JP2018112536A - Sewer deformation measurement method and device - Google Patents

Sewer deformation measurement method and device Download PDF

Info

Publication number
JP2018112536A
JP2018112536A JP2017004732A JP2017004732A JP2018112536A JP 2018112536 A JP2018112536 A JP 2018112536A JP 2017004732 A JP2017004732 A JP 2017004732A JP 2017004732 A JP2017004732 A JP 2017004732A JP 2018112536 A JP2018112536 A JP 2018112536A
Authority
JP
Japan
Prior art keywords
pipe
deformation
flying object
sensor
sewer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017004732A
Other languages
Japanese (ja)
Other versions
JP6644718B2 (en
Inventor
芳昭 早矢仕
Yoshiaki Hayashi
芳昭 早矢仕
孝 長谷川
Takashi Hasegawa
孝 長谷川
弘昭 森田
Hiroaki Morita
弘昭 森田
佐藤 克己
Katsumi Sato
克己 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKANIHON KENSETSU CONSULTANT KK
Original Assignee
NAKANIHON KENSETSU CONSULTANT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKANIHON KENSETSU CONSULTANT KK filed Critical NAKANIHON KENSETSU CONSULTANT KK
Priority to JP2017004732A priority Critical patent/JP6644718B2/en
Publication of JP2018112536A publication Critical patent/JP2018112536A/en
Application granted granted Critical
Publication of JP6644718B2 publication Critical patent/JP6644718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure sagging, meandering or deflection of a sewer with less time and labor and at low cost without being influenced by flowing water, foreign matter or damage, even without flowing water cutoff or cleaning in the sewer.SOLUTION: With a flying object 2 flown inside a sewer 20, and with a front wheel 11 and a rear wheel 12, which are provided in the flying body 2, rolled on a ceiling of the sewer 20, deflection and meandering of the sewer 20 are measured by an acceleration sensor 13 provided in the flying body 2, and deflection of the sewer 20 is measured by a distance sensor 14. The flying body 2 is configured to fly at a fixed speed with automatic steering. When the sewer 20 is sewerage, the flying object 2 starts flying after being installed on a ceiling of a sewer port opened to a manhole 25.SELECTED DRAWING: Figure 4

Description

本発明は、管渠(例えば下水管、上水管、化学プラント管路、ケーブル管路等の各種管渠)の変形(例えばたるみ、蛇行、たわみ等の各種変形)を計測する方法及び装置に関するものである。   The present invention relates to a method and an apparatus for measuring deformation (for example, various deformations such as sagging, meandering, deflection, etc.) of pipes (for example, various pipes such as sewer pipes, water pipes, chemical plant pipes, cable pipes, etc.). It is.

管渠には、使用により、亀裂、破損、継手ズレ、腐食、油脂付着、土砂堆積、樹木根侵入等が生じる。また、管渠には、外力、地震による液状化、不等沈下等により、たるみ(管渠を管長軸線の上下方向のたるみ)、蛇行(管渠の管長軸線の左右方向の蛇行)、たわみ(管渠の断面形状の上下方向のたわみ(偏平))等の変形も生じる。   Cracks, breakage, joint misalignment, corrosion, adhesion of oils and fats, sediment accumulation, tree root intrusion, etc. occur in the pipe dredging. In addition, due to external forces, liquefaction due to earthquakes, uneven settlement, etc., the pipe rod is slack (the pipe rod is slack in the vertical direction of the pipe long axis), meandering (meandering in the horizontal direction of the pipe long axis), deflection ( Deformation such as vertical deflection (flattening) of the cross-sectional shape of the pipe rod also occurs.

よって、管渠の維持管理には、まずこれらの調査が必要となる。現状での管渠の調査は、自走式又は牽引式の走行車を管渠の底面上に走行させ、走行車に搭載したテレビカメラで管渠内の状態を撮影してモニタに映し出し、これをオペレータが目視する方法が主流である(特許文献1)。   Therefore, these investigations are necessary for the maintenance of pipes. At present, the survey of pipes is conducted by running a self-propelled or towed vehicle on the bottom of the pipe, photographing the state of the pipe with a TV camera mounted on the vehicle, and displaying it on the monitor. The method in which an operator visually observes is the mainstream (Patent Document 1).

また、特許文献2には、上記主流の方法ではオペレータが関心ある領域を認識しなかった場合には、停止してパン、チルト、ズームする機会が失われるとして、上記走行車に方向検出装置又は位置検出装置と距離測定装置とを備えるプローブを設け、映像と方向と移動距離のデータを処理することにより前方視画像とパイプライン壁面の約360度展開画像とをデジタル化して表示する方法が開示されている。方向検出装置はジャイロスコープまたはジャイロセンサが好ましいとしている。   Further, in Patent Document 2, if the operator does not recognize a region of interest in the mainstream method, the direction detection device or the traveling vehicle is assumed to be lost because the opportunity to stop and pan, tilt, and zoom is lost. Disclosed is a method of digitizing and displaying a forward-view image and an image developed about 360 degrees on a pipeline wall surface by providing a probe including a position detection device and a distance measurement device and processing data of an image, a direction, and a moving distance. Has been. The direction detection device is preferably a gyroscope or a gyro sensor.

また、特許文献3には、上記主流の方法では管渠の内部状況を目視することはできても数値的なデータとして記録することができないとして、離れた2つの管渠口にレーザ発射装置と管芯測定器をセットし、上記走行車にレーザ受光板を設けて、管渠のたるみ、蛇行、逆勾配を調査するシステムが開示されている。   Further, in Patent Document 3, it is possible to visually observe the internal state of the pipe rod by the above mainstream method, but it cannot be recorded as numerical data. A system is disclosed in which a tube core measuring instrument is set and a laser light receiving plate is provided on the traveling vehicle to investigate slack, meandering, and reverse gradient of the tube rod.

その他、弾性波により管渠の強度、劣化度を評価するものもある。   In addition, there is also an apparatus that evaluates the strength and deterioration degree of pipe rods using elastic waves.

特開平5−164698号公報JP-A-5-164698 特開2004−509321公報JP 2004-509321 A 特開2002−90146公報JP 2002-90146 A

上記主流の方法(特許文献1)は、目視によるため、亀裂、破損、継手ズレ、腐食、油脂付着、土砂堆積、樹木根侵入等は把握しやすいが、管渠のたるみ、蛇行、たわみ等の変形は把握しにくい。
また、特許文献2の方法では、関心ある領域で停止してパン、チルト、ズームを行う必要性をなくすことができるが、やはり目視によるため、管渠のたるみ、蛇行、たわみ等の変形を数値化することまでは開示がない。
また、特許文献3の方法では、管渠のたるみ、蛇行、逆勾配を数値化することができるが、レーザ発射装置と管芯測定器を2つの管渠口にセットする必要があるため、調査に時間と手間とコストがかかる。
The above mainstream method (Patent Document 1) is visual, so it is easy to grasp cracks, breakage, joint misalignment, corrosion, oil and fat deposits, sediment accumulation, tree root intrusion, etc. However, such as slack, meandering, deflection, etc. Deformation is difficult to grasp.
In the method of Patent Document 2, it is possible to eliminate the necessity of stopping, panning, tilting, and zooming in a region of interest. There is no disclosure until it is realized.
Further, in the method of Patent Document 3, the slack, meandering, and reverse gradient of the pipe rod can be quantified. However, since it is necessary to set the laser emitting device and the tube core measuring instrument in two tube mouths, the investigation It takes time, effort and cost.

さらに、特許文献1〜3の何れの方法も、走行車を管渠の底面上に走行させるため、次の大きな問題があった。
(ア)下水管等の管渠内には常時流水(汚水)があるため、そのままで走行車を管渠の底面上に走行させることは非常に困難又は不可能である。そこで、基本的には、管渠内の流水を遮断し、さらに油脂、土砂、樹木根等の異物を除去するよう清掃した後に、調査を行う必要があり、その調査開始までの手間が大変であった。
(イ)流水を遮断し清掃した後であっても、管渠の底面は異物が残ったり損傷が多かったりすることがあるため、自走車をスムーズに走行させられなかったり姿勢が傾いたりしやすい。
Further, any of the methods disclosed in Patent Documents 1 to 3 have the following major problems because the traveling vehicle travels on the bottom surface of the pipe rod.
(A) Since there is always flowing water (sewage) in the pipe such as a sewage pipe, it is very difficult or impossible to run the traveling vehicle on the bottom of the pipe as it is. Therefore, basically, it is necessary to shut down the flowing water in the pipe and clean it to remove foreign substances such as fats and oils, earth and sand, and tree roots. there were.
(B) Even after running water is shut off and cleaned, foreign matter may remain on the bottom surface of the tube or damage may occur. Therefore, the self-propelled vehicle may not run smoothly or the posture may tilt. Cheap.

そこで、本発明の目的は、管渠の流水遮断や清掃をしなくても、流水、異物、損傷等に影響されずに、管渠のたるみ、蛇行、たわみ等の変形を少ない時間と手間とコストで計測できるようにすることにある。   Therefore, the object of the present invention is to reduce deformation, such as slack, meandering, deflection, etc. of pipe dredging without being affected by running water, foreign matter, damage, etc. without shutting off or cleaning the pipe dredging. It is to be able to measure at cost.

(1)管渠変形計測装置は、管渠の内部を飛行する飛行体と、飛行体に設けられて管渠の天井を転動する前輪及び後輪と、飛行体に設けられて管渠の変形を計測するセンサとを備えることを特徴とする。 (1) The kite deformation measuring device includes a flying object that flies inside the kite, a front wheel and a rear wheel that are provided on the flying object and rolls on the ceiling of the kite, And a sensor for measuring deformation.

センサは、少なくとも1つ備えればよいが、加速度センサ及び距離センサの一方又は両方である態様を例示できる。   Although at least one sensor may be provided, an aspect in which one or both of an acceleration sensor and a distance sensor can be exemplified.

(2)管渠変形計測方法は、管渠の内部に飛行体を飛行させるとともに、飛行体に設けられた前輪及び後輪を管渠の天井に転動させながら、飛行体に設けられたセンサにより管渠の変形を計測することを特徴とする。 (2) The pipe deformation measurement method is a sensor provided on the flying object while causing the flying object to fly inside the pipe and rolling the front wheel and rear wheel provided on the flying object to the ceiling of the pipe. By measuring the deformation of the tube.

飛行体は、自動操縦されて一定速度で飛行することが好ましい。   The flying object is preferably autopilot and flies at a constant speed.

管渠は下水道であり、マンホールに開口した管渠口の天井に飛行体をセットして飛行開始させる態様を例示できる。   The pipe tub is a sewer, and a mode in which the flying object is set on the ceiling of the pipe pier opened to the manhole and the flight is started can be exemplified.

センサにより管渠の変形を計測する態様としては、特に限定されないが、次の好ましい態様を例示できる。
(a)加速度センサにより縦断方向の加速度を検出して傾斜角度に変換することにより管渠のたるみを計測する。
(b)加速度センサにより横方向の加速度を検出して変位に変換することにより管渠の蛇行を計測する。
(c)距離センサにより管渠の天井までの距離を検出することにより管渠のたわみを計測する。
Although it does not specifically limit as an aspect which measures a deformation | transformation of a tube fistula with a sensor, The following preferable aspect can be illustrated.
(A) By detecting the acceleration in the longitudinal direction by an acceleration sensor and converting it into an inclination angle, the slack of the tube is measured.
(B) The meander of the tube is measured by detecting lateral acceleration by an acceleration sensor and converting it into displacement.
(C) The deflection of the pipe rod is measured by detecting the distance to the ceiling of the pipe rod with a distance sensor.

(作用)
飛行体の利点は、管渠の底面上を走行する走行車と異なり、管渠の底面を離れて管渠内の空間を飛行できることであり、よって底面上の流水、異物、損傷等に影響されないから、流水遮断や清掃をしなくても計測を行うことができる。そして、その飛行時に前輪及び後輪を比較的損傷が少ない管渠の天井に転動させることにより(すなわち天井走行を伴う飛行である)、飛行体の姿勢が天井に倣われるとともに、飛行体と天井との位置関係が定まる。これにより、飛行体に設けられた加速度センサ、距離センサ等のセンサにより、管渠のたるみ、蛇行、たわみ等の変形を少ない時間と手間とコストで計測することができる。
(Function)
The advantage of the flying object is that, unlike a traveling vehicle that runs on the bottom surface of the pipe rod, it is possible to fly away from the bottom surface of the pipe rod and to fly in the space inside the tube rod. Therefore, measurement can be performed without running water blocking or cleaning. Then, by rolling the front and rear wheels to the ceiling of the duct with relatively little damage during the flight (that is, flight with ceiling traveling), the attitude of the flying object is imitated by the ceiling, The positional relationship with the ceiling is determined. As a result, deformations such as slack, meandering, and deflection of the pipe rod can be measured with less time, effort, and cost by sensors such as an acceleration sensor and a distance sensor provided on the flying object.

本発明は、管渠の流水遮断や清掃をしなくても、流水、異物、損傷等に影響されずに、管渠のたるみ、蛇行、たわみ等の変形を少ない時間と手間とコストで計測できるという優れた効果を奏する。   The present invention can measure deformation, such as sagging, meandering, and bending of pipe rods with less time, effort, and cost without being affected by running water, foreign matter, damage, etc. without shutting off or cleaning the pipe rod. There is an excellent effect.

実施例の管渠変形計測装置の斜視図である。It is a perspective view of the pipe deformation measuring device of an example. 同装置のブロック図である。It is a block diagram of the same apparatus. 同装置の加速度センサの説明図である。It is explanatory drawing of the acceleration sensor of the same apparatus. 同装置による管渠(下水道)の変形計測方法を説明する、(a)は概略図、(b)はたるみ計測における傾斜角と変位量のイメージを示すグラフである。The deformation measuring method of pipe dredging (sewer) by the apparatus will be described, (a) is a schematic diagram, (b) is a graph showing an image of an inclination angle and a displacement amount in slack measurement. たわみ計測における、(a)はたわみ変形前の断面図、(b)はたわみ変形後の断面図である。In the deflection measurement, (a) is a cross-sectional view before deformation and (b) is a cross-sectional view after deformation. 同装置の姿勢の自動復元性を説明する断面図である。It is sectional drawing explaining the automatic recoverability of the attitude | position of the apparatus. 実施例の変更例を示す断面図である。It is sectional drawing which shows the example of a change of an Example.

1.飛行体
飛行体は、管渠の内部を飛行できる程度に小型で無人の飛行体(広義のドローン)である。飛行体の飛行原理及び構造は、特に限定されないが、マルチコプタ(3つ以上のロータを搭載した回転翼機、狭義のドローン)を好ましいものとして例示できる。
1. Aircraft A flying object is a drone that is small and unmanned (a drone in a broad sense) that can fly inside a tube. The flight principle and structure of the flying object are not particularly limited, but a multi-copter (a rotary wing aircraft equipped with three or more rotors, a drone in a narrow sense) can be exemplified as a preferable one.

2.前輪及び後輪
前輪及び後輪は、特に限定されないが、飛行体よりも上方へ延びる部材に回転可能に軸着された車輪を例示できる。
前輪及び後輪は、非駆動輪でよい。
前輪及び後輪は、飛行体の前後方向にのみ転動する固定輪が好ましいが、転向しうる自在輪としてもよい。
前輪及び後輪の数は、特に限定されないが、前輪2つと後輪2つの組み合わせ、前輪1つと後輪2つの組み合わせ、前輪2つと後輪1つの組み合わせ等を例示できる。
2. Front wheel and rear wheel The front wheel and the rear wheel are not particularly limited, and examples thereof include a wheel rotatably mounted on a member extending upward from the flying object.
The front and rear wheels may be non-drive wheels.
The front wheels and the rear wheels are preferably fixed wheels that roll only in the front-rear direction of the aircraft, but may be free-wheeling wheels that can be turned.
The number of front wheels and rear wheels is not particularly limited, and examples include a combination of two front wheels and two rear wheels, a combination of one front wheel and two rear wheels, a combination of two front wheels and one rear wheel, and the like.

3.自動操縦
自動操縦は、飛行体に設けられたCPU等を用いた制御装置により行われるものでもよいし、飛行体から離れた箇所から送られる信号により行われるものでもよい。
なお、飛行体の飛行は、自動操縦に限定されず、飛行体から離れた箇所から送られる信号により行われる手動操縦でもよい。
3. Autopilot Autopilot may be performed by a control device using a CPU or the like provided in the flying object, or may be performed by a signal sent from a location away from the flying object.
Note that the flying of the flying object is not limited to automatic piloting, but may be manual steering performed by a signal sent from a location away from the flying object.

4.センサ
加速度センサにより管渠のたるみ及び蛇行を計測することが好ましい。
距離センサにより管渠のたわみを計測することが好ましい。
4). Sensor It is preferable to measure the slack and meandering of the tube by means of an acceleration sensor.
It is preferable to measure the deflection of the pipe rod using a distance sensor.

5.管渠
計測対象としての管渠としては、特に限定されないが、下水管、上水管、化学プラント管路、ケーブル管路等の各種管渠を例示できる。
5. Pipe pipes As pipe pipes to be measured, various pipe pipes such as sewer pipes, water pipes, chemical plant pipes, cable pipes and the like can be exemplified.

(管渠変形計測装置)
図1〜図3に示す実施例の管渠変形計測装置1は、管渠の内部を飛行する飛行体2と、飛行体2に設けられて管渠の天井を転動する所定の軸間距離をもつ前輪11及び後輪12と、飛行体2に設けられて管渠の変形を計測するセンサ13,14とを備えている。
(Pipe deformation measuring device)
1 to 3 includes a flying body 2 that flies inside the tubular casing, and a predetermined inter-axis distance that is provided on the flying body 2 and rolls on the ceiling of the tubular casing. Front wheels 11 and rear wheels 12, and sensors 13 and 14 provided on the flying body 2 for measuring deformation of the pipe rod.

図1に示すように、飛行体2は、一般的なマルチコプタとほぼ同様であり、前後方向に延びる中央の本体ボディ3と、本体ボディ3から横方向へ放射状に延びる4本のアーム4と、アーム4の途中部に設けられた4つのロータ5及びそのモータ6とを備えている。本体ボディ3の例えば前部にはテレビカメラ7が前向きに取り付けられ、テレビカメラ7はレンズ、撮像素子(CCD、CMOS等)等から構成されている。   As shown in FIG. 1, the flying object 2 is substantially the same as a general multi-copter, and includes a central main body 3 extending in the front-rear direction, four arms 4 extending radially from the main body 3 in a lateral direction, The four rotors 5 provided in the middle part of the arm 4 and its motor 6 are provided. For example, a TV camera 7 is attached to the front of the main body 3 so as to face forward, and the TV camera 7 includes a lens, an image sensor (CCD, CMOS, etc.) and the like.

本体ボディ3には、図2に示すように、一般的なマルチコプタと同様、無線モジュール8と制御用CPU9が内蔵されている。遠隔のリモコン17から送信される信号を無線モジュール8が受信し、同信号に基づいて制御用CPU9が4つのモータ6の回転数を制御することにより、飛行体2の上昇・下降・前進・後進・左旋回・右旋回の操縦が行われる。また、テレビカメラ7が撮影した画像の信号を、無線モジュール8が送信する。   As shown in FIG. 2, the main body 3 includes a wireless module 8 and a control CPU 9 as in a general multicopter. The wireless module 8 receives a signal transmitted from the remote remote controller 17, and the control CPU 9 controls the number of rotations of the four motors 6 based on the signal, whereby the flying object 2 is raised, lowered, moved forward, and moved backward.・ Left and right turn maneuvers are performed. In addition, the wireless module 8 transmits a signal of an image captured by the television camera 7.

一般的なマルチコプタでは各モータ6の箇所で終わる4本のアーム4が、本実施例ではモータ6の箇所を超えて延長されている。そして、各アーム4の延長端部から脚10が上方へ延びるように設けられ、前側2つの脚10の上端部に2つの前輪11が回転可能に軸着され、後側2つの脚10の上端部に2つの後輪12が回転可能に軸着されている。もって4つの脚10は、4つのロータ5の回転軌跡外縁よりも外方にあり、ロータ5の回転に干渉しない。また、前輪11及び後輪12は4つのロータ5よりも上方にあり、ロータ5の回転に干渉しない。なお、前輪11及び後輪12の設け方は適宜変更でき、例えば本体ボディ3からアーム4とは別に延ばした部材に軸着してもよい。   In a general multicopter, four arms 4 ending at the positions of the motors 6 are extended beyond the positions of the motors 6 in this embodiment. The legs 10 are provided so as to extend upward from the extended end portions of the arms 4, two front wheels 11 are rotatably mounted on the upper end portions of the two front legs 10, and the upper ends of the two rear legs 10 are mounted. Two rear wheels 12 are rotatably attached to the part. Accordingly, the four legs 10 are located outside the outer edges of the rotation paths of the four rotors 5 and do not interfere with the rotation of the rotor 5. Further, the front wheel 11 and the rear wheel 12 are located above the four rotors 5 and do not interfere with the rotation of the rotor 5. In addition, how to provide the front wheel 11 and the rear wheel 12 can be appropriately changed. For example, the front wheel 11 and the rear wheel 12 may be attached to a member extending from the main body 3 separately from the arm 4.

前輪11及び後輪12は、非駆動輪であるとともに、飛行体2の前後方向にのみ転動する固定輪である。また、前輪11及び後輪12の軸間距離を大きくするために、前側2つの脚10を前へ傾斜させ、後側2つの脚10を後へ傾斜させているが、全ての脚10を垂立させてもよい。   The front wheel 11 and the rear wheel 12 are non-driving wheels and are fixed wheels that roll only in the front-rear direction of the flying object 2. Further, in order to increase the distance between the axes of the front wheels 11 and the rear wheels 12, the two front legs 10 are inclined forward and the two rear legs 10 are inclined rearward. You may stand.

一般的なマルチコプタとは異なり、本体ボディ3の例えば上部には、前記センサとしての加速度センサ13と距離センサ14が取り付けられている。本体ボディ3には、図2に示すように、計測用CPU15とメモリカード16が追加内蔵されている。計測用CPU15が、後述する計算等を行いその結果を、無線モジュール8が遠隔のパソコン18に送信するとともに、メモリカード16に記録する。なお、本例のように制御用CPUを追加するのではなく、前記制御用CPU9に制御用CPUの機能を兼ね備えさせることもできる。   Unlike a general multi-copter, an acceleration sensor 13 and a distance sensor 14 as the sensors are attached to, for example, an upper portion of the main body 3. As shown in FIG. 2, a measurement CPU 15 and a memory card 16 are additionally incorporated in the main body 3. The measurement CPU 15 performs calculations and the like to be described later, and the wireless module 8 transmits the results to the remote personal computer 18 and records them in the memory card 16. Instead of adding a control CPU as in this example, the control CPU 9 can also have the function of a control CPU.

加速度センサ13は、静的加速度を計測して角度に変換するものである。本実施例では、XYZ軸の3方向の加速度を1デバイスで測定できる3軸加速度センサが用いられている。この加速度センサ13により、次の計測が可能である。   The acceleration sensor 13 measures static acceleration and converts it into an angle. In this embodiment, a three-axis acceleration sensor that can measure acceleration in three directions of the XYZ axes with one device is used. With the acceleration sensor 13, the following measurement is possible.

(ア)傾斜角度(縦断方向変位)
図3に示すように、重力加速度が1Gである場合、加速度センサ13から出力される静止加速度は次式で表せる。
Axout[G]=1G×sin(θ)
重力加速度の軸にそって加速度センサを回転させた場合、加速度出力はサイン波の関係に従う。従って、静止加速度から傾斜角度θへの変換は次式(逆サイン関数)を使用して行う。
θ=sin-1(Axout[g]/1g)
θの単位はラジアンであり、度(°)に変換する場合は上式の結果に(180/π)を掛ける。
加速度センサを1軸で使用する場合、傾きの感度は、水平軸とセンサの軸がなす角度が大きくなるほど減少し、角度が±90°に近づくと感度は0に近づく。逆に0°近くで最高の分解能が得られる。従って、使用するセンサ軸は管軸方向に水平に近いセンサ軸を使用する。
なお、アナログ式MEMSセンサの分解能は16bit程度を期待でき、傾斜角度の分解能を0.01度程度まで計測できる。勾配にすると約0.02%(50mで10mm)になる。
(A) Inclination angle (displacement in the longitudinal direction)
As shown in FIG. 3, when the gravitational acceleration is 1 G, the static acceleration output from the acceleration sensor 13 can be expressed by the following equation.
Axout [G] = 1G × sin (θ)
When the acceleration sensor is rotated along the gravitational acceleration axis, the acceleration output follows a sine wave relationship. Therefore, the conversion from the static acceleration to the tilt angle θ is performed using the following equation (inverse sine function).
θ = sin −1 (Axout [g] / 1 g)
The unit of θ is radians, and when converting to degrees (°), the result of the above formula is multiplied by (180 / π).
When the acceleration sensor is used with one axis, the tilt sensitivity decreases as the angle between the horizontal axis and the sensor axis increases, and the sensitivity approaches zero when the angle approaches ± 90 °. Conversely, the highest resolution is obtained near 0 °. Therefore, the sensor shaft used is a sensor shaft that is nearly horizontal in the tube axis direction.
Note that the resolution of the analog MEMS sensor can be expected to be about 16 bits, and the resolution of the tilt angle can be measured to about 0.01 degrees. The gradient is about 0.02% (10 mm at 50 m).

(イ)飛行速度(速度制御に利用可)
加速度センサ13は、Y軸(進行歩行)の加速度を計測する。計測用CPU15はこの加速度を積分して計算した飛行速度を制御用CPU9にわたし、制御用CPU9は飛行速度を一定速に制御する(これにより自動操縦が可能になる)。計算した飛行速度は、無線モジュール8からパソコン18に送信される。
(B) Flight speed (available for speed control)
The acceleration sensor 13 measures the acceleration of the Y axis (traveling walk). The measurement CPU 15 sends the flight speed calculated by integrating the acceleration to the control CPU 9, and the control CPU 9 controls the flight speed to a constant speed (this enables automatic steering). The calculated flight speed is transmitted from the wireless module 8 to the personal computer 18.

(ウ)断面方向(姿勢制御に利用可)
加速度センサ13は、X軸(断面方向)の静止加速度を計測する。計測用CPU15はこの静止加速度から計算した断面方向の傾斜角を制御用CPU9にわたし、制御用CPU9は飛行体2の姿勢を断面方向に傾かないように姿勢制御する(これにより自動操縦が可能になる)。なお、飛行体2の姿勢は、後述(図6)するように、推力の反力で生じる復元力によっても自然に制御される。
(C) Cross-sectional direction (available for posture control)
The acceleration sensor 13 measures the static acceleration in the X axis (cross-sectional direction). The measurement CPU 15 gives the inclination angle in the cross-sectional direction calculated from the static acceleration to the control CPU 9, and the control CPU 9 controls the attitude of the flying object 2 so as not to incline in the cross-sectional direction (this enables automatic steering). Become). Note that the attitude of the flying object 2 is naturally controlled by a restoring force generated by a reaction force of the thrust, as will be described later (FIG. 6).

次に、距離センサ14には、赤外線距離センサが用いられている。図5に示すように、2つの前輪11が管材21の内面上部に当接する点の間隔をL、距離センサ14からこの点までの高さをh、距離センサ14が計測する管材21の天井頂部までの距離をD、D−h=d、管厚をtとすると、同図(a)に示す変形前の真円の管厚中心の半径がrであるのに対し、図5(b)に示す変形後の管厚中心の曲率半径r’は次式で計算できる。本実施例では、この原理を応用して、計測用CPU15がたわみを計測する。

Figure 2018112536
Next, an infrared distance sensor is used as the distance sensor 14. As shown in FIG. 5, the distance between the points where the two front wheels 11 contact the upper part of the inner surface of the pipe 21 is L, the height from the distance sensor 14 to this point is h, and the top of the ceiling of the pipe 21 measured by the distance sensor 14. Is D, D−h = d, and the tube thickness is t, the radius of the tube thickness center of the perfect circle before deformation shown in FIG. 5A is r, whereas FIG. The radius of curvature r ′ at the center of the tube thickness after deformation shown in FIG. In the present embodiment, the measurement CPU 15 measures the deflection by applying this principle.
Figure 2018112536

<計測例1:鉄筋コンクリート管による管路のたるみの計測>
さて、図4(a)に示す管渠20を計測対象例とする。この管渠20は、下水道であり、所定の距離をおく2つのマンホール25,26の間に、複数の管材21をそれらの端部が内外に重なる継手部22で連結して構成されている。23は管渠20の流水を示している。管材21の種類は様々であり、多く使用されているのは鉄筋コンクリート管や硬質塩化ビニル管である。そこで、同例では、管材21が内径300mm・有効管長2000mmの鉄筋コンクリート管であり、この管材21が2つのマンホール25,26間(1スパン)で15本連結されて、1スパンの管渠長が30000mm(30m)であるとする。
<Measurement example 1: Measurement of slack in pipelines using reinforced concrete pipes>
Now, let us say that the tube rod 20 shown in FIG. The pipe tub 20 is a sewer, and is configured by connecting a plurality of pipe materials 21 by a joint portion 22 whose end portions overlap inside and outside between two manholes 25 and 26 that are spaced apart from each other. Reference numeral 23 denotes running water of the pipe 20. There are various types of pipe materials 21, and reinforced concrete pipes and hard vinyl chloride pipes are often used. Therefore, in this example, the pipe material 21 is a reinforced concrete pipe having an inner diameter of 300 mm and an effective pipe length of 2000 mm. Fifteen pipes 21 are connected between two manholes 25 and 26 (one span), and a pipe span length of one span is obtained. Suppose that it is 30000 mm (30 m).

外力、地震による液状化、不等沈下等により、隣り合う管材21と管材21とが継手部22でずれて相対的に傾き、管渠の管長軸線にたるみ又は蛇行が生じる。たるみにより継手部22に生じる隙間から、地下水や木根が侵入すると、下水の流下能力が低下する。   Due to external forces, liquefaction due to earthquakes, uneven settlement, etc., the adjacent pipe material 21 and the pipe material 21 are displaced at the joint portion 22 and are relatively inclined, and slack or meandering occurs in the pipe long axis of the pipe rod. If groundwater or a tree root enters through a gap generated in the joint portion 22 due to sagging, the flow capacity of sewage decreases.

この管渠20のたるみは、上記のように構成された管渠変形計測装置1を使用して、次の方法で計測できる。管渠20の流水23は基本的に遮断しなくてもよい。
(i)図4(a)の例えば左側のマンホール25において、作業者は、同マンホール25に開口する管渠20の管渠口の天井に管渠変形計測装置1を進行方向に向けて(同例では右向きに)セットする。右側のマンホール26においては、別の作業者が受信機としてのパソコン18を持って待機する。
The slack of the tube rod 20 can be measured by the following method using the tube rod deformation measuring apparatus 1 configured as described above. The running water 23 of the pipe rod 20 does not need to be blocked basically.
(I) In the manhole 25 on the left side of FIG. 4A, for example, the operator points the pipe deformation measuring device 1 in the traveling direction on the ceiling of the pipe opening of the pipe rod 20 that opens to the manhole 25 Set to the right in the example). In the right manhole 26, another worker stands by with the personal computer 18 as a receiver.

(ii)管渠変形計測装置1の飛行を開始し、飛行中は前輪11及び後輪12を管渠20の天井に転動(天井走行)させることにより、飛行体2の姿勢を管渠20の天井に倣わせる。天井は比較的付着物が少なく、走行、勾配計測に支障が少ない。また、管渠変形計測装置1は流水23に触れない。飛行速度は一定の例えば50mm/秒とする。1本の管材21の調査時間は40秒、1スパンの管渠20の調査時間は600秒(10分)となる。飛行は、リモコン17からの手動操縦でもよいが、前述した計測用CPU15と制御用CPU9による自動操縦とすることが好ましい。 (Ii) The flight of the hoist deformation measuring apparatus 1 is started, and during the flight, the front wheel 11 and the rear wheel 12 roll (run on the ceiling) to the ceiling of the hoist 20, so that the attitude of the flying object 2 is changed to the hoist 20 Imitate the ceiling. There are relatively few deposits on the ceiling, and there are few obstacles to running and gradient measurement. In addition, the pipe ridge deformation measuring device 1 does not touch the running water 23. The flight speed is constant, for example 50 mm / second. The investigation time for one pipe member 21 is 40 seconds, and the investigation time for one span of the pipe rod 20 is 600 seconds (10 minutes). The flight may be manually operated from the remote controller 17, but it is preferable that the flight be automatically operated by the measurement CPU 15 and the control CPU 9 described above.

図6に示すように、飛行時に飛行体2の姿勢が断面方向に傾いたときには、推力の反力に生じる水平分力の成分によって、飛行体2の姿勢が傾きを減じる方向に自然に制御される。さらに、前述したように計測用CPU15と制御用CPU9により、飛行体2の姿勢が断面方向に傾かないように姿勢制御される。
そして、加速度センサ13により飛行中の加速度を計測し、加速度から飛行速度と移動距離を計算する。
As shown in FIG. 6, when the attitude of the flying object 2 is tilted in the cross-sectional direction during flight, the attitude of the flying object 2 is naturally controlled in a direction that reduces the inclination by the component of horizontal component force generated in the reaction force of the thrust. The Further, as described above, the measurement CPU 15 and the control CPU 9 perform posture control so that the posture of the flying object 2 does not tilt in the cross-sectional direction.
Then, the acceleration during flight is measured by the acceleration sensor 13, and the flight speed and the moving distance are calculated from the acceleration.

(iii)上記天井走行を伴う飛行をさせながら、通過する管材21の1本毎に、加速度センサ13により静的加速度を800Hzでサンプリングして、前述の原理により傾斜角度に変換する。1本の管材21のサンプリング数は、40秒×800Hz=32000サンプルとなる。管材21の端は、継手部22の目地を前輪11が通過する時の振動を検知して判定する。図4(b)に、計測される傾斜角度のイメージを示すように、継手部22の目地でノイズが現れる。また、図4(b)には、傾斜角度と飛行速度から計算されるたるみの変位量のイメージも示す。 (Iii) While flying with the above-described overhead traveling, the static acceleration is sampled at 800 Hz by the acceleration sensor 13 for each of the passing pipe materials 21, and converted into the inclination angle according to the principle described above. The sampling number of one pipe material 21 is 40 seconds × 800 Hz = 32000 samples. The end of the tube 21 is determined by detecting vibration when the front wheel 11 passes through the joint of the joint portion 22. In FIG. 4B, noise appears at the joint of the joint portion 22 as an image of the measured inclination angle. FIG. 4B also shows an image of the amount of sagging displacement calculated from the tilt angle and the flight speed.

そして、計測用CPU15は1本の管材21の平均傾斜角度を計算し、計算した平均傾斜角度は無線モジュール8からパソコン18に送信されるとともに、メモリカード16に記録される。   Then, the measurement CPU 15 calculates an average inclination angle of one pipe member 21, and the calculated average inclination angle is transmitted from the wireless module 8 to the personal computer 18 and recorded in the memory card 16.

なお、管渠変形計測装置1の加減速時には動的な加速度が発生するため、加減速時に取得した加速度は傾斜角度の演算には利用できない。この問題を解決するためには、加減速時の途中で停止させて静止加速度を計測するか、一定速走行時(動的加速度の影響が無い)のデータのみ取得するか、加速度が変化する時刻のデータを排除するかの、いずかの方法を採ることができる。   In addition, since dynamic acceleration occurs at the time of acceleration / deceleration of the pipe rod deformation measuring device 1, the acceleration acquired at the time of acceleration / deceleration cannot be used for the calculation of the tilt angle. In order to solve this problem, stop acceleration during acceleration / deceleration and measure static acceleration, or acquire only data during constant speed driving (no influence of dynamic acceleration), or time when acceleration changes You can take either way to eliminate the data.

<計測例2:鉄筋コンクリート管による管路の蛇行の計測>
上記たるみの計測と同時に、加速度センサに13より得られた横方向の加速度を、計測用CPU15が変位に変換することにより蛇行量を計測することもできる。蛇行量は、別途水平に装備した距離センサ(図示略)により管材21の側部に対する飛行体2の左右ずれを検知し、その左右ずれを除外するように補正することが好ましい。
<Measurement example 2: Measurement of meandering of pipe line by reinforced concrete pipe>
Simultaneously with the measurement of the sag, the amount of meander can be measured by converting the lateral acceleration obtained from the acceleration sensor 13 into displacement by the measurement CPU 15. It is preferable to correct the meandering amount so that the lateral displacement of the flying object 2 with respect to the side portion of the pipe 21 is detected by a distance sensor (not shown) separately provided horizontally, and the lateral displacement is excluded.

<計測例3:硬質塩化ビニル管による管路のたわみの計測方法>
上記鉄筋コンクリート管による管渠は、たわみが実質的に生じないため、たわみを計測する必要はない。しかし、硬質塩化ビニル管による管渠は、5%程度のたわみが当初から許容されており、経年変化、道路載荷重、地震応力等により、たわみは増加するため、たわみを計測する必要がある。
<Measurement Example 3: Method for Measuring Deflection of Pipe Line Using Rigid Vinyl Chloride Pipe>
Since the pipe rod made of the reinforced concrete pipe is not substantially bent, it is not necessary to measure the deflection. However, pipe rods made of hard vinyl chloride pipes are allowed to have a deflection of about 5% from the beginning, and the deflection increases due to secular change, road load, seismic stress, etc., so it is necessary to measure the deflection.

そこで、硬質塩化ビニル管による管渠の場合は、上記たるみの計測と同時に、図5に示すように、距離センサ14により管材21の天井頂部までの距離Dを計測し、前述した原理を応用して、計測用CPU15により管材21のたわみを計算する。
例えば、管材21のたわみ変形前の内径が300mm、距離Dが123.6mmであり、たわみ変形後の上下の内径(短径)が285mm、距離Dが119mmであった場合、管材21の偏平率95%、距離Dの変化率96%、変化量4.6mmである。
Therefore, in the case of pipes made of hard polyvinyl chloride pipes, the distance D to the top of the pipe 21 is measured by the distance sensor 14 as shown in FIG. Then, the deflection of the tube material 21 is calculated by the measurement CPU 15.
For example, when the inner diameter of the tube material 21 before the deformation is 300 mm and the distance D is 123.6 mm, the upper and lower inner diameters (short diameter) after the deformation is 285 mm, and the distance D is 119 mm, the flatness of the tube material 21 95%, change rate of distance D is 96%, change amount is 4.6 mm.

以上詳述した本実施例によれば、管渠20の流水遮断や清掃をしなくても、流水、異物、損傷等に影響されずに、管渠20のたるみ、蛇行及びたわみを少ない時間と手間とコストで計測することができる。   According to the embodiment described in detail above, it is possible to reduce the slack, meandering and deflection of the pipe rod 20 without being affected by the flowing water, foreign matter, damage, etc., without shutting off or cleaning the pipe rod 20. It can be measured with effort and cost.

なお、本発明は前記実施例に限定されるものではなく、例えば次のように、発明の趣旨から逸脱しない範囲で適宜変更して具体化することができる。
(1)図7に示すように、左右の脚10を上側ほど間が広がるように傾斜させ、左右の前輪11の距離を大きくするとともに、前輪11を管材21に極力直角に近く当接させること。後輪12についても同様である。
In addition, this invention is not limited to the said Example, For example, as follows, it can change suitably in the range which does not deviate from the meaning of invention, and can be embodied.
(1) As shown in FIG. 7, the left and right legs 10 are inclined so that the distance between the upper and lower legs 10 is increased, the distance between the left and right front wheels 11 is increased, and the front wheels 11 are brought into contact with the pipe material 21 as close to a right angle as possible. . The same applies to the rear wheel 12.

1 管渠変形計測装置
2 飛行体
3 本体ボディ
4 アーム
5 ロータ
6 モータ
7 テレビカメラ
8 無線モジュール
9 制御用CPU
10 脚
11 前輪
12 後輪
13 加速度センサ
14 距離センサ
15 計測用CPU
16 メモリカード
17 リモコン
18 パソコン
20 管渠
21 管材
22 継手部
23 流水
25 マンホール
26 マンホール
DESCRIPTION OF SYMBOLS 1 Pipe deformation measuring device 2 Flying body 3 Main body body 4 Arm 5 Rotor 6 Motor 7 Television camera 8 Wireless module 9 CPU for control
10 leg 11 front wheel 12 rear wheel 13 acceleration sensor 14 distance sensor 15 CPU for measurement
16 memory card 17 remote control 18 personal computer 20 pipe 21 pipe material 22 joint part 23 running water 25 manhole 26 manhole

Claims (8)

管渠の内部を飛行する飛行体と、飛行体に設けられて管渠の天井を転動する前輪及び後輪と、飛行体に設けられて管渠の変形を計測するセンサとを備えることを特徴とする管渠変形計測装置。   A flying object that flies inside the pipe, a front wheel and a rear wheel that are provided on the flying object and roll on the ceiling of the pipe, and a sensor that is provided on the flying object and measures deformation of the pipe. A tube deformation measuring device characterized. センサは、加速度センサ及び距離センサの一方又は両方である請求項1記載の管渠変形計測装置。   2. The tube deformation measuring device according to claim 1, wherein the sensor is one or both of an acceleration sensor and a distance sensor. 管渠の内部に飛行体を飛行させるとともに、飛行体に設けられた前輪及び後輪を管渠の天井に転動させながら、飛行体に設けられたセンサにより管渠の変形を計測することを特徴とする管渠変形計測方法。   While flying the flying object inside the pipe, and measuring the deformation of the pipe with the sensor provided on the flying object while rolling the front and rear wheels provided on the flying object to the ceiling of the pipe. A characteristic method of measuring tube deformation. 飛行体は、自動操縦されて一定速度で飛行する請求項3記載の管渠変形計測方法。   4. The method of measuring tube deformation according to claim 3, wherein the flying object is automatically piloted and flies at a constant speed. 管渠は下水道であり、マンホールに開口した管渠口の天井に飛行体をセットして飛行開始させる請求項3又は4記載の管渠変形計測方法。   5. The pipe deformation measuring method according to claim 3 or 4, wherein the pipe is a sewer, and a flying object is set on a ceiling of the pipe hole opened in the manhole to start flight. 加速度センサで静止加速度を検出して傾斜角度に変換することにより管渠のたるみを計測する請求項3〜5のいずれか一項に記載の管渠変形計測方法。   6. The tubular hook deformation measuring method according to claim 3, wherein the slack of the tubular pipe is measured by detecting a static acceleration with an acceleration sensor and converting the detected acceleration into an inclination angle. 加速度センサで横方向の加速度を検出して変位に変換することにより管渠の蛇行を計測する請求項3〜6のいずれか一項に記載の管渠変形計測方法。   7. A method for measuring deformation of a tube fist according to any one of claims 3 to 6, wherein the meander of the tube is measured by detecting a lateral acceleration with an acceleration sensor and converting it into a displacement. 距離センサで管渠の天井までの距離を検出することにより管渠のたわみを計測する請求項3〜7のいずれか一項に記載の管渠変形計測方法。   8. The method for measuring deformation of a pipe fist according to any one of claims 3 to 7, wherein the deflection of the pipe is measured by detecting a distance to the ceiling of the pipe with a distance sensor.
JP2017004732A 2017-01-13 2017-01-13 Sewer sewer deformation measurement method and apparatus Active JP6644718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017004732A JP6644718B2 (en) 2017-01-13 2017-01-13 Sewer sewer deformation measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017004732A JP6644718B2 (en) 2017-01-13 2017-01-13 Sewer sewer deformation measurement method and apparatus

Publications (2)

Publication Number Publication Date
JP2018112536A true JP2018112536A (en) 2018-07-19
JP6644718B2 JP6644718B2 (en) 2020-02-12

Family

ID=62912156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017004732A Active JP6644718B2 (en) 2017-01-13 2017-01-13 Sewer sewer deformation measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP6644718B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019130045B4 (en) 2019-11-07 2024-03-28 Emqopter GmbH Device and method for autonomous locomotion in canal systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358137A (en) * 1986-08-28 1988-03-12 Mitsubishi Electric Corp Pipe inner surface shape measuring apparatus
JPH01265110A (en) * 1988-04-18 1989-10-23 Iseki Tory Tech Inc Inspection device for pipe line
JP3007108U (en) * 1994-07-22 1995-02-07 信越ポリマー株式会社 Flatness measuring device for buried pipes
JP2016211878A (en) * 2015-04-30 2016-12-15 新日本非破壊検査株式会社 Structure inspection device using floating robot, and inspection method of structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358137A (en) * 1986-08-28 1988-03-12 Mitsubishi Electric Corp Pipe inner surface shape measuring apparatus
JPH01265110A (en) * 1988-04-18 1989-10-23 Iseki Tory Tech Inc Inspection device for pipe line
JP3007108U (en) * 1994-07-22 1995-02-07 信越ポリマー株式会社 Flatness measuring device for buried pipes
JP2016211878A (en) * 2015-04-30 2016-12-15 新日本非破壊検査株式会社 Structure inspection device using floating robot, and inspection method of structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019130045B4 (en) 2019-11-07 2024-03-28 Emqopter GmbH Device and method for autonomous locomotion in canal systems

Also Published As

Publication number Publication date
JP6644718B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
JP6681173B2 (en) Pipeline facility inspection aircraft and pipeline facility inspection system using the same
JP6710114B2 (en) Pipeline inspection vehicle and pipeline inspection system using it
KR102053800B1 (en) Improved ultrasound inspection
WO2012042921A1 (en) Device for testing piping
JP2007113240A (en) Self-location detection method and facility of robot by camera sensor and distance sensor
WO2015012382A1 (en) Buried-pipeline measurement device and buried-pipeline measurement method
JP6366588B2 (en) System for measuring the dynamic displacement of a structure relative to a reference in real time and method of use thereof
JP6927507B2 (en) Structure inspection equipment
JP6644718B2 (en) Sewer sewer deformation measurement method and apparatus
JP5487409B2 (en) Automatic wall tracking waterway tunnel imager
WO1996030719A1 (en) Device for observing inner wall surface of conduit
KR102138126B1 (en) System and method for sewer pipe exploration
CA3205194A1 (en) Pipeline inspection device
WO2016099285A1 (en) Control system and method of landing an end portion of a freely projecting elongated element, and use of an image processor for generating of control parameters for the control system
Ishikawa et al. Investigation of odometry method of pipe line shape by peristaltic crawling robot combined with inner sensor
JPH0830655B2 (en) Equipment for measuring the slope of buried pipelines
CN208588350U (en) Tunnel defect detection device
hyeuk Lee et al. Elbow detection for localization of a mobile robot inside pipeline using laser pointers
KR101872704B1 (en) Under ground cable duct inspecting device
JP2534971B2 (en) Self-propelled robot in pipe, pipe axis surveying apparatus using the same, and pipe axis surveying method
Basri et al. Development of a robotic boiler header inspection device with redundant localization system
CN110186395A (en) A kind of robot for pipeline gradient azimuthal measurement scanning
KR101953023B1 (en) Sewer facility
JP6957381B2 (en) In-pipe inspection system
KR102530769B1 (en) Position Measurement System And Its Measuring Method For Underground Cable Pipe-Line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200108

R150 Certificate of patent or registration of utility model

Ref document number: 6644718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250