JP2018112219A - Constant velocity universal joint - Google Patents

Constant velocity universal joint Download PDF

Info

Publication number
JP2018112219A
JP2018112219A JP2017001844A JP2017001844A JP2018112219A JP 2018112219 A JP2018112219 A JP 2018112219A JP 2017001844 A JP2017001844 A JP 2017001844A JP 2017001844 A JP2017001844 A JP 2017001844A JP 2018112219 A JP2018112219 A JP 2018112219A
Authority
JP
Japan
Prior art keywords
joint member
peripheral surface
constant velocity
velocity universal
outer joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017001844A
Other languages
Japanese (ja)
Inventor
弘昭 牧野
Hiroaki Makino
弘昭 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2017001844A priority Critical patent/JP2018112219A/en
Publication of JP2018112219A publication Critical patent/JP2018112219A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve lubricity in a sliding region between an outer joint member and an inner joint member.SOLUTION: A constant velocity universal joint is provided that comprises: an outer joint member 12 in which axially extending track grooves 19 are formed in a plurality of circumferential portions in an inner circumferential surface 20; an inner joint member 13 in which axially extending track grooves 21 forming pair with the track grooves 19 of the outer joint member 12 are formed in a plurality of circumferential portions in an outer circumferential surface 22: balls 14 interposed between the track grooves 19 of the outer joint member 12 and the track grooves 21 of the inner joint member 13; and a cage 15 interposed between the inner circumferential surface 20 of the outer joint member 12 and the outer circumferential surface 22 of the inner joint member 13. Recessed parts 29, 30 are provided in the inner circumferential surface 20 of the outer joint member 12 and in the outer circumferential surface 22 of the inner joint member 13, respectively and fiber-flocked parts 31, 32 where many fibers are flocked are formed in the surfaces of the recessed parts 29, 30, respectively.SELECTED DRAWING: Figure 1

Description

本発明は、自動車や各種産業機械などの動力伝達系、例えば、自動車のドライブシャフトやプロペラシャフトにおいて使用される等速自在継手に関する。   The present invention relates to a constant velocity universal joint used in a power transmission system of an automobile or various industrial machines, for example, a drive shaft or a propeller shaft of an automobile.

例えば、自動車のエンジンから車輪に回転力を等速で伝達する手段として使用される等速自在継手には、固定式等速自在継手と摺動式等速自在継手の二種がある。これら両者の等速自在継手は、駆動側と従動側の二軸を連結してその二軸が作動角をとっても等速で回転トルクを伝達し得る構造を備えている。   For example, there are two types of constant velocity universal joints that are used as means for transmitting a rotational force from an automobile engine to wheels at a constant velocity: a fixed constant velocity universal joint and a sliding constant velocity universal joint. Both of these constant velocity universal joints have a structure in which two shafts on the driving side and the driven side are connected so that rotational torque can be transmitted at a constant speed even if the two shafts have an operating angle.

エンジンから車輪に動力を伝達するドライブシャフトは、エンジンと車輪との相対的位置関係の変化による角度変位と軸方向変位に対応する必要がある。そのため、ドライブシャフトは、一般的に、エンジン側(インボード側)に摺動式等速自在継手を、車輪側(アウトボード側)に固定式等速自在継手をそれぞれ装備し、両者の等速自在継手をシャフトで連結した構造を具備する。   A drive shaft that transmits power from the engine to the wheels needs to cope with angular displacement and axial displacement caused by a change in the relative positional relationship between the engine and the wheels. Therefore, the drive shaft is generally equipped with a sliding type constant velocity universal joint on the engine side (inboard side) and a fixed type constant velocity universal joint on the wheel side (outboard side). It has a structure in which universal joints are connected by a shaft.

この種の等速自在継手は、カップ状の外側継手部材、内側継手部材、トルク伝達部材で主要部が構成され、外側継手部材の内部空間にグリース等の潤滑剤を封入した構造を具備する。この潤滑剤の封入により、継手作動時において、継手内部の摺動部位での潤滑性を確保するようにしている。   This type of constant velocity universal joint includes a cup-shaped outer joint member, an inner joint member, and a torque transmission member, and has a structure in which a lubricant such as grease is sealed in the internal space of the outer joint member. By enclosing the lubricant, the lubricity at the sliding portion inside the joint is ensured when the joint is operated.

一方、前述の等速自在継手には、トルク伝達部材としてボールを使用したボールタイプのものがある(例えば、特許文献1参照)。このボールタイプの等速自在継手は、外側継手部材、内側継手部材およびボールの他にケージを具備する。   On the other hand, the constant velocity universal joint described above includes a ball type using a ball as a torque transmission member (see, for example, Patent Document 1). This ball type constant velocity universal joint includes a cage in addition to an outer joint member, an inner joint member, and a ball.

このタイプの等速自在継手において、外側継手部材は、軸方向に延びるトラック溝が内周面に形成されている。内側継手部材は、外側継手部材のトラック溝と対をなして軸方向に延びるトラック溝が外周面に形成されている。ボールは、外側継手部材のトラック溝と内側継手部材のトラック溝間に介在して回転トルクを伝達する。ケージは、外側継手部材の内周面と内側継手部材の外周面間に介在してボールを保持する。   In this type of constant velocity universal joint, the outer joint member has a track groove extending in the axial direction on the inner peripheral surface. The inner joint member has a track groove formed on the outer peripheral surface in a pair with the track groove of the outer joint member and extending in the axial direction. The ball is interposed between the track groove of the outer joint member and the track groove of the inner joint member and transmits the rotational torque. The cage is interposed between the inner peripheral surface of the outer joint member and the outer peripheral surface of the inner joint member to hold the ball.

特開2012−149754号公報JP 2012-149754 A

ところで、前述したボールタイプの等速自在継手では、外側継手部材の内部空間に潤滑剤を封入することにより、継手作動時において、継手内部の摺動部位での潤滑性を確保するようにしている。   By the way, in the above-described ball type constant velocity universal joint, a lubricant is sealed in the inner space of the outer joint member so as to ensure lubricity at the sliding portion inside the joint when the joint is operated. .

特に、継手内部の摺動部位の中でも、外側継手部材の内周面とケージの外周面との摺動部位、および内側継手部材の外周面とケージの内周面との摺動部位については、厳しい条件下にある。そのため、これらの摺動部位で潤滑剤の保持力を向上させることにより潤滑性を確保することが要望されている。   In particular, among the sliding parts inside the joint, the sliding part between the inner peripheral surface of the outer joint member and the outer peripheral surface of the cage, and the sliding part between the outer peripheral surface of the inner joint member and the inner peripheral surface of the cage, There are severe conditions. Therefore, it is desired to ensure lubricity by improving the retention of the lubricant at these sliding parts.

そこで、本発明は前述の課題に鑑みて提案されたもので、その目的とするところは、外側継手部材と内側継手部材間の摺動部位での潤滑性の向上を図り得る等速自在継手を提供することにある。   Accordingly, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to provide a constant velocity universal joint capable of improving the lubricity at the sliding portion between the outer joint member and the inner joint member. It is to provide.

本発明に係る等速自在継手は、軸方向に延びるトラック溝が内周面の円周方向複数箇所に形成された外側継手部材と、その外側継手部材のトラック溝と対をなして軸方向に延びるトラック溝が外周面の円周方向複数箇所に形成された内側継手部材と、外側継手部材のトラック溝と内側継手部材のトラック溝間に介在するトルク伝達部材と、外側継手部材の内周面と内側継手部材の外周面間に介在するケージとを備えている。   The constant velocity universal joint according to the present invention includes an outer joint member in which track grooves extending in the axial direction are formed at a plurality of locations in the circumferential direction of the inner peripheral surface, and a pair of track grooves of the outer joint member in the axial direction. Inner joint members having extended track grooves formed at a plurality of locations in the circumferential direction of the outer peripheral surface, a torque transmission member interposed between the track grooves of the outer joint member and the track grooves of the inner joint member, and the inner peripheral surface of the outer joint member And a cage interposed between the outer peripheral surfaces of the inner joint members.

前述の目的を達成するための技術的手段として、本発明において、外側継手部材の内周面および内側継手部材の外周面の少なくとも一方に凹部を設け、繊維材、軟質発泡材または軟質樹脂材からなる柔軟性構造体を凹部に形成したことを特徴とする。   As a technical means for achieving the above-mentioned object, in the present invention, a recess is provided on at least one of the inner peripheral surface of the outer joint member and the outer peripheral surface of the inner joint member, and is made of a fiber material, a soft foam material, or a soft resin material. A flexible structure is formed in the recess.

本発明では、外側継手部材の内周面および内側継手部材の外周面の少なくとも一方に設けられた凹部に柔軟性構造体を形成したことにより、継手作動時、外側継手部材とケージの摺動部位およびケージと内側継手部材の摺動部位に潤滑剤が柔軟性構造体によって保持される。   In the present invention, the flexible structure is formed in the concave portion provided on at least one of the inner peripheral surface of the outer joint member and the outer peripheral surface of the inner joint member, so that the sliding portion of the outer joint member and the cage can be moved during joint operation. The lubricant is held by the flexible structure at the sliding portion of the cage and the inner joint member.

このことから、外側継手部材の内周面および内側継手部材の外周面において、潤滑剤の保持力の向上により潤滑性が向上し、耐久性の向上、および滑り抵抗低減による低発熱や高効率化が図れる。   Therefore, on the inner peripheral surface of the outer joint member and the outer peripheral surface of the inner joint member, the lubricity is improved by improving the holding power of the lubricant, the durability is improved, and the low heat generation and high efficiency are achieved by reducing the slip resistance. Can be planned.

本発明における柔軟性構造体は、凹部の表面に対して垂直な状態で短繊維が植設された植毛部である構造が望ましい。この構造は、静電植毛により実現することが可能である。   The flexible structure in the present invention preferably has a structure that is a flocked portion in which short fibers are implanted in a state perpendicular to the surface of the recess. This structure can be realized by electrostatic flocking.

このような構造を採用すれば、外側継手部材の内周面および内側継手部材の外周面に対して、多量の短繊維を短時間で密に植毛することができる。   By adopting such a structure, a large amount of short fibers can be densely implanted in a short time with respect to the inner peripheral surface of the outer joint member and the outer peripheral surface of the inner joint member.

本発明における柔軟性構造体は、凹部の表面に対して一定の角度に傾斜した状態で短繊維が植設された植毛部である構造が望ましい。この構造は、静電吹付け植毛により実現することが可能である。   The flexible structure in the present invention preferably has a structure that is a flocked portion in which short fibers are implanted in a state inclined at a certain angle with respect to the surface of the recess. This structure can be realized by electrostatic spraying.

このような構造を採用すれば、吹付けしない静電植毛と比べて植毛密度を減少させることで、少量の短繊維で広い面積を覆うことができる。その結果、植毛部に保持される潤滑剤の量が多くなり、より効果的に回転トルクを低減できる。   If such a structure is employ | adopted, a large area can be covered with a small amount of short fiber by reducing the flocking density compared with the electrostatic flocking which is not sprayed. As a result, the amount of lubricant retained in the flocked portion increases, and the rotational torque can be reduced more effectively.

本発明によれば、継手作動時、外側継手部材とケージの摺動部位およびケージと内側継手部材の摺動部位に潤滑剤が柔軟性構造体によって保持される。このことから、外側継手部材の内周面および内側継手部材の外周面において、潤滑剤の保持力の向上により潤滑性が向上し、耐久性の向上、および滑り抵抗低減による低発熱や高効率化が図れる。その結果、高品質で長寿命の等速自在継手を提供できる。   According to the present invention, the lubricant is held by the flexible structure at the sliding portion of the outer joint member and the cage and the sliding portion of the cage and the inner joint member when the joint is operated. Therefore, on the inner peripheral surface of the outer joint member and the outer peripheral surface of the inner joint member, the lubricity is improved by improving the holding power of the lubricant, the durability is improved, and the low heat generation and high efficiency are achieved by reducing the slip resistance. Can be planned. As a result, a constant velocity universal joint having a high quality and a long life can be provided.

本発明の実施形態で、等速自在継手の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of a constant velocity universal joint in embodiment of this invention. 図1の外側継手部材を開口側から見た部分正面図である。It is the partial front view which looked at the outer joint member of FIG. 1 from the opening side. 図1の外側継手部材を内周面側から見た部分正面図である。It is the partial front view which looked at the outer joint member of FIG. 1 from the inner peripheral surface side. 図1の内側継手部材を外側継手部材の開口側から見た部分正面図である。It is the partial front view which looked at the inner joint member of FIG. 1 from the opening side of the outer joint member. 図4の要部拡大正面図である。It is a principal part enlarged front view of FIG. 静電植毛の概略要領を説明するための構成図である。It is a block diagram for demonstrating the outline point of electrostatic flocking. (A)は静電植毛により形成された植毛部の拡大断面図、(B)は静電吹付け植毛により形成された植毛部の拡大断面図である。(A) is an expanded sectional view of the flocked part formed by electrostatic flocking, (B) is an expanded sectional view of the flocked part formed by electrostatic spraying flocking.

本発明に係る等速自在継手の実施形態を、図面に基づいて以下に詳述する。   An embodiment of a constant velocity universal joint according to the present invention will be described in detail below based on the drawings.

以下の実施形態では、自動車用ドライブシャフトに組み込まれ、駆動側と従動側の二軸を連結してその二軸が作動角をとっても等速で回転トルクを伝達するボールタイプの固定式等速自在継手の一つであるツェッパ型等速自在継手を例示する。この実施形態の特徴的な構成を説明する前に等速自在継手の全体構成を説明する。   In the following embodiments, a ball type fixed type constant velocity universal which is incorporated in a drive shaft for an automobile and connects two axes of a driving side and a driven side and transmits the rotational torque at a constant speed even if the two axes take an operating angle. A Rzeppa constant velocity universal joint, which is one of the joints, is illustrated. Before describing the characteristic configuration of this embodiment, the overall configuration of the constant velocity universal joint will be described.

なお、本発明は、ツェッパ型等速自在継手以外に、アンダーカットフリー型等速自在継手など他のボールタイプの固定式等速自在継手にも適用可能である。また、ダブルオフセット型やクロスグルーブ型等速自在継手などボールタイプの摺動式等速自在継手にも適用可能である。さらに、自動車用プロペラシャフトに組み込まれるボールタイプの固定式等速自在継手や摺動式等速自在継手にも適用可能である。   In addition to the Rzeppa type constant velocity universal joint, the present invention can be applied to other ball type fixed type constant velocity universal joints such as an undercut free type constant velocity universal joint. Further, the present invention can also be applied to a ball type sliding type constant velocity universal joint such as a double offset type or a cross groove type constant velocity universal joint. Furthermore, the present invention can be applied to a ball type fixed constant velocity universal joint and a sliding type constant velocity universal joint incorporated in a propeller shaft for an automobile.

この実施形態の固定式等速自在継手(以下、単に等速自在継手と称す)は、図1に示すように、開口部11を有するカップ状の外側継手部材12、内側継手部材13、トルク伝達部材である複数個のボール14、およびケージ15で主要部が構成されている。   As shown in FIG. 1, a fixed type constant velocity universal joint (hereinafter simply referred to as a constant velocity universal joint) of this embodiment includes a cup-shaped outer joint member 12 having an opening 11, an inner joint member 13, torque transmission, and the like. The main part is composed of a plurality of balls 14 and a cage 15 which are members.

内側継手部材13の軸孔16には、軸部材であるシャフト17の一端がスプライン嵌合によりトルク伝達可能に連結されている。この内側継手部材13から延びるシャフト17は、止め輪18により内側継手部材13に対して抜け止めされている。   One end of a shaft 17 that is a shaft member is connected to the shaft hole 16 of the inner joint member 13 so that torque can be transmitted by spline fitting. The shaft 17 extending from the inner joint member 13 is prevented from coming off from the inner joint member 13 by a retaining ring 18.

外側継手部材12は、軸方向に延びる円弧状トラック溝19が球面状内周面20の円周方向複数箇所に等間隔で形成されている。内側継手部材13は、外側継手部材12のトラック溝19と対をなして軸方向に延びる円弧状トラック溝21が球面状外周面22の円周方向複数箇所に等間隔で形成されている。   In the outer joint member 12, arc-shaped track grooves 19 extending in the axial direction are formed at equal intervals in a plurality of locations in the circumferential direction of the spherical inner peripheral surface 20. In the inner joint member 13, arc-shaped track grooves 21 that extend in the axial direction in pairs with the track grooves 19 of the outer joint member 12 are formed at a plurality of positions in the circumferential direction of the spherical outer peripheral surface 22 at equal intervals.

ボール14は、外側継手部材12のトラック溝19と内側継手部材13のトラック溝21との間に介在して回転トルクを伝達する。ケージ15は、外側継手部材12の内周面20と内側継手部材13の外周面22との間に配されてボール14を保持する。なお、ボール14は、6個、8個あるいはそれ以外であってもよく、その個数は任意である。   The ball 14 is interposed between the track groove 19 of the outer joint member 12 and the track groove 21 of the inner joint member 13 to transmit rotational torque. The cage 15 is disposed between the inner peripheral surface 20 of the outer joint member 12 and the outer peripheral surface 22 of the inner joint member 13 to hold the ball 14. The number of balls 14 may be 6, 8, or any number, and the number is arbitrary.

以上の構成からなる等速自在継手では、外側継手部材12の内部空間にグリース等の潤滑剤(図示せず)を封入することにより、継手作動時において、継手内部の摺動部位、つまり、外側継手部材12に対して、内側継手部材13、ボール14およびケージ15からなる内部部品の摺動部位での潤滑性を確保する。   In the constant velocity universal joint having the above-described configuration, a lubricant such as grease (not shown) is sealed in the inner space of the outer joint member 12, so that the sliding portion inside the joint, that is, the outer With respect to the joint member 12, the lubricity at the sliding portion of the internal part composed of the inner joint member 13, the ball 14 and the cage 15 is ensured.

この等速自在継手は、継手内部に封入された潤滑剤の漏洩を防止すると共に継手外部からの異物侵入を防止するため、外側継手部材12の開口部11とシャフト17との間に、樹脂製あるいはゴム製の蛇腹状ブーツ23を装着した構造を具備する。   This constant velocity universal joint is made of resin between the opening 11 of the outer joint member 12 and the shaft 17 in order to prevent leakage of the lubricant enclosed in the joint and prevent foreign matter from entering from the outside of the joint. Alternatively, a structure in which a rubber bellows-like boot 23 is mounted is provided.

ブーツ23は、外側継手部材12の開口部11の外周面にブーツバンド27により締め付け固定された大径端部24と、内側継手部材13から延びるシャフト17の外周面にブーツバンド28により締め付け固定された小径端部25と、大径端部24と小径端部25とを繋ぎ、大径端部24から小径端部25へ向けて縮径した伸縮自在な蛇腹部26とで構成されている。   The boot 23 is fastened and fixed by the boot band 28 to the outer peripheral surface of the shaft 17 extending from the inner joint member 13 and the large-diameter end 24 fastened and fixed to the outer peripheral surface of the opening 11 of the outer joint member 12. The small-diameter end portion 25 is connected to the large-diameter end portion 24 and the small-diameter end portion 25, and the telescopic bellows portion 26 is reduced in diameter from the large-diameter end portion 24 toward the small-diameter end portion 25.

ブーツ23が樹脂製の場合、その表面硬さがHDD38〜50であるのが好ましい。ブーツ23の素材としては、例えば、エステル系、オレフィン系、ウレタン系、アミド系、スチレン系等の熱可塑性エラストマーなどがある。   When the boot 23 is made of resin, the surface hardness is preferably HDD38-50. Examples of the material of the boot 23 include thermoplastic elastomers such as ester, olefin, urethane, amide, and styrene.

なお、表面硬さがHDD38より小さいと、耐熱性の低下、ブーツ23のコストアップおよび強度低下を招来する。逆に、表面硬さがHDD50より大きいと、疲労性、柔軟性および組付性の低下を招来する。   If the surface hardness is smaller than that of the HDD 38, the heat resistance is reduced, the cost of the boot 23 is increased, and the strength is reduced. On the contrary, if the surface hardness is larger than that of the HDD 50, the fatigue property, flexibility, and assembling property are lowered.

ブーツ23がゴム製の場合、その表面硬さがHs50〜70であるのが好ましい。ブーツ23の素材としては、例えば、クロロプレンゴムやシリコンゴムなどがある。   When the boot 23 is made of rubber, the surface hardness is preferably Hs 50 to 70. Examples of the material of the boot 23 include chloroprene rubber and silicon rubber.

なお、表面硬さがHs50より小さいと、ブーツ23の強度低下を招来する。逆に、表面硬さがHs70より大きいと、疲労性の低下を招来する。   If the surface hardness is smaller than Hs50, the strength of the boot 23 is reduced. On the other hand, if the surface hardness is higher than Hs70, the fatigue property is reduced.

この実施形態における等速自在継手の全体構成は、前述のとおりであるが、この実施形態における等速自在継手の特徴的な構成について、以下に詳述する。   The overall configuration of the constant velocity universal joint in this embodiment is as described above. The characteristic configuration of the constant velocity universal joint in this embodiment will be described in detail below.

この実施形態の等速自在継手では、図1に示すように、外側継手部材12の内周面20(図2および図3参照)および内側継手部材13の外周面22(図4および図5参照)に軸方向に延びる凹部29,30を設け、その凹部29,30の表面に、繊維材、軟質発泡材または軟質樹脂材からなる柔軟性構造体、例えば、多数の繊維が植設された植毛部31,32を形成する。   In the constant velocity universal joint of this embodiment, as shown in FIG. 1, the inner peripheral surface 20 (see FIGS. 2 and 3) of the outer joint member 12 and the outer peripheral surface 22 of the inner joint member 13 (see FIGS. 4 and 5). Are provided with recesses 29, 30 extending in the axial direction, and a flexible structure made of a fiber material, a soft foam material, or a soft resin material, for example, a plurality of fibers planted on the surfaces of the recesses 29, 30. Portions 31 and 32 are formed.

外側継手部材12の内周面20とケージ15の外周面33、およびケージ15の内周面34と内側継手部材13の外周面22が相対的に摺動するが、外側継手部材12の内周面20とケージ15の外周面33からなる摺動部位、およびケージ15の内周面34と内側継手部材13の外周面22からなる摺動部位に植毛部31,32が介在する。   The inner peripheral surface 20 of the outer joint member 12 and the outer peripheral surface 33 of the cage 15 and the inner peripheral surface 34 of the cage 15 and the outer peripheral surface 22 of the inner joint member 13 slide relative to each other. The flocked portions 31 and 32 are interposed in the sliding portion composed of the surface 20 and the outer peripheral surface 33 of the cage 15 and the sliding portion composed of the inner peripheral surface 34 of the cage 15 and the outer peripheral surface 22 of the inner joint member 13.

このように、外側継手部材12および内側継手部材13の凹部29,30の表面に植毛部31,32を形成したことにより、外側継手部材12の内周面20とケージ15の外周面33からなる摺動部位、およびケージ15の内周面34と内側継手部材13の外周面22からなる摺動部位に介在する植毛部31,32に潤滑剤が付着して保持される。   Thus, by forming the flocked portions 31 and 32 on the surfaces of the recesses 29 and 30 of the outer joint member 12 and the inner joint member 13, the inner joint surface 20 of the outer joint member 12 and the outer peripheral surface 33 of the cage 15 are formed. Lubricant adheres to and is held on the sliding portions and the flocked portions 31 and 32 interposed in the sliding portions composed of the inner peripheral surface 34 of the cage 15 and the outer peripheral surface 22 of the inner joint member 13.

この植毛部31,32で潤滑剤が保持されることから、外側継手部材12の内周面20とケージ15の外周面33からなる摺動部位、およびケージ15の内周面34と内側継手部材13の外周面22からなる摺動部位に植毛部31,32から潤滑剤が供給され油膜が切れることがないので、摺動部位で生じる滑り抵抗が低減される。   Since the lubricant is held by the flocked portions 31 and 32, the sliding portion composed of the inner peripheral surface 20 of the outer joint member 12 and the outer peripheral surface 33 of the cage 15, and the inner peripheral surface 34 and the inner joint member of the cage 15. Since the lubricant is not supplied from the flocked portions 31 and 32 to the sliding portion composed of the 13 outer peripheral surfaces 22 and the oil film is not cut off, the sliding resistance generated at the sliding portion is reduced.

この滑り抵抗の低減により、外側継手部材12の内周面20とケージ15の外周面33からなる摺動部位、およびケージ15の内周面34と内側継手部材13の外周面22からなる摺動部位での発熱を低減できて高効率化および耐久性の向上が図れる。   Due to the reduction of the slip resistance, the sliding portion composed of the inner peripheral surface 20 of the outer joint member 12 and the outer peripheral surface 33 of the cage 15 and the sliding portion composed of the inner peripheral surface 34 of the cage 15 and the outer peripheral surface 22 of the inner joint member 13 are achieved. Heat generation at the site can be reduced, and high efficiency and durability can be improved.

植毛部31,32は、短繊維を外側継手部材12および内側継手部材13の凹部29,30の表面に植設することにより形成される。その植毛方法としては、静電植毛や静電吹付け植毛を採用することができる。これらの方法は、外側継手部材12および内側継手部材13の凹部29,30の表面に、多量の繊維を短時間で密に植毛することができる点で好ましい。   The flocked portions 31 and 32 are formed by implanting short fibers on the surfaces of the concave portions 29 and 30 of the outer joint member 12 and the inner joint member 13. As the flocking method, electrostatic flocking or electrostatic spraying flocking can be employed. These methods are preferable in that a large amount of fibers can be densely implanted in a short time on the surfaces of the recesses 29 and 30 of the outer joint member 12 and the inner joint member 13.

静電植毛は、接着剤塗布工程、静電植毛工程、乾燥工程、仕上げ工程等がある。静電植毛工程を図6に示す。静電植毛では、植毛対象物である外側継手部材12および内側継手部材13の凹部29,30の表面(便宜上、平坦面として表す)に接着剤の塗布により接着層40を形成する。そして、高電圧電極42により静電界を作り、その静電吸引力で短繊維41を接着層40に立毛させる。その後、接着層40の接着剤を乾燥させる乾燥工程を行い、次に、除毛等を行う仕上げ加工を行うことになる。   Electrostatic flocking includes an adhesive application process, an electrostatic flocking process, a drying process, a finishing process, and the like. The electrostatic flocking process is shown in FIG. In electrostatic flocking, the adhesive layer 40 is formed by applying an adhesive on the surfaces (represented as flat surfaces for the sake of convenience) of the recesses 29 and 30 of the outer joint member 12 and the inner joint member 13 that are objects to be flocked. Then, an electrostatic field is created by the high voltage electrode 42, and the short fibers 41 are raised on the adhesive layer 40 by the electrostatic attraction force. Then, the drying process which dries the adhesive agent of the contact bonding layer 40 is performed, and the finishing process which performs hair removal etc. next is performed.

静電植毛工程は、所定寸に切断された短繊維41(表面に電解質や界面活性剤の被膜を形成したもの、すなわち、電着処理剤をコーティングしたもの)を高電圧電極42の近傍に投入する。この投入で、クーロン力によって、短繊維41は高電圧電極42に引き付けられる。短繊維41が高電圧電極42に触れた瞬間に電極と同電位に帯電され、クーロン力によってはじかれる。短繊維41は高い電位が付与されているので、アース側に向かって飛翔する。   In the electrostatic flocking process, short fibers 41 cut to a predetermined size (the surface of which an electrolyte or surfactant film is formed, that is, the electrodeposition treatment agent is coated) are introduced in the vicinity of the high voltage electrode 42. To do. With this input, the short fiber 41 is attracted to the high voltage electrode 42 by Coulomb force. When the short fiber 41 touches the high voltage electrode 42, it is charged to the same potential as the electrode and is repelled by Coulomb force. Since the short fiber 41 is given a high potential, it flies toward the ground side.

この際、アース側の外側継手部材12および内側継手部材13の凹部29,30の表面には接着層40が形成されているので、この接着層40に短繊維41が突き刺さることになる。このようにして、短繊維41が外側継手部材12および内側継手部材13の凹部29,30の表面に植設され、植毛部31,32が外側継手部材12および内側継手部材13の凹部29,30の表面に形成される。   At this time, since the adhesive layer 40 is formed on the surfaces of the recesses 29 and 30 of the outer joint member 12 and the inner joint member 13 on the ground side, the short fibers 41 are pierced into the adhesive layer 40. In this way, the short fibers 41 are implanted in the surfaces of the recesses 29 and 30 of the outer joint member 12 and the inner joint member 13, and the flocked portions 31 and 32 are recessed portions 29 and 30 of the outer joint member 12 and the inner joint member 13. Formed on the surface.

図7(A)は、静電植毛により形成された植毛部31,32を例示する。また、図7(B)は、静電吹付け植毛により形成された植毛部31,32を例示する。なお、同図では、植毛対象物である外側継手部材12および内側継手部材13の凹部29,30の表面は曲面状であるが、便宜上、平坦面として表している。   FIG. 7A illustrates the flocked portions 31 and 32 formed by electrostatic flocking. FIG. 7B illustrates the flocked portions 31 and 32 formed by electrostatic spraying flocking. In addition, in the same figure, although the surface of the recessed parts 29 and 30 of the outer joint member 12 and the inner joint member 13 which are flocking objects is a curved surface, it represents as a flat surface for convenience.

静電植毛では、図7(A)に示すように、外側継手部材12および内側継手部材13の凹部29,30の表面に対して短繊維41が垂直な状態で植設される。これに対して、静電吹付け植毛では、図7(B)に示すように、短繊維41が垂直に植毛される静電植毛と異なり、短繊維41をエアで接着剤塗布面に吹き付けることで、外側継手部材12および内側継手部材13の凹部29,30の表面に対して短繊維41が一定の角度に傾斜した状態で植設される。   In electrostatic flocking, as shown in FIG. 7A, the short fibers 41 are implanted in a state perpendicular to the surfaces of the recesses 29 and 30 of the outer joint member 12 and the inner joint member 13. In contrast, in electrostatic spraying flocking, as shown in FIG. 7B, unlike electrostatic flocking in which the short fibers 41 are vertically planted, the short fibers 41 are sprayed onto the adhesive application surface with air. Thus, the short fibers 41 are planted in an inclined state with respect to the surfaces of the recesses 29 and 30 of the outer joint member 12 and the inner joint member 13.

このため、静電吹付け植毛によれば、吹付けしない静電植毛と比べて植毛密度を減少させることで、少量の短繊維41で広い面積を覆うことができる。特に、植毛に保持される潤滑剤の量が多くなり、より効果的に滑り抵抗を低減できる。   For this reason, according to electrostatic spraying flocking, it is possible to cover a large area with a small amount of short fibers 41 by reducing the flocking density compared to electrostatic flocking that is not sprayed. In particular, the amount of lubricant retained by the flocking increases, and slip resistance can be reduced more effectively.

植毛に用いられる短繊維41としては、植毛用短繊維として使用可能であれば特に限定されず、例えば、(1)ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、ナイロンなどのポリアミド樹脂、芳香族ポリアミド樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンサクシネート、ポリブチレンテレフタレートなどのポリエステル樹脂、アクリル樹脂、塩化ビニル、ビニロンなどの合成樹脂繊維、(2)カーボン繊維、グラスファイバーなどの無機繊維、(3)レーヨン、アセテートなどの再生繊維や、綿、絹、麻、羊毛などの天然繊維が挙げられる。   The short fiber 41 used for flocking is not particularly limited as long as it can be used as a short fiber for flocking. For example, (1) polyolefin resin such as polyethylene and polypropylene, polyamide resin such as nylon, aromatic polyamide resin, polyethylene Polyester resin such as terephthalate, polyethylene naphthalate, polyethylene succinate, polybutylene terephthalate, synthetic resin fiber such as acrylic resin, vinyl chloride, vinylon, (2) inorganic fiber such as carbon fiber, glass fiber, (3) rayon, acetate And natural fibers such as cotton, silk, hemp and wool.

これらは単独で用いられてもよく、2種類以上が併用されてもよい。油による潤滑や溶解などが生じにくく化学的に安定であり、均質な繊維を多量に生産することができ、安価に入手することができる。そのため、前述の(1)〜(3)の中でも(1)の合成樹脂繊維を用いることが好ましい。   These may be used alone or in combination of two or more. Lubricating or dissolving with oil is difficult to occur and is chemically stable, so that a large amount of homogeneous fibers can be produced and can be obtained at low cost. Therefore, it is preferable to use the synthetic resin fiber (1) among the above-mentioned (1) to (3).

短繊維41の形状としては、植毛部31,32の形成箇所において、外側継手部材12とケージ15との間、およびケージ15と内側継手部材13との間で相互に干渉しない形状であれば特に限定されない。具体的な形状としては、例えば、長さ0.5〜2.0mm、太さ0.5〜50デシテックスのものが好ましく、植毛部31,32の短繊維41の密度としては、植毛した面積あたりに繊維の占める割合が10〜30%が好ましい。   As the shape of the short fiber 41, in particular, as long as it is a shape that does not interfere with each other between the outer joint member 12 and the cage 15 and between the cage 15 and the inner joint member 13 in the formation portion of the flocked portions 31 and 32. It is not limited. As a specific shape, for example, those having a length of 0.5 to 2.0 mm and a thickness of 0.5 to 50 dtex are preferable, and the density of the short fibers 41 of the flocked portions 31 and 32 is about the area of flocking. The proportion of fibers is preferably 10 to 30%.

短繊維41の形状としてストレートやベンド(先端部が曲がった形状)があり、断面形状は円形や多角形状がある。ベンド形状ではストレート形状と比較して潤滑剤をより強く保持することができる。断面多角形状の短繊維41を利用することで、断面円形よりも大きな表面積とすることができ、潤滑剤の表面張力を大きくすることができる。それぞれの特性に合わせて、短繊維41の形状を選定することが好ましい。   The short fiber 41 has a straight shape or a bend (a shape in which the tip is bent), and has a circular or polygonal cross-sectional shape. The bend shape can hold the lubricant more strongly than the straight shape. By using the short fibers 41 having a polygonal cross section, the surface area can be larger than that of the circular cross section, and the surface tension of the lubricant can be increased. It is preferable to select the shape of the short fiber 41 according to each characteristic.

接着層40としては、ウレタン樹脂、エポキシ樹脂、アクリル樹脂、酢酸ビニル樹脂、ポリイミド樹脂、シリコーン樹脂などを主成分とする接着剤が挙げられる。例えば、ウレタン樹脂溶剤系接着剤、エポキシ樹脂溶剤系接着剤、酢酸ビニル樹脂溶剤系接着剤、アクリル樹脂系エマルジョン接着剤、アクリル酸エステル−酢酸ビニル共重合体系エマルジョン接着剤、酢酸ビニル系エマルジョン接着剤、ウレタン樹脂系エマルジョン接着剤、エポキシ樹脂系エマルジョン接着剤、ポリエステル系エマルジョン接着剤、エチレン−酢酸ビニル共重合体系接着剤などが挙げられる。これらは単独で用いられてもよく、2種以上が併用されてもよい。   Examples of the adhesive layer 40 include an adhesive mainly composed of urethane resin, epoxy resin, acrylic resin, vinyl acetate resin, polyimide resin, silicone resin, and the like. For example, urethane resin solvent adhesive, epoxy resin solvent adhesive, vinyl acetate resin solvent adhesive, acrylic resin emulsion adhesive, acrylate-vinyl acetate copolymer emulsion adhesive, vinyl acetate emulsion adhesive , Urethane resin emulsion adhesive, epoxy resin emulsion adhesive, polyester emulsion adhesive, ethylene-vinyl acetate copolymer adhesive and the like. These may be used independently and 2 or more types may be used together.

なお、以上の実施形態では、柔軟性構造体を繊維材で構成した場合、つまり、多数の短繊維41が植設された植毛部31,32について説明したが、柔軟性構造体を軟質発泡材または軟質樹脂材で構成してもよい。その場合、柔軟性構造体を外側継手部材12および内側継手部材13の凹部29,30の表面に接着剤などにより固定すればよい。   In addition, in the above embodiment, when the flexible structure was comprised with the fiber material, ie, the flocked parts 31 and 32 in which many short fibers 41 were planted, the flexible structure was made into a soft foam material. Or you may comprise with a soft resin material. In that case, what is necessary is just to fix a flexible structure to the surface of the recessed parts 29 and 30 of the outer joint member 12 and the inner joint member 13 with an adhesive agent.

軟質発泡材としては、ポリウレタン、ポリスチレン、ポリオレフィン、フェノール、ポリ塩化ビニルなどの合成樹脂や、天然ゴム、クロロプレンゴム、エチレンプロピレンゴム、ニトリルゴム、シリコンゴム、スチレンブタジエンゴムなどのゴムを発泡したものが挙げられる。軟質樹脂材としては、コルク材、ゴム板材、ポリエチレンや塩化ビニルなどの軟質シートが挙げられる。   Soft foam materials include those made by foaming synthetic resins such as polyurethane, polystyrene, polyolefin, phenol, and polyvinyl chloride, and rubbers such as natural rubber, chloroprene rubber, ethylene propylene rubber, nitrile rubber, silicon rubber, and styrene butadiene rubber. Can be mentioned. Examples of the soft resin material include cork materials, rubber plate materials, and soft sheets such as polyethylene and vinyl chloride.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

12 外側継手部材
13 内側継手部材
14 トルク伝達部材(ボール)
15 ケージ
19,21 トラック溝
20 内周面
22 外周面
29,30 凹部
31,32 柔軟性構造体(植毛部)
33 外周面
34 内周面
41 短繊維
12 outer joint member 13 inner joint member 14 torque transmission member (ball)
15 Cage 19, 21 Track groove 20 Inner peripheral surface 22 Outer peripheral surface 29, 30 Recessed portion 31, 32 Flexible structure (planted portion)
33 Outer peripheral surface 34 Inner peripheral surface 41 Short fiber

Claims (3)

軸方向に延びるトラック溝が内周面の円周方向複数箇所に形成された外側継手部材と、前記外側継手部材のトラック溝と対をなして軸方向に延びるトラック溝が外周面の円周方向複数箇所に形成された内側継手部材と、前記外側継手部材のトラック溝と前記内側継手部材のトラック溝間に介在するトルク伝達部材と、前記外側継手部材の内周面と前記内側継手部材の外周面間に介在するケージとを備えた等速自在継手であって、
前記外側継手部材の内周面および前記内側継手部材の外周面の少なくとも一方に凹部を設け、繊維材、軟質発泡材または軟質樹脂材からなる柔軟性構造体を前記凹部に形成したことを特徴とする等速自在継手。
An outer joint member in which track grooves extending in the axial direction are formed at a plurality of locations in the circumferential direction of the inner peripheral surface, and a track groove extending in the axial direction in pairs with the track grooves of the outer joint member in the circumferential direction of the outer peripheral surface Inner joint members formed at a plurality of locations, a torque transmission member interposed between a track groove of the outer joint member and a track groove of the inner joint member, an inner peripheral surface of the outer joint member, and an outer periphery of the inner joint member A constant velocity universal joint with a cage interposed between the faces,
A recess is provided on at least one of an inner peripheral surface of the outer joint member and an outer peripheral surface of the inner joint member, and a flexible structure made of a fiber material, a soft foam material, or a soft resin material is formed in the recess. Constant velocity universal joint.
前記柔軟性構造体は、前記凹部の表面に対して垂直な状態で短繊維が植設された植毛部である請求項1に記載の等速自在継手。   The constant velocity universal joint according to claim 1, wherein the flexible structure is a flocked portion in which short fibers are implanted in a state perpendicular to the surface of the concave portion. 前記柔軟性構造体は、前記凹部の表面に対して一定の角度に傾斜した状態で短繊維が植設された植毛部である請求項1に記載の等速自在継手。   2. The constant velocity universal joint according to claim 1, wherein the flexible structure is a flocked portion in which short fibers are implanted in a state inclined at a certain angle with respect to the surface of the concave portion.
JP2017001844A 2017-01-10 2017-01-10 Constant velocity universal joint Pending JP2018112219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017001844A JP2018112219A (en) 2017-01-10 2017-01-10 Constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001844A JP2018112219A (en) 2017-01-10 2017-01-10 Constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2018112219A true JP2018112219A (en) 2018-07-19

Family

ID=62910991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001844A Pending JP2018112219A (en) 2017-01-10 2017-01-10 Constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2018112219A (en)

Similar Documents

Publication Publication Date Title
JP2018123867A (en) Constant velocity universal joint
US20100197413A1 (en) Constant velocity universal joint
KR102042976B1 (en) Tripod type constant velocity joint for vehicle
JP2018112219A (en) Constant velocity universal joint
JP2018119572A (en) Tripod-type constant velocity universal joint
KR20180123137A (en) Cross groove type constant velocity joint for propeller shaft
JPH0942304A (en) Constant velocity universal joint
JP2018100743A (en) Tripod-type constant velocity universal joint
JP2018035818A (en) Cross groove type constant-velocity universal joint
US9422987B2 (en) Universal joint with protective shield
JP2018168954A (en) Spherical surface slide bearing and link operation device
KR20130141882A (en) Sliding ball type contant velocity joint for vehicle
JP2018013163A (en) Constant velocity universal joint
JPH03277822A (en) Constant velocity joint
KR20180128265A (en) Reverse type tripod joint
KR100646925B1 (en) Constant velocity joint
JP2010019313A (en) Pulley unit
JP2018168877A (en) Parallel link mechanism, constant speed universal joint, and link operation device
KR20150049179A (en) Tripod type constant velocity joint
CN215370676U (en) High-efficiency sliding universal joint
JP2018159402A (en) Clutch built-in pulley unit
JP2018123957A (en) Bearing device and bearing structure for wheel
JP2007064321A (en) Water entry prevention construction at boot of constant velocity universal joint
KR20020087718A (en) A dust cover having cooling funtion
JP2018105383A (en) Constant velocity universal joint