JP6757673B2 - Half thrust bearing - Google Patents

Half thrust bearing Download PDF

Info

Publication number
JP6757673B2
JP6757673B2 JP2017004255A JP2017004255A JP6757673B2 JP 6757673 B2 JP6757673 B2 JP 6757673B2 JP 2017004255 A JP2017004255 A JP 2017004255A JP 2017004255 A JP2017004255 A JP 2017004255A JP 6757673 B2 JP6757673 B2 JP 6757673B2
Authority
JP
Japan
Prior art keywords
thrust bearing
split
bearing
sliding surface
split thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017004255A
Other languages
Japanese (ja)
Other versions
JP2018112280A (en
Inventor
真一 櫻井
真一 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2017004255A priority Critical patent/JP6757673B2/en
Publication of JP2018112280A publication Critical patent/JP2018112280A/en
Application granted granted Critical
Publication of JP6757673B2 publication Critical patent/JP6757673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Sliding-Contact Bearings (AREA)

Description

本発明は、内燃機関のクランク軸の軸線方向力を受けるスラスト軸受に関するものである。 The present invention relates to a thrust bearing that receives an axial force of a crankshaft of an internal combustion engine.

内燃機関のクランク軸は、そのジャーナル部において、一対の半割軸受を円筒形状に組み合わせて構成される主軸受を介して、内燃機関のシリンダブロック下部に回転自在に支承される。 In its journal portion, the crankshaft of an internal combustion engine is rotatably supported under a cylinder block of an internal combustion engine via a main bearing formed by combining a pair of half bearings in a cylindrical shape.

一対の半割軸受のうちの一方又は両方が、クランク軸の軸線方向力を受ける半割スラスト軸受と組み合わせて用いられる。半割スラスト軸受は、半割軸受の軸線方向端面の一方又は両方に配設される。 One or both of the pair of half-split bearings are used in combination with half-split thrust bearings that receive axial force on the crankshaft. The half-split thrust bearing is arranged on one or both of the axial end faces of the half-split bearing.

半割スラスト軸受は、クランク軸に生じる軸線方向力を受ける。すなわち、クラッチによってクランク軸と変速機とが接続される際等に、クランク軸に対して入力される軸線方向力を支承することを目的として配置される。 The half-thrust bearing receives an axial force generated on the crankshaft. That is, it is arranged for the purpose of bearing the axial force input to the crankshaft when the crankshaft and the transmission are connected by the clutch.

半割スラスト軸受の周方向両端近傍の摺動面側には、周方向端面へ向かって軸受部材の厚さが薄くなるようにスラストリリーフが形成される。一般にスラストリリーフは、半割スラスト軸受の周方向端面から摺動面までの長さや周方向端面での深さが、径方向の位置によらずに一定になるように形成される。スラストリリーフは、半割スラスト軸受を分割型軸受ハウジング内に組み付ける際の一対の半割スラスト軸受の端面同士の位置ずれを吸収するために形成される(特許文献1の図10参照)。 Thrust relief is formed on the sliding surface side of the half-split thrust bearing near both ends in the circumferential direction so that the thickness of the bearing member decreases toward the end face in the circumferential direction. Generally, the thrust relief is formed so that the length from the circumferential end face to the sliding surface and the depth at the circumferential end face of the half-split thrust bearing are constant regardless of the radial position. The thrust relief is formed to absorb the misalignment between the end faces of the pair of half-split thrust bearings when the half-split thrust bearing is assembled in the split bearing housing (see FIG. 10 of Patent Document 1).

また従来、内燃機関の運転時のクランク軸の撓み変形を考慮して、半割スラスト軸受の摺動面の少なくとも外径側に曲面形状のクラウニング面を設け、それにより半割スラスト軸受の摺動面のクランク軸との局所的な接触応力を低減することも提案されている(特許文献2)。
さらに、半割スラスト軸受の摺動面に、半割スラスト軸受の周方向端部から、頂部(半割スラスト軸受の周方向中央における外径端)の高さの略半分まで延びる傾斜面(スラストリリーフ)を形成し、それにより摺動面に対する傾斜面の傾斜角度を小さくすることも提案されている(特許文献3参照)。
Further, conventionally, in consideration of the bending deformation of the crankshaft during the operation of the internal combustion engine, a curved crowning surface is provided at least on the outer diameter side of the sliding surface of the half-split thrust bearing, thereby sliding the half-split thrust bearing. It has also been proposed to reduce the local contact stress of the surface with the crankshaft (Patent Document 2).
Further, on the sliding surface of the half-split thrust bearing, an inclined surface (thrust) extending from the circumferential end of the half-split thrust bearing to approximately half the height of the top (outer diameter end in the circumferential center of the half-split thrust bearing). It has also been proposed to form a relief) and thereby reduce the inclination angle of the inclined surface with respect to the sliding surface (see Patent Document 3).

特開平11−201145号公報JP-A-11-201145 特開2013−19517号公報Japanese Unexamined Patent Publication No. 2013-19517 特開2013−238277号公報Japanese Unexamined Patent Publication No. 2013-238277

近年、内燃機関の軽量化のためにクランク軸の軸径が小径化され、従来のクランク軸よりも低剛性となっており、内燃機関の運転時にクランク軸に撓みが発生しやすく、クランク軸の振動が大きくなる傾向にある。このためクランク軸のスラストカラー面は半割スラスト軸受の摺動面に対して傾斜しながら摺接し、且つその傾斜方向はクランク軸の回転に伴い変化する。したがって半割スラスト軸受の周方向両端部付近の摺動面とクランク軸のスラストカラー面とが直接接触し、損傷(疲労)が起きやすくなっている。 In recent years, the diameter of the crankshaft has been reduced in order to reduce the weight of the internal combustion engine, and the rigidity is lower than that of the conventional crankshaft. The vibration tends to increase. Therefore, the thrust collar surface of the crankshaft slides in contact with the sliding surface of the half-split thrust bearing while tilting, and the tilting direction changes as the crankshaft rotates. Therefore, the sliding surfaces near both ends of the half-split thrust bearing in the circumferential direction and the thrust collar surface of the crankshaft come into direct contact with each other, and damage (fatigue) is likely to occur.

また、一対の半割軸受からなる主軸受の軸線方向の各端部に一対の半割スラスト軸受が組み付けられる場合、分割型軸受ハウジング内に組み付けた際の一対の半割スラスト軸受の端面同士の位置がずれていると、一方の半割スラスト軸受の摺動面とクランク軸のスラストカラー面との間の隙間が、他方の半割スラスト軸受とクランク軸のスラストカラー面との間の隙間よりも大きくなる。あるいは、主軸受の軸線方向の各端部に1つの半割スラスト軸受だけが組み付けられる場合、この半割スラスト軸受が配置されない分割型軸受ハウジングの側面とクランク軸のスラストカラー面との間に大きな隙間が形成される。このような隙間が形成された状態で内燃機関の運転がなされクランク軸の撓みが発生すると、クランク軸のスラストカラー面は形成された隙間側へさらに傾斜する。 Further, when a pair of half-split thrust bearings is assembled at each end in the axial direction of the main bearing composed of a pair of half-split bearings, the end faces of the pair of half-thrust bearings when assembled in the split bearing housing If the position is misaligned, the gap between the sliding surface of one half-thrust bearing and the thrust collar surface of the crank shaft will be larger than the gap between the other half-thrust bearing and the thrust collar surface of the crank shaft. Will also grow. Alternatively, when only one half-split thrust bearing is assembled at each end of the main bearing in the axial direction, a large amount is formed between the side surface of the split bearing housing in which the half-split thrust bearing is not arranged and the thrust collar surface of the crankshaft. A gap is formed. When the internal combustion engine is operated with such a gap formed and the crankshaft bends, the thrust collar surface of the crankshaft further inclines toward the formed gap side.

このような隙間側へ大きく傾斜した状態でクランク軸が回転すると、半割スラスト軸受の周方向両端面を含む面内での半割スラスト軸受の摺動面に対するスラストカラー面の傾斜がより大きくなる。さらに、このスラストカラー面の傾斜は、半割スラスト軸受の周方向両端面を含む面内において、(a)半割スラスト軸受のクランク軸の回転方向後方側の周方向端部付近の摺動面とスラストカラー面とが接触し、クランク軸の回転方向前方側の周方向端部付近の摺動面とスラストカラー面とが離間した傾斜状態と、(b)半割スラスト軸受のクランク軸の回転方向前方側の周方向端部付近の摺動面とスラストカラー面とが接触し、クランク軸の回転方向後方側の周方向端部付近の摺動面とスラストカラー面とが離間した傾斜状態とを、クランク軸の回転に伴って繰り返す。半割スラスト軸受は、その周方向両端部付近の摺動面のみが常時クランク軸のスラストカラー面と直接接触するので、損傷(疲労)が起きやすい。 When the crankshaft rotates in such a state of being greatly inclined toward the gap side, the inclination of the thrust collar surface with respect to the sliding surface of the half-split thrust bearing in the plane including both end faces in the circumferential direction of the half-split thrust bearing becomes larger. .. Further, the inclination of the thrust collar surface is such that (a) a sliding surface near the circumferential end of the crank shaft of the half-split thrust bearing on the rear side in the rotational direction in the plane including both end faces in the circumferential direction of the half-split thrust bearing. And the thrust collar surface are in contact with each other, and the sliding surface near the circumferential end on the front side in the rotation direction of the crank shaft and the thrust collar surface are separated from each other, and (b) the rotation of the crank shaft of the half-split thrust bearing. A state in which the sliding surface near the circumferential end on the front side in the direction and the thrust collar surface are in contact with each other, and the sliding surface near the circumferential end on the rear side in the rotational direction of the crank shaft and the thrust collar surface are separated from each other. Is repeated as the crank shaft rotates. Half-split thrust bearings are prone to damage (fatigue) because only the sliding surfaces near both ends in the circumferential direction are in direct contact with the thrust collar surface of the crankshaft at all times.

上述のクランク軸の撓みによるスラストカラー面の隙間側への傾斜が大きく、したがって半割スラスト軸受の周方向両端面を含む面内でのスラストカラー面の傾斜が大きい場合、特許文献2や特許文献3に記載される技術を採用しても、半割スラスト軸受の周方向両端部付近の摺動面のみが常時クランク軸のスラストカラー面と接触するのを防止するのは困難であった。 When the inclination of the thrust collar surface toward the gap side due to the bending of the crankshaft is large, and therefore the inclination of the thrust collar surface in the plane including both end faces in the circumferential direction of the half-split thrust bearing is large, Patent Document 2 and Patent Documents Even if the technique described in No. 3 is adopted, it is difficult to prevent only the sliding surfaces in the vicinity of both ends in the circumferential direction of the half-split thrust bearing from constantly contacting the thrust collar surface of the crankshaft.

したがって本発明の目的は、内燃機関の運転時に、損傷(疲労)が生じにくい半割スラスト軸受を提供することである。 Therefore, an object of the present invention is to provide a half-thrust bearing that is less likely to be damaged (fatigue) during operation of an internal combustion engine.

上記目的を達成するために、本発明の1つの観点によれば、内燃機関のクランク軸の軸線方向力を受けるための半円環形状の半割スラスト軸受であって、軸線方向力を受けるための摺動面と、摺動面の反対側の背面とを有し、且つ軸線方向に垂直な基準面を背面側に画定している半割スラスト軸受において、
基準面から摺動面までの軸線方向距離が、半割スラスト軸受のいずれの径方向位置においても、半割スラスト軸受の周方向中央部で最大で、半割スラスト軸受の周方向両端部へ向かって小さくなっており、且つ
前記軸線方向距離が、前記半割スラスト軸受のいずれの周方向位置においても、前記半割スラスト軸受の径方向に亘って一定、或いは前記半割スラスト軸受の径方向内側端部で最大で、径方向外側端部へ向かって小さくなっている
ことを特徴とする半割スラスト軸受が提供される。
半割スラスト軸受の背面は平坦であり且つ基準面内に位置していてもよい。
半割スラスト軸受の周方向端面に垂直な方向から半割スラスト軸受を見たとき、摺動面が、周方向中央部で最も突出した凸形状の輪郭を有していてもよい。この摺動面の輪郭は、曲線から構成されることができ、或いは直線から構成されることができる。
また周方向中央部における半割スラスト軸受の最大軸線方向距離と、周方向両端部の径方向外側端部における軸線方向距離との差が、50〜800μmであってもよい。
In order to achieve the above object, according to one aspect of the present invention, the semi-annular half-thrust bearing for receiving the axial force of the crankshaft of the internal combustion engine is to receive the axial force. In a half-thrust bearing having a sliding surface and a back surface on the opposite side of the sliding surface, and defining a reference surface perpendicular to the axial direction on the back surface side.
The axial distance from the reference plane to the sliding surface is the maximum at the circumferential center of the half-thrust bearing at any radial position of the half-thrust bearing, and toward both ends of the half-thrust bearing in the circumferential direction. The axial distance is constant over the radial direction of the half-split thrust bearing at any circumferential position of the half-split thrust bearing, or the radial inside of the half-split thrust bearing. A half-thrust bearing is provided that is characterized by a maximum at the end and a reduction towards the radial outer end.
The back surface of the half-thrust bearing may be flat and located within the reference plane.
When the half-split thrust bearing is viewed from a direction perpendicular to the circumferential end surface of the half-split thrust bearing, the sliding surface may have the most protruding convex contour in the central portion in the circumferential direction. The contour of this sliding surface can be composed of curved lines or straight lines.
Further, the difference between the maximum axial distance of the half-split thrust bearing in the central portion in the circumferential direction and the axial distance at the radial outer ends of both ends in the circumferential direction may be 50 to 800 μm.

ここで、クランク軸は、ジャーナル部とクランクピン部とクランクアーム部とを有する部材である。また半割スラスト軸受は、円環を略半分に分割した形状の部材であるが、厳密に半分であることを意図するものではない。 Here, the crankshaft is a member having a journal portion, a crank pin portion, and a crank arm portion. Further, the half-split thrust bearing is a member having a shape in which the ring is divided into substantially half, but it is not intended to be exactly half.

上記構成を有する本発明の半割スラスト軸受によれば、内燃機関の運転時のクランク軸の撓みに起因して半割スラスト軸受の摺動面に対するクランク軸のスラストカラー面の傾斜角度が大きくなった場合でも、摺動面とスラストカラー面との接触位置がクランク軸の回転に伴って周方向に順次移動するので、半割スラスト軸受の周方向両端部付近の摺動面のみが常時クランク軸のスラストカラー面と接触することが防止され、半割スラスト軸受の摺動面の損傷が起きにくい。 According to the half-split thrust bearing of the present invention having the above configuration, the inclination angle of the thrust collar surface of the crankshaft with respect to the sliding surface of the half-split thrust bearing becomes large due to the bending of the crankshaft during operation of the internal combustion engine. Even in this case, the contact position between the sliding surface and the thrust collar surface moves sequentially in the circumferential direction as the crankshaft rotates, so only the sliding surfaces near both ends in the circumferential direction of the half-split thrust bearing are always crankshafts. It is prevented from coming into contact with the thrust collar surface, and the sliding surface of the half-split thrust bearing is less likely to be damaged.

軸受装置の分解斜視図である。It is an exploded perspective view of a bearing device. 実施例1の半割スラスト軸受の正面図である。It is a front view of the half-thrust bearing of Example 1. FIG. 図2の半割スラスト軸受のY1矢視側面図である。It is a Y1 arrow side view of the half-split thrust bearing of FIG. 図2の半割スラスト軸受のA−A断面図である。FIG. 2 is a cross-sectional view taken along the line AA of the half-thrust bearing of FIG. 半割軸受及びスラスト軸受の正面図である。It is a front view of a half bearing and a thrust bearing. 軸受装置の断面図である。It is sectional drawing of the bearing device. 図5の上側の半割軸受の正面図である。It is a front view of the upper half bearing of FIG. 図7の半割軸受を径方向の内側から見た底面図である。It is the bottom view which looked at the half bearing of FIG. 7 from the inside in the radial direction. 運転中のスラストカラー面と一対の半割スラスト軸受の接触状態を示す断面図である。It is sectional drawing which shows the contact state of the thrust collar surface and a pair of half-split thrust bearings during operation. 周方向両端面側から見た運転中のスラストカラー面の摺動面に対する傾斜の変化を示す図である。It is a figure which shows the change of the inclination with respect to the sliding surface of the thrust collar surface during operation seen from both end surfaces side in the circumferential direction. 周方向両端面側から見た運転中のスラストカラー面の摺動面に対する傾斜を示す図である。It is a figure which shows the inclination with respect to the sliding surface of the thrust collar surface during operation seen from both end surfaces side in the circumferential direction. 周方向両端面側から見た運転中のスラストカラー面の摺動面に対する傾斜を示す図である。It is a figure which shows the inclination with respect to the sliding surface of the thrust collar surface during operation seen from both end surfaces side in the circumferential direction. 周方向両端面側から見た運転中のスラストカラー面の摺動面に対する傾斜を示す図である。It is a figure which shows the inclination with respect to the sliding surface of the thrust collar surface during operation seen from both end surfaces side in the circumferential direction. 周方向両端面側から見た運転中のスラストカラー面の摺動面に対する傾斜を示す図である。It is a figure which shows the inclination with respect to the sliding surface of the thrust collar surface during operation seen from both end surfaces side in the circumferential direction. 図10Aに対応する、摺動面を正面側から見た摺動面とスラストカラー面の接触位置を示す図である。It is a figure which shows the contact position of the sliding surface and the thrust collar surface which looked at the sliding surface from the front side corresponding to FIG. 10A. 図10Bに対応する、摺動面を正面側から見た摺動面とスラストカラー面の接触位置を示す図である。It is a figure which shows the contact position of the sliding surface and the thrust collar surface which looked at the sliding surface from the front side corresponding to FIG. 10B. 図10Cに対応する、摺動面を正面側から見た摺動面とスラストカラー面の接触位置を示す図である。It is a figure which shows the contact position of the sliding surface and the thrust collar surface which looked at the sliding surface from the front side corresponding to FIG. 10C. 図10Dに対応する、摺動面を正面側から見た摺動面とスラストカラー面の接触位置を示す図である。It is a figure which shows the contact position of the sliding surface and the thrust collar surface which looked at the sliding surface from the front side corresponding to FIG. 10D. 図10Eに対応する、摺動面を正面側から見た摺動面とスラストカラー面の接触位置を示す図である。It is a figure which shows the contact position of the sliding surface and the thrust collar surface which looked at the sliding surface from the front side corresponding to FIG. 10E. 実施例2の半割スラスト軸受の正面図である。It is a front view of the half-thrust bearing of Example 2. FIG. 図12の半割スラスト軸受のY2矢視側面図である。It is a Y2 arrow side view of the half-thrust bearing of FIG. 図12の半割スラスト軸受のB−B断面図である。It is BB sectional view of the half-thrust bearing of FIG. 実施例3の半割スラスト軸受の正面図である。It is a front view of the half-thrust bearing of Example 3. FIG. 図15の半割スラスト軸受のY3矢視側面図である。It is a Y3 arrow side view of the half-thrust bearing of FIG. 図15の半割スラスト軸受のC−C断面図である。It is CC sectional view of the half-thrust bearing of FIG. 本発明の他の形態の半割スラスト軸受の正面図である。It is a front view of the half-thrust bearing of another form of this invention. 図18の半割スラスト軸受の周方向端部付近の側面図である。It is a side view near the circumferential end portion of the half-split thrust bearing of FIG.

以下、本発明の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(軸受装置の全体構成)
まず、図1、5及び6を用いて本発明の半割スラスト軸受8を有する軸受装置1の全体構成を説明する。図1、5及び6に示すように、シリンダブロック2の下部に軸受キャップ3を取り付けて構成された軸受ハウジング4には、両側面間を貫通する円形孔である軸受孔(保持孔)5が形成されており、側面における軸受孔5の周縁には円環状凹部である受座6、6が形成されている。軸受孔5には、クランク軸のジャーナル部11を回転自在に支承する半割軸受7、7が円筒状に組み合わされて嵌合される。受座6、6には、クランク軸のスラストカラー面12を介して軸線方向力f(図6参照)を受ける半割スラスト軸受8、8が円環状に組み合わされて嵌合される。
(Overall configuration of bearing device)
First, the overall configuration of the bearing device 1 having the half-thrust bearing 8 of the present invention will be described with reference to FIGS. 1, 5 and 6. As shown in FIGS. 1, 5 and 6, the bearing housing 4 formed by attaching the bearing cap 3 to the lower portion of the cylinder block 2 has a bearing hole (holding hole) 5 which is a circular hole penetrating between both side surfaces. The bearing holes 6 and 6 which are annular recesses are formed on the peripheral edge of the bearing hole 5 on the side surface. Half-split bearings 7 and 7 that rotatably support the journal portion 11 of the crankshaft are combined and fitted in the bearing hole 5 in a cylindrical shape. Half-split thrust bearings 8 and 8 that receive an axial force f (see FIG. 6) via the thrust collar surface 12 of the crankshaft are combined and fitted to the receiving seats 6 and 6 in an annular shape.

図5に示すように、主軸受を構成する半割軸受7のうち、シリンダブロック2側(上側)の半割軸受7の内周面には潤滑油溝71が形成され、また潤滑油溝71内には外周面に貫通する貫通孔72が形成されている(図7及び8も参照)。潤滑油溝71は、上下両方の半割軸受に形成することもできる。半割軸受7はまた、周方向両端面74に隣接する摺動面75上にクラッシュリリーフ73を有する。 As shown in FIG. 5, of the half-split bearings 7 constituting the main bearing, a lubricating oil groove 71 is formed on the inner peripheral surface of the half-split bearing 7 on the cylinder block 2 side (upper side), and the lubricating oil groove 71 is also formed. A through hole 72 penetrating the outer peripheral surface is formed inside (see also FIGS. 7 and 8). The lubricating oil groove 71 can also be formed in both the upper and lower half bearings. The half bearing 7 also has a crash relief 73 on a sliding surface 75 adjacent to both end faces 74 in the circumferential direction.

(半割スラスト軸受の構成)
次に、図2〜4を用いて実施例1の半割スラスト軸受8の構成について説明する。本実施例の半割スラスト軸受8は、鋼製の裏金層に薄い軸受合金層を接着したバイメタルによって、半円環形状の平板に形成される。半割スラスト軸受8は軸線方向を向いた摺動面81(軸受面)を備え、摺動面8は軸受合金層から構成される。摺動面81には、潤滑油の保油性を高めるために、周方向両端面83、83の間に2つの油溝81a、81aが形成されている。
(Composition of half-thrust bearing)
Next, the configuration of the half-split thrust bearing 8 of the first embodiment will be described with reference to FIGS. 2 to 4. The half-split thrust bearing 8 of this embodiment is formed into a semicircular flat plate by a bimetal in which a thin bearing alloy layer is bonded to a steel back metal layer. The half-thrust bearing 8 includes a sliding surface 81 (bearing surface) facing the axial direction, and the sliding surface 8 is composed of a bearing alloy layer. Two oil grooves 81a and 81a are formed on the sliding surface 81 between both end surfaces 83 and 83 in the circumferential direction in order to improve the oil retention property of the lubricating oil.

半割スラスト軸受8は軸線方向に垂直な基準面84を画定しており、この基準面84内に、シリンダブロック2の受座6に配置されるように適合された実質的に平坦な背面84aを有する(図3参照)。さらに、半割スラスト軸受8は、基準面84(背面84a)から軸線方向に離れた摺動面81を有し、摺動面81は、クランク軸のスラストカラー面12を介して軸線方向力f(図6参照)を受けるように適合されている。半割スラスト軸受8は、基準面84から摺動面81までの軸線方向距離が、半割スラスト軸受8のいずれの径方向位置においても、半割スラスト軸受8の周方向中央部で最大で、半割スラスト軸受の周方向両端部へ向かって小さくなるように形成される。したがって、例えば半割スラスト軸受8の径方向中央位置(図2の一点鎖線位置)においても、基準面84から摺動面81までの軸線方向距離は周方向中央部85で最大(TC)で、周方向両端部86で最小(TE)となることが理解されよう。 The half-thrust bearing 8 defines a reference plane 84 that is perpendicular to the axial direction, and within this reference plane 84, a substantially flat back surface 84a adapted to be disposed on the seat 6 of the cylinder block 2. (See FIG. 3). Further, the half-split thrust bearing 8 has a sliding surface 81 separated from the reference surface 84 (back surface 84a) in the axial direction, and the sliding surface 81 has an axial force f via the thrust collar surface 12 of the crankshaft. Adapted to receive (see Figure 6). The half-split thrust bearing 8 has a maximum axial distance from the reference surface 84 to the sliding surface 81 at the circumferential center of the half-split thrust bearing 8 at any radial position of the half-split thrust bearing 8. It is formed so as to become smaller toward both ends in the circumferential direction of the half-split thrust bearing. Therefore, for example, even at the radial center position of the half-split thrust bearing 8 (the alternate long and short dash line position in FIG. 2), the axial distance from the reference surface 84 to the sliding surface 81 is maximum (TC) at the circumferential central portion 85. It will be understood that the minimum (TE) is achieved at both ends 86 in the circumferential direction.

本実施例において、基準面84(背面84a)から摺動面81までの軸線方向距離は、半割スラスト軸受8の軸受壁厚Tに一致する。特に本実施例において、軸受壁厚Tは、いずれの周方向位置においても、内径側端部と外径側端部との間で一定となるよう形成される(図4参照)。換言すれば、軸受壁厚Tは、周方向中央部において最大且つ径方向に亘って一定(TC)であり、また周方向両端部において最小且つ径方向に亘って一定(TE)である。
なお、摺動面81の油溝81aが形成された部分では、背面84aから、油溝81aを形成しなかった場合の仮想摺動面(摺動面81の延長面)までの軸方向距離が上記関係を満たすように半割スラスト軸受8が形成される。
In this embodiment, the axial distance from the reference surface 84 (back surface 84a) to the sliding surface 81 matches the bearing wall thickness T of the half-split thrust bearing 8. In particular, in this embodiment, the bearing wall thickness T is formed to be constant between the inner diameter side end portion and the outer diameter side end portion at any circumferential position (see FIG. 4). In other words, the bearing wall thickness T is maximum and constant in the radial direction (TC) at the central portion in the circumferential direction, and is minimum and constant (TE) in the radial direction at both ends in the circumferential direction.
In the portion of the sliding surface 81 where the oil groove 81a is formed, the axial distance from the back surface 84a to the virtual sliding surface (extended surface of the sliding surface 81) when the oil groove 81a is not formed is The half-split thrust bearing 8 is formed so as to satisfy the above relationship.

上述したように半割スラスト軸受8の周方向両端部における軸受壁厚TEは、周方向中央部における軸受壁厚TCに対して小さく形成される(図3参照)。したがって半割スラスト軸受8の周方向両端面を含む面に垂直な方向から見て、半割スラスト軸受8の摺動面81は、周方向中央部が最も突出した凸形状の輪郭を有している(図3参照)。より具体的には、乗用車用等の小型内燃機関のクランク軸(直径が30〜100mm程度のジャーナル部を有する)に使用する場合、半割スラスト軸受8の周方向中央部における軸受壁厚と、周方向両端部における軸受壁厚の差は、例えば50〜800μmであり、より好適には200〜400μmである。しかし、これらの寸法は一例に過ぎず、軸受壁厚の差はこの寸法範囲に限定されない。 As described above, the bearing wall thickness TE at both ends in the circumferential direction of the half-split thrust bearing 8 is formed smaller than the bearing wall thickness TC at the central portion in the circumferential direction (see FIG. 3). Therefore, the sliding surface 81 of the half-split thrust bearing 8 has a convex contour with the most protruding central portion in the circumferential direction when viewed from a direction perpendicular to the surface including both end faces in the circumferential direction of the half-split thrust bearing 8. (See Fig. 3). More specifically, when used for the crankshaft of a small internal combustion engine for passenger cars (having a journal portion having a diameter of about 30 to 100 mm), the bearing wall thickness at the central portion in the circumferential direction of the half-split thrust bearing 8 and The difference in bearing wall thickness at both ends in the circumferential direction is, for example, 50 to 800 μm, and more preferably 200 to 400 μm. However, these dimensions are only an example, and the difference in bearing wall thickness is not limited to this dimensional range.

(作用)
次に、図5、6及び9を用いて、従来の半割スラスト軸受8の作用を説明する。
(Action)
Next, the operation of the conventional half-thrust bearing 8 will be described with reference to FIGS. 5, 6 and 9.

一般に、半割軸受7は半割スラスト軸受8と同心に、且つ主軸受を構成する半割軸受7の周方向両端面74を含む平面が、半割スラスト軸受8の周方向両端面83を含む平面と実質的に一致するように配置される。 In general, the half-split bearing 7 is concentric with the half-split thrust bearing 8, and the plane including the circumferential end faces 74 of the half-split bearing 7 constituting the main bearing includes the circumferential end faces 83 of the half-split thrust bearing 8. Arranged so as to substantially coincide with the plane.

内燃機関の運転時、特にクランク軸が高速回転する運転条件では、クランク軸に撓み(軸線方向の撓み)が発生してクランク軸の振動が大きくなる。この大きな振動により、クランク軸には半割スラスト軸受8の摺動面81へ向かう軸線方向力fが周期的に発生する。半割スラスト軸受8の摺動面81は、この軸線方向力fを受ける。 During operation of the internal combustion engine, particularly under operating conditions in which the crankshaft rotates at high speed, the crankshaft bends (deflection in the axial direction) and the vibration of the crankshaft increases. Due to this large vibration, an axial force f toward the sliding surface 81 of the half-split thrust bearing 8 is periodically generated on the crankshaft. The sliding surface 81 of the half-split thrust bearing 8 receives this axial force f.

一対の半割軸受7、7からなる主軸受の軸線方向の各端部に一対の半割スラスト軸受8、8が組み付けられる場合、分割型軸受ハウジング4に組み付けた際に一対の半割スラスト軸受8、8の端面83、83同士の位置が軸線方向にずれていると、一方の半割スラスト軸受8の摺動面81とクランク軸のスラストカラー面12との間の隙間が、他方の半割スラスト軸受8の摺動面81とスラストカラー面12との間の隙間よりも大きくなる(図9参照)。あるいは、主軸受の軸線方向の各端部に1つの半割スラスト軸受8だけが組み付けられる場合、半割スラスト軸受8が配置されないほうの分割型軸受ハウジング4の側面とクランク軸のスラストカラー面12との間に大きな隙間が形成される。このような隙間が形成された状態で内燃機関が運転されクランク軸の撓みが発生すると、クランク軸のスラストカラー面12は大きな隙間側へさらに傾斜する。このような隙間側へ大きく傾斜した状態でクランク軸が回転すると、半割スラスト軸受8の周方向両端面83を含む面内での半割スラスト軸受8に対するスラストカラー面12の傾斜がより大きくなり、また半割スラスト軸受8の周方向両端部付近の摺動面81のみが常時クランク軸のスラストカラー面12と直接接触するので、上述した通り損傷(疲労)が起きやすくなる。
より詳細には、周方向両端面83を含む面に垂直な方向から半割スラスト軸受8を見たとき、クランク軸のスラストカラー面12は、(1)半割スラスト軸受8のクランク軸の回転方向後方側の周方向端部側に傾斜している状態から、半割スラスト軸受8の摺動面81と平行になるまでの間は、半割スラスト軸受8のクランク軸の回転方向の後側の周方向端部付近の摺動面81とのみ接触し、また(2)摺動面81と平行になった直後から、半割スラスト軸受8のクランク軸の回転方向前方側の周方向端面側に傾斜している間は、半割スラスト軸受8のクランク軸の回転方向前方側の周方向端部付近の摺動面81とのみ接する。
When a pair of half-split thrust bearings 8 and 8 are assembled to each end of a main bearing composed of a pair of half-split bearings 7 and 7 in the axial direction, a pair of half-split thrust bearings when assembled to the split bearing housing 4 When the positions of the end faces 83 and 83 of 8 and 8 are deviated from each other in the axial direction, the gap between the sliding surface 81 of one half-split thrust bearing 8 and the thrust collar surface 12 of the crank shaft becomes the other half. It is larger than the gap between the sliding surface 81 of the split thrust bearing 8 and the thrust collar surface 12 (see FIG. 9). Alternatively, when only one half-split thrust bearing 8 is assembled at each end in the axial direction of the main bearing, the side surface of the split bearing housing 4 on which the half-split thrust bearing 8 is not arranged and the thrust collar surface 12 of the crankshaft. A large gap is formed between the and. When the internal combustion engine is operated with such a gap formed and the crankshaft bends, the thrust collar surface 12 of the crankshaft further inclines toward a large gap side. When the crankshaft rotates in such a state of being greatly inclined toward the gap side, the inclination of the thrust collar surface 12 with respect to the half-split thrust bearing 8 in the plane including both end faces 83 in the circumferential direction of the half-split thrust bearing 8 becomes larger. Further, since only the sliding surfaces 81 near both ends of the half-split thrust bearing 8 in the circumferential direction are always in direct contact with the thrust collar surface 12 of the crankshaft, damage (fatigue) is likely to occur as described above.
More specifically, when the half-split thrust bearing 8 is viewed from a direction perpendicular to the plane including both end faces 83 in the circumferential direction, the thrust collar surface 12 of the crankshaft is (1) the rotation of the crankshaft of the half-split thrust bearing 8. The rear side of the crankshaft of the half-split thrust bearing 8 in the rotational direction from the state of being inclined toward the circumferential end side on the rear side in the direction until it becomes parallel to the sliding surface 81 of the half-split thrust bearing 8. Immediately after contacting only with the sliding surface 81 near the circumferential end of the thrust bearing 8 and immediately after becoming parallel to the sliding surface 81, the circumferential end surface side of the crankshaft of the half-split thrust bearing 8 on the front side in the rotational direction While inclining to, the half-split thrust bearing 8 is in contact with only the sliding surface 81 near the circumferential end on the front side in the rotational direction of the crankshaft.

ここで、特許文献2に記載されるように半割スラスト軸受の摺動面の外径側に曲面から構成されるクラウニング面を設けたとしても、基準面84から摺動面81までの軸線方向距離がいずれの径方向位置においても周方向中央部で最大となるように半割スラスト軸受8が形成されていない場合、換言すれば、周方向両端面83を含む面に垂直な方向から半割スラスト軸受8を見たときに半割スラスト軸受8の摺動面81の輪郭が周方向中央部で最も突出した凸形状でない場合(例えば、周方向両端面83を含む面に垂直な方向から半割スラスト軸受8を見たときに摺動面81の輪郭が一直線である場合)、上記理由により、特に半割スラスト軸受8の周方向端部付近の摺動面81とクランク軸のスラストカラー面12とが直接接触し、損傷が起きやすい。 Here, even if a crowning surface composed of a curved surface is provided on the outer diameter side of the sliding surface of the half-split thrust bearing as described in Patent Document 2, the axial direction from the reference surface 84 to the sliding surface 81. If the half-split thrust bearing 8 is not formed so that the distance is maximized at the central portion in the circumferential direction at any radial position, in other words, half-split from the direction perpendicular to the surface including both end faces 83 in the circumferential direction. When the thrust bearing 8 is viewed, the contour of the sliding surface 81 of the half-split thrust bearing 8 is not the most protruding convex shape in the central portion in the circumferential direction (for example, half from the direction perpendicular to the surface including both end faces 83 in the circumferential direction). When the split thrust bearing 8 is viewed, the contour of the sliding surface 81 is straight), for the above reason, especially the sliding surface 81 near the circumferential end of the half-split thrust bearing 8 and the thrust collar surface of the crank shaft. It comes into direct contact with 12 and is prone to damage.

あるいは、特許文献3に記載されるように半割スラスト軸受の摺動面に、半割スラスト軸受の周方向端部から、頂部まで高さの略半分まで延びる傾斜面(スラストリリーフ)を形成し、それにより摺動面に対する傾斜面の傾斜角度を小さくしたとしても、半割スラスト軸受8の周方向両端面83を含む面に垂直な方向から見たときに半割スラスト軸受8の摺動面81の輪郭が周方向中央部で最も突出した凸形状でない場合、やはり上記理由により、特に半割スラスト軸受の周方向端部付近の摺動面81(傾斜面)とクランク軸のスラストカラー面12とが直接接触し、損傷が起きやすい。
さらに、特許文献3に記載される半割スラスト軸受では、傾斜面の軸受壁厚が、半割スラスト軸受の周方向端部を除いて、スラスト軸受の径方向内側端部より径方向外側端部のほうが大きくなるため、半割スラスト軸受の周方向端部付近の特に外径側の摺動面(傾斜面)とクランク軸のスラストカラー面12とが直接接触し、より損傷が起きやすい。
Alternatively, as described in Patent Document 3, an inclined surface (thrust relief) extending from the circumferential end of the half-split thrust bearing to the top to approximately half the height is formed on the sliding surface of the half-split thrust bearing. Therefore, even if the inclination angle of the inclined surface with respect to the sliding surface is reduced, the sliding surface of the half-split thrust bearing 8 when viewed from the direction perpendicular to the surface including both peripheral surfaces 83 in the circumferential direction of the half-split thrust bearing 8. If the contour of 81 is not the most protruding convex shape in the central portion in the circumferential direction, the sliding surface 81 (inclined surface) near the circumferential end of the half-split thrust bearing and the thrust collar surface 12 of the crank shaft are particularly for the above reasons. Is in direct contact with and is prone to damage.
Further, in the half-split thrust bearing described in Patent Document 3, the bearing wall thickness of the inclined surface is the radial outer end portion from the radial inner end portion of the thrust bearing except for the circumferential end portion of the half-split thrust bearing. Since the size of the bearing is larger, the sliding surface (inclined surface) on the outer diameter side in the vicinity of the circumferential end of the half-split thrust bearing and the thrust collar surface 12 of the crank shaft come into direct contact with each other, and damage is more likely to occur.

(効果)
次に、図10A〜11Eを用いて本実施例の半割スラスト軸受8の効果を説明する。
(effect)
Next, the effect of the half-thrust bearing 8 of this embodiment will be described with reference to FIGS. 10A to 11E.

図10A〜Eは、半割スラスト軸受8の周方向両端面83を含む面に垂直な方向から半割スラスト軸受8を見たときの(すなわち周方向両端面83を含む面内における)摺動面81に対するスラストカラー面12の運転中の傾斜の変化を順に示し、図11A〜Eは、半割スラスト軸受8の摺動面81を正面側から見たときの、図10A〜Eに対応する摺動面81とスラストカラー面12の接触位置の変化を示す。図11A〜Eの破線円は、半割スラスト軸受8の摺動面81とスラストカラー面12の接触部(接触により負荷を最も受ける摺動面の位置)を示す。例えば図10B及びこれに対応する図11Bから、摺動面81とスラストカラー面12の接触部が図11Aに示される周方向端部付近から離れた後も、図11Cに示される周方向中央部へ到達するまでは、スラストカラー面12は、周方向両端面83を含む面内で摺動面81に対して傾斜していることが理解されよう。
本実施例の半割スラスト軸受8は、背面84a(基準面84)から摺動面81までの軸線方向距離Tが、半割スラスト軸受8のいずれの径方向位置においても周方向中央部で最大で、周方向両端部へ向かって小さくなっており、且つ半割スラスト軸受のいずれの周方向位置においても半割スラスト軸受の径方向に亘って一定になっている。これにより、図10A〜Eに示すように半割スラスト軸受8の背面84aに対するスラストカラー面12の傾斜変化が生じても、図10A〜11Eに示すように摺動面81とスラストカラー面12との接触位置が、半割スラスト軸受8のクランク軸の回転方向後方側の周方向端部(図10A及び11A)からクランク軸の回転方向前方側の周方向端部(図10E及び11E)へ、クランク軸の回転に伴って周方向に順次移動する。このため本実施例の半割スラスト軸受8では、周方向両端部付近の摺動面81のみが常時クランク軸のスラストカラー面12と直接接触し、損傷(疲労)することが防止される。
また本実施例の半割スラスト軸受8では、上記のように軸線方向距離Tが半割スラスト軸受8の径方向に亘って一定である。したがって、内燃機関の運転時に発生するクランク軸の撓みによりスラストカラー面12が傾斜しても、半割スラスト軸受8のいずれの周方向位置でも半割スラスト軸受8の摺動面81の外径側の領域がスラストカラー面12と強く接触することが防止される。
10A to 10E show sliding of the half-split thrust bearing 8 when the half-split thrust bearing 8 is viewed from a direction perpendicular to the plane including the circumferential end faces 83 (that is, in the plane including the circumferential end faces 83). The changes in the inclination of the thrust collar surface 12 with respect to the surface 81 during operation are shown in order, and FIGS. 11A to 11E correspond to FIGS. 10A to 10E when the sliding surface 81 of the half-split thrust bearing 8 is viewed from the front side. The change in the contact position between the sliding surface 81 and the thrust collar surface 12 is shown. The broken line circles in FIGS. 11A to 11E indicate the contact portion between the sliding surface 81 of the half-split thrust bearing 8 and the thrust collar surface 12 (the position of the sliding surface that receives the most load due to contact). For example, from FIG. 10B and FIG. 11B corresponding thereto, even after the contact portion between the sliding surface 81 and the thrust collar surface 12 is separated from the vicinity of the circumferential end portion shown in FIG. 11A, the circumferential central portion shown in FIG. 11C It will be understood that the thrust collar surface 12 is inclined with respect to the sliding surface 81 in the surface including both end surfaces 83 in the circumferential direction until reaching.
In the half-split thrust bearing 8 of this embodiment, the axial distance T from the back surface 84a (reference surface 84) to the sliding surface 81 is maximum in the circumferential central portion at any radial position of the half-split thrust bearing 8. Therefore, it becomes smaller toward both ends in the circumferential direction, and is constant over the radial direction of the half-split thrust bearing at any circumferential position of the half-split thrust bearing. As a result, even if the inclination of the thrust collar surface 12 with respect to the back surface 84a of the half-split thrust bearing 8 occurs as shown in FIGS. 10A to 10E, the sliding surface 81 and the thrust collar surface 12 are formed as shown in FIGS. 10A to 11E. The contact position of the half-split thrust bearing 8 is from the circumferential end on the rear side of the crankshaft in the rotational direction (FIGS. 10A and 11A) to the circumferential end on the front side in the rotational direction of the crankshaft (FIGS. 10E and 11E). It moves sequentially in the circumferential direction as the crankshaft rotates. Therefore, in the half-split thrust bearing 8 of the present embodiment, only the sliding surfaces 81 near both ends in the circumferential direction are always in direct contact with the thrust collar surface 12 of the crankshaft to prevent damage (fatigue).
Further, in the half-split thrust bearing 8 of this embodiment, the axial distance T is constant over the radial direction of the half-split thrust bearing 8 as described above. Therefore, even if the thrust collar surface 12 is tilted due to the bending of the crankshaft generated during the operation of the internal combustion engine, the outer diameter side of the sliding surface 81 of the half-split thrust bearing 8 at any circumferential position of the half-split thrust bearing 8. The region of is prevented from coming into strong contact with the thrust collar surface 12.

以下、図12〜14を用いて、実施例1とは別の形態の摺動面181を有する半割スラスト軸受108について説明する。なお、実施例1で説明した内容と同一又は均等な構成要素には同一の符号を付して説明する。 Hereinafter, a half-thrust bearing 108 having a sliding surface 181 having a form different from that of the first embodiment will be described with reference to FIGS. 12 to 14. In addition, the same or equivalent components as those described in the first embodiment will be described with the same reference numerals.

(構成)
本実施例の軸受装置1の全体構成は、実施例1と同様である。半割スラスト軸受108の構成も、摺動面181の形状を除いて実施例1と概ね同様である。
(Constitution)
The overall configuration of the bearing device 1 of this embodiment is the same as that of the first embodiment. The configuration of the half-split thrust bearing 108 is also substantially the same as that of the first embodiment except for the shape of the sliding surface 181.

実施例2の半割スラスト軸受108もまた、実施例1の半割スラスト軸受8と同じく軸線方向に垂直な基準面84を画定しており、この基準面84内に、シリンダブロック2の受座6に配置されるように適合された実質的に平坦な背面84aを有する。さらに、半割スラスト軸受108は、基準面84(背面84a)から軸線方向に離れた摺動面181を有し、基準面84(背面84a)から摺動面181までの軸線方向距離が、半割スラスト軸受108の軸受壁厚に一致する。この軸受壁厚(基準面84から摺動面181までの軸線方向距離)は、半割スラスト軸受108のいずれの径方向位置においても、半割スラスト軸受108の周方向中央部で最大で、半割スラスト軸受の周方向両端部へ向かって小さくなるように形成される。したがって図13に示すように、半割スラスト軸受108の周方向両端面183を含む面に垂直な方向から見て、半割スラスト軸受108の摺動面181は、周方向中央部が最も突出した凸形状の輪郭を有している。
特に本実施例において、軸受壁厚は、いずれの周方向位置においても、径方向の内側端部の軸受壁厚TIが最大で、径方向の外側端部の軸受壁厚TOが最小となるように形成される(図14参照)。したがって本実施例において、半割スラスト軸受108の軸受壁厚は、周方向中央部の径方向内側端部で最大(TC)で、周方向両端部の径方向外側端部で最小(TE)である(図13参照)。
The half-split thrust bearing 108 of the second embodiment also defines a reference surface 84 perpendicular to the axial direction like the half-split thrust bearing 8 of the first embodiment, and the seat of the cylinder block 2 is seated in the reference surface 84. It has a substantially flat back surface 84a adapted to be disposed in 6. Further, the half-split thrust bearing 108 has a sliding surface 181 separated in the axial direction from the reference surface 84 (rear surface 84a), and the axial distance from the reference surface 84 (rear surface 84a) to the sliding surface 181 is half. It matches the bearing wall thickness of the split thrust bearing 108. The bearing wall thickness (the axial distance from the reference surface 84 to the sliding surface 181) is the maximum at the central portion in the circumferential direction of the half-split thrust bearing 108 at any radial position of the half-split thrust bearing 108, and is half. It is formed so as to become smaller toward both ends in the circumferential direction of the split thrust bearing. Therefore, as shown in FIG. 13, the sliding surface 181 of the half-split thrust bearing 108 protrudes most in the circumferential direction when viewed from the direction perpendicular to the surface including both end faces 183 in the circumferential direction of the half-split thrust bearing 108. It has a convex contour.
In particular, in the present embodiment, the bearing wall thickness is such that the bearing wall thickness TI at the inner end in the radial direction is the maximum and the bearing wall thickness TO at the outer end in the radial direction is the minimum at any circumferential position. Is formed in (see FIG. 14). Therefore, in this embodiment, the bearing wall thickness of the half-split thrust bearing 108 is maximum (TC) at the radial inner end of the circumferential center and minimum (TE) at the radial outer end of both ends in the circumferential direction. There is (see FIG. 13).

本実施例の半割スラスト軸受108は、実施例1の半割スラスト軸受8と同じく、摺動面181の周方向両端部付近のみが常時スラストカラー面12と接触することを防ぐ効果をもたらし、さらに、摺動面181の径方向外側端部付近がスラストカラー面12と直接接触しにくいという効果をもたらす。
なお、実施例2の半割スラスト軸受108では、摺動面181は、図14に示す径方向断面において直線状の輪郭を有するように形成されているが、曲線状の輪郭を有する曲面として形成されてもよい。
Similar to the half-split thrust bearing 8 of the first embodiment, the half-split thrust bearing 108 of the present embodiment has the effect of preventing only the vicinity of both ends of the sliding surface 181 in the circumferential direction from always contacting the thrust collar surface 12. Further, there is an effect that the vicinity of the radial outer end portion of the sliding surface 181 is unlikely to come into direct contact with the thrust collar surface 12.
In the half-split thrust bearing 108 of the second embodiment, the sliding surface 181 is formed so as to have a linear contour in the radial cross section shown in FIG. 14, but is formed as a curved surface having a curved contour. May be done.

以下、図15〜17を用いて、実施例1及び2とは別の形態の摺動面281を有する半割スラスト軸受208について説明する。なお、上記実施例で説明した内容と同一又は均等な構成要素には同一の符号を付して説明する。 Hereinafter, a half-thrust bearing 208 having a sliding surface 281 of a form different from that of the first and second embodiments will be described with reference to FIGS. 15 to 17. The same or equivalent components as those described in the above embodiment will be described with the same reference numerals.

(構成)
本実施例の軸受装置1の全体構成は、実施例1と同様である。半割スラスト軸受208の構成も、摺動面281の形状及び油溝281aの形状を除いて実施例1及び2と概ね同様である。
(Constitution)
The overall configuration of the bearing device 1 of this embodiment is the same as that of the first embodiment. The configuration of the half-split thrust bearing 208 is also substantially the same as that of the first and second embodiments except for the shape of the sliding surface 281 and the shape of the oil groove 281a.

本実施例の半割スラスト軸受208の摺動面281は、実施例1及び2と異なり、図15〜17に示すように、周方向中央部を境界285とする2つの平面から構成される。これらの平面は、軸受壁厚が半割スラスト軸受208の周方向中央部で最大(TC)で、周方向両端部の径方向外側端部へ向かって小さくなるように配置される。しかし、摺動面281は、これら平面の代わりに僅かに湾曲した2つの面から構成されていてもよい。
特に、半割スラスト軸受208は、図16に示すように、摺動面281のいずれの周方向位置においても、半割スラスト軸受208の径方向内側端部の軸受壁厚TIが最大で、径方向外側端部の軸受壁厚TOが最小となるように形成される(図17参照)。油溝281aは、半割スラスト軸受208の摺動面281上に、半割スラスト軸受208の周方向両端面283を含む面に垂直な方向(すなわち図16の紙面と垂直方向)に延びるように形成されている。
Unlike the first and second embodiments, the sliding surface 281 of the half-split thrust bearing 208 of this embodiment is composed of two planes having a circumferential central portion as a boundary 285, as shown in FIGS. 15 to 17. These planes are arranged so that the bearing wall thickness is maximum (TC) at the central portion in the circumferential direction of the half-split thrust bearing 208 and decreases toward the radial outer ends of both ends in the circumferential direction. However, the sliding surface 281 may be composed of two slightly curved surfaces instead of these planes.
In particular, as shown in FIG. 16, the half-split thrust bearing 208 has a maximum bearing wall thickness TI at the radial inner end of the half-split thrust bearing 208 at any circumferential position of the sliding surface 281. It is formed so that the bearing wall thickness TO at the outer end in the direction is minimized (see FIG. 17). The oil groove 281a extends on the sliding surface 281 of the half-split thrust bearing 208 in a direction perpendicular to the surface including the circumferential direction both end faces 283 of the half-split thrust bearing 208 (that is, in the direction perpendicular to the paper surface of FIG. 16). It is formed.

半割スラスト軸受208の周方向中央部における径方向内側端部の軸受壁厚TCと、周方向両端部における径方向外側端部の軸受壁厚TEとの関係は、実施例2と同様である(図16参照)。 The relationship between the bearing wall thickness TC at the radial inner end at the circumferential center of the half-split thrust bearing 208 and the bearing wall thickness TE at the radial outer end at both ends in the circumferential direction is the same as in the second embodiment. (See FIG. 16).

実施例3の半割スラスト軸受208の他の構成及び作用効果は実施例1及び2と略同様であり、したがって説明を省略する。 Other configurations and effects of the half-split thrust bearing 208 of the third embodiment are substantially the same as those of the first and second embodiments, and thus the description thereof will be omitted.

以上、図面を参照して、本発明の実施例1〜3を詳述してきたが、具体的な構成はこれら実施例に限定されず、本発明の要旨を逸脱しない程度の設計的変更が本発明に含まれることを理解すべきである。 Although the first to third embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to these examples, and the design changes to the extent that the gist of the present invention is not deviated from the present invention. It should be understood that it is included in the invention.

例えば実施例1〜3では、半割軸受と半割スラスト軸受が分離しているタイプの軸受装置1について説明したが、本発明はこれに限定されるものではなく、半割軸受と半割スラスト軸受が一体化したタイプの軸受装置1にも適用できる。 For example, in Examples 1 to 3, the bearing device 1 of the type in which the half-split bearing and the half-split thrust bearing are separated has been described, but the present invention is not limited thereto, and the half-split bearing and the half-split thrust It can also be applied to the bearing device 1 of the type in which the bearing is integrated.

また図18に示すように、位置決め及び回転止めのために、径方向外側に突出する突出部88を備えた半割スラスト軸受308に本発明を適用することもできる。なお、突出部88は、上述した軸線方向距離Tの構成を満足しなくてもよい。また図18及び19に示すように半割スラスト軸受の摺動面81の周方向両端部付近にスラストリリーフ82を設けてもよい。さらに、図19に示すように半割スラスト軸受308の摺動面81と反対側の背面84aの周方向両端部にテーパーを設けて、背面リリーフ87を形成することもできる。なお、スラストリリーフ82や背面リリーフ87を設けた場合、上述した半割スラスト軸受の周方向両端部における径方向外側端部の軸受壁厚TEは、スラストリリーフ82や背面リリーフ87を設けなかった場合の仮想の摺動面81(摺動面81を周方向両端部まで延長した面)と仮想の背面84a(背面84aを周方向両端部まで延長した面)と間の軸線方向距離で定義される。
また図18及び19に示すように、半割スラスト軸受308の周方向長さは、実施例1に示す通常の半割スラスト軸受8の周方向端面の位置HRから所定の長さS1だけ短く形成されてもよい。さらに、半割スラスト軸受308は、周方向両端部近傍において内周面を半径Rの円弧状に切り欠かれてもよい。その場合、半割スラスト軸受の周方向端部における軸受壁厚Tは、長さS1や切り欠きを形成しなかった場合の半割スラスト軸受の周方向端部での軸受壁厚によって表すことができる。
Further, as shown in FIG. 18, the present invention can be applied to a half-thrust bearing 308 provided with a protruding portion 88 projecting outward in the radial direction for positioning and rotation stop. The protrusion 88 does not have to satisfy the above-described configuration of the axial distance T. Further, as shown in FIGS. 18 and 19, thrust relief 82 may be provided near both ends in the circumferential direction of the sliding surface 81 of the half-thrust bearing. Further, as shown in FIG. 19, the back surface relief 87 can be formed by providing tapers at both ends in the circumferential direction of the back surface 84a on the side opposite to the sliding surface 81 of the half-split thrust bearing 308. When the thrust relief 82 and the back relief 87 are provided, the bearing wall thickness TE at the radial outer ends at both ends in the circumferential direction of the above-mentioned half-split thrust bearing is the case where the thrust relief 82 and the back relief 87 are not provided. Is defined by the axial distance between the virtual sliding surface 81 (the surface extending the sliding surface 81 to both ends in the circumferential direction) and the virtual back surface 84a (the surface extending the back surface 84a to both ends in the circumferential direction). ..
Further, as shown in FIGS. 18 and 19, the circumferential length of the half-split thrust bearing 308 is formed shorter than the position HR of the circumferential end face of the normal half-split thrust bearing 8 shown in the first embodiment by a predetermined length S1. May be done. Further, the half-split thrust bearing 308 may have its inner peripheral surface cut out in an arc shape having a radius R in the vicinity of both ends in the circumferential direction. In that case, the bearing wall thickness T at the circumferential end of the half-split thrust bearing can be represented by the length S1 or the bearing wall thickness at the circumferential end of the half-split thrust bearing when no notch is formed. it can.

また、半割スラスト軸受の摺動面の径方向外側の縁部及び/又は径方向内側の縁部に、周方向に沿って面取りを形成するもこともできる。その場合、半割スラスト軸受の径方向内側端部での軸受壁厚TI及び径方向外側端部での軸受壁厚TOは、面取りを形成しなかった場合の半割スラスト軸受の径方向内側端部及び外径側端部での軸受壁厚によって表すことができる。 It is also possible to form chamfers along the circumferential direction at the radial outer edge and / or the radial inner edge of the sliding surface of the half-thrust bearing. In that case, the bearing wall thickness TI at the radial inner end of the half-split thrust bearing and the bearing wall thickness TO at the radial outer end are the radial inner ends of the half-split thrust bearing when no chamfer is formed. It can be represented by the bearing wall thickness at the portion and the outer diameter side end.

上記実施例はいずれも2つの油溝81aを摺動面に形成した半割スラスト軸受に関するが、本発明はこれに限定されず、半割スラスト軸受は1つ又は3つ以上の油溝を有していてもよい。 All of the above embodiments relate to a half-split thrust bearing in which two oil grooves 81a are formed on a sliding surface, but the present invention is not limited to this, and the half-split thrust bearing has one or three or more oil grooves. You may be doing it.

また上記実施例は、軸受装置に半割スラスト軸受を4つ使用する場合について説明しているが、本発明はこれに限定されるものではなく、少なくとも1つの本発明による半割スラスト軸受を使用することで所望の効果を得ることができる。また軸受装置において、本発明の半割スラスト軸受は、クランク軸を回転自在に支承する半割軸受の軸線方向の一方又は両方の端面に一体に形成されてもよい。 Further, the above-described embodiment describes a case where four half-split thrust bearings are used in the bearing device, but the present invention is not limited to this, and at least one half-split thrust bearing according to the present invention is used. By doing so, the desired effect can be obtained. Further, in the bearing device, the half-split thrust bearing of the present invention may be integrally formed on one or both end faces in the axial direction of the half-split bearing that rotatably supports the crankshaft.

1 軸受装置
11 ジャーナル部
12 スラストカラー面
2 シリンダブロック
3 軸受キャップ
4 軸受ハウジング
5 軸受孔(保持孔)
6 受座
7 半割軸受
71 潤滑油溝
72 貫通孔
73 クラッシュリリーフ
74 周方向両端面
75 摺動面
8 半割スラスト軸受
81 摺動面
81a 油溝
82 スラストリリーフ
83 周方向両端面
84 基準面
84a 背面
85 周方向中央部
86 周方向両端部
87 背面リリーフ
88 突出部
108 半割スラスト軸受
181 摺動面
208 半割スラスト軸受
281 摺動面
281a 油溝
308 半割スラスト軸受
f 軸線方向力
T 軸受壁厚
1 Bearing device 11 Journal part 12 Thrust collar surface 2 Cylinder block 3 Bearing cap 4 Bearing housing 5 Bearing hole (holding hole)
6 Seat 7 Half-split bearing 71 Lubricating oil groove 72 Through hole 73 Crash relief 74 Circumferential both end faces 75 Sliding surface 8 Half-split thrust bearing 81 Sliding surface 81a Oil groove 82 Thrust relief 83 Circumferential end surface 84 Reference surface 84a Back 85 Circumferential central part 86 Circumferential both ends 87 Back relief 88 Protruding part 108 Half-split thrust bearing 181 Sliding surface 208 Half-split thrust bearing 281 Sliding surface 281a Oil groove 308 Half-split thrust bearing f Axial force T bearing wall Thick

Claims (6)

内燃機関のクランク軸の軸線方向力を受けるための半円環形状の半割スラスト軸受であって、前記軸線方向力を受けるための摺動面と、前記摺動面の反対側の背面とを有し、且つ軸線方向に垂直な基準面を前記背面側に画定している半割スラスト軸受において、
前記基準面から前記摺動面までの軸線方向距離が、前記半割スラスト軸受のいずれの径方向位置においても前記半割スラスト軸受の周方向中央部で最大で、前記半割スラスト軸受の周方向両端部へ向かって小さくなっていること、及び
前記軸線方向距離が、前記半割スラスト軸受のいずれの周方向位置においても前記半割スラスト軸受の径方向に亘って一定であること、又は前記半割スラスト軸受のいずれの周方向位置においても前記半割スラスト軸受の径方向内側端部で最大で、径方向外側端部へ向かって小さくなっていること
を特徴とする半割スラスト軸受。
A semi-annular half-split thrust bearing for receiving the axial force of the crankshaft of an internal combustion engine, the sliding surface for receiving the axial force and the back surface on the opposite side of the sliding surface. In a half-thrust bearing that has and defines a reference plane perpendicular to the axial direction on the back surface side.
The axial distance from the reference surface to the sliding surface is maximum in the circumferential central portion of the half-split thrust bearing at any radial position of the half-thrust bearing, and is the circumferential direction of the half-split thrust bearing. It becomes smaller toward both ends, and the axial distance is constant over the radial direction of the half-split thrust bearing at any circumferential position of the half-thrust bearing, or the half. A half-split thrust bearing characterized in that, at any circumferential position of the split thrust bearing, the maximum is at the radial inner end of the half-thrust bearing and the size is smaller toward the radial outer end.
前記背面が平坦であり、且つ前記基準面内に位置している、請求項1に記載の半割スラスト軸受。 The half-thrust bearing according to claim 1, wherein the back surface is flat and is located within the reference plane. 前記半割スラスト軸受の周方向端面に垂直な方向から前記半割スラスト軸受を見たとき、前記半割スラスト軸受の前記摺動面が、前記周方向中央部で最も突出した凸形状の輪郭を有している、請求項1又は2に記載の半割スラスト軸受。 When the half-split thrust bearing is viewed from a direction perpendicular to the circumferential end surface of the half-split thrust bearing, the sliding surface of the half-split thrust bearing has the most protruding convex contour in the central portion in the circumferential direction. The half-split thrust bearing according to claim 1 or 2. 前記摺動面の前記輪郭が曲線から構成される、請求項3に記載の半割スラスト軸受。 The half-thrust bearing according to claim 3, wherein the contour of the sliding surface is composed of a curved line. 前記摺動面の前記輪郭が直線から構成される、請求項3に記載の半割スラスト軸受。 The half-thrust bearing according to claim 3, wherein the contour of the sliding surface is formed of a straight line. 前記周方向中央部における前記半割スラスト軸受の最大軸線方向距離と、前記周方向両端部の径方向外側端部における軸線方向距離との差が50〜800μmである、請求項1から5までのいずれか一項に記載の半割スラスト軸受。 According to claims 1 to 5, the difference between the maximum axial distance of the half-split thrust bearing at the central portion in the circumferential direction and the axial distance at the radial outer ends of both ends in the circumferential direction is 50 to 800 μm. Half-split thrust bearing according to any one item.
JP2017004255A 2017-01-13 2017-01-13 Half thrust bearing Active JP6757673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017004255A JP6757673B2 (en) 2017-01-13 2017-01-13 Half thrust bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017004255A JP6757673B2 (en) 2017-01-13 2017-01-13 Half thrust bearing

Publications (2)

Publication Number Publication Date
JP2018112280A JP2018112280A (en) 2018-07-19
JP6757673B2 true JP6757673B2 (en) 2020-09-23

Family

ID=62910933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017004255A Active JP6757673B2 (en) 2017-01-13 2017-01-13 Half thrust bearing

Country Status (1)

Country Link
JP (1) JP6757673B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6576976B2 (en) * 2017-06-12 2019-09-18 大同メタル工業株式会社 Half thrust bearing
JP6804577B2 (en) * 2019-02-08 2020-12-23 大同メタル工業株式会社 Half-thrust bearing for crankshaft of internal combustion engine

Also Published As

Publication number Publication date
JP2018112280A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP6153587B2 (en) Half thrust bearing and bearing device for crankshaft of internal combustion engine
US9797435B2 (en) Bearing device for crankshaft of internal combustion engine
EP2770189A1 (en) Half thrust bearing and bearing device
US20160032961A1 (en) Half thrust bearing and bearing device using the same
US9856908B2 (en) Thrust bearing and bearing device for crankshaft of internal combustion engine
JP6193316B2 (en) Thrust bearing and bearing device for crankshaft of internal combustion engine
CN109026979B (en) Half-split thrust bearing
CN109026978B (en) Half-split thrust bearing
JP6193317B2 (en) Bearing device for crankshaft of internal combustion engine
US10006490B2 (en) Half thrust bearing and bearing device using the same
JP6757673B2 (en) Half thrust bearing
JP6942471B2 (en) Half thrust bearing
JP2024047719A (en) Half-split thrust bearing
JP2024047720A (en) Half-split thrust bearing
JP2022181504A (en) Half thrust bearing
JP2016035303A (en) Internal combustion engine crankshaft bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R150 Certificate of patent or registration of utility model

Ref document number: 6757673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250