the planting depth adjusting member 122 are connected.
植深さ調節アクチュエータ機構171は、運転操作部13に配置された項目設定器502(図5参照)によって調節される設定植付深さに応じて、植深さ調節モータ174の駆動によって送りねじ172を回転させて滑り子173を移動させる。滑り子173の位置は、例えば、送りねじカバー部材164の左側面164bに取り付けられたフロート位置センサ178(ここではポテンショメータ)によって検出される。滑り子173とともに係合部材173bが移動されると、ピン部材124及び棒状部材123を介して植深さ調節部材122が植深さ調節軸121を回動支点として回転されて位置調節される。植深さ調節軸121の回転によって植深さ調節軸121及び前述の植深さ調節リンク114a,114bが回転され、フロート32が、運転操作部13に配置された項目設定器502(図5参照)によって設定された設定植付深さに応じた設定植付深さ位置に配置される。項目設定器502については後述する。
The planting depth adjusting actuator mechanism 171 is driven by a planting depth adjusting motor 174 according to a set planting depth adjusted by an item setting unit 502 (see FIG. 5) arranged in the operation unit 13. The slider 173 is moved by rotating 172. The position of the slider 173 is detected by, for example, a float position sensor 178 (here, a potentiometer) attached to the left side surface 164b of the feed screw cover member 164. When the engaging member 173b is moved together with the slider 173, the planting depth adjusting member 122 is rotated about the planting depth adjusting shaft 121 through the pin member 124 and the rod-shaped member 123, and the position is adjusted. The planting depth adjusting shaft 121 and the above-mentioned planting depth adjusting links 114a and 114b are rotated by the rotation of the planting depth adjusting shaft 121, and the float 32 is set in the operation setting unit 13 (see FIG. 5). ) Is set at a set planting depth position according to the set planting depth. The item setter 502 will be described later.
図16及び図17を参照しながら、苗取調節アクチュエータ機構181の動作について説明する。苗取調節アクチュエータ機構181の滑り子183に、前述の苗取調節部材137が融通機構を介して連結されている。苗取調節部材137に、前方へ延設された連結部材139の基端部が取り付けられている。連結部材139の先端部は、植付フレーム111よりも上方側で苗取調節アクチュエータ機構181左方近傍に配置されている。連結部材139の先端部に連結部材139の長手方向に沿った長穴139aが形成されている。一方、滑り子183には、長穴139aに挿入される係合ピン部材183bがピン支持部材183cを介して設けられている。連結部材139の長穴139aに係合ピン部材183bが挿入されることによって、苗取調節アクチュエータ機構181の滑り子183と苗取調節部材137は連結されている。
The operation of the seedling adjustment actuator mechanism 181 will be described with reference to FIGS. The aforementioned seedling adjustment member 137 is connected to the slider 183 of the seedling adjustment actuator mechanism 181 through an interchange mechanism. A proximal end portion of a connecting member 139 extending forward is attached to the seedling adjustment member 137. The distal end portion of the connecting member 139 is disposed on the upper side of the planting frame 111 and in the vicinity of the left side of the seedling adjustment actuator mechanism 181. A long hole 139 a is formed at the distal end of the connecting member 139 along the longitudinal direction of the connecting member 139. On the other hand, the slider 183 is provided with an engagement pin member 183b inserted into the elongated hole 139a via a pin support member 183c. By inserting the engaging pin member 183b into the elongated hole 139a of the connecting member 139, the slider 183 and the seedling adjusting member 137 of the seedling adjusting actuator mechanism 181 are connected.
苗取調節アクチュエータ機構181は、項目設定器502(図5参照)によって調節される設定苗縦取量に応じて、苗取調節モータ184の駆動によって送りねじ182を回転させて滑り子183を移動させる。滑り子183とともに係合ピン部材183bが移動されると、連結部材139を介して苗取調節部材137が苗取調節軸136を回動支点として回転されて位置調節される。苗取調節部材137の回転によって苗取調節軸136を介して苗取調節カム135が回転され、苗取出板131が、項目設定器502によって設定された設定苗縦取量に応じた設定苗縦取量位置に配置される。なお、滑り子183の位置は、例えば、基端部が苗取調節軸136に固着された検出用棒状部材188の先端部の位置を、植付フレーム111にセンサブラケット189を介して取り付けられた苗取出板センサ190(ここではポテンショメータ)が検出することよって検出される。
The seedling adjustment actuator mechanism 181 moves the slider 183 by rotating the feed screw 182 by driving the seedling adjustment motor 184 in accordance with the set seedling vertical adjustment amount adjusted by the item setting unit 502 (see FIG. 5). Let When the engaging pin member 183b is moved together with the slider 183, the seedling adjustment member 137 is rotated about the seedling adjustment shaft 136 via the connecting member 139, and the position is adjusted. The seedling adjustment cam 135 is rotated via the seedling adjustment shaft 136 by the rotation of the seedling adjustment member 137, and the seedling extraction plate 131 is set according to the set seedling vertical amount set by the item setting unit 502. Arranged at the sampling position. The position of the slider 183 is, for example, the position of the distal end portion of the detection rod-shaped member 188 whose base end portion is fixed to the seedling adjustment shaft 136 is attached to the planting frame 111 via the sensor bracket 189. It is detected by the seedling extraction plate sensor 190 (here, a potentiometer).
次に、図18及び図19を参照しながら、昇降センサ機構311と表面検知センサ機構331について説明する。昇降センサ機構311と表面検知センサ機構331は、センターフロート32a上方で植付フレーム111の中央部に隣り合って取り付けられている。
Next, the elevation sensor mechanism 311 and the surface detection sensor mechanism 331 will be described with reference to FIGS. 18 and 19. The lift sensor mechanism 311 and the surface detection sensor mechanism 331 are attached adjacent to the center of the planting frame 111 above the center float 32a.
昇降センサ機構311において、センターフロート32a前部にブラケット313を介してセンシングアーム312の下端側を回転自在に連結し、センシングアーム312の上端側を植深さリンク機構314に連動連結する。植深さリンク機構314は、植付フレーム111の前面に固定されたリンクブラケット315と、リンクブラケット315に回動支軸316を介して連結されるリンク体317と、リンク体317の前部に連結ピン318を介して連結されるセンサ支持部材319を備えている。植深さ調節軸121に立設した補正アーム321を略U字形の補正ロッド320を介してリンク体317の下部に連結する。センサ支持部材319の後部側下端部を略U字形のセンサリンクロッド322を介してリンクブラケット315に連結する。センサ支持部材319には、左右方向に配置された揺動支軸323を軸支する。植深さ調節軸121の回動により、補正アーム321及び補正ロッド320が変位してリンク体317が回動支軸316を支点として回動し、センサ支持部材319が上下揺動する。
In the lift sensor mechanism 311, the lower end side of the sensing arm 312 is rotatably connected to the front part of the center float 32 a via the bracket 313, and the upper end side of the sensing arm 312 is linked to the planting depth link mechanism 314. The planting depth link mechanism 314 includes a link bracket 315 fixed to the front surface of the planting frame 111, a link body 317 coupled to the link bracket 315 via a rotation support shaft 316, and a front portion of the link body 317. A sensor support member 319 connected via a connection pin 318 is provided. A correction arm 321 erected on the planting depth adjustment shaft 121 is connected to the lower portion of the link body 317 via a substantially U-shaped correction rod 320. The lower end on the rear side of the sensor support member 319 is connected to the link bracket 315 via a substantially U-shaped sensor link rod 322. A swing support shaft 323 arranged in the left-right direction is supported on the sensor support member 319. By the rotation of the planting depth adjustment shaft 121, the correction arm 321 and the correction rod 320 are displaced, the link body 317 rotates about the rotation support shaft 316, and the sensor support member 319 swings up and down.
揺動支軸323の左端部に左揺動プレート324の後部を連結し、左揺動プレート324の前部にセンシングアーム312の上端側を連結する。また、揺動支軸323の左端部側に、左揺動プレート324と連動する規制プレート330の基端部が左揺動プレート324よりもセンサ支持部材319側で遊嵌されている。センサ支持部材319の右側面に、センサブラケット326を介して昇降センサ325(ここではポテンショメータ)を設ける。揺動支軸323の右端部に右揺動プレート327の後部を連結し、右揺動プレート327の右側面に右側へ立設した長溝部328の長溝に昇降センサ325の検出アーム329を係合させる。昇降センサ325は揺動支軸323の回動変位量を検出し、センターフロート32aの上下方向の姿勢を示すフロート角(傾斜角度)を検出可能としている。規制プレート330の前端部とセンサ支持部材319の前下部の間にコイルばね350が張設され、右揺動プレート327の前端部とセンサ支持部材319の前下部の間にコイルばね351が張設されている。
The rear portion of the left swing plate 324 is connected to the left end portion of the swing support shaft 323, and the upper end side of the sensing arm 312 is connected to the front portion of the left swing plate 324. In addition, the base end portion of the regulating plate 330 that interlocks with the left swing plate 324 is loosely fitted on the sensor support member 319 side with respect to the left swing plate 324 on the left end side of the swing support shaft 323. A lift sensor 325 (potentiometer here) is provided on the right side surface of the sensor support member 319 via a sensor bracket 326. The rear end of the right swing plate 327 is connected to the right end of the swing support shaft 323, and the detection arm 329 of the lift sensor 325 is engaged with the long groove 328 erected on the right side of the right swing plate 327 on the right side. Let The lift sensor 325 detects the amount of rotational displacement of the swing support shaft 323, and can detect a float angle (inclination angle) indicating the vertical posture of the center float 32a. A coil spring 350 is stretched between the front end portion of the restriction plate 330 and the front lower portion of the sensor support member 319, and a coil spring 351 is stretched between the front end portion of the right swing plate 327 and the front lower portion of the sensor support member 319. Has been.
表面検知センサ機構331は、植付フレーム111の前面に固定されたリンクブラケット332に取り付けられる。リンクブラケット332上部に回動支軸333を介してリンク体334の後部を連結し、リンク体334の前部に連結ロッド335を介してセクターギヤケース336の上部を連結する。セクターギヤケース336の右側面下部寄り部位を略J字形のセンサリンクロッド337を介してリンクブラケット332下部に連結する。連結ロッド335の右端部は連結プレート338を介して、昇降センサ機構311の略J字形のセンサリンクロッド322の前側左端部に連結される。セクターギヤケース336は、植深さ調節軸121の回動に伴って上下揺動する昇降センサ機構311のセンサ支持部材319の変位に連動して上下揺動する。
The surface detection sensor mechanism 331 is attached to a link bracket 332 that is fixed to the front surface of the planting frame 111. The rear part of the link body 334 is connected to the upper part of the link bracket 332 via a rotation support shaft 333, and the upper part of the sector gear case 336 is connected to the front part of the link body 334 via a connecting rod 335. A portion closer to the lower right side of the sector gear case 336 is connected to the lower portion of the link bracket 332 via a substantially J-shaped sensor link rod 337. The right end portion of the connecting rod 335 is connected to the front left end portion of the substantially J-shaped sensor link rod 322 of the lift sensor mechanism 311 via the connecting plate 338. The sector gear case 336 swings up and down in conjunction with the displacement of the sensor support member 319 of the lift sensor mechanism 311 that swings up and down as the planting depth adjustment shaft 121 rotates.
セクターギヤケース336に、左右方向に延びる表面検知揺動軸339を回動自在に軸支する。表面検知揺動軸339の左右両端部に、左右一対の表面検知アーム340,340の基端側を取り付け、表面検知アーム340,340の先端側に表面検知体341,341を取り付ける。セクターギヤケース336内部に、セクターギヤ対343を介して表面検知揺動軸339の回動に連動して回動するセンサ軸342を設ける。セクターギヤケース336左側面に表面検知センサ344(ここではポテンショメータ)を設け、表面検知センサ344の検知軸をセンサ軸342の左端部に連結する。表面検知センサ344は、セクターギヤ対343及びセンサ軸342を介して表面検知揺動軸339の回動変位量を検出し、表面検知体341,341の変位や、圃場表面から苗植付装置23の所定箇所(例えば植深さ調節軸121)までの高さを検出可能としている。
A surface detection rocking shaft 339 extending in the left-right direction is rotatably supported on the sector gear case 336. The base end sides of the pair of left and right surface detection arms 340 and 340 are attached to the left and right ends of the surface detection swing shaft 339, and the surface detection bodies 341 and 341 are attached to the distal ends of the surface detection arms 340 and 340. A sensor shaft 342 that rotates in conjunction with the rotation of the surface detection swing shaft 339 via the sector gear pair 343 is provided in the sector gear case 336. A surface detection sensor 344 (here, a potentiometer) is provided on the left side surface of the sector gear case 336, and the detection shaft of the surface detection sensor 344 is connected to the left end portion of the sensor shaft 342. The surface detection sensor 344 detects the rotational displacement amount of the surface detection swing shaft 339 via the sector gear pair 343 and the sensor shaft 342, and the displacement of the surface detection bodies 341, 341 and the seedling planting device 23 from the surface of the field. The height up to a predetermined location (for example, the planting depth adjusting shaft 121) can be detected.
次に、図20から図23を参照しながら、箱施用剤散布機400について説明する。箱施用剤散布機400は、苗植機構28の植付伝動ケース27の後部上面に連結された支持フレーム401と、支持フレーム401に支持された4つの散布ユニット402を備える。4つの散布ユニット402は、苗載台29の下端部上方の位置で、苗載台29に対向して左右方向に並んで配置される。
Next, the box application agent spreader 400 will be described with reference to FIGS. The box application agent spreader 400 includes a support frame 401 connected to the rear upper surface of the planting transmission case 27 of the seedling planting mechanism 28, and four spraying units 402 supported by the support frame 401. The four spraying units 402 are arranged side by side in the left-right direction at a position above the lower end portion of the seedling table 29 so as to face the seedling table 29.
各散布ユニット402は、粒状の箱施用剤を収容するホッパ403から繰出機構404の駆動により箱施用剤を所定量ずつ繰り出して散布ノズル405から苗載台29に載置された苗マットに向けて箱施用剤を散布する。各ホッパ403は、下端側が二股に分岐されると共に、上端及び下端が開口され、上端開口部は開閉可能な蓋部材406により塞がれる。二股に分岐されたホッパ403の下端側に繰出機構404が連結される。各散布ユニット402は繰出機構404及び散布ノズル405を2組ずつ備え、繰出機構404及び散布ノズル405は条間ピッチと略一致するように配置される。
Each spraying unit 402 feeds the box application agent by a predetermined amount from the hopper 403 that stores the granular box application agent by driving the feeding mechanism 404 toward the seedling mat placed on the seedling mounting table 29 from the spray nozzle 405. Spray box application. Each hopper 403 is bifurcated at the lower end side, the upper end and the lower end are opened, and the upper end opening is closed by a lid member 406 that can be opened and closed. A feeding mechanism 404 is connected to the lower end side of the bifurcated hopper 403. Each spraying unit 402 includes two sets of a feeding mechanism 404 and a spraying nozzle 405, and the feeding mechanism 404 and the spraying nozzle 405 are arranged so as to substantially coincide with the inter-strip pitch.
繰出機構404は、繰出ケース407に収容された繰出ロール408が回転駆動することにより、ホッパ403内の箱施用剤を散布ノズル405へ所定の供給速度で繰り出す。繰出ロール408は略円盤形であり、その外周面に複数の凹部408aが等間隔で形成されている。繰出ロール408とホッパ403側壁の隙間は、繰出ロール408前方に配置されたブラシ状部材409と、繰出ロール408後方に配置された封止部材410により埋められる。
The feeding mechanism 404 feeds the box application agent in the hopper 403 to the spray nozzle 405 at a predetermined supply speed when the feeding roll 408 housed in the feeding case 407 is rotationally driven. The feeding roll 408 has a substantially disk shape, and a plurality of concave portions 408a are formed at equal intervals on the outer peripheral surface thereof. A gap between the feeding roll 408 and the side wall of the hopper 403 is filled with a brush-like member 409 disposed in front of the feeding roll 408 and a sealing member 410 disposed behind the feeding roll 408.
繰出ロール408は、左右方向に延設された筒状の繰出駆動軸411により回転駆動される。繰出駆動軸411の駆動力は植付伝動ケース27から取り出される。この実施形態では、4つの植付伝動ケース27うち1つの植付伝動ケース27の後部に連結された駆動力取出機構412が取り付けられる。駆動力取出機構412は、植付伝動ケース27内部から動力伝達される駆動取出軸413の回転運動を、駆動取出軸413後端に取り付けられたクランクプレート414と、クランクプレート414先端に下端側が取り付けられた下リンクロッド415により上下往復運動に変換する。左右方向に延びるレバープレート支軸417に回動自在に取り付けられた手動レバープレート416に下リンクロッド415の上端側を連結し、手動レバープレート416を回動往復運動させる。前後方向に配置される上リンクロッド418の後端側を手動レバープレート416に連結し、上リンクロッド418を前後往復運動させて、ワンウェイクラッチ機構420に動力を伝達する。
The feeding roll 408 is rotationally driven by a cylindrical feeding drive shaft 411 extending in the left-right direction. The driving force of the feeding drive shaft 411 is taken out from the planting transmission case 27. In this embodiment, a driving force extraction mechanism 412 connected to the rear portion of one planting transmission case 27 among the four planting transmission cases 27 is attached. The drive force take-out mechanism 412 has a rotational movement of the drive take-out shaft 413 transmitted from the inside of the planting transmission case 27, a crank plate 414 attached to the rear end of the drive take-out shaft 413, and a lower end side attached to the tip of the crank plate 414. The lower link rod 415 is converted into a vertical reciprocating motion. The upper end side of the lower link rod 415 is connected to a manual lever plate 416 rotatably attached to a lever plate support shaft 417 extending in the left-right direction, and the manual lever plate 416 is rotated and reciprocated. The rear end side of the upper link rod 418 arranged in the front-rear direction is connected to the manual lever plate 416, and the upper link rod 418 is reciprocated back and forth to transmit power to the one-way clutch mechanism 420.
ワンウェイクラッチ機構420は、上リンクロッド418の前後往復運動を回転往復運動に変換すると共に、左右方向に延設された伝達駆動軸421を間欠的に回転駆動する。ワンウェイクラッチ機構420では、伝達駆動軸421にリンクレバー部材422を回動自在に軸支し、リンクレバー部材422の上部に上リンクロッド418の前端側を連結する。伝達駆動軸421には、リンクレバー部材422の右側方に、ワンウェイクラッチのクラッチレバー部材423を回動自在に軸支する。クラッチレバー部材423の基端部側に左側方へ突出する駆動ピン424を固着し、クラッチレバー部材423の先端部側に右側方へ突出する規制ピン425を固着する。ねじりコイルばね426を伝達駆動軸421に外嵌し、ねじりコイルばね426の一端側を駆動ピン424に掛止し、他端側を支持フレーム401に固定された固定部材427に掛止する。ねじりコイルばね426の弾性により駆動ピン424がリンクレバー部材422の下端部に付勢される。上リンクロッド418の前後往復運動によりリンクレバー部材422が往復回転駆動し、それに伴ってワンウェイクラッチのクラッチレバー部材423が往復回転駆動し、クラッチレバー部材423内部のワンウェイクラッチの作用によって伝達駆動軸421が一方向に間欠的に回転駆動する。
The one-way clutch mechanism 420 converts the longitudinal reciprocating motion of the upper link rod 418 into a rotational reciprocating motion, and intermittently rotationally drives the transmission drive shaft 421 extending in the left-right direction. In the one-way clutch mechanism 420, the link lever member 422 is pivotally supported on the transmission drive shaft 421, and the front end side of the upper link rod 418 is connected to the upper portion of the link lever member 422. A clutch lever member 423 of a one-way clutch is rotatably supported on the transmission drive shaft 421 on the right side of the link lever member 422. A drive pin 424 that protrudes to the left is fixed to the base end portion side of the clutch lever member 423, and a regulation pin 425 that protrudes to the right side is fixed to the distal end portion side of the clutch lever member 423. A torsion coil spring 426 is fitted on the transmission drive shaft 421, one end side of the torsion coil spring 426 is hooked on the drive pin 424, and the other end side is hooked on a fixing member 427 fixed to the support frame 401. The drive pin 424 is biased toward the lower end portion of the link lever member 422 by the elasticity of the torsion coil spring 426. The link lever member 422 is driven to reciprocate and rotate by the reciprocating motion of the upper link rod 418, and the clutch lever member 423 of the one-way clutch is driven to reciprocate and rotate accordingly. Is intermittently rotated in one direction.
クラッチレバー部材423の回動可能範囲は散布量調節機構430により制限される。散布量調節機構430は、散布量調節ダイヤル431の回転操作により回転される送りねじ432上で直線運動する散布量調節部材433を備える。散布量調節部材433は下端部にストッパ部材434を備える。ストッパ部材434は、クラッチレバー部材423の規制ピン425の円弧軌跡上に、位置調節可能に配置される。散布量調節部材433及びストッパ部材434が規制ピン425から離れる方向へ移動されると、クラッチレバー部材423の回動可能範囲が大きくなる一方、散布量調節部材433及びストッパ部材434が規制ピン425に近づく方向へ移動されると、クラッチレバー部材423の回動可能範囲が狭くなる。クラッチレバー部材423の回動可能範囲が大きいほど、上リンクロッド418の1往復あたりの伝達駆動軸421の回転角が大きくなるので、伝達駆動軸421の回転速度は大きくなる。逆に、クラッチレバー部材423の回動可能範囲が小さいほど、伝達駆動軸421の回転速度は小さくなる。
The range in which the clutch lever member 423 can be rotated is limited by the spray amount adjusting mechanism 430. The spread amount adjusting mechanism 430 includes a spread amount adjusting member 433 that linearly moves on a feed screw 432 that is rotated by rotating the spread amount adjusting dial 431. The spreading amount adjusting member 433 includes a stopper member 434 at the lower end. The stopper member 434 is disposed on the arc locus of the restriction pin 425 of the clutch lever member 423 so that the position thereof can be adjusted. When the spreading amount adjusting member 433 and the stopper member 434 are moved in the direction away from the restriction pin 425, the rotatable range of the clutch lever member 423 is increased, while the spreading amount adjusting member 433 and the stopper member 434 are moved to the restriction pin 425. When moved in the approaching direction, the rotatable range of the clutch lever member 423 becomes narrower. As the rotation range of the clutch lever member 423 is larger, the rotation angle of the transmission drive shaft 421 per reciprocation of the upper link rod 418 is larger, and therefore the rotation speed of the transmission drive shaft 421 is larger. On the contrary, the smaller the rotatable range of the clutch lever member 423, the lower the rotational speed of the transmission drive shaft 421.
伝達駆動軸421の回転駆動力は、伝達駆動軸421の両端に連結された伝達機構435を介して、散布ユニット402の繰出駆動軸411に伝達される。伝達機構435の内部には、繰出駆動軸411と伝達駆動軸421に1つずつ固着された一対のギヤ(図示省略)が配置され、これらのギヤの噛合いにより、繰出駆動軸411が伝達駆動軸421とは反対方向に回転する。繰出駆動軸411の間欠的な回転駆動により繰出ロール408が間欠的に回転し、ホッパ403内の箱施用剤が繰出ロール408の凹部408a及び散布ノズル405を介して苗マットへ向けて散布される。箱施用剤散布機400は植付伝動ケース27に固定されているので、苗載台29上の苗マットが苗台横送り機構79及び苗縦送り機構80(図6参照)の駆動によって散布ノズル405に対して横方向及び縦方向に相対的に移動する。これにより、苗マット上に箱施用剤が満遍なく散布される。
The rotational driving force of the transmission drive shaft 421 is transmitted to the feeding drive shaft 411 of the spraying unit 402 via a transmission mechanism 435 connected to both ends of the transmission drive shaft 421. Inside the transmission mechanism 435, a pair of gears (not shown) fixed to the feeding drive shaft 411 and the transmission driving shaft 421 one by one are arranged, and the feeding drive shaft 411 is driven to transmit by engagement of these gears. It rotates in the opposite direction to the shaft 421. The feeding roll 408 is intermittently rotated by the intermittent rotation drive of the feeding drive shaft 411, and the box application agent in the hopper 403 is sprayed toward the seedling mat via the recess 408 a of the feeding roll 408 and the spray nozzle 405. . Since the box application agent spreader 400 is fixed to the planting transmission case 27, the seedling mat on the seedling mounting table 29 is driven by the seedling table horizontal feed mechanism 79 and the seedling vertical feed mechanism 80 (see FIG. 6). It moves relative to 405 in the horizontal and vertical directions. Thereby, a box application agent is spread evenly on a seedling mat.
箱施用剤散布機400では、散布量調節機構430での散布量調節部材433及びストッパ部材434の位置調節により、伝達駆動軸421の回転速度が調節されることで、繰出駆動軸411の回転速度、ひいては繰出ロール408の回転速度を調節して、散布ノズル405から散布される箱施用剤の散布量が調節可能に構成されている。散布量調節部材433及びストッパ部材434の位置調整は、散布量調節機構430の右側方に隣接配置されて送りねじ432を回転させる散布量調節アクチュエータ機構436により位置調節される。散布量調節アクチュエータ機構436は、送りねじ432を回転させる散布量調節モータ437と、散布量調節部材433の位置を検出する散布量センサ438(ここではポテンショメータ)を備える。後述する項目設定器502(図5参照)により設定される箱施用剤散布量に基づき、設定散布量になるように散布量調節部材433の位置が調節される。なお、手動で散布量調節ダイヤル431を回転操作して散布量を調節することも可能である。
In the box application agent spreader 400, the rotational speed of the transmission drive shaft 421 is adjusted by adjusting the position of the spray amount adjusting member 433 and the stopper member 434 in the spray amount adjusting mechanism 430, whereby the rotational speed of the feeding drive shaft 411 is adjusted. By extension, the rotational speed of the feeding roll 408 is adjusted so that the amount of the box application agent sprayed from the spray nozzle 405 can be adjusted. The positions of the spray amount adjusting member 433 and the stopper member 434 are adjusted by a spray amount adjusting actuator mechanism 436 that is arranged adjacent to the right side of the spray amount adjusting mechanism 430 and rotates the feed screw 432. The application amount adjusting actuator mechanism 436 includes an application amount adjusting motor 437 that rotates the feed screw 432 and an application amount sensor 438 (here, a potentiometer) that detects the position of the application amount adjusting member 433. Based on the box application agent application amount set by an item setting unit 502 (see FIG. 5), which will be described later, the position of the application amount adjusting member 433 is adjusted to be the set application amount. It is also possible to manually adjust the spray amount by rotating the spray amount adjustment dial 431.
次に、図24から図29を参照しながら、苗植機構28及びその周辺の詳細構造について説明する。植付入力ケース26の後方には、苗取出口220を有する苗取出板131を略水平横向きに延びるように配置している。苗載台29の裏面下部に、略水平横向きに延びる下レールフレーム152を固着している。苗取出板131に設けた下スライドシュー223を、下レールフレーム152に摺動可能に下方から嵌め込んでいる。
Next, the detailed structure of the seedling planting mechanism 28 and its surroundings will be described with reference to FIGS. A seedling extraction plate 131 having a seedling outlet 220 is disposed behind the planting input case 26 so as to extend substantially horizontally. A lower rail frame 152 extending in a substantially horizontal horizontal direction is fixed to the lower part of the back surface of the seedling table 29. A lower slide shoe 223 provided on the seedling extraction plate 131 is slidably fitted into the lower rail frame 152 from below.
苗取出板131における各苗取出口220の箇所には、苗取出口220の内周縁を囲う取出口カバー226と、植付爪30の長手中途部を左右両側から挟持する植付爪挟持ガイド227と、植付爪30の先端側と対峙する植付爪先端ガイド228とを着脱可能に取り付けている。この場合、苗取出板131における各苗取出口220近傍の2箇所に設けたボルト取付用孔241に、植付爪先端ガイド228の上端側の取付用孔242、取出口カバー226の取付用孔243及び植付爪挟持ガイド227の上端側の取付用孔244を、順次重ね合わせた状態でボルト229によって共締めしている。取出口カバー226の存在は、苗取出板131における各苗取出口220の箇所の強度を向上させ、植付爪30による苗マットの苗の掻取り量を安定化させるのに寄与している。植付爪先端ガイド228や植付爪挟持ガイド227の上端側も、共締め構造によって、各苗取出口220の箇所の強度向上に貢献している。
At the location of each seedling outlet 220 on the seedling extraction plate 131, an outlet cover 226 that surrounds the inner peripheral edge of the seedling outlet 220, and a planting claw clamping guide 227 that clamps the midway portion of the planting claw 30 from both the left and right sides. A planting claw tip guide 228 facing the tip side of the planting claw 30 is detachably attached. In this case, the mounting holes 242 on the upper end side of the planting claw tip guide 228 and the mounting holes for the outlet cover 226 are provided in the bolt mounting holes 241 provided at two locations in the vicinity of each seedling outlet 220 in the seedling extraction plate 131. 243 and the mounting hole 244 on the upper end side of the planting claw clamping guide 227 are fastened together by bolts 229 in a state of being sequentially overlapped. The presence of the outlet cover 226 contributes to improving the strength of each seedling outlet 220 on the seedling extraction plate 131 and stabilizing the scraping amount of the seedling mats by the planting claws 30. The upper ends of the planting claw tip guide 228 and the planting claw pinching guide 227 also contribute to improving the strength of each seedling outlet 220 by the joint fastening structure.
実施形態では、取出口カバー226、植付爪挟持ガイド227及び植付爪先端ガイド228の組合せを取出口ユニット230として2種類用意している。1つは高密度育苗の苗マット用のもの、もう1つは標準型育苗の苗マット用のものである。どちらの仕様の苗マットを使うかによって取出口ユニット230を付け替えるように構成している。取出口カバー226において植付爪30の通過する開口溝231の溝幅寸法ΔWは、高密度育苗用と標準型育苗用とで広狭異ならせている。図29に示すように、高密度育苗用の取出口カバー226aの溝幅寸法ΔWa((A)参照)は、標準型育苗用の取出口カバー226bの溝幅寸法ΔWb((B)参照)よりも幅狭に設定している。
In the embodiment, two types of outlet units 230 are prepared by combining the outlet cover 226, the planting claw pinching guide 227, and the planting claw tip guide 228. One is for seedling mats for high-density seedlings, and the other is for seedling mats for standard seedlings. Depending on which specification seedling mat is used, the outlet unit 230 is replaced. The groove width dimension ΔW of the opening groove 231 through which the planting claw 30 passes in the take-out cover 226 is varied widely for high-density raising seedlings and standard raising seedlings. As shown in FIG. 29, the groove width dimension ΔWa (see (A)) of the outlet cover 226a for high-density seedling is larger than the groove width dimension ΔWb (see (B)) of the outlet cover 226b for standard seedling raising. Is also set narrow.
この実施形態では、植付爪挟持ガイド227の取付用孔244は左右横長に形成されており、苗取出板131への植付爪挟持ガイド227の取付位置を、苗取出板131の苗取出口220やボルト取付用孔241に対して、開口溝231の幅方向に調節可能にされている。これにより、同一形状の植付爪挟持ガイド227を、高密度育苗用の取出口カバー226aの溝幅寸法ΔWaと標準型育苗用の取出口カバー226bの溝幅寸法ΔWbの両方に適合できる。したがって、高密度育苗の苗マット用の取出口ユニット230と標準型育苗の苗マット用の取出口ユニット230とで植付爪挟持ガイド227を共通化でき、植付爪挟持ガイド227の設計コストや製造コストを低減できる。
In this embodiment, the mounting holes 244 of the planting claw clamping guide 227 are formed horizontally long, and the mounting position of the planting claw clamping guide 227 to the seedling extraction plate 131 is set as the seedling extraction port of the seedling extraction plate 131. 220 and the bolt mounting hole 241 are adjustable in the width direction of the opening groove 231. Thereby, the planting claw pinching guide 227 having the same shape can be adapted to both the groove width dimension ΔWa of the outlet cover 226a for high density seedling raising and the groove width dimension ΔWb of the outlet cover 226b for standard type seedling raising. Therefore, the planting claw clamping guide 227 can be shared by the outlet unit 230 for the seedling mat for high-density seedlings and the outlet unit 230 for the seedling mat for the standard breeding seedling. Manufacturing cost can be reduced.
図25、図26及び図30に示すように、苗植機構28における各ロータリケース31の長手両端側には、植付爪30と、植付爪30で挟持した苗を押し出すU字状の押出片234と、押出片234を植付爪30に沿って摺動させるプッシュロッド235とを備えている。植付爪30は、ロータリケース31の長手両端側に位置する植付本体部236に、寸切ボルト237及びナット238で着脱可能に取り付けている。押出片234はプッシュロッド235の先端部に固着している。
As shown in FIGS. 25, 26, and 30, a planting claw 30 and a U-shaped extrusion for extruding a seedling sandwiched between the planting claws 30 are disposed at both longitudinal ends of each rotary case 31 in the seedling planting mechanism 28. A piece 234 and a push rod 235 for sliding the extruded piece 234 along the planting claw 30 are provided. The planting claw 30 is detachably attached to the planting main body 236 located on both longitudinal ends of the rotary case 31 with a dimension bolt 237 and a nut 238. The extruded piece 234 is fixed to the tip of the push rod 235.
図31に示すように、実施形態では、植付爪30、押出片234及びプッシュロッド235の組合せを植付爪ユニットとして2種類用意している。1つは高密度育苗の苗マット用のもの、もう1つは標準型育苗の苗マット用のものである。高密度育苗用の植付爪30aの先端側は基端側よりも幅狭に構成している。この場合、標準型育苗用の植付爪30b先端側は14mm程度の幅に設定しているのに対して、高密度育苗用の植付爪30a先端側は11mm程度の幅に設定している。
As shown in FIG. 31, in the embodiment, two types of planting claws 30, a push piece 234, and a push rod 235 are prepared as planting claw units. One is for seedling mats for high-density seedlings, and the other is for seedling mats for standard seedlings. The tip end side of the planting claws 30a for high-density seedling raising is configured to be narrower than the base end side. In this case, the tip of the planting claw 30b for standard type seedling is set to a width of about 14 mm, whereas the tip of the planting claw 30a for high-density seedling is set to a width of about 11 mm. .
一方、高密度育苗用の押出片234aにおける二股状の上端部外側を、内側から外側に向けて斜め下向きに傾斜するように角を切り落とした面取り形状に形成している。そして、押出片234aの二股状の上端側を、高密度育苗用の植付爪30aの幅狭な先端側の裏面に摺動自在に近接させている。このように、植付爪30aの先端側と、押出片234aの二股状の上端側とを幅狭に構成すれば、高密度育苗の苗マットから1株分の苗を掻き取り易くしたものでありながら、掻き取った苗がU字状の押出片234a内に詰まるのを抑制できる。他方、標準型育苗用の押出片234bは略均一な厚みで形成している。そして、押出片234bの二股状の上端側を、標準型育苗用の植付爪30b先端側の裏面に摺動自在に近接させている。
On the other hand, the outer side of the bifurcated upper end of the extruded piece 234a for high-density breeding seedlings is formed into a chamfered shape with corners cut off so as to incline downward from the inside to the outside. The bifurcated upper end side of the extruded piece 234a is slidably brought close to the back surface of the narrow tip end side of the planting claw 30a for high-density seedling raising. In this way, if the tip end side of the planting claw 30a and the bifurcated upper end side of the extruding piece 234a are configured to be narrow, it is possible to easily scrape one seedling from a seedling mat for high-density raising seedlings. However, the scraped seedling can be prevented from clogging in the U-shaped extruded piece 234a. On the other hand, the extrusion piece 234b for standard seedling raising is formed with a substantially uniform thickness. The bifurcated upper end side of the extruded piece 234b is slidably brought close to the back surface of the tip side of the planting claw 30b for standard breeding seedlings.
また、図32に示すように、高密度育苗用の押出片234a及びプッシュロッド235先端部に押出片カバー251を装着し、押出片234a及び押出片カバー251の二股状の上端側を標準型育苗用の植付爪30b先端側の裏面に近接させるようにしてもよい。押出片カバー251は、略U字状であり、押出片234a及びプッシュロッド235の外周面形状に応じた内壁を有する空洞部252と、押出片234aの内壁底部の先端側部位に当接される前係止用突起部253と、押出片234aの二股状の後側面(プッシュロッド235の基端側の側面)の下部に当接される一対の後部係止用突起部254を備えている。押出片カバー251は可撓性を有する材料金属又は樹脂で形成される。
Further, as shown in FIG. 32, an extruded piece cover 251 is attached to the tip of the extruded piece 234a and push rod 235 for high-density breeding seedling, and the bifurcated upper end side of the extruded piece 234a and the extruded piece cover 251 is attached to the standard breeding seedling. You may make it make it adjoin to the back surface of the planting nail | claw 30b front side. The extruded piece cover 251 is substantially U-shaped, and comes into contact with a cavity 252 having an inner wall corresponding to the outer peripheral surface shape of the extruded piece 234a and the push rod 235, and a tip side portion of the inner wall bottom portion of the extruded piece 234a. It includes a front locking projection 253 and a pair of rear locking projections 254 that are in contact with the lower portion of the bifurcated rear side surface of the push piece 234a (the side surface on the proximal end side of the push rod 235). The extruded piece cover 251 is formed of a flexible material metal or resin.
押出片234a及び押出片カバー251の先端部を、後部係止用突起部254側から前係止用突起部253側へ向けて、後部係止用突起部254,254の間隔を広げながら空洞部252内に挿入する。前係止用突起部253が押出片234aの内壁底部の先端側部位に当接すると共に、後部係止用突起部254,254がプッシュロッド235を把持しながら押出片234aの後側面に当接して、押出片カバー251が押出片234a及びプッシュロッド235先端部に装着される。これにより、押出片234a及びプッシュロッド235を交換しなくても、高密度育苗用の植付爪30aを標準型育苗用の植付爪30bに交換すると共に押出片カバー251を装着するだけで、標準型育苗の苗マットに簡単に対応できる。すなわち、煩雑なプッシュロッド235の交換作業を行うことなく、標準型育苗の苗マットを用いた苗植え作業と、高密度育苗の苗マットを用いた苗植え作業との両方を、一台の田植機で実現でき、田植機の汎用性を向上できる。
The distal end portions of the extruded piece 234a and the extruded piece cover 251 are hollowed while increasing the distance between the rear locking projections 254 and 254 from the rear locking projection 254 side toward the front locking projection 253 side. Insert into 252. The front locking projection 253 abuts on the tip side portion of the bottom of the inner wall of the extruded piece 234a, and the rear locking projections 254 and 254 abut the rear side surface of the extruded piece 234a while holding the push rod 235. The extruded piece cover 251 is attached to the distal ends of the extruded piece 234a and the push rod 235. Thereby, without replacing the extruded piece 234a and the push rod 235, just replacing the planting claw 30a for high-density seedling with the planting claw 30b for standard seedling and attaching the extruded piece cover 251, Can easily handle standard seedling seedling mats. That is, both the seedling planting operation using the standard seedling seedling mat and the seedling planting operation using the high-density seedling seedling mat can be performed in one rice plant without performing the complicated push rod 235 replacement operation. It can be realized with a machine and can improve the versatility of rice transplanters.
次に、苗植付けに関する田植機1の制御系について説明する。図33に示すように、走行機体2には、主に苗植付装置23に関連する制御を司る制御手段としての植付作業コントローラ500(制御装置)が搭載されている。植付作業コントローラ500は、各種演算処理や制御を実行するCPU(Central Processing Unit)や、制御プログラムや各種データを記憶したROM(Read Only Memory)と制御プログラムや各種データを一時的に記憶するRAM(Random Access Memory)とを含む記憶装置501、入力インターフェース等を有している。
Next, the control system of the rice transplanter 1 relating to seedling planting will be described. As shown in FIG. 33, the traveling machine body 2 is equipped with a planting work controller 500 (control device) as a control means that mainly controls control related to the seedling planting device 23. The planting work controller 500 includes a CPU (Central Processing Unit) that executes various arithmetic processes and controls, a ROM (Read Only Memory) that stores control programs and various data, and a RAM that temporarily stores control programs and various data. (Random Access Memory), a storage device 501, an input interface, and the like.
植付作業コントローラ500の入力側には、各種苗植付条件を選択及び設定するための項目設定器502、基準フロート角を設定するための油圧感度設定器503、フロート角を検出する昇降センサ325、ロワーリンク20又はトップリンク21(図1参照)の回動部に取り付けられたポテンショメータ等のセンサで構成されて苗植付装置23の位置を検出する昇降位置センサ504、ミッションケース6からの走行出力を検出する車速センサ505、フロート32の位置を検出するフロート位置センサ178、苗取出板131の位置を検出する苗取出板センサ190、表面検知体341の位置を検出する表面検知センサ344、散布量調節機構430の散布量調節部材433の位置を検出する散布量センサ438と、箱施用剤散布機400の苗植付装置23への装着を検出する箱施用剤散布機装着センサ506が電気的に接続されている。
On the input side of the planting work controller 500, an item setting unit 502 for selecting and setting various seedling planting conditions, a hydraulic sensitivity setting unit 503 for setting a reference float angle, and a lift sensor 325 for detecting the float angle. A lift position sensor 504 configured by a sensor such as a potentiometer attached to a rotating portion of the lower link 20 or the top link 21 (see FIG. 1) to detect the position of the seedling planting device 23, traveling from the mission case 6 A vehicle speed sensor 505 for detecting the output, a float position sensor 178 for detecting the position of the float 32, a seedling extraction plate sensor 190 for detecting the position of the seedling extraction plate 131, a surface detection sensor 344 for detecting the position of the surface detector 341, and spraying A spray amount sensor 438 for detecting the position of the spray amount adjusting member 433 of the amount adjusting mechanism 430, and a box application agent spreader 40 Box application agent sprayer mounting sensor 506 for detecting the attachment to the seedling planting apparatus 23 are electrically connected.
植付作業コントローラ500の出力側には、昇降シリンダ39の伸縮動を制御する昇降切換弁99及び電磁開閉弁101と、フロート32の位置を調節する植深さ調節モータ174のモータ駆動回路部511と、苗取出板131の位置を調節する苗取調節モータ184のモータ駆動回路部512と、箱施用剤散布量を調節する散布量調節モータ437のモータ駆動回路部513と、運転操作部13における表示パネル521に各種設定項目等を表示する液晶パネル522(表示部)が電気的に接続されている。なお、図33は概略的な機能ブロック図であり、図示は省略されているが植付作業コントローラ500には他にも各種センサや駆動装置等が電気的に接続されている。
On the output side of the planting work controller 500, a motor drive circuit unit 511 of a planting depth adjustment motor 174 that adjusts the position of the lift switching valve 99 and the electromagnetic on-off valve 101 that controls expansion and contraction of the lifting cylinder 39 and the float 32. In the motor drive circuit unit 512 of the seedling adjustment motor 184 that adjusts the position of the seedling extraction plate 131, the motor drive circuit unit 513 of the application amount adjustment motor 437 that adjusts the application amount of the box application agent, and the operation operation unit 13 A liquid crystal panel 522 (display unit) for displaying various setting items and the like is electrically connected to the display panel 521. FIG. 33 is a schematic functional block diagram, and although not shown, the planting work controller 500 is electrically connected to various sensors, a driving device, and the like.
図5に示すように、運転操作部13において、油圧感度設定器503は、運転操作部13のうち後部右寄り部位に配置され、項目設定器502は、操縦ハンドル14のハンドル軸の左前近傍に配置されている。油圧感度設定器503はロータリエンコーダ等のスイッチで構成される。項目設定器502はプッシュスイッチ付きのロータリエンコーダ等のスイッチで構成される。項目設定器502を左右方向のいずれかへつまみ回転操作すると、図34に示すように、表示パネル521の液晶パネル522に各種設定項目が項目設定器502を回転させる毎に順次表示される。なお、図34では、田植機1の各種設定項目のうち一部のみを図示している。
As shown in FIG. 5, in the driving operation unit 13, the hydraulic sensitivity setting device 503 is arranged in the right rear part of the driving operation unit 13, and the item setting device 502 is arranged in the vicinity of the left front of the steering wheel shaft of the steering handle 14. Has been. The hydraulic sensitivity setting device 503 is composed of a switch such as a rotary encoder. The item setting unit 502 includes a switch such as a rotary encoder with a push switch. When the item setter 502 is operated to rotate in either the left or right direction, various setting items are sequentially displayed on the liquid crystal panel 522 of the display panel 521 each time the item setter 502 is rotated as shown in FIG. In FIG. 34, only some of the various setting items of the rice transplanter 1 are illustrated.
目的の項目選択画面523が液晶パネル522に表示されている状態で項目設定器502を押し操作すると、その設定項目の設定画面524へ移行し、項目設定器502のつまみ回転操作により、その選択項目の調節や変更が可能になる。設定画面524が表示されている状態で項目設定器502を押し操作すると、その選択項目の条件が決定されて、項目選択画面523が表示される。この実施形態では、項目設定器502により、苗植付モード(苗モード)の選択や、苗の植付深さ(植深さ)の調節、苗縦取量(苗取量)の調節、箱施用剤散布量(箱施用)の調節などが行われる。ここで、箱施用剤散布量(箱施用)の設定項目は、箱施用剤散布機400(図21参照)の苗植付装置23への装着を検出する箱施用剤散布機装着センサ506(図33参照)が箱施用剤散布機400の装着を検出するときに表示するようにしてもよい。
When the item setting unit 502 is pressed while the target item selection screen 523 is displayed on the liquid crystal panel 522, the setting item setting screen 524 is displayed, and the selected item can be selected by rotating the knob of the item setting unit 502. Can be adjusted and changed. When the item setting unit 502 is pressed and operated while the setting screen 524 is displayed, the condition of the selected item is determined and the item selection screen 523 is displayed. In this embodiment, the item setting device 502 selects a seedling planting mode (seedling mode), adjusts the seedling planting depth (planting depth), adjusts the seedling vertical harvesting amount (seedling harvesting amount), and a box. Adjustment of application agent application amount (box application) is performed. Here, the setting item of the box application agent spread amount (box application) is a box application agent spreader mounting sensor 506 (see FIG. 5) that detects the mounting of the box application agent spreader 400 (see FIG. 21) on the seedling planting device 23. 33) may be displayed when the mounting of the box application agent spreader 400 is detected.
なお、これらの項目の選択及び設定は、項目設定器502によって行われる構成に限定されない。例えば、密苗モードと標準モードの選択は、切替スイッチで切り替えてもよいし、モード選択用のプッシュボタン式スイッチを押すごとに切り替えてもよい。また、苗の植付深さ調節や苗縦取量調節、箱施用剤散布量の調節は、それぞれロータリエンコーダ式の設定器で設定されてもよい。
The selection and setting of these items are not limited to the configuration performed by the item setting unit 502. For example, the selection of the dense seedling mode and the standard mode may be switched by a changeover switch or may be switched every time a push button type switch for mode selection is pressed. Further, the planting depth adjustment, the seedling vertical amount adjustment, and the box application agent application amount adjustment may each be set with a rotary encoder type setting device.
図35を参照して、苗植付条件の設定及び苗植付制御の一実施形態について説明する。田植機1は、標準型育苗の苗マットに対応する標準モードと、標準型育苗の苗マットよりも苗が高密度に生育された高密度育苗の苗マットに対応する密苗モードとを選択可能に構成している。植付作業コントローラ500は、標準モード用の制御プログラムと、密苗モード用の制御プログラムとを記憶装置501に記憶している。高密度育苗の苗マット使用時には高密度育苗用の取出口カバー226a、植付爪30a及び押出片234aが装着され、標準型育苗の苗マット使用時には標準型育苗用の取出口カバー226b、植付爪30b及び押出片234bが装着される(図30及び図31参照)。
With reference to FIG. 35, an embodiment of setting seedling planting conditions and seedling planting control will be described. The rice transplanter 1 can select a standard mode corresponding to a seedling mat of standard type seedlings and a dense seedling mode corresponding to a seedling mat of high density seedlings in which seedlings are grown at a higher density than the seedling mat of standard type seedlings It is configured. The planting work controller 500 stores a control program for the standard mode and a control program for the dense seedling mode in the storage device 501. An outlet cover 226a for high density seedling, a planting claw 30a and an extruding piece 234a are attached when a seedling mat for high density seedling is used, and an outlet cover 226b for standard type seedling for planting when a seedling mat for standard type seedling is used. The nail | claw 30b and the extrusion piece 234b are mounted | worn (refer FIG.30 and FIG.31).
項目設定器502の操作により苗モードの項目選択画面523(図34参照)で密苗モードが選択されると(ステップS1:Yes)、密苗モード用の制御プログラムが読み込まれる(ステップS2)。密苗モードでは、苗取量(苗縦取量)の項目選択画面523及び設定画面524において、苗縦取量の調節可能範囲が下限側の所定範囲に制限される(ステップS3)。つまり、高密度育苗の苗マットの植付時には、標準型育苗の苗マットの植付時に比べて、苗取調節アクチュエータ機構181(図17参照)による苗取調節部材137の変位可能な範囲を電気制御的に制限して、苗縦取量の調節可能範囲が下限側の所定範囲に制限される。この実施形態では、標準モードでは苗縦取量の調節可能範囲が8〜17mm(1目盛り1mmで10目盛り)であるのに対し、図34に示すように、密苗モードでは苗縦取量の調節可能範囲525が8〜13mm(下限側の6目盛り)に制限される。高密度育苗の苗マットを用いる田植え作業の際に、オペレータが密苗モードを選択していれば、苗縦取量の設定を失念しても、苗縦取量を13mm以下に抑制できるので、1株あたりの苗本数が極端に多くなって無駄な苗消費がされるのを防止して適切な田植え作業を行えると共に、苗縦取量設定に関するオペレータの負担を低減できる。
When the dense seedling mode is selected on the item selection screen 523 (see FIG. 34) of the seedling mode by the operation of the item setting unit 502 (step S1: Yes), the control program for the dense seedling mode is read (step S2). In the dense seedling mode, in the item selection screen 523 and the setting screen 524 of the seedling amount (seedling vertical amount), the adjustable range of the seedling vertical amount is limited to a predetermined range on the lower limit side (step S3). That is, when the seedling mat for high-density seedlings is planted, the range in which the seedling adjustment member 137 can be displaced by the seedling adjustment actuator mechanism 181 (see FIG. 17) is more electrically compared to when the seedling mat for standard type seedlings is planted. Limiting in terms of control, the adjustable range of the seedling vertical harvest is limited to a predetermined range on the lower limit side. In this embodiment, the adjustable range of the vertical seedling amount in the standard mode is 8 to 17 mm (10 scales with 1 scale per 1 mm), whereas as shown in FIG. The adjustable range 525 is limited to 8 to 13 mm (six divisions on the lower limit side). If the operator has selected the dense seedling mode during the rice planting operation using the seedling mat of high-density seedlings, even if you forget the setting of the seedling vertical harvesting amount, the seedling vertical harvesting amount can be suppressed to 13 mm or less, It is possible to prevent the wasteful consumption of seedlings due to an excessive increase in the number of seedlings per strain and to perform appropriate rice planting work, and to reduce the burden on the operator for setting the amount of seedlings to be collected.
また、上述のように、苗縦送りベルト155(図9及び図12参照)の間欠駆動による苗縦送り量は、連動ワイヤ156を介して苗取連動カム138(図8参照)と従動カム153が連結されることにより、苗縦取量の変化に対応して苗縦送り量も変化する。したがって、高密度育苗の苗マット使用時において、標準型育苗の苗マット使用時よりも苗縦取量が少なく設定されている場合には、苗縦送り量も少なくなり、苗縦取量に応じた適正な苗縦送りが行われる。これにより、高密度育苗の苗マット使用時には、標準型育苗の苗マット使用時に比べて、苗マットの消費速さを小さくすることができ、単位面積あたりの田植え作業に必要な苗マット枚数を低減できると共に、苗載台29に苗マットを補充する回数を減少させて、苗植付け作業に要する時間減少や、オペレータや作業補助者の労力低減を図れる。
Further, as described above, the seedling vertical feed amount by intermittent driving of the seedling vertical feed belt 155 (see FIGS. 9 and 12) is determined through the interlocking wire 156 and the seedling taking interlocking cam 138 (see FIG. 8) and the driven cam 153. As a result of the connection, the seedling vertical feed amount also changes corresponding to the change in the seedling vertical collection amount. Therefore, when using a seedling mat for high-density seedlings, if the seedling vertical feed amount is set lower than when using a seedling mat for standard type seedlings, the vertical feed amount of seedlings will also be reduced, depending on the vertical seedling amount. Proper seedling vertical feeding is performed. As a result, when using high-density seedling seedling mats, the consumption speed of seedling mats can be reduced compared to when using standard seedling seedling mats, and the number of seedling mats required for rice planting work per unit area is reduced. In addition, the number of times the seedling mat 29 is replenished with the seedling mat can be reduced to reduce the time required for seedling planting work and to reduce the labor of the operator and work assistant.
続いて、密苗モードで苗植付け作業中の苗の植付深さ制御について説明する。密苗モード選択時には、標準モード選択時に比べて、苗の植付深さが深くなるように油圧シリンダ39(油圧昇降制御機構)の昇降制御を補正する。作業レバー16の操作により苗植付装置23が下降されて苗植付け作業が開始されるとき(ステップS4:Yes)、昇降切換弁99及び電磁開閉弁101の操作によって昇降シリンダ39が下降側へ駆動される。昇降センサ325の昇降センサ値Vと油圧感度(センターフロート32aの目標傾斜角度)である目標値V1とが一致(センターフロート32aの傾斜角度が一定)するまで昇降シリンダ39によって苗植付装置23が下降制御され、以後目標の植付深さを一定維持させる(V=V1)ように苗植付装置23の昇降制御が行われる。
Next, seedling planting depth control during seedling planting work in the dense seedling mode will be described. When the dense seedling mode is selected, the lifting control of the hydraulic cylinder 39 (hydraulic lifting control mechanism) is corrected so that the seedling planting depth is deeper than when the standard mode is selected. When the seedling planting device 23 is lowered by the operation of the operation lever 16 and the seedling planting operation is started (step S4: Yes), the lifting cylinder 39 is driven downward by the operation of the lifting / lowering switching valve 99 and the electromagnetic switching valve 101. Is done. The seedling planting device 23 is moved by the lift cylinder 39 until the lift sensor value V of the lift sensor 325 matches the target value V1 which is the hydraulic sensitivity (target tilt angle of the center float 32a) (the tilt angle of the center float 32a is constant). Then, the raising / lowering control of the seedling planting device 23 is performed so that the target planting depth is maintained constant (V = V1).
苗植付け作業中においては、油圧感度設定器503の油圧感度設定値と昇降センサ325の昇降センサ値Vと車速センサの車速センサ値を読み込み(ステップS5:Yes)、油圧感度設定器503の油圧感度設定値に対して油圧シリンダ39の油圧感度(感度)を鈍感側(フロート32aの前部が上昇する側)へ補正し(ステップS6)、昇降センサ値と補正後感度値と車速センサ値に基づいて、油圧感度である目標値V1を算出する(ステップS7)。ここで、走行機体2の走行速度が速くなる程、フロート32が前上り傾向となってフロート32の沈下量が増大する一方、走行機体2の走行速度が遅くなる程、フロート32が前下がり傾向となってフロート32の沈下量が減少するので、上記ステップS6では車速センサ値に応じて、苗植付深さが一定になるように目標値V1を算出する。
During the seedling planting operation, the hydraulic pressure sensitivity setting value of the hydraulic pressure sensitivity setting unit 503, the vertical movement sensor value V of the vertical movement sensor 325, and the vehicle speed sensor value of the vehicle speed sensor are read (step S5: Yes), and the hydraulic pressure sensitivity of the hydraulic pressure sensitivity setting unit 503 is read. The hydraulic pressure sensitivity (sensitivity) of the hydraulic cylinder 39 is corrected to the insensitive side (the side where the front portion of the float 32a is raised) with respect to the set value (step S6), and based on the lift sensor value, the corrected sensitivity value, and the vehicle speed sensor value. Thus, the target value V1 that is the hydraulic pressure sensitivity is calculated (step S7). Here, as the traveling speed of the traveling machine body 2 increases, the float 32 tends to move forward and the amount of settlement of the float 32 increases. On the other hand, as the traveling speed of the traveling machine body 2 decreases, the float 32 tends to move forward. As a result, the amount of settlement of the float 32 decreases, so that the target value V1 is calculated in step S6 so that the seedling planting depth is constant according to the vehicle speed sensor value.
昇降センサ値Vと目標値V1が一致するように苗植付装置23を昇降制御する(ステップS8)。昇降センサ値Vと目標値V1が一致するときは、油圧シリンダ39を作動させずに苗植付装置23の昇降を停止する。昇降センサ値Vが目標値V1よりも小さいときは、電磁開閉弁101を開位置101aに接続すると共に昇降切換弁99を排出位置99bに接続して昇降シリンダ39を縮作動させて昇降センサ値Vと目標値V1が一致するように苗植付装置23を下降させる。昇降センサ値Vが目標値V1よりも大きいときは、電磁開閉弁101を開位置101aに接続すると共に昇降切換弁99を供給位置99aに接続して昇降センサ値Vと目標値V1が一致するように苗植付装置23を上昇させる。
The seedling planting device 23 is controlled to be lifted and lowered so that the lift sensor value V matches the target value V1 (step S8). When the elevation sensor value V matches the target value V1, the raising and lowering of the seedling planting device 23 is stopped without operating the hydraulic cylinder 39. When the elevation sensor value V is smaller than the target value V1, the solenoid valve 101 is connected to the open position 101a, the elevation switching valve 99 is connected to the discharge position 99b, and the elevation cylinder 39 is contracted to raise and lower the sensor value V. And the seedling planting device 23 are lowered so that the target value V1 matches. When the lift sensor value V is larger than the target value V1, the solenoid on-off valve 101 is connected to the open position 101a and the lift switching valve 99 is connected to the supply position 99a so that the lift sensor value V and the target value V1 coincide. The seedling planting device 23 is raised.
一方、苗モードの項目選択画面523(図34参照)で標準モードが選択されると(ステップS1:No)、標準モード用の制御プログラムが読み込まれる(ステップS11)。標準モードでは、苗取量(苗縦取量)の項目選択画面523及び設定画面524において、苗縦取量の調節可能範囲が電気制御的に制限されることなく、8〜17mm(1目盛り1mmで10目盛り)の範囲で選択可能である。
On the other hand, when the standard mode is selected on the seedling mode item selection screen 523 (see FIG. 34) (step S1: No), the control program for the standard mode is read (step S11). In the standard mode, on the item selection screen 523 and setting screen 524 for the seedling collection amount (seedling vertical collection amount), the adjustable range of the seedling vertical collection amount is not limited electrically, and is 8 to 17 mm (one scale 1 mm). 10 scales).
続いて、標準モードで苗の植付け作業が開始され、苗の植付作業中であるとき(ステップS12:Yes)、油圧感度設定器503の油圧感度設定値と昇降センサ325の昇降センサ値Vと車速センサ505の車速センサ値を読み込み(ステップS13:Yes)、油圧感度である目標値V1を算出する(ステップS14)。ここで、標準モードでは、密苗モード時のステップS6のようには、油圧感度設定値を補正しない。そして、昇降センサ値Vと目標値V1が一致するように苗植付装置23を制御する(ステップS15)。
Subsequently, when the seedling planting operation is started in the standard mode and the seedling planting operation is in progress (step S12: Yes), the hydraulic pressure sensitivity setting value of the hydraulic pressure sensitivity setting unit 503 and the vertical movement sensor value V of the vertical movement sensor 325 A vehicle speed sensor value of the vehicle speed sensor 505 is read (step S13: Yes), and a target value V1 that is a hydraulic pressure sensitivity is calculated (step S14). Here, in the standard mode, the hydraulic pressure sensitivity setting value is not corrected as in step S6 in the dense seedling mode. And the seedling planting apparatus 23 is controlled so that the raising / lowering sensor value V and target value V1 correspond (step S15).
この実施形態では、密苗モード選択時には、上記ステップS3のように、油圧感度設定器503の油圧感度設定値に対して油圧シリンダ39の油圧感度を鈍感側へ補正して、標準モード選択時に比べて、苗の植付深さが深くなるように油圧シリンダ39(油圧昇降制御機構)の昇降制御を補正する。高密度育苗の苗マットを用いる田植え作業では、標準型育苗の苗マット使用時に比べて植付爪30が苗マットを掻き取る面積が小さいので、圃場へ植え付けた苗が浮き上がりやすい。そこで、高密度育苗の苗マットに対応する密苗モード選択時には、標準型育苗の苗マットに対応する標準モード選択時時に比べて、苗の植付深さを深くするように油圧シリンダ39の昇降制御を自動で補正することで、浮き苗を防止できると共に、苗の植深さ設定に関するオペレータの負担を低減できる。
In this embodiment, when the dense seedling mode is selected, the hydraulic sensitivity of the hydraulic cylinder 39 is corrected to the insensitive side with respect to the hydraulic sensitivity setting value of the hydraulic sensitivity setting device 503 as in step S3 above, compared to when the standard mode is selected. Thus, the raising / lowering control of the hydraulic cylinder 39 (hydraulic raising / lowering control mechanism) is corrected so that the seedling planting depth becomes deeper. In a rice planting operation using a seedling mat of high-density seedling, the area where the planting claw 30 scrapes off the seedling mat is smaller than when a seedling mat of standard type seedling is used, so that the seedling planted in the field is likely to float. Therefore, when the dense seedling mode corresponding to the seedling mat for high density seedling is selected, the hydraulic cylinder 39 is moved up and down so that the seedling planting depth is deeper than when the standard mode corresponding to the standard seedling mat is selected. By correcting the control automatically, floating seedlings can be prevented, and the burden on the operator regarding the seedling planting depth setting can be reduced.
また、上記ステップS7及びS14で、表面検知センサ334のセンサ値を用いてセンターフロート32aの沈下量が一定値となるように油圧感度の目標値V1を補正して、苗の植付深さが一定になるようにしてもよい。圃場表面の実高さを検出する表面検知センサ334のセンサ値からセンターフロート32aの沈下量を算出し、沈下量が一定になるように油圧感度の目標値V1を鈍感側(フロート32aの前部が上昇する側)又は敏感側(フロート32aの前部が下降する側)へ補正する。ここで、密苗モード選択時には、上記ステップS6で油圧感度設定値が鈍感側へ補正された補正後感度値を用いて油圧感度の目標値V1の算出及び補正がされる。
Further, in steps S7 and S14, the target value V1 of the hydraulic sensitivity is corrected using the sensor value of the surface detection sensor 334 so that the amount of subsidence of the center float 32a becomes a constant value, so that the seedling planting depth is It may be made constant. The amount of settlement of the center float 32a is calculated from the sensor value of the surface detection sensor 334 that detects the actual height of the field surface, and the target value V1 of the hydraulic sensitivity is set to the insensitive side (the front part of the float 32a) so that the amount of settlement is constant. To the sensitive side (the side where the front part of the float 32a descends). Here, when the dense seedling mode is selected, the target value V1 of the hydraulic pressure sensitivity is calculated and corrected using the corrected sensitivity value obtained by correcting the hydraulic pressure sensitivity setting value to the insensitive side in step S6.
図36を参照して、苗植付条件の設定及び苗植付制御の他の実施形態について説明する。この実施形態では、図35を参照して説明した実施形態の上記ステップS6(密苗モード選択時)に替えて、苗の植付深さが深くなるようにフロート32の位置を補正するステップS3−1を含む。ステップS3−1では、項目設定器502の操作により設定される植深さ設定値(図34参照)に対して、苗の植付深さが深くなるように植深さ設定値を補正する。この実施形態では、植深さ調節モータ174(図15参照)の駆動により補正分だけ植深さ調節部材122を前方へ回動させてフロート32の位置を植深さ調節軸121側へ補正する。これにより、苗植付け作業時の植付爪30の爪出量(植付爪30の先端部とフロート32底面との距離)が大きくなり、苗の植付深さが深くなる。このように、高密度育苗の苗マットを用いる密苗モードにおいて、苗の植付深さを深くするようにフロート32の位置を自動で補正することで、植付爪30が苗マットを掻き取る面積が小さくても浮き苗を防止できると共に、苗の植深さ設定に関するオペレータの負担を低減できる。
With reference to FIG. 36, another embodiment of setting seedling planting conditions and seedling planting control will be described. In this embodiment, in place of step S6 (during dense seedling mode selection) of the embodiment described with reference to FIG. 35, the position of the float 32 is corrected so that the seedling planting depth becomes deeper. -1. In step S3-1, the planting depth setting value is corrected so that the planting depth of the seedling is deeper than the planting depth setting value (see FIG. 34) set by the operation of the item setting unit 502. In this embodiment, the planting depth adjusting motor 174 (see FIG. 15) is driven to rotate the planting depth adjusting member 122 forward by the correction amount to correct the position of the float 32 to the planting depth adjusting shaft 121 side. . As a result, the amount of nail protrusion (the distance between the tip of the planting claw 30 and the bottom surface of the float 32) of the planting claw 30 during the seedling planting operation increases, and the planting depth of the seedling increases. In this manner, in the dense seedling mode using the seedling mat for high-density seedling raising, the planting claw 30 scrapes the seedling mat by automatically correcting the position of the float 32 so as to increase the seedling planting depth. Even if the area is small, floating seedlings can be prevented, and the burden on the operator regarding the planting depth setting can be reduced.
図37を参照して、箱施用剤散布制御の実施形態について説明する。この実施形態では、密苗モード選択時において、箱施用剤散布量を補正するステップS3−2を含む。箱施用剤散布機400(図20から図23参照)の箱施用剤散布量は、項目設定器502の操作により設定される箱施用剤散布量(箱施用)の設定値(図34参照)、又は散布量調節ダイヤル431(図23参照)の回転操作により設定される。密苗モード選択時には、薬剤散布量設定値に対して、薬剤散布量が多くなるように薬剤散布量設定値を補正する(ステップS3−2)。この実施形態では、散布量調節モータ437(図23参照)を駆動の駆動により補正分だけ散布量調節部材433を規制ピン425から離れる方向(後斜め上方向)へ移動させて、散布量調節部材433及びストッパ部材434の位置を補正する。
With reference to FIG. 37, an embodiment of box application agent spraying control will be described. This embodiment includes step S3-2 for correcting the box application agent application amount when the dense seedling mode is selected. The box application agent distribution amount of the box application agent spreader 400 (see FIGS. 20 to 23) is a set value (see FIG. 34) of the box application agent application amount (box application) set by the operation of the item setting unit 502. Alternatively, it is set by rotating the spread amount adjustment dial 431 (see FIG. 23). When the dense seedling mode is selected, the drug application amount setting value is corrected so that the drug application amount increases with respect to the drug application amount setting value (step S3-2). In this embodiment, the spread rate adjusting motor 437 (see FIG. 23) is driven to move the spread rate adjusting member 433 away from the regulation pin 425 (backward and upward direction) by a correction amount to drive the spread rate adjusting member. The positions of 433 and the stopper member 434 are corrected.
高密度育苗の苗マットでは、苗が密に生育されているので、標準型育苗の苗マット使用時と箱施用剤散布量が同じであると、十分な苗の殺虫や殺菌ができない。そこで、高密度育苗の苗マット使用時(密苗モード選択時)には、箱施用剤散布量が自動で多く設定することで、高密度育苗の苗マットにおける十分な苗の殺虫や殺菌をでき、圃場へ植え付けられた苗の健全な生育を実現できると共に、箱施用剤散布量の設定に関するオペレータの負担を低減できる。
Since seedlings are densely grown in a seedling mat of high-density seedlings, if the amount of application of the box application agent is the same as when using a seedling mat of standard type seedlings, sufficient seedling insecticide and sterilization cannot be performed. Therefore, when using a seedling mat for high-density seedling (when dense seedling mode is selected), the amount of box application agent can be set automatically to increase the amount of seedling in the seedling mat for high-density seedling. Thus, the healthy growth of the seedlings planted in the field can be realized, and the burden on the operator regarding the setting of the application amount of the box application agent can be reduced.
以上、説明した実施形態のように、上記実施形態の田植機1は、苗載台29に載置された苗マットから植付爪30で苗を掻き取って圃場へ植え付ける苗植付装置23を備え、標準型育苗の苗マットに対応して掻き取り量が多い標準モードと、標準型育苗の苗マットよりも苗が高密度に生育された高密度育苗の苗マットに対応して掻き取り量が少ない密苗モードとを選択可能に構成しているので、高密度育苗の苗マット使用時の田植機の設定を簡便にしてオペレータの負担を低減できる。
As described above, the rice transplanter 1 according to the embodiment described above includes the seedling planting device 23 that scrapes seedlings from the seedling mat placed on the seedling placing stand 29 with the planting claws 30 and plants the seedlings on the field. The standard mode has a larger scraping amount corresponding to the seedling mat for standard seedlings, and the scraping amount corresponding to the seedling mat for higher density seedlings where seedlings are grown at a higher density than the seedling mat for standard seedlings. Since the dense seedling mode is selectable, it is possible to simplify the setting of the rice transplanter when using a seedling mat for high-density seedling and reduce the burden on the operator.
また、上記実施形態の田植機1は、苗の植付深さを調節するフロート32aの傾斜角度を検出する昇降センサ325の検出値に基づいて苗植付装置23を昇降制御する油圧シリンダ39(昇降制御機構)を備えた構成であって、密苗モードの選択時には、標準モードの選択時に比べて、苗の植付深さが深くなるように構成しているので、高密度育苗の苗マットを用いる田植え作業では植付爪30が苗マットを掻き取る面積が小さいので圃場へ植え付けた苗が浮き上がりやすいが、苗の植付深さを深くするように油圧シリンダ39の昇降制御を自動で補正することで、浮き苗を防止できると共に、苗の植深さ設定に関するオペレータの負担を低減できる。
Moreover, the rice transplanter 1 of the said embodiment is the hydraulic cylinder 39 (which raises / lowers the seedling planting apparatus 23 based on the detected value of the raising / lowering sensor 325 which detects the inclination angle of the float 32a which adjusts the planting depth of a seedling. (Elevation control mechanism), and when the dense seedling mode is selected, the planting depth of the seedling is deeper than when the standard mode is selected. In rice planting work, the planting claw 30 has a small area for scraping the seedling mat, so the seedling planted on the field is likely to float, but the elevation control of the hydraulic cylinder 39 is automatically corrected to deepen the seedling planting depth. By doing so, floating seedlings can be prevented, and the burden on the operator regarding the seedling planting depth setting can be reduced.
また、上記実施形態の田植機1は、苗載台29の下方に配置された苗取出板131の位置調節により植付爪30の苗縦取量を調節可能な構成であって、密苗モードの選択時には、苗縦取量の調節可能範囲が下限側の所定範囲に制限されるので、高密度育苗の苗マットを用いる田植え作業の際に、オペレータが密苗モードを選択していれば、苗縦取量の設定を失念しても、苗縦取量を下限側の所定範囲に抑制できるので、1株あたりの苗本数が極端に多くなって無駄な苗消費がされるのを防止して適切な田植え作業を行えると共に、苗縦取量設定に関するオペレータの負担を低減できる。
Moreover, the rice transplanter 1 of the said embodiment is the structure which can adjust the amount of seedling vertical picking of the planting nail | claw 30 by position adjustment of the seedling extraction board 131 arrange | positioned under the seedling mounting stand 29, Comprising: Dense seedling mode At the time of selection, since the adjustable range of the seedling vertical harvest amount is limited to a predetermined range on the lower limit side, when the operator has selected the dense seedling mode in the rice planting work using the seedling mat of the high density raising seedling, Even if you forget the setting of the vertical seedling amount, the vertical seedling amount can be kept within the predetermined range on the lower limit side, so that the number of seedlings per strain is excessively increased and wasteful seedling consumption is prevented. Therefore, it is possible to perform an appropriate rice planting operation and reduce the burden on the operator regarding the setting of the vertical seedling amount.
また、上記実施形態の田植機1は、苗載台29に載置された苗マットに薬剤を散布する箱施用剤散布機400(薬剤散布機)を備えた構成であって、密苗モードの選択時には、標準モードの選択時に比べて、箱施用剤散布機400の薬剤散布量を多くするように構成しているので、高密度育苗の苗マットを用いる田植え作業の際に、オペレータが密苗モードを選択していれば、箱施用剤散布量が自動で多く設定されることで、高密度育苗の苗マットにおける十分な苗の殺虫や殺菌をでき、圃場へ植え付けられた苗の健全な生育を実現できると共に、箱施用剤散布量の設定に関するオペレータの負担を低減できる。
Moreover, the rice transplanter 1 of the said embodiment is the structure provided with the box application agent spreader 400 (drug spreader) which spreads a chemical | medical agent to the seedling mat mounted in the seedling stand 29, Comprising: In dense seedling mode At the time of selection, since it is configured to increase the amount of medicine sprayed by the box application agent spreader 400 as compared to the case of selecting the standard mode, the operator can use the dense seedling at the time of rice planting work using a seedling mat of high-density seedling raising. If the mode is selected, the application amount of the box application agent is automatically set to a large amount, so that sufficient seedling can be killed and sterilized in the seedling mat for high-density seedling raising, and the healthy growth of the seedlings planted in the field And the burden on the operator regarding the setting of the box application agent application amount can be reduced.
また、上記実施形態の田植機1は、苗載台29に載置された苗マットから植付爪30で苗を掻き取って圃場へ植え付ける苗植付装置23と、苗の植付深さを調節するフロート32aの傾斜角度を検出する昇降センサ325の検出値に基づいて苗植付装置23を昇降制御する油圧シリンダ39(昇降制御機構)とを備える田植機において、高密度育苗の苗マットの植付時には、高密度育苗の苗マットよりも苗が低密度に生育された標準型育苗の苗マットの植付時に比べて、苗の植付深さが深くなるように構成しているので、高密度育苗の苗マットを用いる田植え作業において植付爪30が苗マットを掻き取る面積が小さい場合であっても、浮き苗を防止できる。
In addition, the rice transplanter 1 of the above embodiment has a seedling planting device 23 that scrapes seedlings from a seedling mat placed on the seedling platform 29 with a planting claw 30 and plantes them in a field, and a seedling planting depth. In a rice transplanter equipped with a hydraulic cylinder 39 (elevation control mechanism) that controls the raising / lowering of the seedling planting device 23 based on the detection value of the elevation sensor 325 that detects the inclination angle of the float 32a to be adjusted, At the time of planting, the planting depth of seedlings is deeper than when planting a seedling mat of standard type seedlings where seedlings were grown at a lower density than a seedling mat of high-density seedlings, Even if the area where the planting claw 30 scrapes off the seedling mat is small in the rice planting operation using the seedling mat of high-density seedling raising, the floating seedling can be prevented.
また、上記実施形態の田植機1は、高密度育苗の苗マットの植付時には、油圧シリンダ39(昇降制御機構)の油圧感度(感度)を鈍感側へ補正して苗の植付深さが深くなるように構成しているので、植付深さを深くする部材を別途設けることなく、高密度育苗の苗マットの植付時に油圧シリンダ39の油圧感度を補正するだけで簡便に苗の植付深さを深くして浮き苗を防止できる。
Further, the rice transplanter 1 of the above embodiment corrects the hydraulic sensitivity (sensitivity) of the hydraulic cylinder 39 (elevation control mechanism) to the insensitive side when planting a seedling mat of high-density seedling so that the planting depth of the seedling is increased. Since it is configured to be deep, planting of seedlings can be performed simply by correcting the hydraulic sensitivity of the hydraulic cylinder 39 when planting a seedling mat of high-density seedling without providing a separate member for increasing the planting depth. Deepening depth can prevent floating seedlings.
また、上記実施形態の田植機1は、植深さ調節アクチュエータ機構171によって位置調節される植深さ調節部材122の変位に伴ってフロート32が位置調節される構成であって、高密度育苗の苗マットの植付時には、フロート32の位置を上昇側へ補正して苗の植付深さが深くなるように構成しているので、植付深さを深くする部材を別途設けることなく、高密度育苗の苗マットの植付時にフロート32の位置を補正するだけで簡便に苗の植付深さを深くして浮き苗を防止できる。
Moreover, the rice transplanter 1 of the said embodiment is the structure by which the float 32 is position-adjusted with the displacement of the planting depth adjustment member 122 position-adjusted by the planting depth adjustment actuator mechanism 171, Comprising: When planting the seedling mat, the position of the float 32 is corrected to the ascending side so that the planting depth of the seedling is increased, so that a member for increasing the planting depth is not provided separately. By simply correcting the position of the float 32 at the time of planting a seedling mat for density raising seedlings, it is possible to easily increase the seedling planting depth and prevent floating seedlings.
また、上記実施形態の田植機1は、苗載台29に載置された苗マットから植付爪30で苗を掻き取って圃場へ植え付ける苗植付装置23と、薬剤を散布する箱施用剤散布機400(薬剤散布機)を備える田植機において、高密度育苗の苗マットの植付時と、高密度育苗の苗マットよりも苗が低密度に生育された標準型育苗の苗マットの植付時とで、箱施用剤散布機400の薬剤散布量を変更するように構成しているので、高密度育苗の苗マットの植付時と標準型育苗の苗マットの植付時とで、薬剤散布量を異ならせて、高密度育苗の苗マットと標準型育苗の苗マットにそれぞれ応じた適切な散布量の薬剤を散布できる。
Moreover, the rice transplanter 1 of the said embodiment is the box application agent which spreads the seedling planting apparatus 23 which scrapes off a seedling with the planting nail | claw 30 from the seedling mat mounted on the seedling stand 29, and plantes it to a field. In a rice transplanter equipped with a spreader 400 (drug spreader), when planting a seedling mat for high-density seedlings and planting a seedling mat for a standard type seedling where seedlings are grown at a lower density than the seedling mat for high-density seedlings Since it is configured to change the amount of medicine sprayed by the box application agent spreader 400 at the time of attachment, at the time of planting a seedling mat of high-density seedling and at the time of planting a seedling mat of standard type seedling, By varying the amount of sprayed medicine, it is possible to spray a suitable amount of spray according to the seedling mat for high-density seedlings and the seedling mat for standard seedlings.
また、上記実施形態の田植機1は、高密度育苗の苗マットの植付時は、標準型育苗の苗マットの植付時に比べて、箱施用剤散布機400(薬剤散布機)の薬剤散布量を多くするように構成しているので、高密度育苗の苗マットを用いる田植え作業の際に、高密度育苗の苗マットにおける十分な苗の殺虫や殺菌をでき、圃場へ植え付けられた苗の健全な生育を実現できる。
Moreover, the rice transplanter 1 of the said embodiment is the time of planting of the seedling mat of a high-density seedling compared with the time of planting the seedling mat of a standard type seedling, and the chemical spraying of the box application agent sprayer 400 (drug sprayer). Since it is configured so as to increase the amount, it is possible to kill and sterilize enough seedlings in the seedling mat with high density seedling during the rice planting work using the seedling mat with high density seedling, and the seedlings planted in the field Healthy growth can be achieved.
次に、図38及び図39を参照しながら、田植機の他の実施形態について説明する。この実施形態の田植機は、苗植付装置23に設けた作溝器441が圃場に作溝する溝に薬剤を施用する薬剤散布機440を備える。薬剤散布機440は、苗載台29の後方に設けられる。
Next, another embodiment of the rice transplanter will be described with reference to FIGS. 38 and 39. The rice transplanter of this embodiment includes a drug spreader 440 that applies a drug to a groove that the groove 441 provided in the seedling planting device 23 forms in the field. The medicine spreader 440 is provided behind the seedling mount 29.
薬剤散布機440は、箱施用剤散布機400(図20から図24参照)と同様の構成を有する。薬剤散布機440において、繰出機構404の繰出ケース407の下部に、8つの散布ノズル405に替えて、8本のホース445の上端側が連結されている。
The chemical spreader 440 has a configuration similar to that of the box application spreader 400 (see FIGS. 20 to 24). In the medicine spreader 440, the upper ends of the eight hoses 445 are connected to the lower part of the feeding case 407 of the feeding mechanism 404 instead of the eight spraying nozzles 405.
この実施形態では、8つの作溝器441が設けられる。各作溝器441は、植付爪30により苗が植え付けられる位置の斜め前方に配置されるように、フロート32a,32bの裏面に固定される。作溝器441の後部に断面C字状の埋込シュート442が固定されている。埋込シュート442の上端側に、ブーツ443を介してホース445の下端側が連結される。また、埋込シュート442の後方には、フロート32a,32bに固定された覆土板444が設けられる。
In this embodiment, eight groovemakers 441 are provided. Each grooving device 441 is fixed to the back surfaces of the floats 32a and 32b so as to be disposed obliquely in front of the position where the seedling is planted by the planting claws 30. An embedded chute 442 having a C-shaped cross section is fixed to the rear portion of the groove 441. The lower end side of the hose 445 is connected to the upper end side of the embedded chute 442 through the boot 443. In addition, behind the embedded chute 442, a cover plate 444 fixed to the floats 32a and 32b is provided.
薬剤散布機440の繰出ケース407の下部から繰り出される薬剤は、ホース445及びブーツ443を介して埋込シュート442へ送られ、作溝器441が形成する圃場の溝内に埋込シュート442の案内によって散布される。薬剤が散布された圃場の溝は、覆土板444によって埋め戻される。これにより、植付爪30によって植え付けられる苗列の側方に薬剤が埋め込まれる。
The medicine delivered from the lower portion of the delivery case 407 of the medicine spreader 440 is sent to the embedded chute 442 via the hose 445 and the boot 443, and the embedded chute 442 is guided into the field groove formed by the groove generator 441. Scattered by. The groove in the field where the medicine is sprayed is backfilled by the cover plate 444. Thereby, a chemical | medical agent is embedded by the side of the seedling row | line | plant planted by the planting nail | claw 30. FIG.
薬剤散布機440は、箱施用剤散布機400(図20から図24参照)と同様に、散布量調節機構430での散布量調節部材433及びストッパ部材434の位置調節によって伝達駆動軸421の回転速度が調節されることで、埋込シュート442から散布される薬剤量が調節可能に構成されている。
The medicine spreader 440 rotates the transmission drive shaft 421 by adjusting the positions of the spray amount adjusting member 433 and the stopper member 434 in the spray amount adjusting mechanism 430, similarly to the box application agent sprayer 400 (see FIGS. 20 to 24). By adjusting the speed, the amount of medicine sprayed from the embedded chute 442 can be adjusted.
この実施形態では、液晶パネル522(図5参照)に表示される項目選択画面523のうちの1つとして、「薬施用」の文字で識別される薬剤散布機440の薬剤散布量の設定画面(図40(A)の(a4)及び図40(B)の(b4)参照)が表示される。なお、この実施形態では、図34に示される、「箱施用」の文字で識別される箱施用剤散布量の項目選択画面523及び設定画面524は表示されない。薬剤散布機440の薬剤散布量は、項目設定器502(図5参照)の操作によって設定される。なお、散布量調節ダイヤル431(図39参照)の手動回転操作によって薬剤散布機440の薬剤散布量を設定することも可能である。
In this embodiment, as one of the item selection screens 523 displayed on the liquid crystal panel 522 (see FIG. 5), the medicine application amount setting screen of the medicine application machine 440 identified by the characters “medicine application” ( (A4) in FIG. 40A and (b4) in FIG. 40B) are displayed. In this embodiment, the box application agent application amount item selection screen 523 and the setting screen 524 identified by the characters “box application” shown in FIG. 34 are not displayed. The medicine spread amount of the medicine spreader 440 is set by operating the item setter 502 (see FIG. 5). In addition, it is also possible to set the medicine spraying amount of the medicine sprayer 440 by manually rotating the spraying amount adjustment dial 431 (see FIG. 39).
図40(A)に示すように、液晶パネル522に苗モードの項目選択画面523(a1)が表示されている状態で項目設定器502が押し操作されると、苗モードの設定画面524へ移行して、「苗モード」の文字が反転表示される(a2)。続いて、項目設定器502のつまみ回転操作によって「密苗」の文字が反転表示された後、項目設定器502が押し操作されると、密苗モードが選択された状態になって、液晶パネル522に「密苗」の文字が反転表示された苗モードの項目選択画面523(a3)が表示される。密苗モードが選択されると、植付作業コントローラ500(図33参照)は、密苗モード用の制御プログラムを読み込む。この実施形態では、図40(A)の(a4)に示すように、密苗モード選択時の薬剤散布機440の初期散布量設定値は、標準モード選択時の初期散布量設定値(図40(B)の(b4)参照)に比べて、少なくなるように補正される。
As shown in FIG. 40A, when the item setting unit 502 is pressed while the seedling mode item selection screen 523 (a1) is displayed on the liquid crystal panel 522, the display shifts to the seedling mode setting screen 524. Then, the characters “seedling mode” are highlighted (a2). Subsequently, after the characters “dense seedling” are highlighted and displayed by turning the knob of the item setting unit 502, when the item setting unit 502 is pressed, the dense seedling mode is selected and the liquid crystal panel is displayed. An item selection screen 523 (a3) of the seedling mode in which the characters “dense seedling” are highlighted in the display 522 is displayed. When the dense seedling mode is selected, the planting work controller 500 (see FIG. 33) reads the control program for the dense seedling mode. In this embodiment, as shown in (a4) of FIG. 40 (A), the initial application amount setting value of the medicine spreader 440 when the dense seedling mode is selected is the initial application amount setting value when the standard mode is selected (FIG. 40). (See (b4) of (B)).
また、密苗モードが選択された後、所定時間の間、「密苗」の文字が反転表示された苗モードの項目選択画面523(a3)と、薬剤散布量の項目選択画面523(a4)が、所定周期(例えば2秒周期)で液晶パネル522に交互に表示される。これにより、薬剤散布量設定値の変更について、オペレータに注意が促される。なお、この交互表示動作は、オペレータにより項目設定器502が押し操作又はつまみ回転操作されると、上記所定時間の経過前であっても解除される。
In addition, after the dense seedling mode is selected, the seedling mode item selection screen 523 (a3) in which the characters “dense seedling” are highlighted for a predetermined time, and the drug application amount item selection screen 523 (a4) Are alternately displayed on the liquid crystal panel 522 at a predetermined cycle (for example, a cycle of 2 seconds). As a result, the operator is warned about the change in the medicine application amount setting value. Note that this alternate display operation is canceled even if the predetermined time has not elapsed before the item setting device 502 is pushed or knob-rotated by the operator.
一方、標準モードが選択されるときには、図40(B)に示すように、オペレータによる項目設定器502の操作によって、液晶パネル522に、苗モードの項目選択画面523(b1)、「苗モード」の文字が反転表示された苗モードの設定画面524(b2)、「標準」の文字が反転表示された苗モードの項目選択画面523(b3)が順に表示される。標準モードが選択されると、植付作業コントローラ500は、標準モード用の制御プログラムを読み込み、標準モード選択時の初期散布量設定値((b4)参照)を設定する。また、密苗モードが選択されたときと同様に、標準モードが選択された後、「標準」の文字が反転表示された苗モードの項目選択画面523(b3)と、薬剤散布量の項目選択画面523(b4)が、所定周期で液晶パネル522に交互に表示されて、薬剤散布量設定値の変更がオペレータに注意喚起される。なお、上記の交互表示動作によるオペレータへの注意喚起は、図37を参照して説明した箱施用剤散布制御の実施形態にも適用可能である。
On the other hand, when the standard mode is selected, an item selection screen 523 (b1) of the seedling mode is displayed on the liquid crystal panel 522 by the operation of the item setting unit 502 by the operator, as shown in FIG. The seedling mode setting screen 524 (b2) in which the characters are highlighted and the seedling mode item selection screen 523 (b3) in which the characters “standard” are highlighted are sequentially displayed. When the standard mode is selected, the planting work controller 500 reads the control program for the standard mode and sets the initial application amount setting value (see (b4)) when the standard mode is selected. Similarly to the case where the dense seedling mode is selected, after the standard mode is selected, the item selection screen 523 (b3) of the seedling mode in which the characters “standard” are highlighted and the item selection of the drug application amount are selected. The screen 523 (b4) is alternately displayed on the liquid crystal panel 522 at a predetermined cycle, and the operator is alerted to change the medicine application amount setting value. Note that the above-mentioned alerting to the operator by the alternate display operation can also be applied to the embodiment of the box application agent spraying control described with reference to FIG.
このように、この実施形態では、図37を参照して説明した箱施用剤散布制御の実施形態と同様にして、密苗モード又は標準モードが選択されると薬剤の散布量設定値が自動で設定され、密苗モード選択時には散布量設定値が補正される。なお、苗モードの選択操作がされて初期散布量設定値が設定された後、オペレータの操作によって散布量設定値が変更されたときには、薬剤散布機440は、変更後の散布量設定値に基づいて、薬剤をホース445へ繰り出す。図37を参照して説明した箱施用剤散布制御の実施形態でも、苗モードの選択操作がされた後にオペレータの操作によって散布量設定値が変更されたときは、同様である。
As described above, in this embodiment, similarly to the embodiment of the box application agent spraying control described with reference to FIG. 37, when the dense seedling mode or the standard mode is selected, the spraying amount setting value of the medicine is automatically set. When the dense seedling mode is selected, the spray amount setting value is corrected. In addition, when the seedling mode selection operation is performed and the initial spraying amount setting value is set, and then the spraying amount setting value is changed by the operator's operation, the medicine spreader 440 is based on the changed spraying amount setting value. Then, the medicine is fed out to the hose 445. The same applies to the embodiment of the box application agent spray control described with reference to FIG. 37 when the spray amount setting value is changed by the operator's operation after the seedling mode selection operation.
この実施形態では、薬剤散布機440は、苗植付装置23に設けられた作溝器441によって圃場に作溝される溝に薬剤を散布する。また、高密度育苗の苗マットの植付時と、標準型育苗の苗マットの植付時とで、薬剤散布機440の薬剤散布量の初期散布量設定値が異なっている。これらにより、薬剤散布機440は、高密度育苗の苗マットと標準型育苗の苗マットにそれぞれ応じた適切な量の薬剤を圃場に散布できる。また、この実施形態の田植機は、薬剤を苗マットではなく圃場に散布するので、苗マット1枚あたりの薬剤散布量に上限が設けられていて高密度育苗の苗マットに対して適切な量の薬剤を散布できない場合であっても、高密度育苗の苗マットの植付時に、適切な量の薬剤を圃場に散布できる。
In this embodiment, the medicine spreader 440 spreads the medicine in the grooves that are grooved in the field by the grooving device 441 provided in the seedling planting device 23. In addition, the initial spraying amount setting value of the drug spraying amount of the drug spreader 440 is different between the planting of the seedling mat for high-density seedlings and the planting of the seedling mat for the standard type seedlings. Accordingly, the drug spreader 440 can spray an appropriate amount of drug according to the seedling mat for the high-density seedling and the seedling mat for the standard type seedling on the field. Moreover, since the rice transplanter of this embodiment sprays a chemical | medical agent on a field instead of a seedling mat, the upper limit is provided in the chemical spraying amount per seedling mat, and it is an appropriate quantity with respect to the seedling mat of high-density seedling raising. Even when it is not possible to spray the chemical, an appropriate amount of the chemical can be sprayed onto the field when planting a seed mat for high-density seedling raising.
また、高密度育苗の苗マットの植付時には、幅狭な高密度育苗用の植付爪30a(図31参照)が用いられることから1株あたりの苗本数が標準型育苗の苗マットの植付時に比べて少なくなる傾向がある。そこで、この実施形態では、密苗モード選択時には、単位面積あたりの圃場への薬剤散布量は、標準モード選択時に比べて、少なくなるようにしている。これにより、高密度育苗の苗マットの植付時と、標準型育苗の苗マットの植付時の両方で、適切な量の薬剤を圃場へ散布して、圃場へ植え付けられた苗の健全な生育を実現できると共に、薬剤散布量の設定に関するオペレータの負担を軽減できる。
In addition, when planting a seed mat for high-density seedling, the narrow nail 30a (see FIG. 31) for high-density seedling is used, so that the number of seedlings per strain is planted on a standard seedling seedling mat. There is a tendency to decrease compared to the attached date. Therefore, in this embodiment, when the dense seedling mode is selected, the amount of medicine sprayed onto the field per unit area is made smaller than when the standard mode is selected. As a result, an appropriate amount of drug is sprayed onto the field both at the time of planting the seedling mat for high-density seedlings and at the time of planting the seedling mat for standard seedlings. The growth can be realized and the burden on the operator regarding the setting of the amount of sprayed medicine can be reduced.
なお、例えば、高密度育苗の苗マットの植付時に1株あたりの苗本数が標準型育苗の苗マットの植付時に比べて多くなる傾向がある場合など、必要に応じて、高密度育苗の苗マットの植付時には、標準型育苗の苗マットの植付時に比べて、薬剤散布機の薬剤散布量を多くするように構成してもよい。例えば、密苗モード選択時における単位面積あたりの圃場への薬剤散布量が標準モード選択時に比べて多くなるように、密苗モード用プログラム及び標準モード用プログラムが設計されてもよい。
In addition, for example, when the number of seedlings per strain tends to increase compared to the time of planting a standard seedling seedling mat at the time of planting a seedling mat of high density raising seedling, At the time of planting the seedling mat, the chemical spraying amount of the chemical spraying machine may be increased as compared with the time of planting the seedling mat of the standard type seedling. For example, the dense seedling mode program and the standard mode program may be designed so that the amount of medicine sprayed onto the field per unit area when the dense seedling mode is selected is larger than when the standard mode is selected.
本願発明は、前述の実施形態に限らず、様々な態様に具体化できる。各部の構成は図示の実施形態に限定されるものではなく、本願発明の趣旨を逸脱しない範囲で種々変更が可能である。
The present invention is not limited to the above-described embodiment, and can be embodied in various forms. The configuration of each part is not limited to the illustrated embodiment, and various modifications can be made without departing from the spirit of the present invention.