JP2018113689A - 無線通信システムにおける制御チャネルとデータチャネルとのタイミング関係についての方法及び装置 - Google Patents

無線通信システムにおける制御チャネルとデータチャネルとのタイミング関係についての方法及び装置 Download PDF

Info

Publication number
JP2018113689A
JP2018113689A JP2018003022A JP2018003022A JP2018113689A JP 2018113689 A JP2018113689 A JP 2018113689A JP 2018003022 A JP2018003022 A JP 2018003022A JP 2018003022 A JP2018003022 A JP 2018003022A JP 2018113689 A JP2018113689 A JP 2018113689A
Authority
JP
Japan
Prior art keywords
data transmission
time interval
data
control channel
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018003022A
Other languages
English (en)
Other versions
JP6681416B2 (ja
JP2018113689A5 (ja
Inventor
克彊 林
Ko-Chiang Lin
克彊 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asustek Computer Inc
Original Assignee
Asustek Computer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asustek Computer Inc filed Critical Asustek Computer Inc
Publication of JP2018113689A publication Critical patent/JP2018113689A/ja
Publication of JP2018113689A5 publication Critical patent/JP2018113689A5/ja
Application granted granted Critical
Publication of JP6681416B2 publication Critical patent/JP6681416B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/003Arrangements to increase tolerance to errors in transmission or reception timing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】 無線通信システムにおける制御チャネルとデータチャネルとのタイミング関係についての方法及び装置を提供する。【解決手段】 ユーザ機器(UE)の観点からの方法及び装置が開示される。一実施形態では、方法は、UEが、第1の時間間隔のデータ送信期間を有する第1のデータ送信の送信をスケジューリングする第1の制御情報を受信するステップを含む。方法は、UEが、第2の時間間隔のデータ送信期間を有する第2のデータ送信の送信をスケジューリングする第2の制御情報を受信するステップも含む。第1のデータ送信と第2のデータ送信は時間領域において重ならない。方法は、UEが、第1の制御情報に従って第1のデータ送信への処理を実行し、UEが、第2の制御情報に従って第2のデータ送信への処理を実行しないステップをさらに含む。【選択図】 図27

Description

本願は、2017年1月13日に出願された米国仮特許出願第62/446,002号の利益を主張するものであり、そのすべての開示は全体として参照により本明細書に援用される。
本開示は、概して、無線通信ネットワークに関し、より詳細には、無線通信システムにおける制御チャネルとデータチャネルとのタイミング関係についての方法及び装置に関する。
移動体通信デバイスとの大量データの通信に対する要求が急速に高まる中、従来の移動体音声通信ネットワークは、インターネットプロトコル(IP)データパケットをやり取りするネットワークへと発展している。このようなIPデータパケット通信は、移動体通信デバイスのユーザに、ボイスオーバIP、マルチメディア、マルチキャスト、及びオンデマンド通信サービスを提供可能である。
例示的なネットワーク構造は、発展型ユニバーサル地上無線アクセスネットワーク(E−UTRAN)である。E−UTRANシステムは、上記のボイスオーバIP及びマルチメディアサービスを実現するために、高いデータスループットを提供可能である。現在、次世代(例えば、5G)の新しい無線技術が3GPP標準化機構によって論じられている。このため、現行の3GPP標準内容に対する変更が現在提出され、3GPP標準の発展及び確定に向けて検討されている。
ユーザ機器(UE)の観点からの方法及び装置が開示される。一実施形態では、方法は、UEが、第1の時間間隔のデータ送信期間を有する第1のデータ送信の送信をスケジューリングする第1の制御情報を受信するステップを含む。方法は、UEが、第2の時間間隔のデータ送信期間を有する第2のデータ送信の送信をスケジューリングする第2の制御情報を受信するステップも含む。第1のデータ送信と第2のデータ送信は時間領域において重ならない。方法は、UEが、第1の制御情報に従って第1のデータ送信に対する処理を実行し、UEが、第2の制御情報に従って第2のデータ送信に対する処理を実行しないステップをさらに含む。
例示的な一実施形態による無線通信システムの図を示す。 例示的な一実施形態による送信機システム(アクセスネットワークとしても知られている)及び受信機システム(ユーザ機器又はUEとしても知られている)のブロック図である。 例示的な一実施形態による通信デバイスの機能ブロック図である。 例示的な一実施形態による図3のプログラムコードの機能ブロック図である。 図5は、3GPP TR 36.211 V13.2.0の図6.2.2−1の再現である。 図6は、3GPP TR 36.211 V13.2.0の表6.2.3−1の再現である。 図7は、3GPP TR 36.211 V13.2.0の表6.7−1の再現である。 図8は、3GPP TR 36.211 V13.2.0の表6.7.2−1の再現である。 図9は、3GPP TR 36.211 V13.2.0の表6.8.1−1の再現である。 図10は、3GPP TR 36.211 V13.2.0の表6.8.3−1の再現である。 図11は、3GPP TR 36.211 V13.2.0の表6.12−1の再現である。 図12は、3GPP TR 36.211 V13.2.0の図6.13−1の再現である。 図13は、3GPP TR 36.212 V13.1.0の図5.3.3−1の再現である。 図14は、3GPP TR 36.213 V13.1.1の表7−1の再現である。 図15は、3GPP TR 36.213 V13.1.1の表7−2の再現である。 図16は、3GPP TR 36.213 V13.1.1の表7−3の再現である。 図17は、3GPP TR 36.213 V13.1.1の表7.1−1の再現である。 図18は、3GPP TR 36.213 V13.1.1の表7.1−2の再現である。 図19は、3GPP TR 36.213 V13.1.1の表7.1−2Aの再現である。 図20は、3GPP TR 36.213 V13.1.1の表8−1の再現である。 図21は、3GPP TR 36.213 V13.1.1の表8−3の再現である。 図22は、3GPP TR 36.213 V13.1.1の表8−4の再現である。 図23は、3GPP TR 36.213 V13.1.1の表8.1.3−1の再現である。 図24は、3GPP TR 36.213 V13.1.1の表9.1.1−1の再現である。 図25は、3GPP TR 36.213 V13.1.1の表9.1.1−1Aの再現である。 図26は、3GPP TR 36.213 V13.1.1の表9.1.1−2の再現である。 例示的な一実施形態によるフローチャートである。 例示的な一実施形態によるフローチャートである。 例示的な一実施形態によるフローチャートである。 例示的な一実施形態によるフローチャートである。 例示的な一実施形態によるフローチャートである。
以下に記載される例示的な無線通信システム及び機器は、無線通信システムを採用し、ブロードキャストサービスをサポートする。無線通信システムは、音声、データ等の様々なタイプの通信を提供するため、広く展開されている。これらのシステムは、符号分割多元接続(CDMA)、時間分割多元接続(TDMA)、直交周波数分割多元接続(OFDMA)、3GPP LTE(ロングタームエボリューション)無線アクセス、3GPP LTE−A若しくはLTE−アドバンスト(ロングタームエボリューションアドバンスト)、3GPP2 UMB(Ultra Mobile Broadband:超モバイル広帯域)、WiMax、又はその他何らかの変調技術に基づいてよい。
特に、以下に説明する例示的な無線通信システム及びデバイスは、本明細書において3GPPと称される「第3世代パートナーシッププロジェクト」という名称のコンソーシアムにより提供された標準等、1つ以上の標準をサポートするように設計されてよい。標準には、3GPP RP-150465, “New SI proposal: Study on Latency reduction techniques for LTE”, Ericsson, Huawei、TR 36.211 V13.1.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 13)”、TS 36.331, V13.2.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification (Release 13)”、TS 36.212 v13.1.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 13)”、TS 36.213 v13.1.1, “E-UTRA Physical layer procedures (Release 13)”、RAN1#86bis Chairman’s note、及びRAN1#87 Chairman’s noteが含まれる。上掲の標準及び文書は、全体として参照により本明細書に明示的に援用される。
図1は、本発明の一実施形態に係る多重アクセス無線通信システムを示している。アクセスネットワーク100(AN)は、複数のアンテナグループを含み、あるグループは104及び106、別のグループは108及び110、また別のグループは112及び114を含む。図1においては、各アンテナグループに対して、アンテナが2つしか示されていないが、より多くの又はより少ないアンテナが各アンテナグループに利用されてよい。アクセス端末116(AT)は、アンテナ112及び114と通信しており、アンテナ112及び114は、順方向リンク120を介して情報をアクセス端末116に送信すると共に、逆方向リンク118を介して情報をアクセス端末116から受信している。アクセス端末(AT)122は、アンテナ106及び108と通信しており、アンテナ106及び108は、順方向リンク126を介して情報をアクセス端末(AT)122に送信すると共に、逆方向リンク124を介して情報をアクセス端末(AT)122から受信している。FDDシステムにおいては、通信リンク118、120、124、及び126は通信に異なる周波数を使用してよい。例えば、順方向リンク120では、逆方向リンク118によって使用される周波数とは異なる周波数を使用してよい。
アンテナの各グループ及び/又はアンテナが通信するように設計されたエリアは、アクセスネットワークのセクターと称することが多い。本実施形態において、アンテナグループはそれぞれ、アクセスネットワーク100によってカバーされるエリアのセクターにおいて、アクセス端末と通信するように設計されている。
順方向リンク120及び126を介した通信において、アクセスネットワーク100の送信アンテナは、異なるアクセス端末116及び122に対する順方向リンクの信号対雑音比を改善するために、ビームフォーミングを利用してよい。また、カバレッジにランダムに分散したアクセス端末への送信にビームフォーミングを使用するアクセスネットワークは、1つのアンテナからすべてのそのアクセス端末に送信を行うアクセスネットワークよりも、隣接セルのアクセス端末への干渉が少ない。
アクセスネットワーク(AN)は、端末と通信するのに使用される固定局又は基地局でよく、アクセスポイント、ノードB、基地局、拡張型基地局、進化型ノードB(eNB)、又はその他何らかの専門用語で呼ばれることもある。アクセス端末(AT)は、ユーザ機器(UE)、無線通信デバイス、端末、アクセス端末、又はその他何らかの専門用語で呼ばれることもある。
図2は、MIMOシステム200における送信機システム210(アクセスネットワークとしても知られている)及び受信機システム250(アクセス端末(AT)又はユーザ機器(UE)としても知られている)の実施形態の簡易ブロック図である。送信機システム210では、多くのデータストリームのトラフィックデータがデータ源212から送信(TX)データプロセッサ214に提供される。
一実施形態において、各データストリームは、それぞれの送信アンテナを介して送信される。TXデータプロセッサ214は、データストリームに対して選択された特定の符号化方式に基づいて、各データストリームについてのトラフィックデータをフォーマット、符号化、及びインターリーブして、符号化データを提供する。
各データストリームについての符号化データを、OFDM技術を使用してパイロットデータと多重化してよい。パイロットデータは、代表的には、既知の様態で処理される既知のデータパターンであり、受信機システムでチャネル応答を推定するのに使用されてよい。そして、各データストリームについての多重化パイロット及び符号化データは、データストリームに対して選択された特定の変調方式(例えば、BPSK、QPSK、M−PSK、又はM−QAM)に基づいて変調(すなわち、シンボルマッピング)されて、変調シンボルを提供する。各データストリームについてのデータレート、符号化、及び変調は、プロセッサ230により実行される命令によって決定されてよい。
そして、すべてのデータストリームについての変調シンボルはTX MIMOプロセッサ220に与えられ、これが(例えば、OFDMの場合に)変調シンボルをさらに処理してよい。そして、TX MIMOプロセッサ220は、N個の変調シンボルストリームをN個の送信機(TMTR)222a〜222tに提供する。特定の実施形態において、TX MIMOプロセッサ220は、ビームフォーミング加重をデータストリームのシンボル及びシンボルが送信されているアンテナに適用する。
各送信機222は、各シンボルストリームを受信及び処理して1つ以上のアナログ信号を提供し、さらに、アナログ信号を調節(例えば、増幅、フィルタリング、及びアップコンバート)して、MIMOチャネルを介した送信に適した変調信号を提供する。そして、送信機222a〜222tからのN個の変調信号がそれぞれ、N個のアンテナ224a〜224tから送信される。
受信機システム250においては、送信された変調信号はN個のアンテナ252a〜252rによって受信され、各アンテナ252からの受信信号は、各受信機(RCVR)254a〜254rに提供される。各受信機254は、それぞれの受信信号を調節(例えば、フィルタリング、増幅、及びダウンコンバート)して、調節された信号をデジタル化してサンプルを与え、さらに、これらのサンプルを処理して対応する「受信」シンボルストリームを提供する。
そして、RXデータプロセッサ260は、特定の受信機処理技術に基づいて、N個の受信機254からのN個の受信シンボルストリームを受信及び処理して、N個の「検出」シンボルストリームを提供する。そして、RXデータプロセッサ260は、各検出シンボルストリームを復調、デインターリーブ、及び復号して、データストリームについてのトラフィックデータを復元する。RXデータプロセッサ260による処理は、送信機システム210でのTX MIMOプロセッサ220及びTXデータプロセッサ214により実行される処理と相補的である。
プロセッサ270は、どのプリコーディングマトリクス(後述)使用するかを定期的に決定する。プロセッサ270は、マトリクス指標部及びランク値部を含む逆方向リンクメッセージを構築する。
逆方向リンクメッセージは、通信リンク及び/又は受信データストリームに関する様々なタイプの情報を含んでよい。そして、逆方向リンクメッセージは、データ源236からの多くのデータストリームについてのトラフィックデータも受信するTXデータプロセッサ238により処理され、変調器280により変調され、送信機254a〜254rにより調節され、送信機システム210に送り戻される。
送信機システム210では、受信機システム250からの変調信号がアンテナ224により受信され、受信機222により調節され、復調器240により復調され、RXデータプロセッサ242により処理されて、受信機システム250により送信された逆方向リンクメッセージを抽出する。そして、プロセッサ230は、ビームフォーミング加重を決定するのにどのプリコーディングマトリクスを使用するかを決定し、そして、抽出されたメッセージを処理する。
図3を参照すると、この図は、本発明の一実施形態による通信デバイスの代替的な簡易機能ブロック図を示している。図3に示されるように、無線通信システムにおける通信デバイスは、図1のUE(若しくはAT)116及び122又は図1の基地局(若しくはAN)100を実現するのに利用可能であり、無線通信システムは、LTEシステムであることが好ましい。通信デバイスは、入力デバイス302、出力デバイス304、制御回路306、中央演算処理装置(CPU)308、メモリ310、プログラムコード312、及びトランシーバ314を含んでよい。制御回路306は、CPU308を介してメモリ310内のプログラムコード312を実行することにより、通信デバイスの動作を制御する。通信デバイス300は、キーボード、キーパッド等の入力デバイス302を介してユーザにより入力された信号を受信することができ、モニタ、スピーカ等の出力デバイス304を介して画像及び音声を出力することができる。トランシーバ314は、無線信号を受信及び送信するのに使用され、受信信号を制御回路306に伝達すると共に、制御回路306により生成された信号を無線で出力する。無線通信システムにおける通信デバイス300は、図1のAN100を実現するのにも利用可能である。
図4は、本発明の一実施形態による図3に示すプログラムコード312の簡易ブロック図である。本実施形態において、プログラムコード312は、アプリケーションレイヤ400、レイヤ3部402、及びレイヤ2部404を含み、レイヤ1部406に結合されている。レイヤ3部402は一般的に、無線リソース制御を実行する。レイヤ2部404は一般的に、リンク制御を実行する。レイヤ1部406は一般的に、物理的接続を実行する。
パケットデータレイテンシは、性能評価のための重要な指標の1つである。パケットデータのレイテンシを低減することにより、システム性能が向上する。3GPP RP−150465では、研究項目「LTEの場合のレイテンシ低減技術についての研究」は、レイテンシ低減のいくつかの技術を調査し、標準化することを目的としている。
3GPP RP−150465によれば、その研究項目の目的は、アクティブUEに対してLTE Uuエアインタフェースを介したパケットデータレイテンシを大幅に低減し、より長い期間(接続された状態で)非アクティブであるUEに対するパケットデータ転送ラウンドトリップレイテンシを大幅に低減するために、E−UTRAN(発展型ユニバーサル地上無線アクセスネットワーク)無線システムに対する拡張を研究することである。この研究領域は、無線インタフェース容量、バッテリ寿命、制御チャネルリソース、仕様の影響及び技術的実現可能性を含むリソース効率性を含む。FDD(周波数分割複信)とTDD(時分割複信)二重モードの両方が考慮される。
3GPP RP−150465によれば、2つの領域を研究し、文書化すべきとされている:
− 高速上りリンクアクセスソリューション
アクティブUE及びより長い時間非アクティブであるが、RRC接続が保たれているUEの場合、スケジューリングされるUL送信のためのユーザプレーンレイテンシを低減することと、現行の規格によって許可されたプレスケジューリングソリューションと比較して、プロトコル及びシグナリングの強化を伴うよりリソース効率のよいソリューションを取得することに焦点を当てるべきであり、現行のTTIの長さと処理時間を維持してもしなくてもよい。
− TTIの短縮と処理時間の短縮
リファレンス信号と物理レイヤ制御シグナリングへの影響を考慮して、0.5msと1つのOFDMシンボルの間のTTI長の仕様の影響を評価し、実現可能性と性能を評価する。
TTI(送信時間間隔)の短縮及び処理時間の短縮は、レイテンシを低減するための効果的なソリューションと考えることができ、これは、送信のための時間単位を(例えば、1ms(14OFDM)シンボルから1〜7OFDMシンボルに)減らすことができるためであり、同様に復号による遅延を減らすことができる。TTI長を小さくするもう1つの利点は、トランスポートブロック(TB)サイズについてより細かい粒度をサポートすることであり、不要なパディングを減らすことができるようにする。一方で、TTI長を小さくすると、物理チャネルは1ms構造に基づいて開発されているため、現在のシステム設計に大きな影響を与える可能性もある。短縮されたTTIは、sTTIとも呼ばれる。
5Gの場合のNew RAT(NR)において使用されるフレーム構造は、時間及び周波数リソースに対して、(3GPP RP−150465で論じられているように)様々なタイプの要求に対応する。例えば、超低遅延(〜0.5ms)から、MTC(マシン型通信)の場合の遅延許容トラフィックまで、eMBB(拡張型モバイルブロードバンド)の場合の高いピークレートから、MTCの場合の非常に低いデータレートまでに対応する。この研究の重要な焦点は、低レイテンシの観点(短縮TTIなど)がある一方で、異なるTTIを混合/適応させるという他の態様もこの研究において考慮されていることである。多様なサービスと要件に加え、NRのすべての機能が初期段階又はリリースに含まれるわけではないため、前方互換性が初期NRフレーム構造設計においては重要な考慮事項である。
プロトコルのレイテンシを低減することは、様々な世代又はリリース間での重要な改善であり、新しいアプリケーション要件(例えばリアルタイムサービス)を満たすことに加えて、効率を改善することができる。レイテンシを低減するためによく採用される効果的な方法は、TTI長を3Gにおける10msからLTEにおける1msに短縮することである。RE1−14のLTE−A Proの文脈においては、既存のLTEヌメロロジ(つまり、LTEにおいてはただ1つのヌメロロジのみが存在する)を変更せずに、TTI内のOFDM(直交周波数分割多重)シンボルの数を減らすことによって、TTIをサブミリ秒レベル(例えば0.1〜0.5ms)にまで短縮するSI(研究項目)又はWI(作業項目)が提案された。この改善の目標は、TCP(Transport Control Protocol)スロースタート問題を解決すること、極端に低いが頻繁なトラフィックを解決すること、又はある程度NRにおける予期された超低遅延を満たすことができることである。処理時間の短縮は、レイテンシを低減するための別の考慮事項である。短いTTIと短い処理時間が常に両立するか(come together)どうかは結論がでていない。採用される方法は、レガシー制御領域の存在等、後方互換性を保持するべきであるため、この研究はいくつかの制限を受ける。LTEヌメロロジの簡単な説明が3GPP TR 36.211で説明されており、次のようである:
(外1−1)
Figure 2018113689
(外1−2)
Figure 2018113689
(外1−3)
Figure 2018113689
(外1−4)
Figure 2018113689
“Downlink resource grid”と題する、3GPP TR 36.211 V13.2.0の図6.2.2−1は、図5として再現されている。
(外2)
Figure 2018113689
“Physical resource blocks parameters”と題する、3GPP TR 36.211 V13.2.0の表6.2.3−1は、図6として再現されている。
(外3)
Figure 2018113689
“Number of OFDM symbols used for PDCCH”と題する、3GPP TR 36.211 V13.2.0の表6.7−1は、図7として再現されている。
(外4)
Figure 2018113689
“PCFICH modulation schemes”と題する、3GPP TR 36.211 V13.2.0の表6.7.2−1は、図8として再現されている。
(外5−1)
Figure 2018113689
(外5−2)
Figure 2018113689
“Supported PDCCH formats”と題する、3GPP TR 36.211 V13.2.0の表6.8.1−1は、図9として再現されている。
(外6)
Figure 2018113689
“PDCCH modulation schemes”と題する、3GPP TR 36.211 V13.2.0の表6.8.3−1は、図10として再現されている。
(外7−1)
Figure 2018113689
(外7−2)
Figure 2018113689
(外7−3)
Figure 2018113689
“OFDM parameters”と題する、3GPP TR 36.211 V13.2.0の表6.12−1は、図11として再現されている。
(外8)
Figure 2018113689
“Downlink modulation”と題する、3GPP TR 36.211 V13.2.0の図6.13−1は、図12として再現されている。
LTEでは、15KHzのサブキャリア間隔という、初期アクセスのために定義されたDL(下りリンク)ヌメロロジが1つしかなく、初期アクセス中に取得される信号及びチャネルは15KHzのヌメロロジに基づいている。セルにアクセスするために、UEはいくつかの基本的な情報を取得する必要があることがある。例えば、UEは、セル探索あるいはセル選択又は再選択中に行われる、セルの時間同期又は周波数同期を最初に取得する。時間又は周波数同期は、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)等の同期信号を受信することによって得ることができる。同期中、セルの中心周波数が分かっており、サブフレーム又はフレーム境界が得られる。PSS又はSSSが取得されるとき、セルのサイクリックプレフィックス(CP)(例えば、ノーマルCP又は拡張CP)、セルのデュプレクスモード(例えば、FDD又はTDD)も同様に知ることができる。次いで、物理ブロードキャストチャネル(PBCH)上で搬送されるマスター情報ブロック(MIB)が受信され、いくつかの基本システム情報、例えば、システムフレーム番号(SFN)、システム帯域幅、物理制御チャネル関連情報が得られる。
UEは、システム帯域幅に応じて適切なリソース要素及び適切なペイロードサイズでDL制御チャネル(例えば、PDCCH(物理下りリンク制御チャネル))を受信し、セルがアクセス可能であるかどうか、UL帯域幅及び周波数、ランダムアクセスパラメータ等のシステム情報ブロックSIB)においてセルにアクセスするために必要なより多くのシステム情報を取得することができる。UEは、次いで、ランダムアクセスを実行し、セルへの接続を要求することができる。
接続セットアップが完了した後、UEは接続モードに移行し、セルへのデータ送信を実行する、又はセルからのデータ受信を実行することが可能になる。データの受信及び送信のためのリソース割り当ては、SIB又はMIBにおいて通知されるシステム帯域幅(例えば、以下の引用にある
(外9)
Figure 2018113689
又は
(外10)
Figure 2018113689
)に従って行われる。また、DL制御チャネルと、これに関連するDLデータチャネル又はULデータチャネルとの固定のタイミング関係が存在する。
例えば、上りリンクグラントがサブフレームnで、DL制御チャネル上で受信されると、その関連するULデータチャネルは、サブフレームn+4で送信される。下りリンク割り当てがサブフレームnで受信されると、関連する下りリンクデータが同じサブフレームで受信され、その対応するHARQ(ハイブリッド自動再送要求)フィードバックがサブフレームn+4で送信される。DL及びULのためのHARQプロセスの数は、タイミング関係に基づいて決定され、例えば、データパケットがHARQプロセスで復号される前に別のデータパケットが他のHARQプロセスと共に送信又は受信される、又はデータパケットが再送されるようにする。より詳細は、3GPP TR 36.211、TS 36.331、TS 36.212、TS 36.213からの次の記載に見出だすことができる。
(外11)
Figure 2018113689
“Processing for one DCI”と題する、3GPP TR 36.212 V13.1.0の図5.3.3−1は、図13として再現されている。
(外12−1)
Figure 2018113689
(外12−2)
Figure 2018113689
(外12−3)
Figure 2018113689
3GPP TS 36.213は次のように述べている:
(外13−1)
Figure 2018113689
(外13−2)
Figure 2018113689
“Maximum number of DL HARQ processes for TDD”と題する、3GPP TR 36.213 V13.1.1の表7−1は、図14としての再現されている。
“Maximum number of DL HARQ processes for FDD−TDD, primary cell frame structure type 2, and serving cell frame structure type 1”と題する、3GPP TR 36.213 V13.1.1の表7−2は、図15として再現されている。
“Maximum number of DL HARQ processes for TDD (UE configured with CEModeA)”と題する、3GPP TR 36.213 V13.1.1の表7−3は、図16として再現されている。
(外14−1)
Figure 2018113689
(外14−2)
Figure 2018113689
“PDCCH and PDSCH configured by SI−RNTI”と題する、3GPP TR 36.213 V13.1.1の表7.1−1は、図17として再現されている。
(外15)
Figure 2018113689
“PDCCH and PDSCH configured by P−RNTI”と題する、3GPP TR 36.213 V13.1.1の表7.1−2は、図18として再現されている。
“MPDCCH and PDSCH configured by P−RNTI”と題する、3GPP TR 36.213 V13.1.1の表7.1−2Aは、図19として再現されている。
(外16−1)
Figure 2018113689
(外16−2)
Figure 2018113689
(外16−3)
Figure 2018113689
(外16−4)
Figure 2018113689
(外16−5)
Figure 2018113689
(外16−6)
Figure 2018113689
(外16−7)
Figure 2018113689
(外16−8)
Figure 2018113689
(外16−9)
Figure 2018113689
(外16−10)
Figure 2018113689
“Number of synchronous UL HARQ processes for TDD”と題する、3GPP TR 36.213 V13.1.1の表8−1は、図20として再現されている。
(外17)
Figure 2018113689
“PDCCH and PUSCH configured by C−RNTI”と題する、3GPP TR 36.213 V13.1.1の表8−3は、図21として再現されている。
(外18)
Figure 2018113689
“PDCCH configured as ‘PDCCH order’ to initiate random access procedure”と題する、3GPP TR 36.213 V13.1.1の表8−4は、図22として再現されている。
(外19−1)
Figure 2018113689
(外19−2)
Figure 2018113689
(外19−3)
Figure 2018113689
“Resource block(s) allocation for BL/CE UE configured with CEModeB”と題する、3GPP TR 36.213 V13.1.1の表8.1.3−1は、図23として再現されている。
(外20−1)
Figure 2018113689
(外20−2)
Figure 2018113689
(外20−3)
Figure 2018113689
(外20−4)
Figure 2018113689
“PDCCH candidates monitored by a UE”と題する、3GPP TR 36.213 V13.1.1の表9.1.1−1は、図24として再現されている。
“PDCCH UE−specific search space candidates monitored by a UE on LAA Scell”と題する、3GPP TR 36.213 V13.1.1の表9.1.1−1Aは、図25として再現されている。
“Scaling factor for PDCCH candidates reduction”と題する、3GPP TR 36.213 V13.1.1の表9.1.1−2は、図26として再現されている。
(外21)
Figure 2018113689
NRに関しては、後方互換性は必須ではないため、ストーリーは異なったものとなる。TTIのシンボルの数を減らすことがTTI長を変更する唯一のツールではないように、ヌメロロジを調整することができる。例としてLTEヌメロロジを使用すると、それは1ms内に14OFDMシンボルと15KHzのサブキャリア間隔とを含む。サブキャリア間隔が30KHzになると、同じFFTサイズ及び同じCP構造を想定すれば、1ms内に28個のOFDMシンボルが存在することになり、等価的に、TTI内のOFDMシンボルの数を同じに保った場合に、TTIが0.5msになる。これは、異なるTTI長間の設計が、サブキャリア間隔で実行される良好なスケーラビリティを有して共通に保たれ得ることを示唆している。もちろん、サブキャリア間隔の選択、例えば、FFTサイズ、PRBの定義/数、CPの設計、サポート可能なシステム帯域幅に対するトレードオフが常に存在する。一方で、NRはより大きいシステム帯域幅、より大きいコヒーレンス帯域幅を考慮しているため、より大きなサブキャリア間隔を含めることは自然な選択である。
上記に論じたように、単一のヌメロロジで多様な要求をすべて満たすことは非常に難しい。したがって、最初の会合において、複数のヌメロロジを採用することが合意されている。異なるヌメロロジ間での多重化の能力に加えて、標準化の努力、実装の努力、を考慮して、積分多重関係(integral multiple relationship)のような、異なるヌメロロジ間で何らかの関係を持たせることが有益であろう。
いくつかのヌメロロジファミリが挙げられている。そのうちの1つは、LTE 15KHzに基づき、いくつかの他のヌメロロジ(以下のAlt.2〜4)は、1ms内に2のN乗のシンボルを可能にする:
・ NRの場合、サブキャリア間隔の複数の値をサポートする必要がある。
− サブキャリア間隔の値は、サブキャリア間隔の特定の値にN(Nは整数)を掛けたものから導かれる。
・ Alt.1:サブキャリア間隔値は、15kHzサブキャリア間隔(すなわち、LTEベースのヌメロロジ)を含む
・ Alt.2:サブキャリア間隔値は、CP長を含む均一なシンボル持続時間で17.5kHzサブキャリア間隔を含む
・ Alt.3:サブキャリア間隔値は、CP長を含む均一なシンボル持続時間で17.06kHzサブキャリア間隔を含む
・ Alt.4:サブキャリア間隔値は、21.33kHz
・ 注:他の選択肢は排除されない
・ FFS:特定の値の正確な値及び可能なNの値
− 可能なサブキャリア間隔の値は、RAN1#85においてさらに絞り込まれる。
また、所与のヌメロロジファミリの乗数に制限が存在するかどうかが論じられているが、2の累乗(以下のAlt.1)であれば、異なるヌメロロジが時間領域で多重化されているときに大きなオーバーヘッドを導入することなく、異なるヌメロロジをより容易に多重化することができるため、いくらかの関心を引く:
・ RAN1は、さらに検討を続け、次回の会合において次の選択肢の間で結論を出すとしている。
− Alt.1:
> NRのスケーラブルなヌメロロジのためのサブキャリア間隔は、次のようにスケールされるべきである。
> fsc=f*2
> ここで
− fはFFSとする。
− mは、可能な値のセットから選択された整数とする。
− Alt.2:
> NRのスケーラブルなヌメロロジのためのサブキャリア間隔は、次のようにスケールされるべきである。
> fsc=f*M
> ここで
− fはFFSとする。
− Mは、可能な正の値のセットから選択された整数とする。
通常、RAN1は帯域に依存しない方法で作業を行う。すなわち、スキーム/機能はすべての周波数帯域に適用可能であると想定され、次のRAN4が、いくつかの組み合わせが非現実的である、又は展開を合理的に行うことができるかどうかを考慮して関連するテストケースを導出する。このルールはNRでも引き続き想定されるが、企業によっては、NRの周波数範囲が非常に高いため、制限が確実に存在するだろうと見ている。
・ NRの研究のために、RAN1は(必ずしもすべてではないが)複数のOFDMヌメロロジが同じ周波数範囲に適用できると想定している。
− 注:RAN1は、サブキャリア間隔の非常に低い値を非常に高いキャリア周波数に適用するとは想定していない。
URLLC(高信頼低遅延通信)は、eMBB(拡張型モバイルブロードバンド)サービスのような通常のトラフィックの大部分と比較して、非常にタイトなタイミング要件を有するサービスタイプである。レイテンシ要件を満たすために、送信間隔/スケジューリング間隔を短くする必要がある。
送信間隔/スケジューリング間隔を短縮する1つの方法は、サブキャリア間隔を大きくして、時間領域におけるOFDMシンボル長を小さくすることである。例えば、サブキャリア間隔が15KHzである場合、7OFDMシンボルの送信間隔は0.5msを占める一方、サブキャリア間隔は60KHzである場合、7OFDDMシンボルの送信間隔は0.125msを占めるため、厳しいタイミング要件をより容易に満たすことができる。
別の方法は、送信間隔内のOFDMシンボルの数を減らすことである。例えば、サブキャリア間隔が15kHzに保たれる場合、送信間隔内のOFDMシンボル数を14から2に減らすと、送信時間間隔は1msから約0.14msに変更され、サブキャリア間隔を小さくするのと同様の効果をもたらす。
もちろん、2通りの方法を併用することができる。他方、eMBBサービスも、小さくされた送信間隔を使用することができるかもしれないが、データトラフィック量当たりのより大きくなる制御シグナリングオーバーヘッド、(消費電力を増加させる可能性がある)より短い又はより頻繁な制御チャネル受信間隔、(より複雑な)より短い処理時間等、いくらかの潜在的な副作用が生じるため、かならずしもそうする必要はない。したがって、通信システムは、異なるサービス又はUEに対して異なる送信間隔で動作することが期待される。そして、システム内で異なる送信時間間隔を多重化することは挑戦的なものとなる。次のように3GPP RAN1#86bis Chairman‘s Noteにおいては、この観点に関するいくつかの進行中の議論があることが示されている:
(外22)
Figure 2018113689
NRにおいては、緊急/遅延に敏感ではないかもしれないが信頼できるものである必要とされるサービス、例えばスマートファクトリアプリケーションが存在する可能性がある。また、ビデオストリーミング、バーチャルリアリティ、拡張現実、ホログラム等、真に信頼できるものである必要はないが、遅延に敏感なサービスが存在する可能性もある。
また、RAN1#86bis Chairman’s Note及びRAN1#87 Chairman’s Note[6][7]は、yをスロット内のOFDMシンボルの数として、スロット、ミニスロット(スロットの短縮版)等のスケジューリング単位として送信間隔を定義する方法を次のように説明している。
(外23)
Figure 2018113689
RAN1#87 Chairman’s Noteは次のように述べている:
(外24−1)
Figure 2018113689
(外24−2)
Figure 2018113689
前方互換性を改善するために、制御チャネルとデータチャネルとのタイミング関係は、LTEにおける固定された関係とは異なり、より柔軟な方法で設計される:
(外25−1)
Figure 2018113689
(外25−2)
Figure 2018113689
上記に論じたように、NRのスケジューリングはより柔軟になり、スケジューリングのタイミング関係に反映される。例えば、下りリンク割り当ては、サブフレームnで到着することができ、サブフレームn+2〜n+9のうちの1つ以上の複数のサブフレームで関連するDLデータを示す。関連するフィードバックは、サブフレームn+4〜n+11で送信されることができる。上記の数は単なる例である。実際の数には任意の数を使用することができる。
上りリンクデータ送信は、同様のタイミング関係を有することができる。例えば、UEがサブフレームnにおいて上りリンクグラントを受信し、対応する上りリンク送信が、上りリンクグラントで示され得るサブフレームn+2〜サブフレームn+9のうちの1つ以上のサブフレームで起こることができる。さらに、データ送信期間は、異なる要件又はサービスのタイプに従ってスケジューリングすることができる。例えば、スケジューリング単位は、サブフレーム、スロット、ミニスロット、又はOFDMシンボルとすることができ、動的に変更することができる。また、データについてのヌメロロジは、このデータのスケジューリングの柔軟性に影響を与える可能性がある。例えば、15KHz/60KHzのサブキャリア間隔は、データ送信継続時間(time duration)を変化させる可能性がある。さらに、HARQプロセスの数は、UE処理能力を考慮して、様々であってよい。
上記の説明又は以下の説明では、サブフレームは、スロット、ミニスロット、シンボル、又はシンボルのセットなど、任意の他の時間単位又は期間によって置き換えることができる。
上記の仮定の下で、UEは、送信が実際に起きる前に、下りリンク割り当て又は上りリンクグラントの束を受信することができる。例えば、UEは、サブフレームnでHARQプロセスXのためのDL割り当てを受信して、サブフレームn+7にDLデータ受信をスケジューリングし、サブフレームnでHARQプロセスXのためのDL割り当てを受信して、サブフレームn+8にDLデータ送信をスケジューリングする。2つの下りリンク割り当てが同じUEの同じHARQプロセスに対して非常に近接してスケジューリングされている場合、UEは、時間内にサブフレームn+7でスケジューリングされたDLデータの処理を終了して、サブフレームn+8でスケジューリングされたDLデータの処理を開始することができない可能性がある。さらに、また、サブフレームn+7での下りリンクデータの送信期間がサブフレームであるが、サブフレームn+8での下りリンクデータの送信期間がミニスロットである場合、後のもののトランスポートブロックサイズが通常より小さいため、処理がより一層難しいが、前のもの(previous one)より早く復号を終了することができる可能性がある。代替的には、下りリンク復号において生じる余分な遅延によりフィードバックがタイムリーに準備できない間に復号を終了することができ、例えば、後のデータの復号は前のデータの復号を待つ必要がある。UEは、対応するデータを正しく受信/復号する方法を判断することが可能であるべきである。
この問題の別の例は、ULグラント/下りリンク割り当てがシーケンシャルな方法で配信できない可能性があることである。例えば、UEには、上りリンク送信がサブフレームn+8で実行されることを示す、サブフレームnでの上りリンクグラントがスケジューリングされ、UEには、上りリンク送信がサブフレームn+7で実行されることを示す、サブフレームn+4でスケジューリングされる。UEが2つのスケジューリングを正しく処理することができる方法は別の問題である。
その問題を説明するために使用された上記の例では、DLはULに、逆もまた同様に変更することができる。
本発明の第1の一般的概念は、2つの上りリンクグラント又は下りリンク割り当てが2つの異なるサブフレーム、スロット、ミニスロット又はデータ送信のためのシンボルを示す場合であっても、UEが、上りリンクグラント/下りリンク割り当てが前の上りリンクグラント又は前の下りリンク割り当てをオーバライドするかどうかを判断することである。
判断の例は、2つの異なるサブフレーム、スロット、ミニスロット、又はシンボルの間の距離とすることができる。例えば、距離が短い場合、UEはオーバライド動作を考慮する。距離が長い場合、UEは、2つの異なるサブフレーム/スロット/ミニスロット/シンボルの両方についての送信を処理する。上記の例において、短い又は長いとは、例えばUE処理時間、往復時間(RTT)、事前設定時間値、又は固定時間値などの基準時間よりも短い又は長いことを意味するとしてよい。
判断の第2の例は、2つのスケジューリングされた下りリンクデータ送信期間の長さであり得る。例えば、前のデータ送信期間が後のデータ送信期間(例えば、ミニスロット)よりも長い場合(例えば、サブフレーム)、後のものが前のものをオーバライドする。一方、前のデータ送信期間が後のデータ送信期間と同じ又はこれより短い場合には、UEは下りリンク送信の両方を受信する。より具体的には、2つの上りリンクグラント又は下りリンク割り当ては、同じHARQプロセスに対応することができる。特に、2つの上りリンクグラント又は下りリンク割り当ては、2つの対応するデータ送信又は受信の前に送信されることができる。
上記の一般的概念の第1の特別な場合は、UEが常に両方のデータ送信を受信することである。例外の場合が、例えば、データ送信期間又はサブキャリア間隔に従って考慮されることができる。この特殊なケースの例は、UE又はeNBが、前のデータが、再送が必要でないように、首尾良く送信可能でなければならないことが保証され得ることである。別の例は、前のデータが失敗する可能性があるが、前のデータは非常に遅延に敏感であるため、再送信は無意味であるということである。
さらなる例は、UEが未使用バッファの一部を使用して後のデータ送信を記憶することができることである。例えば、前のデータが通常のHARQバッファに記憶され、後のデータ送信が特別バッファ(例えば、他のHARQプロセスからの未使用バッファ)に記憶される。同じHARQプロセス内に2つのデータ受信がある場合、UEは、再送信のための上りリンクグラント/下りリンク割り当てで搬送する情報に従って、再送信が前のものについてか又は後のものについてかを識別する必要がある。その情報の例は、TBサイズ、TTI長さ、又はサブキャリア間隔とすることができる。このような状況では、フィードバックを待つことなく、HARQプロセスを連続的に又は非常に近接させて使用することができる。
上記の一般的概念の第2の特殊な場合は、UEが常に前のものを後のものでオーバライドすることである。例外の場合が、例えば、データ送信期間又はサブキャリア間隔に従って考慮されることができる。
本発明の第2の一般的な概念は、2つの上りリンクグラント又は下りリンク割り当てが2つの異なるサブフレーム、スロット、ミニスロット又はデータ送信のためのシンボルを示す場合であっても、上りリンクグラント又は下りリンク割り当てが前の上りリンクグラント又は前の下りリンク割り当てをオーバライドするかどうかを基地局が明示的に示すことである。その指示は明示的又は暗黙的とすることができる。例えば、後の上りリンクグラント又は下りリンク割り当てにおけるフィールドは、前の上りリンクグラント又は前の下りリンク割り当てをオーバライドするかどうかを示す。一実施形態では、オーバライドするかどうかは、後の上りリンクグラント又は下りリンク割り当てのトランスポートブロックサイズ(TBS)、サブキャリア間隔、又は変調符号化方式(MCS)又は新規のデータインジケータ(NDI)によって示すことができる。
代替的には、その情報は、HARQプロセスIDによって示されることができる。一例は、HARQプロセスIDの数がHARQプロセスの実数の数倍、例えば2倍であることである。一例を挙げれば、HARQプロセスの総数が2である場合、HARQプロセスを示すために2ビットを使用することができ、‘00’、‘10’は、HARQプロセス1に関連付けられ、‘01’、‘11’は、HARQプロセス2に関連付けられる。‘00’は、HARQプロセス1を受信/送信し、HARQプロセス1に関連する前の上りリンクグラント/下りリンク割り当てを上書きしないことを意味することができる。‘10’は、HARQプロセス1を受信/送信し、HARQプロセス1に関連する前の上りリンクグラント/下りリンク割り当てを上書きしないことを意味することができる。いくつかのHARQプロセスが、1つのHARQプロセスIDに関連付けられることができ、いくつかのHARQプロセスが、複数のHARQプロセスIDに関連付けられることができる。1つのHARQプロセスIDに関連付けられたHARQプロセスの場合、オーバライド動作は事前に決定される。
代替的には、同じ例では、HARQプロセスID‘00’及び‘10’はHARQプロセス1に関連付けられ、HARQプロセスID‘01’及び‘11’はHARQプロセス2に関連付けられることができる。上りリンクグラント又は下りリンク割り当ては、同じHARQプロセスIDを有する上りリンクグラント又は下りリンク割り当てをオーバライドし、異なるHARQプロセスIDを有する上りリンクグラント又は下りリンク割り当てをオーバライドしない。HARQプロセスID‘00’を有する上りリンクグラント又は下りリンク割り当ては、HARQプロセスID‘00’を有する上りリンクグラント又は下りリンク割り当てをオーバライドし、それらの両方がHARQプロセス1に対応しているとしても、上りリンクグラント又はHARQプロセスID‘10’を有する上りリンクグラント又は下りリンク割り当てをオーバライドしない。この例では、2つ以上のHARQプロセスIDをあるHARQプロセスに関連付けて、基地局によりスケジューリングの柔軟性を与えることができる。より具体的には、2つの上りリンクグラント又は下りリンク割り当ては、同じHARQプロセスに対応する。特に、2つの上りリンクグラント又は下りリンク割り当ては、両方とも2つの対応するデータ送信又は受信の前に送信される。
一実施形態では、UEは、ファクタに依存して後の制御チャネルが前の制御チャネルをオーバライドするかどうかを決定し、後の制御チャネル及び前の制御チャネルは、2つの異なるデータ送信期間/間隔における2つのデータチャネルに関連する。両方の制御チャネルは、両方のデータチャネルより早く送信されることができる。
一実施形態では、そのファクタは、2つの異なる送信期間の間の距離とすることができる。例えば、距離が特定値よりも小さい場合、後の制御チャネルは前の制御チャネルをオーバライドする。距離が特定値よりも大きい場合、後の制御チャネルは前の制御チャネルをオーバライドしない。特定の値は、固定値又は構成値にすることができる。一実施形態では、特定値は、UE処理能力又は往復時間に応じて決定することができる。
そのファクタは、2つの異なる送信期間間の長さの比較とすることもできる。一実施形態では、2つの異なる送信期間が異なる長さを有する場合、後の制御チャネルは、前の制御チャネルをオーバライドする。後の制御チャネルは、後の制御チャネルに関連するデータが、前の制御チャネルに関連するデータの送信期間と比較してより短い送信期間を有する場合、前の制御チャネルをオーバライドすることができる。一実施形態では、2つの異なる送信期間が同じ長さである場合、後の制御チャネルは前の制御チャネルをオーバライドしない。ファクタは、2つの異なる送信期間のサブキャリア間隔とすることができる。一実施形態では、2つの異なる送信期間が異なるサブキャリア間隔を有する場合、後の制御チャネルが前の制御チャネルをオーバライドすることができる。特に、後の制御チャネルは、後の制御チャネルに関連するデータが、前の制御チャネルに関連するデータのサブキャリア間隔と比較してより大きなサブキャリア間隔を有する場合、前の制御チャネルをオーバライドすることができる。
一実施形態では、2つの異なる送信期間が同じサブキャリア間隔を有する場合、後の制御チャネルが前の制御チャネルをオーバライドしない。「後の制御チャネルが前の制御チャネルをオーバライドする」とは、(i)UEが、前の制御チャネルに従ってデータを受信又は送信しないこと、又は(ii)UEが、前の制御チャネルに従ってデータを部分的に受信又は送信し、スケジューリングされたリソースの一部でデータを送信/受信しないことを意味することができる。「後の制御チャネルが前の制御チャネルをオーバライドしない」とは、UEが前の制御チャネルと後の制御チャネルの両方に従ってデータを受信又は送信することを意味することができる。一実施形態では、2つの制御チャネル及び/又は2つのデータチャネルを同じHARQプロセスに関連付けることができる。
別の実施形態では、基地局は、ファクタに依存して後の制御チャネルが前の制御チャネルをオーバライドするかどうかをUEに指示し、後の制御チャネル及び前の制御チャネルは、2つの異なるデータ送信期間における2つのデータチャネルに関連付けられる。両方の制御チャネルは、両方のデータチャネルより早く送信されることができる。その指示は、後の制御チャネルにおいて明示的に指示されることができる。代替的は、その指示は、後の制御チャネルにおいて情報とともに暗示的に指示されることができる。その情報は、TBS、MCS、NDI、又はサブキャリア間隔とすることができる。一実施形態では、その情報は、制御チャネルとデータチャネルとの間のタイミング関係とすることができる。その情報は、HARQプロセスIDとすることができる。
一実施形態では、「後の制御チャネルが前の制御チャネルをオーバライドする」とは、(i)UEが、前の制御チャネルに従ってデータを受信又は送信しないこと、又は(ii)UEが、前の制御チャネルに従ってデータを部分的に受信又は送信し、スケジューリングされたリソースの一部でデータを送信/受信しないことを意味することができる。「後の制御チャネルが前の制御チャネルをオーバライドしない」とは、UEが前の制御チャネルと後の制御チャネルの両方に従ってデータを受信又は送信することを意味することができる。一実施形態では、2つの制御チャネル及び/又は2つのデータチャネルを同じHARQプロセスに関連付けることができる。
図27は、例示的な一実施形態による、UEの観点からのフローチャート2700である。ステップ2705では、UEが、第1の時間間隔のデータ送信期間を有する第1のデータ送信の送信をスケジューリングする第1の制御情報を受信する。一実施形態では、第1の時間間隔は、サブフレーム、スロット、ミニスロット、シンボル、又はシンボルのセットとすることができる。
ステップ2710では、UEが、第2の時間間隔のデータ送信期間を有する第2のデータ送信の送信をスケジューリングする第2の制御情報を受信する。第1のデータ送信と第2のデータ送信は時間領域において重ならない。同様に、第2の時間間隔は、サブフレーム、スロット、ミニスロット、シンボル、又はシンボルのセットとすることができる。さらに、第1の時間間隔及び第2の時間間隔は、異なる長さを有することができる。ステップ2715では、UEが、第1の制御情報に従って第1のデータ送信に対する処理を実行し、UEが、第2の制御情報に従って第2のデータ送信に対するその処理を実行しない。
一実施形態では、第1のデータ送信は第1のサブフレームにあり、第2のデータ送信は第2のサブフレームにあることができる。代替的には、第1のデータ送信は、第1のスロットにあり、第2のデータ送信は、第2のスロットにあることができる。代替的には、第1のデータ送信は、第1のミニスロットにあり、第2のデータ送信は、第2のミニスロットにあることができる。代替的には、第1のデータ送信は、第1のシンボルにあり、第2のデータ送信は、第2のシンボルにあることができる。代替的には、第1のデータ送信は、第1のシンボルのセットにあり、第2のデータ送信は、第2のシンボルのセットにあることができる。
一実施形態では、その処理は、送信、受信、又は復号を含む。一実施形態では、UEは、UE処理能力及び第1のデータ送信の存在により、第2のデータ送信に対するその処理を実行しなくてもよい。また、UEは、基準が満たされる場合、第2のデータ送信に対するその処理を実行せず、それ以外の場合、UEは、第2のデータ送信に対するその処理を実行することができる。一実施形態では、基準は、距離を特定の値と比較することであり、その距離は、時間領域における第1の時間間隔と第2の時間間隔との間である。代替的には、基準は、第1の時間間隔と第2の時間間隔が同じ長さを有するかどうかとすることができる。基準は、第1のデータ送信の第1のサブキャリア間隔と第2のデータ送信の第2のサブキャリア間隔との比較とすることもできる。
一実施形態では、UEは、時間領域における第1の時間間隔と第2の時間間隔との間の距離が特定値よりも大きい場合、第2のデータ送信に対するその処理を実行することができる。特定値は、UE処理能力に従って決定することができる。
一実施形態では、UEは、第1の時間間隔及び第2の時間間隔が異なる長さを有する場合、第2のデータ送信に対するその処理を実行しなくてよい。代替的には、UEは、第1のデータ送信の第1のサブキャリア間隔と第2のデータ送信の第2のサブキャリア間隔が異なる場合、第2のデータ送信に対するその処理を実行しなくてよい。
図3及び図4に戻って参照すると、UEの例示的な一実施形態では、デバイス300は、メモリ310に記憶されたプログラムコード312を含む。CPU308は、プログラムコード312を実行して、UEが、(i)第1の時間間隔のデータ送信期間を有する第1のデータ送信の送信をスケジューリングする第1の制御情報を受信することと、(ii)第2の時間間隔のデータ送信期間を有する第2のデータ送信の送信をスケジューリングする第2の制御情報を受信することと(ここで、第1のデータ送信と該第2のデータ送信は時間領域において重ならない)、(iii)第1の制御情報に従って第1のデータ送信に対する処理を実行し、第2の制御情報に従って第2のデータ送信に対するその処理を実行しないことと、を行うこと可能にする。さらに、CPU308は、プログラムコード312を実行して、本明細書で説明した上述の動作及びステップ又は他のすべてを実行することができる。
図28は、UEの観点からの例示的な一実施形態によるフローチャート2800である。ステップ2805では、UEが、第1の時間間隔で第1のデータチャネルの送信をスケジューリングする第1の制御チャネルを受信する。ステップ2810では、UEが、第2の時間間隔で第2のデータチャネルの送信をスケジューリングする第2の制御チャネルを受信する。第2の制御チャネルは第1の制御チャネルをオーバライド(override)する。
図3及び図4に戻って参照すると、UEの例示的な一実施形態では、デバイス300は、メモリ310に記憶されたプログラムコード312を含む。CPU308は、プログラムコード312を実行して、UEが(i)第1の時間間隔で第1のデータチャネルの送信をスケジューリングする第1の制御チャネルを受信することと、(ii)第2の時間間隔で第2のデータチャネルの送信をスケジューリングする第2の制御チャネルを受信することと(ここで、第2の制御チャネルは第1の制御チャネルをオーバライドする)、を行うことを可能にする。さらに、CPU308は、プログラムコード312を実行して、本明細書で説明した上述の動作及びステップ又は他のすべてを実行することができる。
図29は、UEの観点からの例示的な一実施形態によるフローチャート2900である。ステップ2905では、UEが、第1の時間間隔で第1のデータチャネルの送信をスケジューリングする第1の制御チャネルを受信する。ステップ2910では、UEは、第2の時間間隔で第2のデータチャネルの送信をスケジューリングする第2の制御チャネルを受信する。UEは、基準に従って第2の制御チャネルが第1の制御チャネルをオーバライドするかどうかを決定する。
図3及び図4に戻って参照すると、UEの例示的な一実施形態では、デバイス300は、メモリ310に記憶されたプログラムコード312を含む。CPU308は、プログラムコード312を実行して、UEが(i)第1の時間間隔で第1のデータチャネルの送信をスケジューリングする第1の制御チャネルを受信することと、(ii)第2の時間間隔で第2のデータチャネルの送信をスケジューリングする第2の制御チャネルを受信することと、を行うことを可能にする。UEは、基準に従って第2の制御チャネルが第1の制御チャネルをオーバライドするかどうかを決定する。さらに、CPU308は、プログラムコード312を実行して、本明細書で説明した上述の動作及びステップ又は他のすべてを実行することができる。
上記に説明し、図28及び図29に示した実施形態の文脈においては、一実施形態では、第1の制御チャネルは、第1のデータチャネル及び第2のデータチャネルの送信前に受信されることが可能である。同様に、第2の制御チャネルは、第1のデータチャネル及び第2のデータチャネルの送信の前に受信されることができる。
一実施形態では、第1の制御チャネル及び第2の制御チャネルは、同じHARQプロセスに関連付けられることができる。同様に、第1のデータチャネル及び第2のデータチャネルは、同じHARQプロセスに関連付けられることができる。第1のデータチャネル及び第2のデータチャネルは、下りリンクデータチャネル又は上りリンクデータチャネルとすることができる。
一実施形態では、第1の時間間隔は、サブフレーム、スロット、ミニスロット、又はOFDMシンボルとすることができる。同様に、第2の時間間隔は、サブフレーム、スロット、ミニスロット、又はOFDMシンボルとすることができる。さらに、第1の時間間隔及び第2の時間間隔は、異なるタイミング位置を有することができる。
一実施形態では、第2の制御チャネルは、第1の制御チャネルよりも遅く送信されることができる。さらに、第2のデータチャネルは、第1のデータチャネルよりも遅く送信されることができる。
一実施形態において、「第2の制御チャネルが第1の制御チャネルをオーバライドする」とは、(i)UEが、第1の制御チャネルに従ってデータを受信又は送信しないこと、(ii)UEが、第1の制御チャネルに従ってデータを部分的に受信又は送信するが、第1の制御チャネルによってスケジューリングされたリソースの一部でデータを受信又は送信しないことを意味することができる。「第2の制御チャネルが第1の制御チャネルをオーバライドしない」とは、UEが第1の制御チャネル及び第2の制御チャネルの両方に従ってデータを受信又は送信することを意味することができる。
一実施形態では、基準は、時間領域における第1の時間間隔と第2の時間間隔との間の距離を特定値と比較することとすることができる。距離が特定値よりも小さい場合、第2の制御チャネルは第1の制御チャネルをオーバライドすることができる。距離が特定値よりも大きい場合、第2の制御チャネルは、第1の制御チャネルをオーバライドしなくてよい。一実施形態では、特定値は、基地局によって構成されることができる。特定値は固定値とすることができる。さらに、特定値は、UE処理能力に応じて、又は往復時間(round trip time)に従って決定することができる。
一実施形態では、基準は、第1の時間間隔と第2の時間間隔が同じ長さを有するかどうかとすることができる。第2の制御チャネルは、第2の時間間隔の長さが第1の時間間隔の長さより小さい場合、又は第2の時間間隔の長さが第1の時間間隔の長さと異なる場合、第1の制御チャネルをオーバライドすることができる。さらに、第2の制御チャネルは、第2の時間間隔及び第1の時間間隔が同じ長さを有する場合、第1の制御チャネルをオーバライドしなくてよい。
一実施形態では、基準は、第1のデータチャネルの第1のサブキャリア間隔と第2のデータチャネルの第2のサブキャリア間隔との比較である。第2の制御チャネルは、第1のサブキャリア間隔及び第2のサブキャリア間隔が異なる場合、又は第2のサブキャリア間隔が第1のサブキャリア間隔よりも大きい場合、第1の制御チャネルをオーバライドすることができる。さらに、第2の制御チャネルは、第2のサブキャリア間隔が第1のサブキャリア間隔と同じである場合、第1の制御チャネルをオーバライドしなくてよい。
図30は、基地局の観点からの例示的な一実施形態によるフローチャート3000である。ステップ3005では、基地局が、第1の時間間隔で第1のデータチャネルの送信をスケジュールする第1の制御チャネルをUEに送信する。ステップ3010では、基地局が、第2の時間間隔で第2のデータチャネルの送信をスケジュールする第2の制御チャネルをUEに送信する。基地局は、第2の制御チャネルが第1の制御をオーバライドするかどうかを示す指示を送信する。
図3及び図4に戻って参照すると、基地局の例示的な一実施形態では、デバイス300は、メモリ310に記憶されたプログラムコード312を含む。CPU308は、プログラムコード312を実行して、基地局が(i)第1の時間間隔で第1のデータチャネルの送信をスケジュールする第1の制御チャネルをUEに送信することと、(ii)第2の時間間隔で第2のデータチャネルの送信をスケジュールする第2の制御チャネルをUEに送信することと、を行うことを可能にする。基地局は、第2の制御チャネルが第1の制御チャネルをオーバライドするかどうかを示す指示を送信する。さらに、CPU308は、プログラムコード312を実行して、本明細書で説明した上述の動作及びステップ又は他のすべてを実行することができる。
図31は、UEの観点からの例示的な一実施形態によるフローチャート3100である。ステップ3105では、UEが、第1の時間間隔で第1のデータチャネルの送信をスケジュールする第1の制御チャネルを受信する。ステップ3110では、UEが、第2の時間間隔で第2のデータチャネルの送信をスケジュールする第2の制御チャネルを受信する。UEは、第2の制御チャネル上の指示に従って第2の制御チャネルが第1の制御チャネルをオーバライドするかどうかを決定する。
図3及び図4に戻って参照すると、UEの例示的な一実施形態では、デバイス300は、メモリ310に記憶されたプログラムコード312を含む。CPU308は、プログラムコード312を実行して、UEが(i)第2の時間間隔で第2のデータチャネルの送信をスケジュールする第2の制御チャネルを受信することと(ここで、UEは、第2の制御チャネル上の指示に従って第2の制御チャネルが第1の制御チャネルをオーバライドするかどうかを決定する)、(ii)第2の時間間隔で第2のデータチャネルの送信をスケジュールする第2の制御チャネルを受信することと(ここで、UEは、第2の制御チャネル上の指示に従って第2の制御チャネルが第1の制御チャネルをオーバライドするかどうか決定する)、を行うことを可能にする。さらに、CPU308は、プログラムコード312を実行して、本明細書で説明した上述の動作及びステップ又は他のすべてを実行することができる。
図30及び図31に示した実施形態の文脈においては、一実施形態では、第1の制御チャネルは、第1のデータチャネル及び第2のデータチャネルの送信前に送信又は受信されることができる。同様に、第2の制御チャネルは、第1のデータチャネル及び第2のデータチャネルの送信前に送信又は受信されることができる。
一実施形態では、第1の制御チャネル及び第2の制御チャネルは、同じHARQプロセスに関連付けられることができる。同様に、第1のデータチャネル及び第2のデータチャネルは、同じHARQプロセスに関連付けられることができる。第1のデータチャネル及び第2のデータチャネルは、下りリンクデータチャネル又は上りリンクデータチャネルとすることができる。
一実施形態では、第1の時間間隔は、サブフレーム、スロット、ミニスロット、又はOFDMシンボルとすることができる。同様に、第2の時間間隔は、サブフレーム、スロット、ミニスロット、又はOFDMシンボルとすることができる。さらに、第1の時間間隔及び第2の時間間隔は、異なるタイミング位置を有することができる。
一実施形態では、第2の制御チャネルは、第1の制御チャネルよりも遅く送信されることができる。同様に、第2のデータチャネルは、第1のデータチャネルよりも遅く送信されることができる。
一実施形態では、指示は、第2の制御チャネル上のフィールドとすることができる。フィールドは新しいフィールドとすることができる。さらに、フィールドは、TBS、NDI、MCS、サブキャリア間隔、又はHARQプロセスIDを示すフィールドとすることができる。
以上、本開示の種々の態様を説明した。当然のことながら、本明細書の教示内容を多種多様な形態で具現化してよく、本明細書に開示されている如何なる特定の構造、機能、又は両者も代表的なものに過ぎない。本明細書の教示内容に基づいて、当業者には当然のことながら、本明細書に開示される態様は、他の如何なる態様からも独立に実装されてよく、これら態様のうちの2つ以上が種々組み合わされてよい。例えば、本明細書に記載された態様のうちの任意の数の態様を用いて、装置が実装されてよく、方法が実現されてよい。追加的に、本明細書に記載された態様のうちの1つ以上の追加又は代替で、他の構造、機能、又は構造と機能を用いて、このような装置が実装されるようになっていてもよいし、このような方法が実現されるようになっていてもよい。上記概念の一部の一例として、いくつかの態様においては、パルス繰り返し周波数に基づいて、同時チャネルが確立されてよい。いくつかの態様においては、パルス位置又はオフセットに基づいて、同時チャネルが確立されてよい。いくつかの態様においては、時間ホッピングシーケンスに基づいて、同時チャネルが確立されてよい。いくつかの態様において、パルス繰り返し周波数、パルス位置又はオフセット、及び時間ホッピングシーケンスに基づいて、同時チャネルが確立されてよい。
当業者であれば、多様な異なるテクノロジ及び技術のいずれかを使用して、情報及び信号を表わしてよいを理解するであろう。例えば、上記説明全体で言及されることがあるデータ、命令、コマンド、情報、信号、ビット、シンボル、及びチップは、電圧、電流、電磁波、磁場若しくは粒子、光場若しくは粒子、又はこれらの任意の組合せによって表わしてよい。
さらに、当業者には当然のことながら、本明細書に開示された態様に関連して説明した種々の例示的な論理ブロック、モジュール、プロセッサ、手段、回路、及びアルゴリズムステップは、電子的ハードウェア(例えば、ソースコーディング又はその他何らかの技術を用いて設計することがあるデジタル実装、アナログ実装、又はこれら2つの組合せ)、命令を含む種々の形態のプログラム若しくは設計コード(本明細書においては便宜上、「ソフトウェア」又は「ソフトウェアモジュール」と称されることがある)、又は両者の組合せとして実装されてよい。このハードウェア及びソフトウェアの互換性を明確に示すため、種々の例示的な構成要素、ブロック、モジュール、回路、及びステップを、概略的にそれぞれの機能の観点から上述した。そのような機能がハードウェアとして実装されるか、ソフトウェアとして実装されるかは、特定用途及びシステム全体に課される設計上の制約によって決まる。当業者であれば、特定各用途に対して、説明した機能を様々なやり方で実装してもよいが、そのような実装の決定は、本開示の範囲からの逸脱の原因として解釈されるべきではない。
追加的に、本明細書に開示される態様に関連して説明した種々の例示的な論理ブロック、モジュール、及び回路は、集積回路(「IC」)、アクセス端末、又はアクセスポイント内で実装される、あるいはこれらによって実行されてよい。ICとしては、汎用プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、その他プログラマブル論理デバイス、ディスクリートゲート若しくはトランジスタロジック、ディスクリートハードウェアコンポーネント、電気部品、光学部品、機械部品、又は本明細書で説明した機能を実行するように設計されたこれらの任意の組合せを含み、IC内、IC外、又はその両方に存在するコード又は命令を実行してよい。汎用プロセッサは、マイクロプロセッサとしてよいが、代替として、プロセッサは、従来の任意のプロセッサ、コントローラ、マイクロコントローラ、又は状態機械としてよい。また、プロセッサは、DSPとマイクロプロセッサとの組合せ、複数のマイクロプロセッサ、DSPコアと協働する1つ以上のマイクロプロセッサ、又はその他任意のこのような構成である、コンピュータデバイスの組合せとして実装されてよい。
任意の開示プロセスにおけるステップの如何なる特定の順序又は階層は、実例的な手法の一例であることが了解される。設計の選好に基づいて、プロセスにおけるステップの特定の順序又は階層を、本開示の範囲内に留まりつつ、再構成してよいことが了解される。添付の方法の請求項は、種々のステップの要素を実例的な順序で示しており、提示の特定順序又は階層に限定されることを意図していない。
本明細書に開示される態様に関連して記載された方法又はアルゴリズムのステップを、ハードウェアにおいて直接具現化してよく、プロセッサにより実行されるソフトウェアモジュールにおいて具現化してよく、これら2つの組合せにおいて具現化してよい。(例えば、実行可能な命令及び関連するデータを含む)ソフトウェアモジュール及び他のデータは、RAMメモリ、フラッシュメモリ、ROMメモリ、EPROMメモリ、EEPROMメモリ、レジスタ、ハードディスク、リムバーブルディスク、CD−ROM等のデータメモリ、又は当技術分野において知られているその他任意の形態のコンピュータ可読記憶媒体に存在してよい。実例的な記憶媒体がコンピュータ/プロセッサ(本明細書においては便宜上、「プロセッサ」と称されることがある)等の機械に結合されてよい、このようなプロセッサは、記憶媒体からの情報(例えば、コード)の読み出し及び記憶媒体への情報の書き込みが可能である。実例的な記憶媒体は、プロセッサと一体化されてよい。プロセッサ及び記憶媒体は、ASICに存在してよい。ASICは、ユーザ機器に存在していてもよい。代替として、プロセッサ及び記憶媒体は、ディスクリートコンポーネントとしてユーザ機器に存在してよい。さらに、いくつかの態様においては、任意の適当なコンピュータプログラム製品が、本開示の態様のうちの1つ以上に関連するコードを含むコンピュータ可読媒体を含んでもよい。いくつかの態様において、コンピュータプログラム製品は、パッケージング材料を含んでよい。
以上、種々の態様に関連して本発明を説明したが、本発明は、さらに改良可能であることが了解される。本願は、概して本発明の原理に従うと共に、本発明が関係する技術分野における既知で慣習的な実施となるような本開示からの逸脱を含む本発明の任意の変形、使用、又は適応を網羅することを意図している。

Claims (20)

  1. ユーザ機器(UE)の方法であって、
    前記UEが、第1の時間間隔のデータ送信期間を有する第1のデータ送信の送信をスケジューリングする第1の制御情報を受信するステップと、
    前記UEは、第2の時間間隔のデータ送信期間を有する第2のデータ送信の送信をスケジューリングする第2の制御情報を受信するステップであって、前記第1のデータ送信と該第2のデータ送信は時間領域において重ならない、ステップと、
    前記UEが、前記第1の制御情報に従って前記第1のデータ送信に対する処理を実行し、前記UEが、前記第2の制御情報に従って前記第2のデータ送信に対する該処理を実行しないステップと、を含む方法。
  2. 前記第1の時間間隔は、サブフレーム、スロット、ミニスロット、シンボル、又はシンボルのセットであり、
    前記第2の時間間隔は、サブフレーム、スロット、ミニスロット、シンボル、又はシンボルのセットであり、
    前記第1の時間間隔と前記第2の時間間隔は異なる長さを有することができる、請求項1に記載の方法。
  3. 前記第1のデータ送信が第1のサブフレームにあり、前記第2のデータ送信が第2のサブフレームにある、請求項1に記載の方法。
  4. 前記処理は、送信、受信、又は復号を含む、請求項1に記載の方法。
  5. 前記UEが、UE処理能力及び前記第1のデータ送信の存在により、前記第2のデータ送信に対する前記処理を実行しない、請求項1に記載の方法。
  6. 前記UEは、基準が満たされる場合、前記第2のデータ送信に対する前記処理を実行せず、それ以外の場合、前記UEは、前記第2のデータ送信に対する前記処理を実行する、請求項1に記載の方法。
  7. 前記基準は、距離を特定値と比較することであり、該距離は、時間領域における前記第1の時間間隔と前記第2の時間間隔との間である、請求項6に記載の方法。
  8. 時間領域における前記第1の時間間隔と前記第2の時間間隔との間の距離が特定値よりも大きい場合、前記UEは、前記第2のデータ送信に対する前記処理を実行する、請求項1に記載の方法。
  9. 前記特定値は、UE処理能力に従って決定される、請求項7に記載の方法。
  10. 前記UEは、前記第1の時間間隔及び前記第2の時間間隔が異なる長さを有する場合、前記第2のデータ送信に対する前記処理を実行しない、請求項1に記載の方法。
  11. ユーザ機器(UE)であって、
    制御回路と、
    前記制御回路に設けられたプロセッサと、
    前記制御回路に設けられ、前記プロセッサに動作可能に結合されたメモリと、を含み、
    前記プロセッサは、前記メモリに記憶されたプログラムコードを実行して、
    第1の時間間隔のデータ送信期間を有する第1のデータ送信の送信をスケジューリングする第1の制御情報を受信することと、
    第2の時間間隔のデータ送信期間を有する第2のデータ送信の送信をスケジューリングする第2の制御情報を受信することであって、前記第1のデータ送信と該第2のデータ送信は時間領域において重ならない、受信することと、
    前記第1の制御情報に従って前記第1のデータ送信に対する処理を実行し、前記第2の制御情報に従って前記第2のデータ送信に対する該処理を実行しないことと、
    を行うように構成された、UE。
  12. 前記第1の時間間隔は、サブフレーム、スロット、ミニスロット、シンボル、又はシンボルのセットであり、
    前記第2の時間間隔は、サブフレーム、スロット、ミニスロット、シンボル、又はシンボルのセットであり、
    前記第1の時間間隔と前記第2の時間間隔は異なる長さを有することができる、請求項11に記載のUE。
  13. 前記第1のデータ送信が第1のサブフレームにあり、前記第2のデータ送信が第2のサブフレームにある、請求項11に記載のUE。
  14. 前記処理は、送信、受信、又は復号を含む、請求項11に記載のUE。
  15. 前記UEが、UE処理能力及び前記第1のデータ送信の存在により、前記第2のデータ送信に対する前記処理を実行しない、請求項11に記載のUE。
  16. 前記UEは、基準が満たされる場合、前記第2のデータ送信に対する前記処理を実行せず、それ以外の場合、前記UEは、前記第2のデータ送信に対する前記処理を実行する、請求項11に記載のUE。
  17. 前記基準は、距離を特定値と比較することであり、該距離は、時間領域における前記第1の時間間隔と前記第2の時間間隔との間である、請求項16に記載のUE。
  18. 時間領域における前記第1の時間間隔と前記第2の時間間隔との間の距離が特定値よりも大きい場合、前記UEは、前記第2のデータ送信に対する前記処理を実行する、請求項11に記載のUE。
  19. 前記特定値は、UE処理能力に従って決定される、請求項18に記載のUE。
  20. 前記UEは、前記第1の時間間隔及び前記第2の時間間隔が異なる長さを有する場合、前記第2のデータ送信に対する前記処理を実行しない、請求項14に記載のUE。
JP2018003022A 2017-01-13 2018-01-12 無線通信システムにおける制御チャネルとデータチャネルとのタイミング関係についての方法及び装置 Active JP6681416B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762446002P 2017-01-13 2017-01-13
US62/446,002 2017-01-13

Publications (3)

Publication Number Publication Date
JP2018113689A true JP2018113689A (ja) 2018-07-19
JP2018113689A5 JP2018113689A5 (ja) 2019-06-06
JP6681416B2 JP6681416B2 (ja) 2020-04-15

Family

ID=60990668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003022A Active JP6681416B2 (ja) 2017-01-13 2018-01-12 無線通信システムにおける制御チャネルとデータチャネルとのタイミング関係についての方法及び装置

Country Status (7)

Country Link
US (1) US10356808B2 (ja)
EP (1) EP3349529B8 (ja)
JP (1) JP6681416B2 (ja)
KR (1) KR102101546B1 (ja)
CN (1) CN108307518B (ja)
ES (1) ES2808553T3 (ja)
TW (1) TWI673979B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3592060B1 (en) * 2017-03-03 2021-07-28 Huawei Technologies Co., Ltd. Resource allocation method, determination method and apparatus
US10911187B2 (en) * 2017-03-23 2021-02-02 Apple Inc. User equipment provision of enhanced capability information for HARQ processing
EP3616375A1 (en) * 2017-04-28 2020-03-04 Nokia Technologies Oy Frequency-domain transmitters and receivers which adapt to different subcarrier spacing configurations
WO2018204886A1 (en) * 2017-05-05 2018-11-08 Intel IP Corporation Support of flexible pdcch monitoring in new radio (nr)
US11778657B2 (en) * 2017-10-27 2023-10-03 Apple Inc. Control resource set information in physical broadcast channel
CN110351821B (zh) * 2018-04-04 2021-06-01 华为技术有限公司 通信方法、通信装置以及计算机可读存储介质
US11457434B2 (en) * 2018-06-22 2022-09-27 Sharp Laboratories Of America, Inc. User equipments, base stations and methods for time-domain resource allocation
EP3881480B1 (en) 2018-11-16 2024-03-06 Samsung Electronics Co., Ltd. Apparatus and method for determining timing relationship in wireless communication system
US11503587B2 (en) * 2018-12-20 2022-11-15 Qualcomm Incorporated Semi-persistent scheduling with multiple transmit-receive points
CN111565461A (zh) * 2019-02-14 2020-08-21 夏普株式会社 由用户设备执行的方法以及用户设备
CN113853809A (zh) * 2019-03-29 2021-12-28 瑞典爱立信有限公司 用于处置ue类别信息的ue、网络节点
US11477000B2 (en) 2019-04-05 2022-10-18 Qualcomm Incorporated Handling collisions between multiple acknowledgement transmissions and an uplink data transmission
CN111865510B (zh) * 2019-04-30 2021-11-23 大唐移动通信设备有限公司 一种harq-ack的传输方法、用户设备及网络侧设备
CN111294917B (zh) * 2019-07-17 2021-08-27 展讯通信(上海)有限公司 基于pdcch估计定时偏差的方法、装置、存储介质及用户设备
EP4047844A4 (en) * 2019-10-15 2022-10-26 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR CONFIGURING PHYSICAL RANDOM ACCESS CHANNEL, TERMINAL AND MEDIA
US11558904B2 (en) 2019-11-06 2023-01-17 Asustek Computer Inc. Method and apparatus for uplink grant overridden in a wireless communication system
WO2021159339A1 (zh) * 2020-02-12 2021-08-19 华为技术有限公司 信号传输方法及装置
US11997185B2 (en) * 2021-06-23 2024-05-28 Qualcomm Incorporated Demodulator configuration based on user equipment signaling

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120327916A1 (en) * 2010-03-11 2012-12-27 Joon Kui Ahn Method for transmitting uplink control information and user device
US20130100936A1 (en) * 2011-10-04 2013-04-25 Telefonaktiebolaget L M Ericsson (Publ) Scheduling of a Communication Base Station
JP2014171228A (ja) * 2009-03-17 2014-09-18 Qualcomm Incorporated 無線通信システムにおける一致しない制御情報に対処するための方法および装置
US20150131517A1 (en) * 2013-11-11 2015-05-14 Marvell World Trade Ltd. Medium Access Control for Multi-Channel OFDM in a Wireless Local Area Network
US20150208402A1 (en) * 2012-09-19 2015-07-23 Lg Electronics Inc. Method and device for transmitting uplink control information
JP2016029845A (ja) * 2008-06-11 2016-03-03 ノキア ソリューションズ アンド ネットワークス オサケユキチュア ローカルエリア最適化アップリンクコントロールチャンネル
WO2016133183A1 (ja) * 2015-02-19 2016-08-25 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2017003118A1 (en) * 2015-07-01 2017-01-05 Lg Electronics Inc. Method for transmitting data in dual connectivity and a device therefor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741976B2 (en) 2005-12-16 2010-06-22 Hunt Power, L.P. Server and method for processing meter data into a common format
CN103220096B (zh) * 2006-02-03 2017-04-12 交互数字技术公司 接收多个传输块的wtru和在集成电路中使用的方法
CN101123472B (zh) * 2006-08-09 2012-04-04 华为技术有限公司 一种多媒体广播多播业务数据传输方法、网络设备和终端设备
US9270401B2 (en) 2010-03-05 2016-02-23 Entropic Communications, Llc Method and apparatus for asynchronous orthogonal frequency division multiple access
KR101923440B1 (ko) * 2011-02-15 2018-11-29 엘지전자 주식회사 무선접속시스템에서 채널품질제어정보 전송방법 및 장치
KR20130017941A (ko) * 2011-08-12 2013-02-20 주식회사 팬택 확장 제어 정보를 이용한 상향 링크 제어 정보의 자원할당 방법 및 그 장치
US9538546B2 (en) 2012-02-21 2017-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Processing-time dependent control of data block transmission
US9112662B2 (en) * 2013-01-17 2015-08-18 Samsung Electronics Co., Ltd. Overhead reduction for transmission of acknowledgment signals
WO2015030523A1 (ko) * 2013-08-29 2015-03-05 엘지전자 주식회사 기계타입통신을 지원하는 무선 접속 시스템에서 채널상태정보 전송 방법 및 장치
EP3275113B1 (en) * 2015-03-23 2022-05-04 Atlas Global Technologies LLC Apparatus and method for downlink and uplink multi-user transmissions
ES2824475T3 (es) 2016-05-12 2021-05-12 Asustek Comp Inc Transmisión de enlace ascendente en intervalos de tiempo de transmisión acortados en un sistema de comunicación inalámbrico

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029845A (ja) * 2008-06-11 2016-03-03 ノキア ソリューションズ アンド ネットワークス オサケユキチュア ローカルエリア最適化アップリンクコントロールチャンネル
JP2014171228A (ja) * 2009-03-17 2014-09-18 Qualcomm Incorporated 無線通信システムにおける一致しない制御情報に対処するための方法および装置
US20120327916A1 (en) * 2010-03-11 2012-12-27 Joon Kui Ahn Method for transmitting uplink control information and user device
US20130100936A1 (en) * 2011-10-04 2013-04-25 Telefonaktiebolaget L M Ericsson (Publ) Scheduling of a Communication Base Station
US20150208402A1 (en) * 2012-09-19 2015-07-23 Lg Electronics Inc. Method and device for transmitting uplink control information
US20150131517A1 (en) * 2013-11-11 2015-05-14 Marvell World Trade Ltd. Medium Access Control for Multi-Channel OFDM in a Wireless Local Area Network
WO2016133183A1 (ja) * 2015-02-19 2016-08-25 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2017003118A1 (en) * 2015-07-01 2017-01-05 Lg Electronics Inc. Method for transmitting data in dual connectivity and a device therefor
JP2018523399A (ja) * 2015-07-01 2018-08-16 エルジー エレクトロニクス インコーポレイティド 二重接続においてデータを送信する方法及びそのための装置

Also Published As

Publication number Publication date
CN108307518A (zh) 2018-07-20
ES2808553T3 (es) 2021-03-01
US20180206263A1 (en) 2018-07-19
JP6681416B2 (ja) 2020-04-15
CN108307518B (zh) 2021-07-06
EP3349529A1 (en) 2018-07-18
EP3349529B1 (en) 2020-06-10
TWI673979B (zh) 2019-10-01
TW201826771A (zh) 2018-07-16
US10356808B2 (en) 2019-07-16
KR20180083819A (ko) 2018-07-23
EP3349529B8 (en) 2020-08-05
KR102101546B1 (ko) 2020-04-17

Similar Documents

Publication Publication Date Title
JP2018113689A (ja) 無線通信システムにおける制御チャネルとデータチャネルとのタイミング関係についての方法及び装置
JP7210657B2 (ja) 無線通信システムにおいてヌメロロジ帯域幅を決定する方法及び装置
JP6561168B2 (ja) 無線通信システムにおいてプリコーディングリソースブロックグループを改善するための方法及び装置
JP7158448B2 (ja) 無線システムにおけるフレーミング、スケジューリング、および同期化
US11683791B2 (en) Method and apparatus for indicating time domain resource allocation of data transmission in a wireless communication system
JP6431953B2 (ja) ワイヤレス通信システムにおいて短縮送信時間間隔(tti)でアップリンクグラントを改善するための方法及び装置
US10660091B2 (en) Method and apparatus for handling SFI (slot format information) collision in a wireless communication system
US20210105757A1 (en) Method and apparatus for control channel transmission in a wireless communication system
JP7302482B2 (ja) 通信装置及び通信方法
JP2022009905A (ja) 無線通信システムにおいて信号を送信又は受信する方法及びそのための装置
JP2019140664A (ja) 無線通信システムにおける割り込み送信指示を監視する方法及び装置
EP3618473A1 (en) Terminal device, base station device, and communication method
US20140003374A1 (en) Method and apparatus for enhancing tti (transmission time interval) bundling in a wireless communication network
US20180375627A1 (en) Terminal device, base station device, communication method, and integrated circuit
EP4233224A1 (en) Aperiodic csi over multi-trp pusch
KR20170020237A (ko) 비면허 대역을 지원하는 통신 네트워크를 위한 스케쥴링 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190422

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6681416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250