JP2018112281A - Half-split thrust bearing - Google Patents

Half-split thrust bearing Download PDF

Info

Publication number
JP2018112281A
JP2018112281A JP2017004256A JP2017004256A JP2018112281A JP 2018112281 A JP2018112281 A JP 2018112281A JP 2017004256 A JP2017004256 A JP 2017004256A JP 2017004256 A JP2017004256 A JP 2017004256A JP 2018112281 A JP2018112281 A JP 2018112281A
Authority
JP
Japan
Prior art keywords
thrust bearing
circumferential
half thrust
bearing
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017004256A
Other languages
Japanese (ja)
Other versions
JP6942471B2 (en
Inventor
真一 櫻井
Shinichi Sakurai
真一 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2017004256A priority Critical patent/JP6942471B2/en
Publication of JP2018112281A publication Critical patent/JP2018112281A/en
Application granted granted Critical
Publication of JP6942471B2 publication Critical patent/JP6942471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a half-split thrust bearing for receiving axial line direction force of a crank shaft of an internal combustion engine that is difficult to generate damage (fatigue) during operation of the internal combustion engine.SOLUTION: The present invention relates to a semi-annular half-split thrust bearing. The half-split thrust bearing has a slide face for receiving axial line direction force, and a back face at a side opposite to the slide face, and defines a reference face vertical to an axial line direction at a back face side. The slide face comprises two flat planes with a circumferential center part of the half-split thrust bearing as a border. An axial line direction distance from the reference face to the slide face is maximum at the circumferential center part at any radial position of the half-split thrust bearing, and becomes smaller toward both circumferential ends. Only one equal thickness part whose axial line direction distance is constant between a radial inside end and a radial outside end of the half-split thrust bearing at a position where a circumferential angle is 40°-50° from each circumferential direction end to the circumferential center part.SELECTED DRAWING: Figure 2

Description

本発明は、内燃機関のクランク軸の軸線方向力を受けるスラスト軸受に関するものである。   The present invention relates to a thrust bearing that receives an axial force of a crankshaft of an internal combustion engine.

内燃機関のクランク軸は、そのジャーナル部において、一対の半割軸受を円筒形状に組み合わせて構成される主軸受を介して、内燃機関のシリンダブロック下部に回転自在に支承される。   The crankshaft of the internal combustion engine is rotatably supported at the lower part of the cylinder block of the internal combustion engine via a main bearing configured by combining a pair of half bearings in a cylindrical shape at a journal portion thereof.

一対の半割軸受のうちの一方又は両方が、クランク軸の軸線方向力を受ける半割スラスト軸受と組み合わせて用いられる。半割スラスト軸受は、半割軸受の軸線方向端面の一方又は両方に配設される。   One or both of the pair of half bearings are used in combination with a half thrust bearing that receives the axial force of the crankshaft. The half thrust bearing is disposed on one or both of axial end faces of the half bearing.

半割スラスト軸受は、クランク軸に生じる軸線方向力を受ける。すなわち、クラッチによってクランク軸と変速機とが接続される際等に、クランク軸に対して入力される軸線方向力を支承することを目的として配置される。   The half thrust bearing receives an axial force generated in the crankshaft. That is, it is arranged for the purpose of supporting an axial force input to the crankshaft when the crankshaft and the transmission are connected by the clutch.

半割スラスト軸受の周方向両端近傍の摺動面側には、周方向端面へ向かって軸受部材の厚さが薄くなるようにスラストリリーフが形成される。一般にスラストリリーフは、半割スラスト軸受の周方向端面から摺動面までの長さや周方向端面での深さが、径方向の位置によらずに一定になるように形成される。スラストリリーフは、半割スラスト軸受を分割型軸受ハウジング内に組み付ける際の一対の半割スラスト軸受の端面同士の位置ずれを吸収するために形成される(特許文献1の図10参照)。   A thrust relief is formed on the sliding surface side in the vicinity of both ends in the circumferential direction of the half thrust bearing so that the thickness of the bearing member decreases toward the circumferential end surface. Generally, the thrust relief is formed such that the length from the circumferential end surface to the sliding surface of the half thrust bearing and the depth at the circumferential end surface are constant regardless of the radial position. The thrust relief is formed to absorb the positional deviation between the end faces of the pair of half thrust bearings when the half thrust bearing is assembled into the split bearing housing (see FIG. 10 of Patent Document 1).

また従来、内燃機関の運転時のクランク軸の撓み変形を考慮して、半割スラスト軸受の摺動面の少なくとも外径側に曲面形状のクラウニング面を設け、それにより半割スラスト軸受の摺動面のクランク軸との局所的な接触応力を低減することも提案されている(特許文献2)。
さらに、半割スラスト軸受の摺動面に、半割スラスト軸受の周方向端部から、頂部(半割スラスト軸受の周方向中央における外径端)の高さの略半分まで延びる傾斜面(スラストリリーフ)を形成し、それにより摺動面に対する傾斜面の傾斜角度を小さくすることも提案されている(特許文献3参照)。
Conventionally, in consideration of bending deformation of the crankshaft during operation of the internal combustion engine, a curved crowning surface is provided on at least the outer diameter side of the sliding surface of the half thrust bearing, thereby sliding the half thrust bearing. It has also been proposed to reduce local contact stress between the surface and the crankshaft (Patent Document 2).
Furthermore, an inclined surface (thrust) extending from the circumferential end of the half thrust bearing to approximately half the height of the top (the outer diameter end at the center in the circumferential direction of the half thrust bearing) on the sliding surface of the half thrust bearing. It has also been proposed to form a relief and thereby reduce the inclination angle of the inclined surface with respect to the sliding surface (see Patent Document 3).

特開平11−201145号公報JP-A-11-2011145 特開2013−19517号公報JP 2013-19517 A 特開2013−238277号公報JP 2013-238277 A

近年、内燃機関の軽量化のためにクランク軸の軸径が小径化され、従来のクランク軸よりも低剛性となっており、内燃機関の運転時にクランク軸に撓みが発生しやすく、クランク軸の振動が大きくなる傾向にある。このためクランク軸のスラストカラー面は半割スラスト軸受の摺動面に対して傾斜しながら摺接し、且つその傾斜方向はクランク軸の回転に伴い変化する。したがって半割スラスト軸受の周方向両端部付近の摺動面とクランク軸のスラストカラー面とが直接接触し、損傷(疲労)が起きやすくなっている。   In recent years, the shaft diameter of the crankshaft has been reduced in order to reduce the weight of the internal combustion engine, and the rigidity has become lower than that of the conventional crankshaft. The vibration tends to increase. For this reason, the thrust collar surface of the crankshaft is in sliding contact with the sliding surface of the half thrust bearing while inclining, and the inclination direction changes as the crankshaft rotates. Therefore, the sliding surfaces near both ends in the circumferential direction of the half thrust bearing are in direct contact with the thrust collar surface of the crankshaft, and damage (fatigue) is likely to occur.

また、一対の半割軸受からなる主軸受の軸線方向の各端部に一対の半割スラスト軸受が組み付けられる場合、分割型軸受ハウジング内に組み付けた際の一対の半割スラスト軸受の端面同士の位置がずれていると、一方の半割スラスト軸受の摺動面とクランク軸のスラストカラー面との間の隙間が、他方の半割スラスト軸受とクランク軸のスラストカラー面との間の隙間よりも大きくなる。あるいは、主軸受の軸線方向の各端部に1つの半割スラスト軸受だけが組み付けられる場合、この半割スラスト軸受が配置されない分割型軸受ハウジングの側面とクランク軸のスラストカラー面との間に大きな隙間が形成される。このような隙間が形成された状態で内燃機関の運転がなされクランク軸の撓みが発生すると、クランク軸のスラストカラー面は形成された隙間側へさらに傾斜する。   In addition, when a pair of half thrust bearings are assembled at each axial end of the main bearing consisting of a pair of half bearings, the end surfaces of the pair of half thrust bearings when assembled in the split bearing housing If the position is shifted, the gap between the sliding surface of one half thrust bearing and the thrust collar surface of the crankshaft is larger than the gap between the other half thrust bearing and the thrust collar surface of the crankshaft. Also grows. Alternatively, when only one half thrust bearing is assembled at each axial end of the main bearing, there is a large gap between the side surface of the split bearing housing where the half thrust bearing is not disposed and the thrust collar surface of the crankshaft. A gap is formed. When the internal combustion engine is operated in a state where such a gap is formed and the crankshaft is bent, the thrust collar surface of the crankshaft is further inclined toward the formed gap.

このような隙間側へ大きく傾斜した状態でクランク軸が回転すると、半割スラスト軸受の周方向両端面を含む面内での半割スラスト軸受の摺動面に対するスラストカラー面の傾斜がより大きくなる。さらに、このスラストカラー面の傾斜は、半割スラスト軸受の周方向両端面を含む面内において、(a)半割スラスト軸受のクランク軸の回転方向後方側の周方向端部付近の摺動面とスラストカラー面とが接触し、クランク軸の回転方向前方側の周方向端部付近の摺動面とスラストカラー面とが離間した傾斜状態と、(b)半割スラスト軸受のクランク軸の回転方向前方側の周方向端部付近の摺動面とスラストカラー面とが接触し、クランク軸の回転方向後方側の周方向端部付近の摺動面とスラストカラー面とが離間した傾斜状態とを、クランク軸の回転に伴って繰り返す。半割スラスト軸受は、その周方向両端部付近の摺動面のみが常時クランク軸のスラストカラー面と直接接触するので、損傷(疲労)が起きやすい。   When the crankshaft rotates with such a large inclination toward the gap, the inclination of the thrust collar surface with respect to the sliding surface of the half thrust bearing in the plane including both circumferential end surfaces of the half thrust bearing becomes larger. . Further, the inclination of the thrust collar surface is within the plane including both circumferential end surfaces of the half thrust bearing. (A) A sliding surface near the circumferential end of the half thrust bearing on the rear side in the rotational direction of the crankshaft. And the thrust collar surface are in contact with each other and the sliding surface near the circumferential end on the front side in the rotational direction of the crankshaft is separated from the thrust collar surface, and (b) rotation of the crankshaft of the half thrust bearing The sliding surface near the circumferential end on the front side in the direction and the thrust collar surface are in contact with each other, and the sliding surface near the circumferential end on the rear side in the rotation direction of the crankshaft is separated from the thrust collar surface. Is repeated as the crankshaft rotates. Since the half thrust bearing is always in direct contact with the thrust collar surface of the crankshaft, only the sliding surfaces near both ends in the circumferential direction are likely to be damaged (fatigue).

上述のクランク軸の撓みによるスラストカラー面の隙間側への傾斜が大きく、したがって半割スラスト軸受の周方向両端面を含む面内でのスラストカラー面の傾斜が大きい場合、特許文献2や特許文献3に記載される技術を採用しても、半割スラスト軸受の周方向両端部付近の摺動面のみが常時クランク軸のスラストカラー面と接触するのを防止するのは困難であった。   When the inclination of the thrust collar surface to the gap side due to the bending of the crankshaft is large, and therefore the inclination of the thrust collar surface in the plane including both circumferential end faces of the half thrust bearing is large, Patent Document 2 and Patent Document Even when the technique described in No. 3 is employed, it is difficult to prevent only the sliding surfaces near the circumferential end portions of the half thrust bearing from always contacting the thrust collar surface of the crankshaft.

したがって本発明の目的は、内燃機関の運転時に、損傷(疲労)が生じにくい半割スラスト軸受を提供することである。   Accordingly, an object of the present invention is to provide a half thrust bearing that is less susceptible to damage (fatigue) during operation of an internal combustion engine.

上記目的を達成するために、本発明の1つの観点によれば、内燃機関のクランク軸の軸線方向力を受けるための半円環形状の半割スラスト軸受であって、軸線方向力を受けるための摺動面と、摺動面の反対側の背面とを有し、且つ軸線方向に垂直な基準面を背面側に画定している半割スラスト軸受において、
前記摺動面は、前記半割スラスト軸受の周方向中央部を境界とする2つの平面からなり、
基準面から摺動面までの軸線方向距離が、半割スラスト軸受のいずれの径方向位置においても、半割スラスト軸受の周方向中央部で最大で、半割スラスト軸受の周方向両端部へ向かって小さくなっており、
各周方向端面から周方向中央部に向かって円周角度40°〜50°の位置に、半割スラスト軸受の径方向内側端部と径方向外側端部との間で前記軸線方向距離が一定であるただ1つの等厚部が形成され、
この等厚部より周方向端部側の半割スラスト軸受の領域では、軸線方向距離は径方向内側端部で最大で、径方向外側端部へ向かって小さくなっており、また
等厚部より周方向中央部側の半割スラスト軸受の領域では、軸線方向距離は径方向内側端部で最小で、径方向外側端部へ向かって大きくなっている
ことを特徴とする半割スラスト軸受が提供される。
ここで、軸線方向距離は、半割スラスト軸受の周方向両端面を含む面と平行ないずれの断面内においても、半割スラスト軸受の外周側で最小であり、周方向中央部側へ向かって大きくなっている。
半割スラスト軸受の背面は平坦であり且つ基準面内に位置していてもよい。
半割スラスト軸受の周方向端面に垂直な方向から半割スラスト軸受を見たとき、摺動面が、周方向中央部で最も突出した凸形状の輪郭を有していてもよい。この摺動面の輪郭は、曲線から構成されることができる。
また周方向中央部の径方向外側端部における半割スラスト軸受の最大軸線方向距離と、周方向両端部の径方向外側端部における軸線方向距離との差が、50〜800μmであってもよい。
摺動面を構成する2つの平面は、周方向中央部に延びる半割スラスト軸受の中心線に関して線対称であってもよい。
1つの等厚部は、各周方向端面から周方向中央部に向かって円周角度45°の位置に形成されていてもよい。
In order to achieve the above object, according to one aspect of the present invention, there is provided a semi-annular half thrust bearing for receiving an axial force of a crankshaft of an internal combustion engine, for receiving the axial force. And a half thrust bearing having a back surface opposite to the sliding surface and defining a reference surface perpendicular to the axial direction on the back surface side,
The sliding surface is composed of two planes with the center in the circumferential direction of the half thrust bearing as a boundary,
The axial distance from the reference surface to the sliding surface is the maximum at the center in the circumferential direction of the half thrust bearing at any radial position of the half thrust bearing, and toward the both ends of the half thrust bearing in the circumferential direction. Is getting smaller,
The axial distance is constant between the radially inner end and the radially outer end of the half thrust bearing at a circumferential angle of 40 ° to 50 ° from each circumferential end surface toward the circumferential central portion. Only one iso-thick part is formed,
In the region of the half thrust bearing on the circumferential end side from this equal thickness portion, the axial distance is maximum at the radially inner end portion and decreases toward the radially outer end portion, and from the equal thickness portion. In the area of the half thrust bearing on the center side in the circumferential direction, the half thrust bearing is characterized in that the axial distance is the smallest at the radially inner end and increases towards the radially outer end. Is done.
Here, the axial distance is the smallest on the outer peripheral side of the half thrust bearing in any cross section parallel to the surface including both end faces in the circumferential direction of the half thrust bearing, and toward the center in the circumferential direction. It is getting bigger.
The back surface of the half thrust bearing may be flat and located in the reference plane.
When the half thrust bearing is viewed from the direction perpendicular to the circumferential end face of the half thrust bearing, the sliding surface may have a convex contour that protrudes most at the center in the circumferential direction. The outline of the sliding surface can be composed of a curve.
Further, the difference between the maximum axial direction distance of the half thrust bearing at the radially outer end of the circumferential central portion and the axial distance of the radially outer end of both circumferential ends may be 50 to 800 μm. .
The two planes constituting the sliding surface may be axisymmetric with respect to the center line of the half thrust bearing extending in the circumferential center.
One equal-thickness part may be formed at a position at a circumferential angle of 45 ° from each circumferential end face toward the circumferential central part.

ここで、クランク軸は、ジャーナル部とクランクピン部とクランクアーム部とを有する部材である。また半割スラスト軸受は、円環を略半分に分割した形状の部材であるが、厳密に半分であることを意図するものではない。   Here, the crankshaft is a member having a journal portion, a crankpin portion, and a crank arm portion. Further, the half thrust bearing is a member having a shape obtained by dividing an annular ring into approximately half, but is not intended to be strictly half.

上記構成を有する本発明の半割スラスト軸受によれば、内燃機関の運転時のクランク軸の撓みに起因して半割スラスト軸受の摺動面に対するスランク軸のスラストカラー面の傾斜角度が大きくなった場合でも、摺動面とスラストカラー面との接触位置がクランク軸の回転に伴って周方向に順次移動するので、半割スラスト軸受の周方向両端部付近の摺動面のみが常時クランク軸のスラストカラー面と接触することが防止され、半割スラスト軸受の摺動面の損傷が起きにくい。
また、本発明のスラスト軸受は、径方向にわたって軸線方向距離が一定である等厚部の位置よりも周方向中央部側の領域では、軸線方向距離は径方向内側端部で最小で、外側端部に向かって大きくなっている。このため、内燃機関の運転時にクランク軸の撓みによりスラストカラー面が隙間側へ大きく傾斜したときでも、半割スラスト軸受の周方向中央部側の領域の摺動面は、径方向の全長にわたってスラストカラー面と接触してクランク軸の軸線方向負荷fを支えるので、損傷が起き難い。
これに対し、従来の半割スラスト軸受は、周方向中央部付近の摺動面は軸線方向距離が径方向にわたって一定であるように形成されているため、クランク軸の撓みによりスラストカラー面が隙間側へ大きく傾斜すると、周方向中央部付近の領域では径方向内側端部側の摺動面のみがスラストカラー面と接触し、損傷が起こる場合がある。
According to the half thrust bearing of the present invention having the above-described configuration, the inclination angle of the thrust collar surface of the srank shaft with respect to the sliding surface of the half thrust bearing is increased due to the bending of the crankshaft during operation of the internal combustion engine. Even in this case, the contact position between the sliding surface and the thrust collar surface sequentially moves in the circumferential direction as the crankshaft rotates, so that only the sliding surfaces near both circumferential ends of the half thrust bearing are always connected to the crankshaft. This prevents contact with the thrust collar surface, and damage to the sliding surface of the half thrust bearing hardly occurs.
Further, in the thrust bearing of the present invention, the axial distance is the smallest at the radially inner end portion and the outer end portion in the region in the circumferential central portion side of the position of the equal thickness portion where the axial distance is constant over the radial direction. It is getting bigger towards the department. For this reason, even when the thrust collar surface is largely inclined toward the gap due to the deflection of the crankshaft during the operation of the internal combustion engine, the sliding surface in the region on the circumferential center side of the half thrust bearing is thrust over the entire length in the radial direction. Since it contacts the collar surface and supports the axial load f of the crankshaft, damage is unlikely to occur.
On the other hand, in the conventional half thrust bearing, the sliding surface near the central portion in the circumferential direction is formed so that the axial distance is constant over the radial direction. If it is greatly inclined to the side, only the sliding surface on the radially inner end side comes into contact with the thrust collar surface in the region near the center in the circumferential direction, and damage may occur.

軸受装置の分解斜視図である。It is a disassembled perspective view of a bearing apparatus. 実施例1の半割スラスト軸受の正面図である。1 is a front view of a half thrust bearing of Example 1. FIG. 図2の半割スラスト軸受のY1矢視側面図である。FIG. 3 is a side view of the half thrust bearing of FIG. 図2の半割スラスト軸受のY2矢視側面図である。FIG. 3 is a side view of the half thrust bearing of FIG. 図2の半割スラスト軸受のA1−A1断面図である。It is A1-A1 sectional drawing of the half thrust bearing of FIG. 図2の半割スラスト軸受のA2−A2断面図である。It is A2-A2 sectional drawing of the half thrust bearing of FIG. 図2の半割スラスト軸受のA3−A3断面図である。It is A3-A3 sectional drawing of the half thrust bearing of FIG. 半割軸受及びスラスト軸受の正面図である。It is a front view of a half bearing and a thrust bearing. 軸受装置の断面図である。It is sectional drawing of a bearing apparatus. 図8の上側の半割軸受の正面図である。FIG. 9 is a front view of the upper half bearing of FIG. 8. 図10の半割軸受を径方向の内側から見た底面図である。It is the bottom view which looked at the half bearing of Drawing 10 from the inner side of the diameter direction. 運転中のスラストカラー面と一対の半割スラスト軸受の接触状態を示す断面図である。It is sectional drawing which shows the contact state of the thrust collar surface in operation and a pair of half thrust bearing. 周方向両端面側から見た運転中のスラストカラー面の摺動面に対する傾斜の変化を示す図である。It is a figure which shows the change of the inclination with respect to the sliding surface of the thrust collar surface in driving | operation seen from the circumferential direction both end surface side. 周方向両端面側から見た運転中のスラストカラー面の摺動面に対する傾斜を示す図である。It is a figure which shows the inclination with respect to the sliding surface of the thrust collar surface in driving | operation seen from the circumferential direction both end surface side. 周方向両端面側から見た運転中のスラストカラー面の摺動面に対する傾斜を示す図である。It is a figure which shows the inclination with respect to the sliding surface of the thrust collar surface in driving | operation seen from the circumferential direction both end surface side. 周方向両端面側から見た運転中のスラストカラー面の摺動面に対する傾斜を示す図である。It is a figure which shows the inclination with respect to the sliding surface of the thrust collar surface in driving | operation seen from the circumferential direction both end surface side. 周方向両端面側から見た運転中のスラストカラー面の摺動面に対する傾斜を示す図である。It is a figure which shows the inclination with respect to the sliding surface of the thrust collar surface in driving | operation seen from the circumferential direction both end surface side. 図13Aに対応する、摺動面を正面側から見た摺動面とスラストカラー面の接触位置を示す図である。It is a figure which shows the contact position of the sliding surface and thrust collar surface which looked at the sliding surface from the front side corresponding to FIG. 13A. 図13Bに対応する、摺動面を正面側から見た摺動面とスラストカラー面の接触位置を示す図である。It is a figure which shows the contact position of the sliding surface and thrust collar surface which looked at the sliding surface from the front side corresponding to FIG. 13B. 図13Cに対応する、摺動面を正面側から見た摺動面とスラストカラー面の接触位置を示す図である。It is a figure which shows the contact position of the sliding surface and thrust collar surface which looked at the sliding surface from the front side corresponding to FIG. 13C. 図13Dに対応する、摺動面を正面側から見た摺動面とスラストカラー面の接触位置を示す図である。It is a figure which shows the contact position of the sliding surface and thrust collar surface which looked at the sliding surface from the front side corresponding to FIG. 13D. 図13Eに対応する、摺動面を正面側から見た摺動面とスラストカラー面の接触位置を示す図である。It is a figure which shows the contact position of the sliding surface and thrust collar surface which looked at the sliding surface from the front side corresponding to FIG. 13E. 本発明の他の形態の半割スラスト軸受の正面図である。It is a front view of the half thrust bearing of other forms of the present invention. 図15の半割スラスト軸受の周方向端部付近の側面図である。FIG. 16 is a side view of the vicinity of a circumferential end of the half thrust bearing of FIG. 15.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(軸受装置の全体構成)
まず、図1、8及び9を用いて本発明の半割スラスト軸受8を有する軸受装置1の全体構成を説明する。図1、8及び9に示すように、シリンダブロック2の下部に軸受キャップ3を取り付けて構成された軸受ハウジング4には、両側面間を貫通する円形孔である軸受孔(保持孔)5が形成されており、側面における軸受孔5の周縁には円環状凹部である受座6、6が形成されている。軸受孔5には、クランク軸のジャーナル部11を回転自在に支承する半割軸受7、7が円筒状に組み合わされて嵌合される。受座6、6には、クランク軸のスラストカラー面12を介して軸線方向力f(図9参照)を受ける半割スラスト軸受8、8が円環状に組み合わされて嵌合される。
(Overall configuration of bearing device)
First, the whole structure of the bearing device 1 having the half thrust bearing 8 of the present invention will be described with reference to FIGS. As shown in FIGS. 1, 8 and 9, a bearing housing 4 configured by attaching a bearing cap 3 to the lower part of the cylinder block 2 has a bearing hole (holding hole) 5 which is a circular hole penetrating between both side surfaces. Receiving seats 6 and 6 which are annular recesses are formed on the peripheral edge of the bearing hole 5 on the side surface. Half bearings 7 and 7 that rotatably support the journal portion 11 of the crankshaft are fitted into the bearing hole 5 in a cylindrical shape. Half thrust bearings 8 and 8 that receive an axial force f (see FIG. 9) via the thrust collar surface 12 of the crankshaft are fitted into the receiving seats 6 and 6 in an annular shape.

図8に示すように、主軸受を構成する半割軸受7のうち、シリンダブロック2側(上側)の半割軸受7の内周面には潤滑油溝71が形成され、また潤滑油溝71内には外周面に貫通する貫通孔72が形成されている(図10及び11も参照)。潤滑油溝71は、上下両方の半割軸受に形成することもできる。半割軸受7はまた、周方向両端面74に隣接する摺動面75上にクラッシュリリーフ73を有する。   As shown in FIG. 8, a lubricating oil groove 71 is formed on the inner peripheral surface of the half bearing 7 on the cylinder block 2 side (upper side) of the half bearing 7 constituting the main bearing, and the lubricating oil groove 71. A through hole 72 penetrating the outer peripheral surface is formed inside (see also FIGS. 10 and 11). The lubricating oil groove 71 can also be formed in both upper and lower half bearings. The half bearing 7 also has a crush relief 73 on a sliding surface 75 adjacent to the circumferential end surfaces 74.

(半割スラスト軸受の構成)
次に、図2〜7を用いて実施例1の半割スラスト軸受8の構成について説明する。本実施例の半割スラスト軸受8は、鋼製の裏金層に薄い軸受合金層を接着したバイメタルによって、半円環形状の平板に形成される。半割スラスト軸受8は軸線方向を向いた摺動面81(軸受面)を備え、摺動面8は軸受合金層から構成される。摺動面81は、半割スラスト軸受8の周方向中央部85を境界とする2つの平面から構成される。これら2つの平面は、好ましくは、半割スラスト軸受8の周方向中央部85を通して延びる中心線(境界)に関して線対称である。また摺動面81には、潤滑油の保油性を高めるために、周方向両端面83、83の間に2つの油溝81a、81aが形成されている。
(Configuration of half thrust bearing)
Next, the structure of the half thrust bearing 8 of Example 1 is demonstrated using FIGS. The half thrust bearing 8 of the present embodiment is formed into a semi-annular flat plate by a bimetal obtained by bonding a thin bearing alloy layer to a steel back metal layer. The half thrust bearing 8 includes a sliding surface 81 (bearing surface) facing in the axial direction, and the sliding surface 8 is composed of a bearing alloy layer. The sliding surface 81 is composed of two flat surfaces with the central portion 85 in the circumferential direction of the half thrust bearing 8 as a boundary. These two planes are preferably axisymmetric with respect to a center line (boundary) extending through the circumferential central portion 85 of the half thrust bearing 8. In addition, two oil grooves 81a and 81a are formed between the circumferential end surfaces 83 and 83 in the sliding surface 81 in order to improve the oil retaining property of the lubricating oil.

半割スラスト軸受8は軸線方向に垂直な基準面84を画定しており、この基準面84内に、シリンダブロック2の受座6に配置されるように適合された実質的に平坦な背面84aを有する(図3参照)。さらに、半割スラスト軸受8は、基準面84(背面84a)から軸線方向に離れた摺動面81を有し、摺動面81は、クランク軸のスラストカラー面12を介して軸線方向力f(図9参照)を受けるように適合されている。半割スラスト軸受8は、基準面84から摺動面81までの軸線方向距離が、半割スラスト軸受8のいずれの径方向位置においても、半割スラスト軸受8の周方向中央部85で最大で、半割スラスト軸受の周方向両端部へ向かって小さくなるように形成される。したがって、例えば半割スラスト軸受8の径方向中央位置(図2の一点鎖線位置)においても、基準面84から摺動面81までの軸線方向距離は周方向中央部85で最大(TC)で、周方向両端部86で最小(TE)となることが理解されよう。   The half thrust bearing 8 defines a reference surface 84 that is perpendicular to the axial direction, and within this reference surface 84 is a substantially flat back surface 84a adapted to be placed on the seat 6 of the cylinder block 2. (See FIG. 3). Further, the half thrust bearing 8 has a sliding surface 81 that is axially separated from the reference surface 84 (back surface 84a), and the sliding surface 81 receives an axial force f through the thrust collar surface 12 of the crankshaft. (See FIG. 9). The half thrust bearing 8 has a maximum axial distance from the reference surface 84 to the sliding surface 81 at the circumferential central portion 85 of the half thrust bearing 8 at any radial position of the half thrust bearing 8. The half thrust bearing is formed so as to decrease toward both ends in the circumferential direction. Therefore, for example, even in the radial center position of the half thrust bearing 8 (the one-dot chain line position in FIG. 2), the axial distance from the reference surface 84 to the sliding surface 81 is the maximum (TC) in the circumferential center portion 85. It will be appreciated that the circumferential end 86 is the smallest (TE).

本実施例において、基準面84(背面84a)から摺動面81までの軸線方向距離は、半割スラスト軸受8の軸受壁厚Tに一致する。
本実施例において、各周方向端面83と周方向中央部85との間には、径方向外側端部と径方向内側端部との間で軸受壁厚が一定である等厚部M(図5参照)がただ1つ形成されている。より具体的には、等厚部Mは、半割スラスト軸受8の各周方向端面83から周方向中央部85へ向かって円周角度45°の位置に配置され、この等厚部Mより周方向端面83側の領域XEでは、軸受壁厚が径方向内側端部(厚さTI)で最大で、径方向外側端部(厚さTO)へ向かって小さくなっており(図6参照)、一方、等厚部Mより周方向中央部85側の領域XCでは、軸受壁厚が径方向内側端部(厚さTI)で最小で、径方向外側端部(厚さTO)へ向かって大きくなっている(図7参照)。
上記構成による摺動面81(2つの平面)は、換言すると、半割スラスト軸受8の周方向中央部の径方向外側端部から周方向両端部の径方向外側端部へ向かって軸受壁厚が減少するように背面83に対して傾斜した平面からなる。したがって軸受壁厚は、等厚部Mよりも周方向中央部85側の領域XC及び等厚部Mよりも周方向両端面83側の領域XEのいずれでも、周方向両端面83を含む面と平行な任意の断面内で、半割スラスト軸受8の外周側で最小であり、周方向中央部85側へ向かって大きくなっていることが、図4からも理解されよう。
なお、摺動面81の油溝81aが形成された部分では、背面84aから、油溝81aを形成しなかった場合の仮想摺動面(摺動面81の延長面)までの軸方向距離が上記関係を満たすように半割スラスト軸受8が形成される。
また、等厚部Mの配置位置は、半割スラスト軸受8の各周方向端面83から周方向中央部85へ向かって円周角度45°の位置に限定されないで、各周方向端面83から周方向中央部85へ向かって円周角度40°〜50°の範囲内に一つの等厚部Mが配置されるようにすればよい。
In the present embodiment, the axial distance from the reference surface 84 (back surface 84 a) to the sliding surface 81 matches the bearing wall thickness T of the half thrust bearing 8.
In the present embodiment, between each circumferential end face 83 and the circumferential central portion 85, a constant thickness portion M (see FIG. 5) in which the bearing wall thickness is constant between the radially outer end and the radially inner end. 5) is formed. More specifically, the equal-thickness portion M is disposed at a circumferential angle of 45 ° from each circumferential end surface 83 of the half thrust bearing 8 toward the circumferential central portion 85. In the region XE on the direction end face 83 side, the bearing wall thickness is maximum at the radially inner end (thickness TI) and decreases toward the radially outer end (thickness TO) (see FIG. 6). On the other hand, in the region XC on the circumferential central portion 85 side with respect to the equal thickness portion M, the bearing wall thickness is minimum at the radially inner end portion (thickness TI) and increases toward the radially outer end portion (thickness TO). (See FIG. 7).
In other words, the sliding surface 81 (two planes) having the above-described configuration has a bearing wall thickness from the radially outer end of the circumferential central portion of the half thrust bearing 8 toward the radially outer end of both circumferential ends. It consists of a plane inclined with respect to the back surface 83 so that the number of Therefore, the bearing wall thickness is the surface including the circumferential end surfaces 83 in both the region XC on the circumferential center 85 side of the uniform thickness portion M and the region XE on the circumferential end surfaces 83 side of the uniform thickness portion M. It will be understood from FIG. 4 that, in any parallel cross section, it is the smallest on the outer peripheral side of the half thrust bearing 8 and increases toward the central portion 85 in the circumferential direction.
In the portion of the sliding surface 81 where the oil groove 81a is formed, the axial distance from the rear surface 84a to the virtual sliding surface (the extended surface of the sliding surface 81) when the oil groove 81a is not formed is The half thrust bearing 8 is formed so as to satisfy the above relationship.
Further, the arrangement position of the equal-thickness portion M is not limited to a position at a circumferential angle of 45 ° from each circumferential end surface 83 of the half thrust bearing 8 toward the circumferential central portion 85, One equal thickness portion M may be arranged in a range of a circumferential angle of 40 ° to 50 ° toward the direction center portion 85.

上述したように半割スラスト軸受8の周方向両端部における軸受壁厚TEは、周方向中央部における軸受壁厚TCに対して小さく形成される(図3参照)。したがって半割スラスト軸受8の周方向両端面を含む面に垂直な方向から見て、半割スラスト軸受8の摺動面81は、周方向中央部85が最も突出した凸形状の輪郭を有している(図3参照)。より具体的には、乗用車用等の小型内燃機関のクランク軸(直径が30〜100mm程度のジャーナル部を有する)に使用する場合、半割スラスト軸受8の周方向中央部85の径方向外側端部における軸受壁厚と、周方向両端部の径方向外側端部における軸受壁厚の差は、例えば50〜800μmであり、より好適には200〜400μmである。しかし、これらの寸法は一例に過ぎず、軸受壁厚の差はこの寸法範囲に限定されない。   As described above, the bearing wall thickness TE at both circumferential ends of the half thrust bearing 8 is formed smaller than the bearing wall thickness TC at the circumferential central portion (see FIG. 3). Therefore, the sliding surface 81 of the half thrust bearing 8 has a convex outline with the circumferential center portion 85 protruding most when viewed from a direction perpendicular to the surfaces including both circumferential end surfaces of the half thrust bearing 8. (See FIG. 3). More specifically, when used for a crankshaft of a small internal combustion engine for a passenger car or the like (having a journal portion having a diameter of about 30 to 100 mm), the radially outer end of the circumferential central portion 85 of the half thrust bearing 8 The difference between the bearing wall thickness at the portion and the bearing wall thickness at the radially outer end portion at both ends in the circumferential direction is, for example, 50 to 800 μm, and more preferably 200 to 400 μm. However, these dimensions are only examples, and the difference in bearing wall thickness is not limited to this dimension range.

(作用)
次に、図8、9及び12を用いて、従来の半割スラスト軸受8の作用を説明する。
(Function)
Next, the operation of the conventional half thrust bearing 8 will be described with reference to FIGS.

一般に、半割軸受7は半割スラスト軸受8と同心に、且つ主軸受を構成する半割軸受7の周方向両端面74を含む平面が、半割スラスト軸受8の周方向両端面83を含む平面と実質的に一致するように配置される。   Generally, the half bearing 7 is concentric with the half thrust bearing 8, and the plane including the circumferential end faces 74 of the half bearing 7 constituting the main bearing includes the circumferential end faces 83 of the half thrust bearing 8. It arrange | positions so that it may correspond with a plane substantially.

内燃機関の運転時、特にクランク軸が高速回転する運転条件では、クランク軸に撓み(軸線方向の撓み)が発生してクランク軸の振動が大きくなる。この大きな振動により、クランク軸には半割スラスト軸受8の摺動面81へ向かう軸線方向力fが周期的に発生する。半割スラスト軸受8の摺動面81は、この軸線方向力fを受ける。   During operation of the internal combustion engine, particularly under operating conditions in which the crankshaft rotates at a high speed, the crankshaft is bent (bending in the axial direction), and the vibration of the crankshaft increases. Due to this large vibration, an axial force f toward the sliding surface 81 of the half thrust bearing 8 is periodically generated on the crankshaft. The sliding surface 81 of the half thrust bearing 8 receives this axial force f.

一対の半割軸受7、7からなる主軸受の軸線方向の各端部に一対の半割スラスト軸受8、8が組み付けられる場合、分割型軸受ハウジング4に組み付けた際に一対の半割スラスト軸受8、8の端面83、83同士の位置が軸線方向にずれていると、一方の半割スラスト軸受8の摺動面81とクランク軸のスラストカラー面12との間の隙間が、他方の半割スラスト軸受8の摺動面81とスラストカラー面12との間の隙間よりも大きくなる(図12参照)。あるいは、主軸受の軸線方向の各端部に1つの半割スラスト軸受8だけが組み付けられる場合、半割スラスト軸受8が配置されないほうの分割型軸受ハウジング4の側面とクランク軸のスラストカラー面12との間に大きな隙間が形成される。このような隙間が形成された状態で内燃機関が運転されクランク軸の撓みが発生すると、クランク軸のスラストカラー面12は大きな隙間側へさらに傾斜する。このような隙間側へ大きく傾斜した状態でクランク軸が回転すると、半割スラスト軸受8の周方向両端面83を含む面内での半割スラスト軸受8に対するスラストカラー面12の傾斜がより大きくなり、また半割スラスト軸受8の周方向両端部付近の摺動面81のみが常時クランク軸のスラストカラー面12と直接接触するので、上述した通り損傷(疲労)が起きやすくなる。
より詳細には、周方向両端面83を含む面に垂直な方向から半割スラスト軸受8を見たとき、クランク軸のスラストカラー面12は、(1)半割スラスト軸受8のクランク軸の回転方向後方側の周方向端部側に傾斜している状態から、半割スラスト軸受8の摺動面81と平行になるまでの間は、半割スラスト軸受8のクランク軸の回転方向の後側の周方向端部付近の摺動面81とのみ接触し、また(2)摺動面81と平行になった直後から、半割スラスト軸受8のクランク軸の回転方向前方側の周方向端面側に傾斜している間は、半割スラスト軸受8のクランク軸の回転方向前方側の周方向端部付近の摺動面81とのみ接する。
When a pair of half thrust bearings 8, 8 is assembled to each axial end portion of the main bearing consisting of a pair of half bearings 7, 7, a pair of half thrust bearings are assembled when assembled to the split bearing housing 4. If the positions of the end surfaces 83 of the 8, 8 are shifted in the axial direction, the gap between the sliding surface 81 of one half thrust bearing 8 and the thrust collar surface 12 of the crankshaft becomes the other half. The clearance becomes larger than the gap between the sliding surface 81 of the split thrust bearing 8 and the thrust collar surface 12 (see FIG. 12). Alternatively, when only one half thrust bearing 8 is assembled at each end in the axial direction of the main bearing, the side surface of the split bearing housing 4 on which the half thrust bearing 8 is not disposed and the thrust collar surface 12 of the crankshaft. A large gap is formed between the two. When the internal combustion engine is operated in a state where such a gap is formed and the crankshaft is bent, the thrust collar surface 12 of the crankshaft is further inclined toward the larger gap. When the crankshaft rotates with such a large inclination toward the gap side, the inclination of the thrust collar surface 12 with respect to the half thrust bearing 8 in the plane including both circumferential end faces 83 of the half thrust bearing 8 becomes larger. In addition, since only the sliding surfaces 81 near both ends in the circumferential direction of the half thrust bearing 8 are always in direct contact with the thrust collar surface 12 of the crankshaft, damage (fatigue) is likely to occur as described above.
More specifically, when the half thrust bearing 8 is viewed from a direction perpendicular to the surface including both circumferential end faces 83, the thrust collar surface 12 of the crankshaft is (1) rotation of the crankshaft of the half thrust bearing 8. The rear side in the rotational direction of the crankshaft of the half thrust bearing 8 is from the state of being inclined toward the circumferential end on the rear side in the direction until being parallel to the sliding surface 81 of the half thrust bearing 8. (2) Immediately after being in parallel with the sliding surface 81, (2) the circumferential end surface on the front side in the rotational direction of the crankshaft of the half thrust bearing 8 Is inclined only to the sliding surface 81 near the circumferential end on the front side in the rotational direction of the crankshaft of the half thrust bearing 8.

ここで、特許文献2に記載されるように半割スラスト軸受の摺動面の外径側に曲面から構成されるクラウニング面を設けたとしても、基準面84から摺動面81までの軸線方向距離がいずれの径方向位置においても周方向中央部で最大となるように半割スラスト軸受8が形成されていない場合、換言すれば、周方向両端面83を含む面に垂直な方向から半割スラスト軸受8を見たときに半割スラスト軸受8の摺動面81の輪郭が周方向中央部で最も突出した凸形状でない場合(例えば、周方向両端面83を含む面に垂直な方向から半割スラスト軸受8を見たときに摺動面81の輪郭が一直線である場合)、上記理由により、特に半割スラスト軸受8の周方向端部付近の摺動面81とクランク軸のスラストカラー面12とが直接接触し、損傷が起きやすい。   Here, as described in Patent Document 2, even if a crowning surface composed of a curved surface is provided on the outer diameter side of the sliding surface of the half thrust bearing, the axial direction from the reference surface 84 to the sliding surface 81 In the case where the half thrust bearing 8 is not formed so that the distance is maximum at the center in the circumferential direction at any radial position, in other words, it is half from the direction perpendicular to the surface including the circumferential end surfaces 83. When the thrust bearing 8 is viewed, when the contour of the sliding surface 81 of the half thrust bearing 8 is not the most protruding convex shape at the center in the circumferential direction (for example, half from the direction perpendicular to the surface including the circumferential end surfaces 83) When the split thrust bearing 8 is viewed, the outline of the sliding surface 81 is a straight line). For the above reason, the sliding surface 81 in the vicinity of the circumferential end of the half thrust bearing 8 and the thrust collar surface of the crankshaft. 12 in direct contact with damage Kiyasui.

あるいは、特許文献3に記載されるように半割スラスト軸受の摺動面に、半割スラスト軸受の周方向端部から、頂部まで高さの略半分まで延びる傾斜面(スラストリリーフ)を形成し、それにより摺動面に対する傾斜面の傾斜角度を小さくしたとしても、半割スラスト軸受8の周方向両端面83を含む面に垂直な方向から見たときに半割スラスト軸受8の摺動面81の輪郭が周方向中央部で最も突出した凸形状でない場合、やはり上記理由により、特に半割スラスト軸受の周方向端部付近の摺動面81(傾斜面)とクランク軸のスラストカラー面12とが直接接触し、損傷が起きやすい。
さらに、特許文献3に記載される半割スラスト軸受では、傾斜面の軸受壁厚が、半割スラスト軸受の周方向端部を除いて、スラスト軸受の径方向内側端部より径方向外側端部のほうが大きくなるため、半割スラスト軸受の周方向端部付近の特に外径側の摺動面(傾斜面)とクランク軸のスラストカラー面12とが直接接触し、より損傷が起きやすい。
Alternatively, as described in Patent Document 3, an inclined surface (thrust relief) is formed on the sliding surface of the half thrust bearing, extending from the circumferential end of the half thrust bearing to approximately the half of the height to the top. Even if the inclination angle of the inclined surface with respect to the sliding surface is thereby reduced, the sliding surface of the half thrust bearing 8 when viewed from the direction perpendicular to the surfaces including the circumferential end surfaces 83 of the half thrust bearing 8 is obtained. When the contour of 81 is not the most protruding convex shape in the central portion in the circumferential direction, the sliding surface 81 (inclined surface) near the circumferential end of the half thrust bearing and the thrust collar surface 12 of the crankshaft are also particularly for the above reasons. Are in direct contact with each other and damage is likely to occur.
Furthermore, in the half thrust bearing described in Patent Document 3, the bearing wall thickness of the inclined surface is such that the outer end in the radial direction from the inner end in the radial direction of the thrust bearing except the circumferential end of the half thrust bearing. Therefore, the sliding surface (inclined surface) on the outer diameter side in the vicinity of the circumferential end of the half thrust bearing and the thrust collar surface 12 of the crankshaft are in direct contact with each other, and damage is more likely to occur.

(効果)
次に、図13A〜14Eを用いて本実施例の半割スラスト軸受8の効果を説明する。
(effect)
Next, the effect of the half thrust bearing 8 of the present embodiment will be described with reference to FIGS.

図13A〜Eは、半割スラスト軸受8の周方向両端面83を含む面に垂直な方向から半割スラスト軸受8を見たときの(すなわち周方向両端面83を含む面内における)摺動面81に対するスラストカラー面12の運転中の傾斜の変化を順に示し、図14A〜Eは、半割スラスト軸受8の摺動面81を正面側から見たときの、図13A〜Eに対応する摺動面81とスラストカラー面12の接触位置の変化を示す。図14A〜Eの破線円は、半割スラスト軸受8の摺動面81とスラストカラー面12の接触部(接触により負荷を最も受ける摺動面の位置)を示す。例えば図13B及びこれに対応する図14Bから、摺動面81とスラストカラー面12の接触部が図14Aに示される周方向端部付近から離れた後も、図14Cに示される周方向中央部へ到達するまでは、スラストカラー面12は、周方向両端面83を含む面内で摺動面81に対して傾斜していることが理解されよう。
本実施例の半割スラスト軸受8は、背面84a(基準面84)から摺動面81までの軸線方向距離Tが、半割スラスト軸受8のいずれの径方向位置においても周方向中央部85で最大で、周方向両端部へ向かって小さくなっている。また、各周方向端面83と周方向中央部85との間には、径方向外側端部と径方向内側端部との間で軸線方向距離が一定である等厚部Mがただ1つ形成され、この等厚部Mは、半割スラスト軸受8の各周方向端部から周方向中央部へ向かって円周角度45°の位置に配置される。軸線方向距離は、等厚部Mより周方向端部側の領域XEでは径方向内側端部(厚さTI)で最大で、径方向外側端部(厚さTO)へ向かって小さくなっており、また等厚部Mよりも周方向中央部側の領域XCでは径方向内側端部(厚さTI)で最小で、径方向外側端部(厚さTO)へ向かって大きくなっている。
この構成により、軸線方向距離は、周方向両端面83を含む面と平行な任意の断面内で、半割スラスト軸受8の外周側で最小であり、周方向中央部85側へ向かって大きくなっていることが理解されよう。
これにより、図13A〜Eに示すように半割スラスト軸受8の背面84aに対するスラストカラー面12の傾斜変化が生じても、図13A〜14Eに示すように摺動面81とスラストカラー面12との接触位置が、半割スラスト軸受8のクランク軸の回転方向後方側の周方向端部(図13A及び14A)からクランク軸の回転方向前方側の周方向端部(図13E及び14E)へ、クランク軸の回転に伴って周方向に順次移動する。このため本実施例の半割スラスト軸受8では、周方向両端部付近の摺動面81のみが常時クランク軸のスラストカラー面12と直接接触し、損傷(疲労)することが防止される。
また本実施例の半割スラスト軸受8は、上記のように等厚部Mよりも周方向端面83側の領域XEにおいて軸線方向距離Tが半割スラスト軸受8の径方向内側端部で最大で、径方向外側端部へ向かって小さくなるように形成され(図6参照)、したがって半割スラスト軸受の周方向両端面を含む面内において内燃機関の運転時に発生するクランク軸の撓みによりスランク軸のスラストカラー面12が半割スラスト軸受の摺動面に傾斜した場合でも、半割スラスト軸受8の周方向両端部付近の摺動面81の外径側の領域がスラストカラー面12と強く接触することが防止される。
さらに、本実施例のスラスト軸受8は、径方向で軸線方向距離が一定である等厚部Mの位置よりも周方向中央部側の領域XCにおいて、軸線方向距離が径方向内側端部で最小で、径方向外側端部に向かって大きくなるように形成される(図7参照)。このため、内燃機関の運転時に発生するクランク軸の撓みによりスラストカラー面12が隙間側へ大きく傾斜した場合(図12参照)でも、半割スラスト軸受8の周方向中央部の領域の摺動面は、径方向の全長にわたってスラストカラー面と接触し、クランク軸の軸線方向負荷fを支えるので、損傷が起き難い。
13A to 13E show sliding when the half thrust bearing 8 is viewed from a direction perpendicular to the surface including the circumferential end faces 83 of the half thrust bearing 8 (that is, in the plane including the circumferential end faces 83). FIGS. 14A to 14E correspond to FIGS. 13A to 13E when the sliding surface 81 of the half thrust bearing 8 is viewed from the front side. The change of the contact position of the sliding surface 81 and the thrust collar surface 12 is shown. 14A to 14E indicate contact portions between the sliding surface 81 of the half thrust bearing 8 and the thrust collar surface 12 (the position of the sliding surface that receives the load most by the contact). For example, from FIG. 13B and the corresponding FIG. 14B, even after the contact portion between the sliding surface 81 and the thrust collar surface 12 is separated from the vicinity of the circumferential end portion shown in FIG. 14A, the circumferential central portion shown in FIG. It will be understood that the thrust collar surface 12 is inclined with respect to the sliding surface 81 in a plane including both circumferential end surfaces 83 until reaching.
In the half thrust bearing 8 of the present embodiment, the axial distance T from the back surface 84 a (reference surface 84) to the sliding surface 81 is the circumferential central portion 85 at any radial position of the half thrust bearing 8. At the maximum, it decreases toward both ends in the circumferential direction. In addition, between each circumferential end face 83 and the circumferential central portion 85, only one constant thickness portion M having a constant axial distance between the radially outer end and the radially inner end is formed. The equal thickness portion M is arranged at a circumferential angle of 45 ° from each circumferential end of the half thrust bearing 8 toward the circumferential central portion. The axial distance is maximum at the radially inner end (thickness TI) in the region XE closer to the circumferential end than the uniform thickness M, and decreases toward the radially outer end (thickness TO). Further, in the region XC on the circumferential center side with respect to the equal thickness portion M, the radial inner end portion (thickness TI) is the smallest and increases toward the radially outer end portion (thickness TO).
With this configuration, the axial distance is the smallest on the outer circumferential side of the half thrust bearing 8 and increases toward the circumferential central portion 85 in an arbitrary cross section parallel to the plane including the circumferential end faces 83. It will be understood that
13A to 13E, even if the inclination change of the thrust collar surface 12 with respect to the back surface 84a of the half thrust bearing 8 occurs as shown in FIGS. 13A to 13E, the sliding surface 81 and the thrust collar surface 12 as shown in FIGS. Of the half thrust bearing 8 from the circumferential end on the rear side in the rotational direction of the crankshaft (FIGS. 13A and 14A) to the circumferential end on the front side in the rotational direction of the crankshaft (FIGS. 13E and 14E). As the crankshaft rotates, it moves sequentially in the circumferential direction. For this reason, in the half thrust bearing 8 of the present embodiment, only the sliding surfaces 81 near both ends in the circumferential direction are always in direct contact with the thrust collar surface 12 of the crankshaft and are prevented from being damaged (fatigue).
Further, in the half thrust bearing 8 of this embodiment, the axial distance T is maximum at the radially inner end of the half thrust bearing 8 in the region XE on the circumferential end face 83 side of the equal thickness portion M as described above. The slanking shaft is formed by the deflection of the crankshaft generated during operation of the internal combustion engine in a plane including both circumferential end surfaces of the half thrust bearing. Even when the thrust collar surface 12 is inclined to the sliding surface of the half thrust bearing, the region on the outer diameter side of the sliding surface 81 near both ends in the circumferential direction of the half thrust bearing 8 is in strong contact with the thrust collar surface 12. Is prevented.
Further, in the thrust bearing 8 of the present embodiment, the axial distance is minimum at the radially inner end in the region XC on the circumferential center side with respect to the position of the equal thickness portion M where the axial distance is constant in the radial direction. Thus, it is formed so as to increase toward the radially outer end (see FIG. 7). For this reason, even when the thrust collar surface 12 is largely inclined toward the gap due to the deflection of the crankshaft that occurs during operation of the internal combustion engine (see FIG. 12), the sliding surface in the circumferential central region of the half thrust bearing 8 Since it is in contact with the thrust collar surface over the entire length in the radial direction and supports the axial load f of the crankshaft, damage is unlikely to occur.

以上、図面を参照して、本発明の実施例を詳述してきたが、具体的な構成はこれら実施例に限定されず、本発明の要旨を逸脱しない程度の設計的変更が本発明に含まれることを理解すべきである。   Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and design changes that do not depart from the gist of the present invention are included in the present invention. Should be understood.

例えば実施例では、半割軸受と半割スラスト軸受が分離しているタイプの軸受装置1について説明したが、本発明はこれに限定されるものではなく、半割軸受と半割スラスト軸受が一体化したタイプの軸受装置1にも適用できる。   For example, in the embodiment, the bearing device 1 of the type in which the half bearing and the half thrust bearing are separated has been described, but the present invention is not limited to this, and the half bearing and the half thrust bearing are integrated. The present invention can also be applied to a bearing device 1 of a simplified type.

また図15に示すように、位置決め及び回転止めのために、径方向外側に突出する突出部88を備えた半割スラスト軸受108に本発明を適用することもできる。なお、突出部88は、上述した軸線方向距離Tの構成を満足していなくてもよい。また図15及び16に示すように半割スラスト軸受の摺動面81の周方向両端部付近にスラストリリーフ82を設けてもよい。さらに、図16に示すように半割スラスト軸受108の摺動面81と反対側の背面84aの周方向両端部にテーパーを設けて、背面リリーフ87を形成することもできる。なお、スラストリリーフ82や背面リリーフ87を設けた場合、上述した半割スラスト軸受の周方向両端部における径方向外側端部の軸受壁厚TEは、スラストリリーフ82や背面リリーフ87を設けなかった場合の仮想の摺動面81(摺動面81を周方向両端部まで延長した面)と仮想の背面84a(背面84aを周方向両端部まで延長した面)と間の軸線方向距離で定義される。
また図15及び16に示すように、半割スラスト軸受108の周方向長さは、実施例1に示す通常の半割スラスト軸受8の周方向端面の位置HRから所定の長さS1だけ短く形成されてもよい。さらに、半割スラスト軸受108は、周方向両端部近傍において内周面を半径Rの円弧状に切り欠かれてもよい。その場合、半割スラスト軸受の周方向端部における軸受壁厚Tは、長さS1や切り欠きを形成しなかった場合の半割スラスト軸受の周方向端部での軸受壁厚によって表すことができる。
As shown in FIG. 15, the present invention can also be applied to a half thrust bearing 108 having a protruding portion 88 protruding radially outward for positioning and rotation prevention. In addition, the protrusion part 88 does not need to satisfy the structure of the axial direction distance T mentioned above. Further, as shown in FIGS. 15 and 16, a thrust relief 82 may be provided in the vicinity of both ends in the circumferential direction of the sliding surface 81 of the half thrust bearing. Further, as shown in FIG. 16, the back surface relief 87 can be formed by providing tapers at both ends in the circumferential direction of the back surface 84 a opposite to the sliding surface 81 of the half thrust bearing 108. In addition, when the thrust relief 82 and the back surface relief 87 are provided, the bearing wall thickness TE at the radially outer end portion at both circumferential ends of the above-described half thrust bearing is the case where the thrust relief 82 and the back surface relief 87 are not provided. Is defined by an axial distance between an imaginary sliding surface 81 (a surface obtained by extending the sliding surface 81 to both ends in the circumferential direction) and a virtual back surface 84a (a surface obtained by extending the back surface 84a to both ends in the circumferential direction). .
Further, as shown in FIGS. 15 and 16, the circumferential length of the half thrust bearing 108 is formed shorter than the position HR of the circumferential end face of the normal half thrust bearing 8 shown in Embodiment 1 by a predetermined length S1. May be. Further, the half thrust bearing 108 may be cut out in an arc shape with a radius R in the vicinity of both ends in the circumferential direction. In that case, the bearing wall thickness T at the circumferential end of the half thrust bearing can be expressed by the length S1 or the bearing wall thickness at the circumferential end of the half thrust bearing when notches are not formed. it can.

また、半割スラスト軸受の摺動面の径方向外側の縁部及び/又は径方向内側の縁部に、周方向に沿って面取りを形成するもこともできる。その場合、半割スラスト軸受の径方向内側端部での軸受壁厚TI及び径方向外側端部での軸受壁厚TOは、面取りを形成しなかった場合の半割スラスト軸受の径方向内側端部及び外径側端部での軸受壁厚によって表すことができる。   Further, chamfering can be formed along the circumferential direction at the radially outer edge and / or the radially inner edge of the sliding surface of the half thrust bearing. In this case, the bearing wall thickness TI at the radially inner end of the half thrust bearing and the bearing wall thickness TO at the radially outer end are the radially inner end of the half thrust bearing when no chamfer is formed. It can be represented by the bearing wall thickness at the end portion and the outer diameter side end.

上記実施例は2つの油溝181aを摺動面に形成した半割スラスト軸受に関するが、本発明はこれに限定されず、半割スラスト軸受は1つ又は3つ以上の油溝を有していてもよい。あるいは油溝181aは、図15に示すように円周角度45°の位置に等厚部Mと対応するように形成してもよい。   The above embodiment relates to a half thrust bearing in which two oil grooves 181a are formed on the sliding surface. However, the present invention is not limited to this, and the half thrust bearing has one or more oil grooves. May be. Alternatively, the oil groove 181a may be formed so as to correspond to the equal thickness portion M at a circumferential angle of 45 ° as shown in FIG.

摺動面81は、半割スラスト軸受8の周方向中央部85を境界とする2つの平面から構成されるが、2つの平面の境界部に形成される角部は、滑らかな曲面状にすることもできる。   The sliding surface 81 is composed of two flat surfaces with the circumferential central portion 85 of the half thrust bearing 8 as a boundary, but the corner portion formed at the boundary between the two flat surfaces has a smooth curved surface. You can also.

また上記実施例は、軸受装置に半割スラスト軸受を4つ使用する場合について説明しているが、本発明はこれに限定されるものではなく、少なくとも1つの本発明による半割スラスト軸受を使用することで所望の効果を得ることができる。また軸受装置において、本発明の半割スラスト軸受は、クランク軸を回転自在に支承する半割軸受の軸線方向の一方又は両方の端面に一体に形成されてもよい。   Moreover, although the said Example demonstrated the case where four half thrust bearings were used for a bearing apparatus, this invention is not limited to this, At least one half thrust bearing by this invention is used. By doing so, a desired effect can be obtained. In the bearing device, the half thrust bearing of the present invention may be integrally formed on one or both end surfaces in the axial direction of the half bearing that rotatably supports the crankshaft.

1 軸受装置
11 ジャーナル部
12 スラストカラー面
2 シリンダブロック
3 軸受キャップ
4 軸受ハウジング
5 軸受孔(保持孔)
6 受座
7 半割軸受
71 潤滑油溝
72 貫通孔
73 クラッシュリリーフ
74 周方向両端面
75 摺動面
8 半割スラスト軸受
81 摺動面
81a 油溝
82 スラストリリーフ
83 周方向両端面
84 基準面
84a 背面
85 周方向中央部
86 周方向両端部
87 背面リリーフ
88 突出部
108 半割スラスト軸受
181a 油溝
f 軸線方向力
T 軸受壁厚
M 等厚部
XC 中央部側領域
XE 端部側領域
DESCRIPTION OF SYMBOLS 1 Bearing apparatus 11 Journal part 12 Thrust collar surface 2 Cylinder block 3 Bearing cap 4 Bearing housing 5 Bearing hole (holding hole)
6 Seat 7 Half bearing 71 Lubricating oil groove 72 Through hole 73 Crush relief 74 Both ends in the circumferential direction 75 Sliding surface 8 Half thrust bearing 81 Sliding surface 81a Oil groove 82 Thrust relief 83 Both ends in the circumferential direction 84 Reference surface 84a Back face 85 Circumferential center part 86 Circumferential end parts 87 Rear relief 88 Projection part 108 Half thrust bearing 181a Oil groove f Axial force T Bearing wall thickness M Constant thickness part XC Central part side area XE End part side area

Claims (6)

内燃機関のクランク軸の軸線方向力を受けるための半円環形状の半割スラスト軸受であって、前記軸線方向力を受けるための摺動面と、前記摺動面の反対側の背面とを有し、且つ軸線方向に垂直な基準面を前記背面側に画定している半割スラスト軸受において、
前記摺動面は、前記半割スラスト軸受の周方向中央部を境界とする2つの平面からなり、
前記基準面から前記摺動面までの軸線方向距離が、前記半割スラスト軸受のいずれの径方向位置においても前記半割スラスト軸受の周方向中央部で最大で、前記半割スラスト軸受の周方向両端部へ向かって小さくなっており、
前記各周方向端面から前記周方向中央部に向かって円周角度40°〜50°の位置に、前記半割スラスト軸受の径方向内側端部と径方向外側端部との間で前記軸線方向距離が一定であるただ1つの等厚部が形成され、
前記等厚部より前記周方向端部側の前記半割スラスト軸受の領域では、前記軸線方向距離は前記径方向内側端部で最大で、前記径方向外側端部へ向かって小さくなっており、また
前記等厚部より前記周方向中央部側の前記半割スラスト軸受の領域では、前記軸線方向距離は前記径方向内側端部で最小で、前記径方向外側端部へ向かって大きくなっている
ことを特徴とする半割スラスト軸受。
A semi-annular half thrust bearing for receiving an axial force of a crankshaft of an internal combustion engine, comprising a sliding surface for receiving the axial force and a back surface opposite to the sliding surface A half thrust bearing having a reference surface perpendicular to the axial direction on the back side,
The sliding surface is composed of two planes with the center in the circumferential direction of the half thrust bearing as a boundary,
The axial distance from the reference surface to the sliding surface is the largest in the circumferential center of the half thrust bearing at any radial position of the half thrust bearing, and the circumferential direction of the half thrust bearing It becomes smaller toward both ends,
The axial direction between the radially inner end and the radially outer end of the half thrust bearing at a circumferential angle of 40 ° to 50 ° from each circumferential end surface toward the circumferential central portion. Only one iso-thick part with a constant distance is formed,
In the region of the half thrust bearing on the circumferential end side from the equal thickness part, the axial distance is maximum at the radially inner end and decreases toward the radially outer end. Further, in the region of the half thrust bearing closer to the circumferential central portion than the equal thickness portion, the axial distance is minimum at the radially inner end portion and increases toward the radially outer end portion. A half thrust bearing characterized by that.
前記背面が平坦であり、且つ前記基準面内に位置している、請求項1に記載の半割スラスト軸受。   The half thrust bearing according to claim 1, wherein the back surface is flat and is located in the reference plane. 前記半割スラスト軸受の前記周方向端面に垂直な方向から前記半割スラスト軸受を見たとき、前記半割スラスト軸受の前記摺動面が、前記周方向中央部で最も突出した凸形状の輪郭を有している、請求項1又は2に記載の半割スラスト軸受。   When the half thrust bearing is viewed from a direction perpendicular to the circumferential end face of the half thrust bearing, the contour of the convex shape in which the sliding surface of the half thrust bearing protrudes most at the circumferential central portion. The half thrust bearing according to claim 1 or 2, wherein 前記周方向中央部の径方向外側端部における前記半割スラスト軸受の最大軸線方向距離と、前記周方向両端部の径方向外側端部における軸線方向距離との差が50〜800μmである、請求項1から3までのいずれか一項に記載の半割スラスト軸受。   The difference between the maximum axial direction distance of the half thrust bearing at the radially outer end of the circumferential central portion and the axial distance of the radially outer ends of both circumferential ends is 50 to 800 μm. The half thrust bearing according to any one of Items 1 to 3. 前記2つの平面は、前記周方向中央部に延びる前記半割スラスト軸受の中心線に関して線対称である、請求項1から4までのいずれか一項に記載の半割スラスト軸受。   5. The half thrust bearing according to claim 1, wherein the two planes are line symmetric with respect to a center line of the half thrust bearing extending in the circumferential central portion. 前記1つの等厚部が、前記各周方向端面から前記周方向中央部に向かって円周角度45°の位置に形成されている、請求項1から5までのいずれか一項に記載の半割スラスト軸受。   6. The half according to claim 1, wherein the one equal-thickness portion is formed at a circumferential angle of 45 ° from each circumferential end face toward the circumferential central portion. Split thrust bearing.
JP2017004256A 2017-01-13 2017-01-13 Half thrust bearing Active JP6942471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017004256A JP6942471B2 (en) 2017-01-13 2017-01-13 Half thrust bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017004256A JP6942471B2 (en) 2017-01-13 2017-01-13 Half thrust bearing

Publications (2)

Publication Number Publication Date
JP2018112281A true JP2018112281A (en) 2018-07-19
JP6942471B2 JP6942471B2 (en) 2021-09-29

Family

ID=62910927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017004256A Active JP6942471B2 (en) 2017-01-13 2017-01-13 Half thrust bearing

Country Status (1)

Country Link
JP (1) JP6942471B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112145242A (en) * 2019-06-26 2020-12-29 博马科技有限责任公司 Supercharging device
CN115126765A (en) * 2021-03-24 2022-09-30 大同金属工业株式会社 Semi-divided thrust bearing for crankshaft of internal combustion engine and bearing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154620U (en) * 1984-03-26 1985-10-15 日産ディーゼル工業株式会社 Thrust washer
JP2017106491A (en) * 2015-12-07 2017-06-15 大豊工業株式会社 Washer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154620U (en) * 1984-03-26 1985-10-15 日産ディーゼル工業株式会社 Thrust washer
JP2017106491A (en) * 2015-12-07 2017-06-15 大豊工業株式会社 Washer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112145242A (en) * 2019-06-26 2020-12-29 博马科技有限责任公司 Supercharging device
CN115126765A (en) * 2021-03-24 2022-09-30 大同金属工业株式会社 Semi-divided thrust bearing for crankshaft of internal combustion engine and bearing device
CN115126765B (en) * 2021-03-24 2023-09-01 大同金属工业株式会社 Half-split thrust bearing for crankshaft of internal combustion engine and bearing device

Also Published As

Publication number Publication date
JP6942471B2 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
US9797435B2 (en) Bearing device for crankshaft of internal combustion engine
US9188159B2 (en) Half thrust bearing and bearing device
JP6153587B2 (en) Half thrust bearing and bearing device for crankshaft of internal combustion engine
JP6100215B2 (en) Half thrust bearing and bearing device using the same
US9856908B2 (en) Thrust bearing and bearing device for crankshaft of internal combustion engine
JP6571130B2 (en) Half thrust bearing
JP6576976B2 (en) Half thrust bearing
JP6193316B2 (en) Thrust bearing and bearing device for crankshaft of internal combustion engine
JP6193317B2 (en) Bearing device for crankshaft of internal combustion engine
JP2018112281A (en) Half-split thrust bearing
JP6757673B2 (en) Half thrust bearing
JP2024047719A (en) Half thrust bearing
JP2024047720A (en) Half thrust bearing
JP6873819B2 (en) Crank washer
JP2016035303A (en) Internal combustion engine crankshaft bearing device
JP2017110765A (en) Slide bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210908

R150 Certificate of patent or registration of utility model

Ref document number: 6942471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150