JP2018111277A - Jointed composite of metal and resin - Google Patents

Jointed composite of metal and resin Download PDF

Info

Publication number
JP2018111277A
JP2018111277A JP2017003770A JP2017003770A JP2018111277A JP 2018111277 A JP2018111277 A JP 2018111277A JP 2017003770 A JP2017003770 A JP 2017003770A JP 2017003770 A JP2017003770 A JP 2017003770A JP 2018111277 A JP2018111277 A JP 2018111277A
Authority
JP
Japan
Prior art keywords
resin
metal
period
rough surface
ether ketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017003770A
Other languages
Japanese (ja)
Other versions
JP6630297B2 (en
Inventor
安藤 直樹
Naoki Ando
直樹 安藤
高橋 正雄
Masao Takahashi
正雄 高橋
嘉寛 山口
Yoshinori Yamaguchi
嘉寛 山口
崇 長岡
Takashi Nagaoka
崇 長岡
成富 正徳
Masanori Narutomi
正徳 成富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Purasu Co Ltd
Original Assignee
Taisei Purasu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Purasu Co Ltd filed Critical Taisei Purasu Co Ltd
Priority to JP2017003770A priority Critical patent/JP6630297B2/en
Publication of JP2018111277A publication Critical patent/JP2018111277A/en
Application granted granted Critical
Publication of JP6630297B2 publication Critical patent/JP6630297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite of a metal alloy piece and a PEEK resin composition strongly joined to each other, which is adapted to various devices that require high heat resistance and also mechanical strength.SOLUTION: A composite is prepared by injecting and joining PEEK resin into/to metal, the metal comprising a rough surface formed by a chemical and physical surface treatment, having a ruggedness period from micron order to dozens micron order and wholly covered with a complex rough surface formed by adding a superfine uneven surface having a period of 30 to 100 nm on the rough surface. However, for an AI alloy which has been already subjected to anode oxidation, the rough surface having the ruggedness period from the micron order to the dozens micron order is not always needed. Joining force is increased by the presence of a concave part into which resin readily flows, and by injecting a PEEK resin composition having a superfine uneven surface having at least a period of 30 to 100 nm, the superfine uneven surface containing PEI in about 10% contributing fixation of PEEK.SELECTED DRAWING: Figure 1

Description

本発明は、移動機械、電気機器、医療機器、一般機械、その他の機器等に使用される、金属と樹脂の接合一体化物に関する。更に詳しくは、自動車、航空機、舶用の部品等の部品、本体等構造体に用いられるもので、金属とポリエーテルエーテルケトン樹脂(以下「PEEK」という。)を主成分とする、金属と樹脂の接合一体化物に関する。   The present invention relates to a metal / resin joint integrated body used for a mobile machine, an electric device, a medical device, a general machine, and other devices. More specifically, it is used for structural parts such as automobiles, aircrafts, marine parts and the like, and main bodies, and is composed of metal and polyether ether ketone resin (hereinafter referred to as “PEEK”) as main components. The present invention relates to an integrated joint.

金属と合成樹脂を一体化する技術は、自動車、家庭電化製品、産業機器等の部品製造業等の広い産業分野から求められており、このために多くの接着剤が開発されている。この中には非常に優れた接着剤が市販されている。しかしながら、接着剤を使用しない合理的な接合方法も従来から研究され既に実用化、商業化がなされている。即ち、マグネシウム、アルミニウム、銅、チタン等の非鉄金属とそれらの合金類、及び、ステンレス鋼、一般鋼材、更には、アルミ鍍金鋼板、亜鉛鍍金鋼板等のように表面処理された特殊鋼板等に対し、接着剤の介在なしで、高強度のエンジニアリング樹脂を一体化させる方法である。これらの多くは、本出願人が提唱した接合技術である。この接合技術は、表面処理をした金属形状物を射出成形金型にインサートし、特定の熱可塑性樹脂組成物を射出して樹脂部分を成形すると同時に、その成形品と金属形状物とを固着する方法(以下、「射出接合」という。)である(特許文献1〜9)。   Technology for integrating metal and synthetic resin is required from a wide range of industrial fields such as automobiles, home appliances, parts manufacturing industries such as industrial equipment, and many adhesives have been developed for this purpose. Among these, very good adhesives are commercially available. However, rational joining methods that do not use an adhesive have been studied and have already been put into practical use and commercialized. That is, for non-ferrous metals such as magnesium, aluminum, copper, titanium and their alloys, and stainless steel, general steel, and special steel sheets that have been surface-treated such as aluminum-plated steel sheets and galvanized steel sheets. In this method, a high-strength engineering resin is integrated without an adhesive. Many of these are joining techniques proposed by the present applicant. In this joining technique, a surface-treated metal shape is inserted into an injection mold, a specific thermoplastic resin composition is injected to mold a resin portion, and at the same time, the molded product and the metal shape are fixed. Method (hereinafter referred to as “injection joining”) (Patent Documents 1 to 9).

特開2003−200453JP 2003-200453 A 特開2007−050630JP2007-050630 WO2008/069252WO2008 / 069252 WO2008/081933WO2008 / 081933 WO2008/047811WO2008 / 047811 WO2008/078714WO2008 / 078714 WO2009/011398WO2009 / 011398 WO2009/084648WO2009 / 084648 WO2009/116484WO2009 / 116484 WO2007/072603WO2007 / 076023 特開2015−142960JP2015-142960 WO2012/070654WO2012 / 070654

近年、その機械的な強度、耐熱性が高い等の特性により、PEEKを用いた複合体(積層体)が要求されている。このPEEK使用の射出接合技術に関して、本出願人が知る限りにおいて、PEEKに関する具体的な射出接合技術については、公知技術はない。以上のような背景で、本発明は以下の目的を達成する。   In recent years, composites (laminates) using PEEK have been required due to properties such as high mechanical strength and high heat resistance. As far as the applicant knows, regarding the injection joining technique using PEEK, there is no known technique regarding a specific injection joining technique related to PEEK. In the background as described above, the present invention achieves the following objects.

本発明の目的は、金属合金片とPEEK系樹脂組成物が強く接合し一体化した、金属と樹脂の接合一体化物を提供することにある。
本発明の他の目的は、金属合金片とPEEK系樹脂組成物が強く接合し、機械的強度が要求される各種機器の部品、構造物等に使用できる、金属と樹脂の接合一体化物を提供することにある。
本発明の更に他の目的は、金属合金片とPEEK系樹脂組成物が強く接合して、部品、構造物等を軽量化できる、金属と樹脂の接合一体化物を提供することにある。
An object of the present invention is to provide a metal / resin joint integrated product in which a metal alloy piece and a PEEK resin composition are strongly joined and integrated.
Another object of the present invention is to provide a metal / resin joint integrated product that can be used for parts and structures of various devices that require mechanical strength, because the metal alloy piece and PEEK resin composition are strongly joined. There is to do.
Still another object of the present invention is to provide a metal / resin joint integrated product that can strongly reduce the weight of parts, structures, etc., by strongly joining a metal alloy piece and a PEEK resin composition.

なお、これら金属と樹脂の接合一体化物の製造方法は射出接合法によるが、2015年にこの射出接合技術がISO(International Organization for Standardization)で規格化された。即ち、この規格は、その金属部と樹脂成形物部間の接合力(せん断接合強度(tensile lap-shear strength))を測定するための射出接合物(Overlapped test specimens)の形状(図1)である(ISO19095)。この測定法で得たせん断接合強度が10MPa以上の物につき、本発明では金属と樹脂が強く接合した一体化物であるとした。即ち、弱い接合力を有する射出接合物は実用的な意味がなく、それ故に、その場合には射出接合が成功しているとは判断しないことを意味している。   In addition, although the manufacturing method of these metal and resin joining integrated products is based on the injection joining method, this injection joining technology was standardized by ISO (International Organization for Standardization) in 2015. That is, this standard is the shape of injection joints (Overlapped test specimens) for measuring the joining force (tensile lap-shear strength) between the metal part and the resin molded part (Fig. 1). Yes (ISO 19095). In the present invention, an object having a shear bonding strength of 10 MPa or more obtained by this measuring method is an integrated object in which a metal and a resin are strongly bonded. That is, an injection-bonded product having a weak bonding force has no practical meaning, and in this case, it means that the injection-bonding is not judged to be successful.

本発明1の金属と樹脂の接合一体化物は、
電子顕微鏡千倍、1万倍観察で百〜1μm周期の明確な粗面が観察され、且つ、電子顕微鏡10万倍観察で前記粗面上に20〜100nm径の超微細凹部で全面覆われる微細凹凸面形状が観察されるアルミ材、又は、
電子顕微鏡10万倍観察で30〜100nm径の開口部を有する超微細孔部で全面が覆われている微細凹凸面形状が観察される陽極酸化されたたアルミ材と、
ポリエーテルエーテルケトン樹脂のみを樹脂分とする樹脂組成物[A]、又は、ポリエーテルエーテルケトン樹脂を主成分樹脂とし、非晶性熱可塑性樹脂又は半結晶性熱可塑性樹脂である耐熱性ある異高分子を従成分樹脂とするポリエーテルエーテルケトン系樹脂組成物[B]の射出成形物と
が直接的に接合してなることを特徴とする。
The metal-resin joint integrated product of the present invention 1 is
A fine rough surface with a period of 100 to 1 μm is observed by observation with an electron microscope of 1,000 times and 10,000 times, and the entire surface is covered with ultrafine recesses having a diameter of 20 to 100 nm on the rough surface by observation with an electron microscope of 100,000 times. Aluminum material where uneven surface shape is observed, or
Anodized aluminum material in which a micro uneven surface shape is observed that is entirely covered with an ultrafine hole portion having an opening with a diameter of 30 to 100 nm by observation with an electron microscope 100,000 times;
Resin composition [A] containing only a polyether ether ketone resin as a resin component, or a heat resistant different resin which is a non-crystalline thermoplastic resin or semi-crystalline thermoplastic resin containing a polyether ether ketone resin as a main component resin. It is characterized in that it is formed by directly joining a polyether ether ketone resin composition [B] having a polymer as a secondary component resin.

本発明2の金属と樹脂の接合一体化物は、
電子顕微鏡千倍、1万倍観察で百μm〜十数μm周期と十数μm〜1μm周期の明確で立体的な複雑粗面が観察され、且つ、電子顕微鏡10万倍観察で前記粗面上に50〜100nm周期の凹凸面で全面覆われる微細凹凸面形状が観察される金属材と、
ポリエーテルエーテルケトン樹脂のみを樹脂分とする樹脂組成物[A]、又は、ポリエーテルエーテルケトン樹脂を主成分樹脂とし、非晶性熱可塑性樹脂又は半結晶性熱可塑性樹脂である耐熱性ある異高分子を従成分樹脂とするポリエーテルエーテルケトン系樹脂組成物[B]の射出成形物とが直接的に接合してなることを特徴とする。
The metal-resin joint integrated product of the present invention 2 is
A clear and three-dimensional complex rough surface with a period of 100 μm to several tens of μm and a period of several tens of μm to 1 μm is observed with an electron microscope of 1,000 times and 10,000 times, and on the rough surface with an electron microscope of 100,000 times of observation. A metal material in which a fine uneven surface shape covered with an uneven surface having a period of 50 to 100 nm is observed,
Resin composition [A] containing only a polyether ether ketone resin as a resin component, or a heat resistant different resin which is a non-crystalline thermoplastic resin or semi-crystalline thermoplastic resin containing a polyether ether ketone resin as a main component resin. It is characterized in that it is directly joined to an injection molded product of a polyether ether ketone resin composition [B] using a polymer as a secondary component resin.

本発明3の金属と樹脂の接合一体化物は、本発明2において、前記金属材が、アルミニウム、チタンであることを特徴とする。   The metal-resin joint integrated product of the present invention 3 is characterized in that, in the present invention 2, the metal material is aluminum or titanium.

本発明4の金属と樹脂の接合一体化物は、本発明1ないし3において、前記ポリエーテルエーテルケトン系樹脂組成物[B]は、その樹脂分中の99〜80%をポリエーテルエーテルケトン樹脂、1〜20%を非晶性熱可塑性樹脂又は半結晶性熱可塑性樹脂である耐熱性の異高分子が占めていることを特徴とする。   In the present invention 1 to 3, the polyether ether ketone resin composition [B] is composed of 99 to 80% of the resin content of the polyether ether ketone resin according to the present invention. It is characterized in that 1 to 20% is occupied by a heat-resistant heteropolymer which is an amorphous thermoplastic resin or a semicrystalline thermoplastic resin.

1.金属材表面の粗面
(射出接合の理屈)
特許文献3〜9に記載の各種金属材と、ポリアミド樹脂、ポリブテンテレフタレート(以下「PBT」)、及び、ポリフェニレンサルファイド(以下「PPS」)系樹脂組成物使用の射出接合技術は、本発明の発明者等が定義する「新NMT」理論に基づいている。即ち、各種金属材には、0.8〜10μm周期の微細凹凸粗面と、その粗面上に10〜300nm周期の超微細凹凸がある2重凹凸面を有するという必要条件が述べられている。更には、射出樹脂は、前記したポリアミド樹脂、PBT、又はPPSという高結晶性熱可塑性樹脂が主成分樹脂であって、従成分樹脂としてこれら各々の主成分樹脂に相溶する異高分子を含むべきとされていた。これらは「新NMT」理論とした。
1. Rough surface of metal surface (Theory of injection joining)
The injection joining technique using various metal materials described in Patent Documents 3 to 9, polyamide resin, polybutene terephthalate (hereinafter “PBT”), and polyphenylene sulfide (hereinafter “PPS”) resin composition is the invention of the present invention. Based on the “new NMT” theory defined by the authors. That is, the various metal materials have a necessary condition that they have a fine uneven surface with a period of 0.8 to 10 μm and a double uneven surface with an ultra fine unevenness with a period of 10 to 300 nm on the rough surface. . Further, the injection resin includes the above-described polyamide resin, PBT, or PPS, a high crystalline thermoplastic resin as a main component resin, and includes a different polymer that is compatible with each main component resin as a subcomponent resin. It was supposed to be. These are the “new NMT” theories.

実施例に示すが、PEEKに関する本発明ではこの「新NMT」理論が示す必要条件から若干ずれていた。概して言えば、急冷時のPEEK単独樹脂の結晶化速度はかなり速く、従成分樹脂を添加した樹脂組成物に代えてみても若干その結晶化速度が低下するに過ぎなかった。要するに、樹脂側を工夫しても射出接合力は僅かな上昇を示すに止まり、樹脂改良で接合力を飛躍的に上げることがし難い系であることが分った。要するに、金属側の粗面形状の方が接合力の強さに大きく影響を与える系であった。   As shown in the examples, the present invention relating to PEEK deviates slightly from the requirements indicated by the “new NMT” theory. Generally speaking, the crystallization rate of the PEEK single resin during quenching was considerably high, and the crystallization rate decreased only slightly even when the resin composition was added with the secondary component resin. In short, it has been found that even if the resin side is devised, the injection joining force only shows a slight increase, and it is difficult to dramatically increase the joining force by improving the resin. In short, the rough surface shape on the metal side has a greater influence on the strength of the bonding force.

(粗面形状)
射出された樹脂の結晶化速度が速い場合、粗面の凹凸周期は数十μm以上と大きく、且つ、凹凸深さ(高さ)は数μmレベルの立体的な方が射出された樹脂の侵入が容易で、且つ結晶して固化し、それらの凹凸に引っ掛かり易い。実際、実験例で高い接合力を示した場合の金属面の電子顕微鏡写真はこれを明確に示した。そして重要なことは30〜100nm周期の超微細凹凸面も同時に有していることの必要性であった。大きな粗面凹部に侵入して固化することで接合形状としているが、その粗面表面には超微細凹凸面が存在して固化した樹脂が滑らない様に固定していた。
(Rough surface shape)
When the crystallization speed of the injected resin is high, the unevenness period of the rough surface is as large as several tens of μm, and the depth of the unevenness (height) is several μm level. It is easy to crystallize and solidify, and it is easy to get caught by these irregularities. In fact, an electron micrograph of the metal surface when a high bonding force was shown in the experimental example clearly showed this. What is important is the necessity of having an ultra-fine irregular surface with a period of 30 to 100 nm at the same time. The joint shape is formed by intruding into a large rough surface recess and solidifying, but the surface of the rough surface has an ultra fine uneven surface and is fixed so that the solidified resin does not slip.

一方、Al(アルミニュウム)材だけで使える接合手法だが、改良した陽極酸化処理で行うと、上記と異なった形状ながらも接合力の高い射出接合物が得られた。電子顕微鏡写真(図6)の観察で理解できるが、ミクロンオーダー周期以上の大周期の粗面は不明瞭であり、目視でも金属感を有するが強い射出接合力が得られた。これは開口部直径40nm以上の大きな口とその下に続くロート状になって孔構造による。この明確な孔形状の集合体となった陽極酸化物の表面微細形状は樹脂が侵入し易いのだろうと推定した。   On the other hand, although it is a joining technique that can be used only with Al (aluminum) material, when it is performed by an improved anodizing treatment, an injection-joined article having a high joining force is obtained although it has a shape different from the above. Although it can be understood by observing an electron micrograph (FIG. 6), a rough surface having a large period of a micron order period or more is unclear, and a strong injection joining force is obtained although it has a metallic feeling visually. This is due to the large mouth having an opening diameter of 40 nm or more and a funnel shape below it, resulting in a hole structure. It was presumed that the surface fine shape of the anodic oxide formed into a clear pore-shaped aggregate would easily penetrate the resin.

又、これらの観察から、全金属種に関して適用できるのは、百μm〜十数μm周期と十数μm〜1μm周期の明確で立体的な複雑粗面が観察され、且つ、電子顕微鏡写真による10万倍観察で、前記粗面上に50〜100nm周期の凹凸面で全面覆われる微細凹凸面形状が観察される物である。強酸を使用して化学エッチングすると、前述したような大周期の粗面含む表面が得られ易いものの、この大周期に加えて100nm以下周期の超微細凹凸面を形成することが難しい。現状でこれに成功しているのは、TiやTi合金や銅やアルミ鍍金鋼板で、銅を除いてこれらでは射出接合が確認できた。この銅が有していた超微細凹凸は、多毛型ウイスカによる10〜20nm周期の正に超微細凹凸面であったので小さ過ぎると思われ、PEEK射出接合に関しては30〜100nm周期の超微細凹凸面を有していることが条件だと判断した。   From these observations, all metal species can be applied to a clear and three-dimensional complex rough surface having a period of 100 μm to more than 10 μm and a period of more than 10 μm to 1 μm, and 10 A fine concavo-convex surface shape that is entirely covered with a concavo-convex surface having a period of 50 to 100 nm is observed on the rough surface by 10,000 times observation. When chemical etching is performed using a strong acid, it is easy to obtain a surface including a rough surface having a large period as described above, but it is difficult to form an ultra-fine irregular surface having a period of 100 nm or less in addition to this large period. At present, this is succeeded by Ti, Ti alloys, copper and aluminum plated steel sheets, and injection bonding can be confirmed with these except for copper. The ultra-fine irregularities of this copper were considered to be too small because it was a very fine irregular surface with a period of 10 to 20 nm by a multi-haired whisker, and with respect to PEEK injection bonding, the ultra-fine irregularities of a period of 30 to 100 nm Judged that it is necessary to have a surface.

上記した大周期粗面と30〜100nm周期の超微細凹凸面の双方を有する各種金属片を作成するのにレーザー技術が使えそうなことが近年報告された(特許文献10、11)。この特許技術を使ったとみられる物が株式会社ダイセル(本社:日本国東京都)から供給され、本発明者等は高い射出接合力の生じることを確認した。要するに、これら粗面形状の作成方法は化学処理や電解処理法に限らず、レーザー等の物理的な処理法でも物ができさえすればよいことが確認できた。   In recent years, it has been reported that laser technology is likely to be used to produce various metal pieces having both the above-described large periodic rough surface and an ultrafine irregular surface with a period of 30 to 100 nm (Patent Documents 10 and 11). The thing which seems to use this patent technology was supplied from Daicel Corporation (head office: Tokyo, Japan), and the present inventors confirmed that a high injection joining force was produced. In short, it has been confirmed that these rough surface shape creation methods are not limited to chemical treatment and electrolytic treatment, and it is only necessary to produce a physical treatment method such as laser.

2.PEEK系樹脂組成物
PEEK、及び、GF入りPEEKは、ビクトレックスジャパン株式会社(Victrex Japan Inc.(本社:日本国東京都))から「90G」等の商標で市販されている。同社から頒布された公開技術資料によると、「90G」はPEEK単独の樹脂成分であり、本発明者らは、フィラー無し又はGF等の強化用フィラーを含んだ物とされるのを「PEEK[A]」とした。一方、異高分子を加えコンパウンド化したことを明記した、PEEK系樹脂組成物は同社の市販品になく、本発明の実施例で使用したのは同社製の「90G」であるPEEKに、別途本発明者が購入した市販の異高分子をドライブレンドし作成したPEEK系樹脂組成物である。これを本文ではPEEK系樹脂組成物[B]とした。即ち、ポリエーテルイミド(以下「PEI」)、ポリエーテルスルホン(以下「PES」)、及び、ポリアミドイミド(以下「PAI」)を、PEEKの80〜98重量部に対し、20〜2重量部加えてドライブレンドし、これをPEEK系樹脂組成物として使用した。
2. PEEK-based resin composition PEEK and PEEK containing GF are commercially available from Victrex Japan Inc. (head office: Tokyo, Japan) under trademarks such as “90G”. According to the published technical data distributed by the company, “90G” is a resin component of PEEK alone, and the present inventors have stated that “PEEK [ A] ”. On the other hand, the PEEK resin composition, which clearly states that a different polymer has been added to form a compound, is not available in the company's commercial product, and in the examples of the present invention, the PEEK which is “90G” manufactured by the company is used separately. It is a PEEK resin composition prepared by dry blending a commercially available different polymer purchased by the present inventor. This was referred to as PEEK resin composition [B] in the text. That is, 20 to 2 parts by weight of polyetherimide (hereinafter “PEI”), polyethersulfone (hereinafter “PES”), and polyamideimide (hereinafter “PAI”) are added to 80 to 98 parts by weight of PEEK. Were dry blended and used as a PEEK resin composition.

3.射出接合とアニール
(射出接合工程)
本発明の射出接合は、前述した表面処理済み金属片を射出成形金型にインサートし、前述したPEEK系樹脂を射出する。種々の形状の射出接合物を得る上において、実際には射出成形条件を微調整するが、この微調整イメージとしての射出速度は、通常のPEEK系樹脂射出成形の場合とほぼ同じ射出成形条件で良いが、好ましくは、金型温度は高めに設定すると良い。本発明者等が射出接合工程で使用した金型温度は、160〜200℃であった。射出金型においては、ゲートに至る流路部にもガス抜きを設け、キャビティー部はガス抜き不良型の射出金型にならぬよう十分に留意する、等が要点となる。
3. Injection bonding and annealing (injection bonding process)
In the injection joining of the present invention, the aforementioned surface-treated metal piece is inserted into an injection mold, and the aforementioned PEEK resin is injected. In obtaining injection joints of various shapes, the injection molding conditions are actually finely adjusted, but the injection speed as this fine adjustment image is almost the same as in the case of normal PEEK resin injection molding. Although it is good, the mold temperature is preferably set high. The mold temperature used by the inventors in the injection joining process was 160 to 200 ° C. In the injection mold, it is important to provide gas venting also in the flow path part leading to the gate, and to pay sufficient attention so that the cavity part does not become an injection mold of a gas venting defective type.

(アニールの必要性)
得た射出接合物は、同日内に200℃にした熱風乾燥機内に約1時間入れ加熱する「アニール」を行うべきである。その意図は、上記の射出接合で得た射出接合物は、射出成形金型から離型させて後の放冷後に、強い接合力で接合面に生じた残留応力を抑え込んでいる。アニールは、この残留応力を一旦ゼロにするのが目的である。アニールを終えて熱風乾燥機から出した物では、既に樹脂部結晶化は十分進んでおり、その後は放冷されてもアルミ材、樹脂材の双方は線膨張率だけに従って縮む。それ故に、放冷後に接合面に残る応力はアニール前よりも小さくなる。そして、製品化された後、常温付近で長期間放置されると樹脂部のクリープにより残存応力はゼロ近くになる。
(Necessity of annealing)
The obtained injection-bonded article should be “annealed” by heating in a hot air dryer set to 200 ° C. within the same day for about 1 hour. The intent is that the injection bonded product obtained by the above-described injection bonding suppresses the residual stress generated on the bonded surface with a strong bonding force after being released from the injection mold and then allowed to cool. The purpose of annealing is to make this residual stress zero once. In the thing which finished annealing and took out from the hot air dryer, resin part crystallization has already progressed enough, and even if it cools after that, both an aluminum material and a resin material will shrink according only to a linear expansion coefficient. Therefore, the stress remaining on the joint surface after cooling is smaller than that before annealing. When the product is commercialized and then left at room temperature for a long time, the residual stress becomes close to zero due to creep of the resin part.

4.射出接合物の評価
(接合力の測定法)
前記したように射出接合技術はISOに登録された。即ち、射出接合物における金属部と樹脂部間のせん断接合強度を測定する測定用射出接合物の形状(図1)、及び、引張り接合強度(tensile strength)を測定するための測定用射出接合物(Butt welded test specimens)の形状(図2)が規定された。又、図1に示す射出接合物は、直接的にその端部を引張り破断してそのせん断接合強度を測定するのではなく、図3に示した形状の補助治具に収納して、引張り破断する方法が規定されている。実施例に記載のせん断接合強度の数値はこの測定法による。
4). Evaluation of injection joints (Measuring method of joining force)
As mentioned above, the injection joining technology was registered with ISO. That is, the shape of the measurement injection joint for measuring the shear joint strength between the metal part and the resin part in the injection joint (FIG. 1) and the measurement injection joint for measuring the tensile joint strength. The shape (Fig. 2) of (Butt welded test specimens) was defined. In addition, the injection-joint shown in FIG. 1 is not directly measured by measuring the shear joint strength by pulling and breaking its end portion, but it is housed in an auxiliary jig having the shape shown in FIG. The method to do is specified. The numerical values of the shear bonding strength described in the examples are based on this measuring method.

以上詳記したように、本発明の金属と樹脂の接合一体化物は、金属合金片とPEEK系樹脂組成物が強く接合し一体化したものである。このために複合材として、機械的強度が要求される各種機器の部品、構造物等に使用できる。結果として、部品、構造物等の軽量化にも資することができる。   As described in detail above, the metal / resin bonded integrated body of the present invention is a metal alloy piece and a PEEK resin composition that are strongly bonded and integrated. For this reason, it can be used as a composite material for parts and structures of various devices that require mechanical strength. As a result, it can contribute to weight reduction of parts, structures, and the like.

図1は、金属片と樹脂の射出接合物での金属部と樹脂部間のせん断接合強度を測定する為の形状物を示すものである。FIG. 1 shows a shape for measuring the shear bonding strength between a metal part and a resin part in an injection-bonded product of a metal piece and a resin. 図2は、金属片と樹脂の射出接合物での金属部と樹脂部間の引張り接合強度を測定する為の形状物を示すものである。FIG. 2 shows a shape for measuring the tensile bonding strength between a metal part and a resin part in an injection-bonded product of a metal piece and a resin. 図3は、金属片と樹脂の射出接合物での金属部と樹脂部間のせん断接合強度を測定するときに使用する補助治具の形状を示すものである。FIG. 3 shows the shape of an auxiliary jig used when measuring the shear bonding strength between a metal part and a resin part in an injection-bonded product of a metal piece and a resin. 図4は、「NMT2処理」をしたA6063Al合金の電子顕微鏡写真であり、図4−1は千倍、図4−2は1万倍、図4−3は10万倍である。FIG. 4 is an electron micrograph of an A6063Al alloy that has been “NMT2 treated”, where FIG. 4-1 is 1000 times, FIG. 4-2 is 10,000 times, and FIG. 4-3 is 100,000 times. 図5は、「NMT5処理」をしたA6063Al合金の電子顕微鏡写真であり、図5−1は千倍、図5−2は1万倍、図4−3は10万倍である。FIG. 5 is an electron micrograph of an A6063Al alloy that has been “NMT5 treated”. FIG. 5-1 is 1000 times, FIG. 5-2 is 10,000 times, and FIG. 4-3 is 100,000 times. 図6は、「陽極酸化処理」をしたA6063Al合金の電子顕微鏡写真であり、図6−1は千倍、図6−2は1万倍、図6−3は10万倍である。FIG. 6 is an electron micrograph of an A6063Al alloy that has been “anodized”. FIG. 6-1 is a thousand times, FIG. 6-2 is 10,000 times, and FIG. 6-3 is 100,000 times. 図7は、「NMT5−Oxi処理」をしたA6063Al合金の電子顕微鏡写真であり、図7−1は千倍、図7−2は1万倍、図7−3は10万倍である。FIG. 7 is an electron micrograph of an A6063Al alloy subjected to “NMT5-Oxi treatment”, FIG. 7-1 is 1000 times, FIG. 7-2 is 10,000 times, and FIG. 7-3 is 100,000 times. 図8は、「NMT5処理」をしたA7075Al合金の電子顕微鏡写真であり、図8−1は千倍、図8−2は1万倍、図8−3は10万倍である。FIG. 8 is an electron micrograph of an A7075Al alloy subjected to “NMT5 treatment”. FIG. 8-1 is 1,000 times, FIG. 8-2 is 10,000 times, and FIG. 8-3 is 100,000 times. 図9は、「新型表面処理」をしたα−β型Ti合金「KSTi-9(神鋼)」の電子顕微鏡写真であり、図9−1は千倍、図9−2は1万倍、図9−3は10万倍である。FIG. 9 is an electron micrograph of α-β type Ti alloy “KSTi-9 (Shinko)” subjected to “new surface treatment”, FIG. 9-1 is 1,000 times, and FIG. 9-2 is 10,000 times. 9-3 is 100,000 times. 図10は、「レーザースキャニング処理」をしたA6063Al合金の電子顕微鏡写真であり、図10−1は千倍、図10−2は1万倍、図10−3は10万倍である。FIG. 10 is an electron micrograph of the A6063Al alloy subjected to the “laser scanning process”. FIG. 10-1 is 1,000 times, FIG. 10-2 is 10,000 times, and FIG. 10-3 is 100,000 times.

以下、本発明の実施の形態を実施例によって説明する。
(a)電子顕微鏡観察
SEM型の電子顕微鏡「S−4800(株式会社日立製作所(本社:日本国東京都)製)」及び「JSM−6700F(日本電子株式会社(本社:日本国東京都)製)」を使用し1〜2KVにて観察した。
(b)複合体の接合強度の測定
引っ張り試験機「AG−500N/1kN(株式会社島津製作所製(本社:日本国京都府)製)」を使用し、引っ張り速度10mm/分でせん断接合強度を測定した。測定法は、ISO19095によった。
Hereinafter, embodiments of the present invention will be described by way of examples.
(A) Electron microscope observation SEM type electron microscopes “S-4800 (manufactured by Hitachi, Ltd. (head office: Tokyo, Japan))” and “JSM-6700F (manufactured by JEOL Ltd. (head office: Tokyo, Japan)) ) "And observed at 1-2 KV.
(B) Measurement of joint strength of composites Using a tensile tester “AG-500N / 1kN (manufactured by Shimadzu Corporation (head office: Kyoto, Japan))”, the shear joint strength was measured at a pulling speed of 10 mm / min. It was measured. The measuring method was based on ISO19095.

次に、本発明に関わる複合体の実施例、比較例について説明を行う。
〔実験例1〕A6063Al合金の表面処理(簡単な粗面化処理:参考)
A6063Al合金材から45mm×18mm×1.5mmの長方形片多数を機械加工して得た。この合金材の脱脂処理のために、槽内のアルミ用脱脂剤「NA−6(メルテックス株式会社(本社:日本国東京都)製)」10%を含む水溶液を60℃とし、この槽に合金片を5分間浸漬した後、これを水道水(群馬県太田市)で水洗した。次に別の槽に、40℃とした1%濃度の塩酸水溶液を用意し、これに合金片を1分間浸漬して水洗した。次に別の槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに合金片を8分間浸漬した後、これを水洗した。次に別の槽に、40℃の3%濃度の硝酸水溶液を用意し、これに3分間浸漬した後、これを水洗した。これらを清浄なアルミ箔でまとめて包み、更にこれをポリ袋に入れて封じ保管した。
Next, examples and comparative examples of the composite according to the present invention will be described.
[Experimental Example 1] Surface treatment of A6063Al alloy (simple roughening treatment: reference)
A large number of 45 mm × 18 mm × 1.5 mm rectangular pieces were machined from the A6063Al alloy material. In order to degrease the alloy material, an aqueous solution containing 10% of an aluminum degreasing agent “NA-6 (Meltex Co., Ltd. (head office: Tokyo, Japan))” in the tank was set to 60 ° C. After the alloy piece was immersed for 5 minutes, it was washed with tap water (Ota City, Gunma Prefecture). Next, a 1% hydrochloric acid aqueous solution at 40 ° C. was prepared in another tank, and the alloy pieces were immersed in this for 1 minute and washed with water. Next, a 1.5% concentration aqueous solution of caustic soda at 40 ° C. was prepared in another tank, and the alloy pieces were immersed in this for 8 minutes, and then washed with water. Next, a 3% concentration nitric acid aqueous solution at 40 ° C. was prepared in another tank, immersed in this for 3 minutes, and then washed with water. These were wrapped together with clean aluminum foil, and further sealed in a plastic bag.

〔実験例2〕A6063Al合金の表面処理(NMT2)
A6063Al合金材から、45mm×18mm×1.5mmの長方形片多数を機械加工して得た。この合金材の脱脂処理のために、槽内のアルミ用脱脂剤「NA−6(メルテックス株式会社(本社:日本国東京都)製)」10%を含む水溶液を60℃とし、合金片を5分間浸漬した後、これを水道水(群馬県太田市)で水洗した。次に別の槽に、40℃とした1%濃度の塩酸水溶液を用意し、これに合金片を1分間浸漬した後、これを水洗した。次に別の槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに合金片を8分間浸漬した後、これを水洗した。次に別の槽に、40℃の3%濃度の硝酸水溶液を用意し、これに3分間浸漬した後、これを水洗した。次に別の槽に、60℃とした3.5%濃度の水和ヒドラジン水溶液を用意して、これに1分間浸漬し、次に別の槽に、33℃とした0.5%濃度の水和ヒドラジン水溶液に2.5分間浸漬した後、これを水洗した。そして、これを67℃に設定した温風乾燥機に15分間入れて、前記処理を終えたAl合金片を乾燥した。清浄なアルミ箔でまとめて包み、更に、これをポリ袋に入れて封じ保管した。これらの処理は、発明者等が「NMT2処理」と称する、Al材用の表面処理法であって、文献12に従う処理法である。
[Experimental Example 2] Surface treatment of A6063Al alloy (NMT2)
A large number of 45 mm × 18 mm × 1.5 mm rectangular pieces were machined from the A6063Al alloy material. For the degreasing treatment of this alloy material, an aqueous solution containing 10% of an aluminum degreasing agent “NA-6 (Meltex Co., Ltd. (head office: Tokyo, Japan))” in the tank was set to 60 ° C. After being immersed for 5 minutes, this was washed with tap water (Ota City, Gunma Prefecture). Next, a 1% hydrochloric acid aqueous solution at 40 ° C. was prepared in another tank, and the alloy pieces were immersed in this for 1 minute, and then washed with water. Next, a 1.5% concentration aqueous solution of caustic soda at 40 ° C. was prepared in another tank, and the alloy pieces were immersed in this for 8 minutes, and then washed with water. Next, a 3% concentration nitric acid aqueous solution at 40 ° C. was prepared in another tank, immersed in this for 3 minutes, and then washed with water. Next, prepare a 3.5% strength hydrated hydrazine aqueous solution at 60 ° C. in another tank, immerse in this for 1 minute, and then add 0.5% concentration at 33 ° C. in another tank. After being immersed in a hydrated hydrazine aqueous solution for 2.5 minutes, this was washed with water. And this was put into the warm air dryer set to 67 degreeC for 15 minutes, and the Al alloy piece which finished the said process was dried. Wrapped together with clean aluminum foil, and put it in a plastic bag and stored it sealed. These treatments are surface treatment methods for Al materials, which the inventors call “NMT2 treatment”, and are treatment methods according to Document 12.

同じ処理を行なったA6063Al合金片の1個を電子顕微鏡にかけた。この観察結果を写真撮影し、図4−1〜図4−3に示した。これらは、各千倍、1万倍、及び10万倍の電子顕微鏡写真である。図4−2から1〜3μm周期の穏やかな粗面のあることが分り、図4−3から、その全表面は直径20〜30nm外径の凹部で覆われているのが分かる。又、同じ処理を行なったA6063Al合金片を、XPSで表面分析すると窒素原子が観察される。これは最終処理に使用したヒドラジン分子がそのまま化学吸着して残っていたことを示す。   One A6063Al alloy piece that had undergone the same treatment was subjected to an electron microscope. The observation results were photographed and shown in FIGS. 4-1 to 4-3. These are electron micrographs of 1000 times, 10,000 times, and 100,000 times, respectively. It can be seen from FIG. 4-2 that there is a gentle rough surface with a period of 1 to 3 μm, and from FIG. 4-3 it can be seen that the entire surface is covered with a recess having an outer diameter of 20 to 30 nm. Moreover, when the A6063Al alloy piece which performed the same process is surface-analyzed by XPS, a nitrogen atom will be observed. This indicates that the hydrazine molecules used in the final treatment remained as they were chemisorbed.

〔実験例3〕A6063Al合金の表面処理(NMT2-Oxi:参考)
A6063Al合金材から45mm×18mm×1.5mmの長方形片多数を機械加工して得た。これらを使って実験例2と全く同じ処理をした。但し、実験例2の処理をして、その最後の水洗の後に乾燥することなく、1.5%濃度の過酸化水素水に1分間浸漬し、水洗し、そして67℃とした温風乾燥機に15分入れて乾燥した。これを清浄なアルミ箔でまとめて包み、更にこれをポリ袋に入れて封じ保管した。これは本出願人(大成プラス株式会社)でいう「NMT2−Oxi処理」と称するAl材用の表面処理法である。要するに、電子顕微鏡観察でみれば「NMT2」処理品とその表面形状は変わらないが、吸着ヒドラジン分子は過酸化水素で破壊され、アミン系分子の吸着がないAl合金片となる。
[Experimental Example 3] Surface treatment of A6063Al alloy (NMT2-Oxi: Reference)
A large number of 45 mm × 18 mm × 1.5 mm rectangular pieces were machined from the A6063Al alloy material. Using these, the same treatment as in Experimental Example 2 was performed. However, the hot air dryer which carried out the process of Experimental Example 2, was immersed for 1 minute in the hydrogen peroxide solution of 1.5% density | concentration for 1 minute without drying after the last water washing, and was 67 degreeC. And dried for 15 minutes. This was wrapped together with clean aluminum foil, and further sealed in a plastic bag. This is a surface treatment method for an Al material referred to as “NMT2-Oxi treatment” as referred to by the present applicant (Taisei Plus Co., Ltd.). In short, when viewed with an electron microscope, the surface shape is the same as that of the “NMT2” treated product, but the adsorbed hydrazine molecules are destroyed by hydrogen peroxide, resulting in an Al alloy piece with no adsorption of amine-based molecules.

〔実験例4〕A6063Al合金の表面処理(NMT5処理)
A6063Al合金材から、45mm×18mm×1.5mmの長方形片多数を機械加工して得た。この合金材の脱脂処理のために、槽内のアルミ用脱脂剤「NA−6(メルテックス株式会社(本社:日本国東京都)製)」10%を含む水溶液を60℃とし、合金片を5分間浸漬した後、これを水道水(群馬県太田市)で水洗した。次に別の槽に、50℃とした10%濃度の苛性ソーダ水溶液を用意し、これに合金片を1分間浸漬した後、これを水洗した。次に別の槽に、40℃とした5%濃度の塩酸と1%濃度の塩化アルミニウムを含む水溶液を用意し、これに合金片を1分間浸漬した後、これを水洗した。次に別の槽に、45℃にした10%濃度の硫酸と2%濃度の1水素2弗化アンモンを含む水溶液に1分間浸漬した後、これを水洗した。次に別の槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに合金片を8分間浸漬した後、これを水洗した。
[Experimental Example 4] Surface treatment of A6063Al alloy (NMT5 treatment)
A large number of 45 mm × 18 mm × 1.5 mm rectangular pieces were machined from the A6063Al alloy material. For the degreasing treatment of this alloy material, an aqueous solution containing 10% of an aluminum degreasing agent “NA-6 (Meltex Co., Ltd. (head office: Tokyo, Japan))” in the tank was set to 60 ° C. After being immersed for 5 minutes, this was washed with tap water (Ota City, Gunma Prefecture). Next, a 10% strength aqueous caustic soda solution at 50 ° C. was prepared in another tank, and the alloy pieces were immersed in this for 1 minute, and then washed with water. Next, an aqueous solution containing 5% concentration hydrochloric acid and 1% concentration aluminum chloride at 40 ° C. was prepared in another tank, and the alloy pieces were immersed in this for 1 minute, and then washed with water. Next, it was immersed in an aqueous solution containing 10% sulfuric acid and 45% ammonium hydrogen fluoride fluoride at 45 ° C. for 1 minute, and then washed with water. Next, a 1.5% concentration aqueous solution of caustic soda at 40 ° C. was prepared in another tank, and the alloy pieces were immersed in this for 8 minutes, and then washed with water.

次に別の槽に、40℃の3%濃度の硝酸水溶液を用意し、これに3分間浸漬した後、これを水洗した。次に別の槽に、60℃とした3.5%濃度の水和ヒドラジン水溶液を用意してこれに1分間浸漬し、次に別の槽に、33℃とした0.5%濃度の水和ヒドラジン水溶液に2.5分浸漬した後、これを水洗した。そして、67℃に設定した温風乾燥機に15分間入れて、前記処理を終えたAl合金片を乾燥した。清浄なアルミ箔でまとめて包み、更に、これをポリ袋に入れて封じ保管した。   Next, a 3% concentration nitric acid aqueous solution at 40 ° C. was prepared in another tank, immersed in this for 3 minutes, and then washed with water. Next, prepare a 3.5% hydrated hydrazine aqueous solution at 60 ° C. in another tank and immerse in this for 1 minute, and then add 0.5% water at 33 ° C. in another tank. After being immersed in a hydrazine aqueous solution for 2.5 minutes, this was washed with water. And it put into the warm air dryer set to 67 degreeC for 15 minutes, and dried the Al alloy piece which finished the said process. Wrapped together with clean aluminum foil, and put it in a plastic bag and stored it sealed.

これは本出願人が命名する「NMT5処理」と称するAl材用の表面処理法であって、近年開発した処理法である。実験2に示したNMT2処理品(図4)との違いは、図5−1(千倍の電子顕微鏡写真)で明らかだが、数十ミクロンオーダー周期の粗面の存在が明白であり、大きな周期の粗面が本実験品ではしっかり生じていたことである。ただ、10万倍での電子顕微鏡写真(図5−3)では、実験例2と実質的に変わらない。   This is a surface treatment method for Al material called “NMT5 treatment” named by the present applicant, and is a treatment method developed in recent years. The difference from the NMT2 treated product shown in Experiment 2 (Fig. 4) is clear in Fig. 5-1 (thousand times electron micrograph), but the existence of a rough surface with a period of several tens of microns is obvious, and a large cycle This rough surface was firmly formed in this experimental product. However, the electron micrograph (FIG. 5-3) at 100,000 times is substantially the same as Experimental Example 2.

〔実験例5〕A6063Al合金の表面処理(陽極酸化処理)
A6063Al合金材から、45mm×18mm×1.5mmの長方形片多数を機械加工して得た。この合金材の脱脂処理のために、槽内のアルミ用脱脂剤「NA−6(メルテックス株式会社(本社:日本国東京都)製)」10%を含む水溶液を60℃とし、合金片を5分間浸漬した後、これを水道水(群馬県太田市)で水洗した。次に別の槽に、40℃とした1%濃度の塩酸水溶液を用意し、これに合金片を1分間浸漬した後、これを水洗した。次に別の槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに合金片を8分間浸漬した後、これを水洗した。次に別の槽に、40℃の3%濃度の硝酸水溶液を用意し、これに3分間浸漬した後、これを水洗した。ここまでは、実施例2に記載の表面処理法と同様である。
[Experimental Example 5] A6063Al alloy surface treatment (anodizing treatment)
A large number of 45 mm × 18 mm × 1.5 mm rectangular pieces were machined from the A6063Al alloy material. For the degreasing treatment of this alloy material, an aqueous solution containing 10% of an aluminum degreasing agent “NA-6 (Meltex Co., Ltd. (head office: Tokyo, Japan))” in the tank was set to 60 ° C. After being immersed for 5 minutes, this was washed with tap water (Ota City, Gunma Prefecture). Next, a 1% hydrochloric acid aqueous solution at 40 ° C. was prepared in another tank, and the alloy pieces were immersed in this for 1 minute, and then washed with water. Next, a 1.5% concentration aqueous solution of caustic soda at 40 ° C. was prepared in another tank, and the alloy pieces were immersed in this for 8 minutes, and then washed with water. Next, a 3% concentration nitric acid aqueous solution at 40 ° C. was prepared in another tank, immersed in this for 3 minutes, and then washed with water. Up to this point, the surface treatment method described in Example 2 is the same.

次に、10%濃度のリン酸水溶液にて18Vの陽極酸化を20分行い、その後60分間イオン交換水の流水で水洗した。そして67℃に設定した温風乾燥機に30分間入れ、更に80℃の温風乾燥機に30分入れて乾燥した。清浄なアルミ箔でまとめて包み、且つ、ポリ袋に封じて保管した。同じ処理を行なったA6063Al合金片の1個を電子顕微鏡にかけた。この電子顕微鏡写真を図6に示す。この電子顕微鏡写真の千倍と1万倍の写真(図6−1、6−2)からは、ミクロンオーダー以上の周期である大きな凹凸面は存在していないようであり、10万倍写真(図6−3)からは図4、5になかった孔(穴)の存在がごく明白な形が観察されていた。即ち、30〜50nmの開口部外径を有する孔部の集合体の形であり、且つ、図6−3を拡大してみると、開口部から孔内部(深部)に向かってロート状に穴径が狭くなっている形状だった。要するに単なる凹部ではなく、正に口の開いた穴という形状になっていた。なお、Al合金種を変えて本実験例と同様な表面処理をすると、開口部径が合金種によっては100nmにまで達することが分っている。   Next, anodic oxidation at 18 V was performed for 20 minutes with a 10% aqueous phosphoric acid solution, and then washed with running water of ion-exchanged water for 60 minutes. And it put into the warm air dryer set to 67 degreeC for 30 minutes, and also put into the 80 degreeC warm air dryer for 30 minutes, and dried. Wrapped together with clean aluminum foil, sealed in a plastic bag and stored. One A6063Al alloy piece that had undergone the same treatment was subjected to an electron microscope. This electron micrograph is shown in FIG. From the 1,000 times and 10,000 times photographs (FIGS. 6-1, 6-2) of this electron micrograph, it seems that there is no large uneven surface having a period of micron order or more, and the 100,000 times photograph ( From FIG. 6-3), it was observed that the presence of holes (holes) that were not shown in FIGS. That is, it is in the form of a collection of holes having an outer diameter of 30 to 50 nm, and when FIG. 6-3 is enlarged, a hole is formed in a funnel shape from the opening toward the inside (deep part) of the hole. The shape was narrow in diameter. In short, it was not just a recess, but a shape with a hole with a mouth. In addition, when the surface treatment similar to this experiment example is performed by changing the Al alloy type, it is known that the opening diameter reaches 100 nm depending on the alloy type.

〔実験例6〕アルミ鍍金鋼板の表面処理(NMT5−Oxi処理)
厚さ0.5mmのアルミ鍍金鋼板「アルスター鋼板(日新製鋼株式会社(本社:日本国東京都)製)」を切断し、多数の18mm×45mm×0.5mmの長方形片を作成した。この合金材の脱脂処理のために、浸漬槽のアルミ用脱脂剤「NA−6(メルテックス株式会社(本社:日本国東京都)製)」10%を含む水溶液を60℃とし、鋼板片を5分間浸漬した後、これを水道水(群馬県太田市)で水洗した。次に別の槽に、40℃とした5%濃度の塩酸と1%濃度の水和塩化アルミニウムを含む水溶液を用意し、これに鋼板片を2分間浸漬した後、これを水洗した。次に別の槽に、45℃の10%濃度の硫酸と2%濃度の1水素2弗化アンモンを含む水溶液に0.5分間浸漬した後、これを水洗した。次に別の槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意して、これに4分間浸漬した後、これを水洗した。次に別の槽に、40℃の3%濃度の硝酸水溶液に3分間浸漬した。
[Experimental example 6] Surface treatment of aluminum plated steel sheet (NMT5-Oxi treatment)
A 0.5 mm thick aluminum-plated steel sheet “Alster Steel Sheet (Nisshin Steel Co., Ltd. (head office: Tokyo, Japan))” was cut to produce a large number of 18 mm × 45 mm × 0.5 mm rectangular pieces. For the degreasing treatment of this alloy material, an aqueous solution containing 10% of an aluminum degreasing agent “NA-6 (manufactured by Meltex Co., Ltd. (head office: Tokyo, Japan))” at 60 ° C. After being immersed for 5 minutes, this was washed with tap water (Ota City, Gunma Prefecture). Next, an aqueous solution containing 5% concentration hydrochloric acid and 1% concentration hydrated aluminum chloride at 40 ° C. was prepared in another tank, and a steel plate piece was immersed in this for 2 minutes, and then washed with water. Next, it was immersed in an aqueous solution containing 10% sulfuric acid at 45 ° C. and 2% ammonium hydrogen fluoride fluoride at 45 ° C. for 0.5 minutes, and then washed with water. Next, a 1.5% strength aqueous caustic soda solution at 40 ° C. was prepared in another tank, immersed in this for 4 minutes, and then washed with water. Next, it was immersed in a 3% concentration nitric acid aqueous solution at 40 ° C. for 3 minutes in another tank.

次に、超音波発振端ある水洗槽に5分間浸漬しスマットを除いた。次に、再び40℃の3%濃度の硝酸水溶液に0.5分間浸漬した。次に別の槽に、60℃とした3.5%濃度の水和ヒドラジン水溶液を用意して、これに1分間浸漬した後、次に別の槽に、40℃とした0.5%濃度の水和ヒドラジン水溶液に、2分浸漬した後、これを水洗した。次に別の槽に、3%濃度の過酸化水素水を用意し、これに前記合金片を1分浸漬し水洗した。そして、67℃に設定した温風乾燥機に15分間入れ乾燥し、次に、100℃に設定した熱風乾燥機に30分入れて乾燥した。これを超音波発振端ある水洗槽に3分間浸漬してスマットを除き、80℃に設定した温風乾燥機に15分間入れ乾燥した。これらは清浄なアルミ箔でまとめて包み、更にこれをポリ袋に入れて封じ保管した。   Next, the smut was removed by dipping for 5 minutes in a washing tank having an ultrasonic oscillation end. Next, it was again immersed in a 3% concentration nitric acid aqueous solution at 40 ° C. for 0.5 minutes. Next, after preparing a 3.5% concentration hydrated hydrazine aqueous solution at 60 ° C. in another tank and immersing in this for 1 minute, then in another tank, 0.5% concentration at 40 ° C. After being immersed in an aqueous hydrazine solution of 2 minutes, this was washed with water. Next, hydrogen peroxide solution having a concentration of 3% was prepared in another tank, and the alloy pieces were immersed in this for 1 minute and washed with water. Then, it was dried for 15 minutes in a hot air dryer set at 67 ° C., and then dried in a hot air dryer set at 100 ° C. for 30 minutes. This was immersed for 3 minutes in a washing tank with an ultrasonic oscillation end to remove the smut, and then placed in a hot air dryer set at 80 ° C. for 15 minutes for drying. These were wrapped together in clean aluminum foil, which was further sealed in a plastic bag.

同様な処理を行なったアルミ鍍金鋼板の1個を電子顕微鏡にかけた。この観察結果を写真撮影し図7に示した。図7−1は千倍、7−2は1万倍の電子顕微鏡写真であり、激しいミクロンオーダーの粗面状況がよく見てとれ、これは前述したAl合金材の粗面より遥かに激しい。そして、図7−3に示した10万倍電子顕微鏡写真からは、全表面が約20nm径の凹部で全面覆われていることが分かる。   One aluminum-plated steel sheet that had been subjected to the same treatment was subjected to an electron microscope. This observation result was photographed and shown in FIG. FIGS. 7A and 7B are electron micrographs of 1000 times and 7X, respectively. The rough surface condition on the micron order is well seen, which is far more severe than the rough surface of the Al alloy material described above. From the 100,000 times electron micrograph shown in FIG. 7-3, it can be seen that the entire surface is entirely covered with a recess having a diameter of about 20 nm.

〔実験例7〕A7075Al合金(超々ジュラルミン)の表面処理(NMT5処理)
A7075Al合金材から45mm×18mm×1.5mmの長方形片多数を機械加工して得た。この合金材の脱脂処理のために、浸漬槽のアルミ用脱脂剤「NA−6(メルテックス株式会社(本社:日本国東京都)製)」10%を含む水溶液を60℃とし、合金片を5分間浸漬した後、これを水道水(群馬県太田市)で水洗した。次に別の槽に、40℃とした10%濃度の苛性ソーダ水溶液を用意し、これに合金片を1分間浸漬して水洗した。次に別の槽に、40℃とした5%濃度の塩酸と1%濃度の水和塩化アルミを含む水溶液を用意し、これに合金片を1分間浸漬し水洗した。次に別の槽に、40℃の1.5%濃度の苛性ソーダ水溶液を用意し、これに8分間浸漬し水洗した。次に別の槽に、40℃の3%濃度の硝酸水溶液を用意し、これに1分間浸漬し水洗した。次いで別の槽に、60℃とした3.5%濃度の水和ヒドラジン水溶液を用意してこれに1分間浸漬し、次に別の槽に、33℃とした0.5%濃度の水和ヒドラジン水溶液に2.5分浸漬し、水洗した。
[Experimental Example 7] Surface treatment of A7075Al alloy (super extra duralumin) (NMT5 treatment)
A large number of 45 mm × 18 mm × 1.5 mm rectangular pieces were machined from the A7075Al alloy material. For the degreasing treatment of this alloy material, an aqueous solution containing 10% of an aluminum degreasing agent “NA-6 (manufactured by Meltex Co., Ltd. (head office: Tokyo, Japan))” at 60 ° C. After being immersed for 5 minutes, this was washed with tap water (Ota City, Gunma Prefecture). Next, a 10% caustic soda aqueous solution at 40 ° C. was prepared in another tank, and the alloy pieces were immersed in this for 1 minute and washed with water. Next, an aqueous solution containing 5% concentration hydrochloric acid and 1% concentration hydrated aluminum chloride at 40 ° C. was prepared in another tank, and the alloy pieces were immersed in this for 1 minute and washed with water. Next, a 1.5% strength aqueous caustic soda solution at 40 ° C. was prepared in another tank, immersed in this for 8 minutes and washed with water. Next, a 3% concentration nitric acid aqueous solution at 40 ° C. was prepared in another tank, immersed in this for 1 minute and washed with water. Next, prepare a 3.5% hydrated hydrazine aqueous solution at 60 ° C. in another tank and immerse in this for 1 minute, and then add 0.5% hydration at 33 ° C. in another tank. It was immersed in an aqueous hydrazine solution for 2.5 minutes and washed with water.

次に、67℃に設定した温風乾燥機に15分間入れて前記処理を終えた合金片を乾燥した。清浄なアルミ箔でまとめて包み、更にこれをポリ袋に入れて封じ保管した。この処理方法は、本出願人が命名する「NMT5処理」と称しているAl材用の表面処理法の一つである。同じ処理を行なったA7075Al合金片の1個を電子顕微鏡にかけた。この観察結果を図8に示した。これらは、千倍、1万倍、10万倍の電子顕微鏡写真である。図8−3から超微細凹部径が30〜60nmであることが分かる。A6063のNMT2処理をした物(図4−3)、A6063のNMT5処理した物(図5−3)と比較して凹部径が大きい。   Next, the alloy pieces that had been subjected to the above treatment were dried for 15 minutes in a hot air dryer set at 67 ° C. Wrapped together with clean aluminum foil, which was then placed in a plastic bag and sealed. This treatment method is one of the surface treatment methods for Al materials called “NMT5 treatment” named by the present applicant. One of the A7075Al alloy pieces that had undergone the same treatment was subjected to an electron microscope. The observation results are shown in FIG. These are electron micrographs of 1000 times, 10,000 times, and 100,000 times. It can be seen from FIG. 8-3 that the ultrafine recess diameter is 30 to 60 nm. The diameter of the recess is larger than that of the A6063 treated with NMT2 (FIG. 4-3) and the A6063 treated with NMT5 (FIG. 5-3).

〔実験例8〕Ti合金の表面処理(最新型の処理品)
α−β型チタン合金「KSTi−9(株式会社神戸製鋼所(本社:日本国兵庫県)製)」の1mm厚板材から大きさ18mm×45mm×1mmの長方形片多数を切断作成した。これを常法により、脱脂処理の後、これを清浄水で水洗した。次に、別の槽中に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに前記チタン片を1分間浸漬した後、これを水洗した。次に、別の槽中に、65℃とした2%濃度の活性化剤「KA3」(株式会社金属化工技術研究所(本社:日本国東京都)製)の水溶液に、前記チタン片を3分浸漬した後、これを水洗した。次に、40℃とした3%濃度の硝酸水溶液に、前記チタン片を3分間浸漬した後、これを水洗した。次に、55℃とした5%濃度の亜塩素酸ソーダと10%濃度の苛性ソーダを含む水溶液に、10分浸漬した後、これを水洗した。次に、80℃に設定した温風乾燥機に15分間入れて乾燥した。このような表面処理して、清浄なアルミ箔でまとめて包み保管した。このTi合金片の電子顕微鏡写真を図9に示す。図9−1は千倍、9−2は1万倍の電子顕微鏡写真だが、ミクロンオーダーでの非常に激しい凹凸形状の生じていることがよく分かる。注目されるのは図9−3の10万倍写真であって、表面に長短径50〜100nmに渡る網目持つ網模様が観察されたことである。
[Experimental Example 8] Surface treatment of Ti alloy (latest processed product)
A large number of rectangular pieces having a size of 18 mm × 45 mm × 1 mm were cut from a 1 mm thick plate material of an α-β type titanium alloy “KSTi-9 (manufactured by Kobe Steel, Ltd. (head office: Hyogo, Japan))”. This was degreased by a conventional method and then washed with clean water. Next, a 1.5% strength aqueous caustic soda solution at 40 ° C. was prepared in another tank, and the titanium piece was immersed in this for 1 minute, and then washed with water. Next, in a separate tank, 3% of the titanium piece was placed in an aqueous solution of a 2% concentration activator “KA3” (manufactured by Metal Chemical Engineering Laboratory (head office: Tokyo, Japan)) at 65 ° C. After being immersed for a minute, this was washed with water. Next, the titanium piece was immersed in a 3% concentration nitric acid aqueous solution at 40 ° C. for 3 minutes, and then washed with water. Next, it was immersed in an aqueous solution containing 5% concentration sodium chlorite and 10% concentration sodium hydroxide at 55 ° C. for 10 minutes, and then washed with water. Next, it was placed in a warm air dryer set at 80 ° C. for 15 minutes for drying. Such a surface treatment was carried out and packaged and stored in clean aluminum foil. An electron micrograph of this Ti alloy piece is shown in FIG. FIGS. 9A and 9B are electron micrographs of 1000 times and 10,000 times, but it can be clearly seen that a very severe uneven shape is generated on the micron order. What is noticed is the 100,000 times photograph shown in FIG. 9-3, in which a mesh pattern having a major and minor diameter of 50 to 100 nm was observed on the surface.

〔実験例9〕A6063Al合金の表面処理(レーザー加工)
A6063Al合金材を45mm×18mm×1.5mmの長方形片多数に機械加工し、脱脂処理を行った上で、前述した株式会社ダイセルにおて、レーザースキャニング法で粗面化し、これを再び本発明者等が入手してPEEK系樹脂使用の射出接合試験をした。このAl合金片の電子顕微鏡写真を図10に示す。図10−1、10−2は、千倍、1万倍の電子顕微鏡写真であり、これらから10〜100μm周期の谷状凹部を含む粗面形状の存在が分かり、図10−3(10万倍電子顕微鏡写真)から、長短径30〜100nm周期の超微細凹凸面形状の存在も明らかであった。
[Experimental Example 9] Surface treatment of A6063Al alloy (laser processing)
The A6063Al alloy material was machined into a large number of 45 mm × 18 mm × 1.5 mm rectangular pieces, degreased, and then roughened by the laser scanning method at the aforementioned Daicel Co., Ltd. Obtained by them and conducted an injection joining test using PEEK resin. An electron micrograph of this Al alloy piece is shown in FIG. FIGS. 10-1 and 10-2 are electron micrographs of 1000 times and 10,000 times. From these, the existence of a rough surface shape including valley-shaped concave portions having a period of 10 to 100 μm is known, and FIG. The existence of an ultra-fine irregular surface shape having a major axis and a minor axis of 30 to 100 nm was also evident from a double electron micrograph.

〔実験例10〕射出接合工程
以下の各樹脂を各社から入手した。PEEKは「90G(Victrex Japan Inc.(本社:日本国東京都)製)」、PEIは「ウルテム9075(SABICジャパン合同会社(本社:日本国栃木県))」、PESは「住化エクセルPES4800G(住友化学株式会社(本社:日本国東京都)製)」、PAIは「トーロン4203L(ソルベイスペシャルティポリマーズジャパン(本社:日本国東京都))製」である。コンパウンド化はドライブレンド法で行った。
[Experimental Example 10] Injection joining process The following resins were obtained from various companies. PEEK is "90G (Victrex Japan Inc. (head office: Tokyo, Japan)"), PEI is "Ultem 9075 (SABIC Japan GK (head office: Tochigi, Japan))", and PES is "Suika Excel PES4800G ( “Sumitomo Chemical Co., Ltd. (head office: Tokyo, Japan)” and PAI are “Toron 4203L (Solvay Specialty Polymers Japan (head office: Tokyo, Japan))”. Compounding was performed by a dry blend method.

図1形状物を作るための射出接合用金型を射出成型機に取り付け、金型温度を185℃とし、射出温度を380℃と設定し、金型を開いて実験例1〜9の各種金属片をインサートし、金型を閉めて直ちに前述したPEEKペレットや前記のドライブレンドによるコンパウンド樹脂を射出した。得た射出接合物は、射出接合実験を行ったその日の内に200℃にした熱風乾燥機に1時間入れてアニールして放冷し、その翌日に図3の補助治具に入れて引張り試験機にかけ、せん断接合強度を測定した。   1 A mold for injection joining to make a shaped object is attached to an injection molding machine, the mold temperature is set to 185 ° C., the injection temperature is set to 380 ° C., the mold is opened, and various metals of Experimental Examples 1 to 9 The piece was inserted, the mold was closed, and immediately the above-mentioned PEEK pellets and the compound resin by the dry blend were injected. The obtained injection-bonded product was placed in a hot air dryer set at 200 ° C. for 1 hour within the day of the injection-joining experiment, annealed and allowed to cool, and then placed in the auxiliary jig shown in FIG. The shear bond strength was measured using a machine.

〔実験例11〕射出接合物のせん断接合強度の測定
図1に示す形状物を図3治具に装着して、試験機により引張り試験を行った。引張り試験は、23℃に調整した測定室内で行った。その結果を表1〜4に示す。表1のデータは、PEEK単独系樹脂「90G(Victrex Japan Inc.)」と金属の射出接合物におけるせん断接合強度を示す。実験例2の金属のNMT2処理品では、40MPa付近、実験例4のNMT5品では50MP付近となり、ミクロンオーダー周期での凹凸深さ(高さ)の大きいものの接合力が、より大きくなることが判明した。又、実験例2と実験例3(アミン吸着なし)の違いで、双方高い接合力を示すもののアミン系分子の吸着物の有意差の存在も明らかである。
[Experimental Example 11] Measurement of Shear Bond Strength of Injection Bonded Article The shaped article shown in FIG. 1 was mounted on the jig shown in FIG. 3, and a tensile test was performed using a testing machine. The tensile test was performed in a measurement chamber adjusted to 23 ° C. The results are shown in Tables 1-4. The data in Table 1 shows the shear joint strength of PEEK single resin “90G (Victrex Japan Inc.)” and metal injection joint. It is found that the metal NMT2 treated product of Experimental Example 2 is around 40 MPa, and the NMT5 product of Experimental Example 4 is around 50 MP, and the bonding strength of the one having a large unevenness depth (height) in the micron order cycle becomes larger. did. In addition, the difference between Experimental Example 2 and Experimental Example 3 (no amine adsorption) shows that there is a significant difference in the adsorbate of amine-based molecules, although both exhibit high bonding strength.

アルスター鋼板のNMT5-Oxi処理品(実験例6)も同等な接合力があった。一方、A7075Al合金のNMT2処理品(実験例7)では45MPaあり、A6063Al合金のNMT2処理品(実験例2)より若干接合力が高かった。おそらく超微細凹部の径がA7075より大きい故と思われた。   The Alster steel plate treated with NMT5-Oxi (Experimental Example 6) also had an equivalent joining force. On the other hand, the NMT2 treated product of A7075Al alloy (Experimental Example 7) had 45 MPa, and the bonding force was slightly higher than that of the A6063Al alloy NMT2 treated product (Experimental Example 2). Probably because the diameter of the ultrafine recess was larger than A7075.

陽極酸化(実験例5)も同等な接合力があった。ミクロンオーダーの凹凸は無くとも、十分な強度が得られたのは、NMT系に比べ超微細凹凸部の径が大きく、はっきりした穴形状をしているために樹脂が入り込みやすいためと考えられる。   Anodization (Experimental Example 5) also had an equivalent joining force. The reason why sufficient strength was obtained even without micron-order irregularities is thought to be because the diameter of the ultra-fine irregularities is larger than that of the NMT system and the resin is easy to enter because of the clear hole shape.

レーザースキャニング加工(実施例9)も同等な接合力があった。レーザー加工したものは触れた感覚でも判断できるほどの艶消しを越えるような大ぶりな粗面が存在し、更には10万倍電子顕微鏡写真で確認できる超微細な凹凸部が形成されているから強く射出接合するのは当然だと思われた。
The laser scanning process (Example 9) also had an equivalent joining force. The laser-processed surface has a large rough surface that exceeds the matte so that it can be judged even with the touched feeling, and further has an ultra-fine unevenness that can be confirmed with an electron micrograph of 100,000 times. It seemed natural to make an injection joint.

一方、PEEKのみが樹脂成分である「90G(ビクトレックス社)」ではなく、これにPEI「ULTEM9075(SABICジャパン合同会社(本社:日本国栃木県))」を15重量%分ドライブレンドした混合樹脂による結果も表1の後半に示す。これによると、混合樹脂の使用により何れも接合力が増した。しかしながら、全ての表面処理方法でも僅かな上昇であった。高い物では60MPa近くあった。一方、Ti合金では混合樹脂を使用しても30MPa以下の接合力しかない。微細凹凸面形状が実験例6と実験例8でその粗面形状が立体的であり激しい形状である点で似ているのに対し、接合力がかなり違うことに関しその理由がよくは分からない。   On the other hand, instead of “90G (Victrex)”, which is the only resin component of PEEK, this is a mixed resin in which 15% by weight of PEI “ULTEM 9075 (SABIC Japan GK (Headquarters: Tochigi, Japan))” is dry blended. The results are also shown in the second half of Table 1. According to this, the joining force increased in any case by using the mixed resin. However, all surface treatment methods showed a slight increase. It was close to 60 MPa for high objects. On the other hand, a Ti alloy has a bonding force of 30 MPa or less even when a mixed resin is used. Although the fine uneven surface shape is similar in Experimental Example 6 and Experimental Example 8 in that the rough surface shape is three-dimensional and intense, the reason for the considerably different bonding force is not well understood.

全ての金属材に関して、PPS系樹脂「SGX120(東ソー株式会社(本社:日本国東京都))」を使用した場合、せん断接合強度は約40MPaとなり上限値と見られた。しかしながら、表1から見れば上限値は見えない。おそらく最大で60MPa程度と推測されるので、各種金属材の被接合能力(射出接合力を得る能力)は実験例4と5の物を除いて、途中レベルに納まっていることが分かる。それ故、これらの数値は金型温度を200℃まで上げるなど金属との接触時に於ける樹脂粘度を多少でも下げれば低いものはかなり上がるかもしれない。即ち、実験例6と実験例8とは差が大きいがその凹凸面形状はかなり似ているので射出接合条件を高めればもう少し近づくだろう。   Regarding all the metal materials, when the PPS resin “SGX120 (Toso Co., Ltd. (head office: Tokyo, Japan))” was used, the shear bonding strength was about 40 MPa, which was seen as the upper limit value. However, the upper limit cannot be seen from Table 1. Since it is presumed that it is probably about 60 MPa at the maximum, it can be seen that the ability to be joined (ability to obtain injection joining force) of various metal materials is in the middle level except for the experimental examples 4 and 5. Therefore, these values may increase considerably if the resin viscosity at the time of contact with the metal is somewhat lowered, such as raising the mold temperature to 200 ° C. That is, although the difference between Experimental Example 6 and Experimental Example 8 is large, the shape of the concavo-convex surface is quite similar, so it will be a little closer if the injection joining conditions are increased.

表2、3、4には、ドライブレンドに使う異高分子の種類や混合比を変えた場合の結果を記した。
Tables 2, 3, and 4 show the results when the types and mixing ratios of different polymers used for dry blending were changed.

表4に、PEEKにPES(Poly Ether Sulphone(ポリ・エーテル・サルフォン))「住化エクセルPES4800G(住友化学株式会社(本社:日本国東京都))」、表5に、PAI(Poly Amide Imide(ポリアミドイミド))を混ぜ込んだ樹脂組成物による結果を表5に「トーロン4203L(ソルベイスペシャルティポリマーズジャパン株式会社(本社:日本国東京都))」その結果をそれぞれ示した。何れも異高分子をコンパウンドした効果はPEIより劣っていた。
Table 4 shows PEEK and PES (Poly Ether Sulphone) “Sumika Excel PES4800G (Sumitomo Chemical Co., Ltd. (head office: Tokyo, Japan))”, Table 5 shows PAI (Poly Amide Imide ( Table 5 shows the results of “Tolon 4203L (Solvay Specialty Polymers Japan Co., Ltd. (head office: Tokyo, Japan))” with the results of the resin composition mixed with polyamideimide)). In any case, the effect of compounding a different polymer was inferior to that of PEI.

Claims (4)

電子顕微鏡千倍、1万倍観察で百〜1μm周期の明確な粗面が観察され、且つ、電子顕微鏡10万倍観察で前記粗面上に20〜100nm径の超微細凹部で全面覆われる微細凹凸面形状が観察されるアルミ材、又は、
電子顕微鏡10万倍観察で30〜100nm径の開口部を有する超微細孔部で全面が覆われている微細凹凸面形状が観察される陽極酸化されたたアルミ材と、
ポリエーテルエーテルケトン樹脂のみを樹脂分とする樹脂組成物[A]、又は、ポリエーテルエーテルケトン樹脂を主成分樹脂とし、非晶性熱可塑性樹脂又は半結晶性熱可塑性樹脂である耐熱性ある異高分子を従成分樹脂とするポリエーテルエーテルケトン系樹脂組成物[B]の射出成形物と
が直接的に接合してなる
ことを特徴とする金属と樹脂の接合一体化物。
A fine rough surface with a period of 100 to 1 μm is observed by observation with an electron microscope of 1,000 times and 10,000 times, and the entire surface is covered with ultrafine recesses having a diameter of 20 to 100 nm on the rough surface by observation with an electron microscope of 100,000 times. Aluminum material where uneven surface shape is observed, or
Anodized aluminum material in which a micro uneven surface shape is observed that is entirely covered with an ultrafine hole portion having an opening with a diameter of 30 to 100 nm by observation with an electron microscope 100,000 times;
Resin composition [A] containing only a polyether ether ketone resin as a resin component, or a heat resistant different resin which is a non-crystalline thermoplastic resin or semi-crystalline thermoplastic resin containing a polyether ether ketone resin as a main component resin. A metal-resin joint integrated product, which is formed by directly joining a polyether ether ketone resin composition [B] using a polymer as a secondary component resin.
電子顕微鏡千倍、1万倍観察で百μm〜十数μm周期と十数μm〜1μm周期の明確で立体的な複雑粗面が観察され、且つ、電子顕微鏡10万倍観察で前記粗面上に50〜100nm周期の凹凸面で全面覆われる微細凹凸面形状が観察される金属材と、
ポリエーテルエーテルケトン樹脂のみを樹脂分とする樹脂組成物[A]、又は、ポリエーテルエーテルケトン樹脂を主成分樹脂とし、非晶性熱可塑性樹脂又は半結晶性熱可塑性樹脂である耐熱性ある異高分子を従成分樹脂とするポリエーテルエーテルケトン系樹脂組成物[B]の射出成形物と
が直接的に接合してなる
ことを特徴とする金属と樹脂の接合一体化物。
A clear and three-dimensional complex rough surface with a period of 100 μm to several tens of μm and a period of several tens of μm to 1 μm is observed with an electron microscope of 1,000 times and 10,000 times, and on the rough surface with an electron microscope of 100,000 times of observation. A metal material in which a fine uneven surface shape covered with an uneven surface having a period of 50 to 100 nm is observed,
Resin composition [A] containing only a polyether ether ketone resin as a resin component, or a heat resistant different resin which is a non-crystalline thermoplastic resin or semi-crystalline thermoplastic resin containing a polyether ether ketone resin as a main component resin. A metal-resin joint integrated product, which is formed by directly joining a polyether ether ketone resin composition [B] using a polymer as a secondary component resin.
請求項2に記載の金属と樹脂の接合一体化物において、
前記金属材が、アルミニウム、チタンである
ことを特徴とする金属と樹脂の接合一体化物。
In the metal-resin joint integrated product according to claim 2,
The metal material is aluminum or titanium. A metal-resin joint integrated product, wherein:
請求項1ないし3から選択された1項に記載の金属と樹脂の接合一体化物において、
前記ポリエーテルエーテルケトン系樹脂組成物[B]は、その樹脂分中の99〜80%をポリエーテルエーテルケトン樹脂、1〜20%を非晶性熱可塑性樹脂又は半結晶性熱可塑性樹脂である耐熱性の異高分子が占めている
ことを特徴とする金属と樹脂の接合一体化物。
In the metal-resin joint integrated body according to claim 1 selected from claims 1 to 3,
In the polyether ether ketone resin composition [B], 99 to 80% of the resin component is a polyether ether ketone resin, and 1 to 20% is an amorphous thermoplastic resin or a semicrystalline thermoplastic resin. Metal / resin joint integrated product characterized by the fact that the heat-resistant different polymer occupies it.
JP2017003770A 2017-01-13 2017-01-13 An integrated product of metal and resin Active JP6630297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017003770A JP6630297B2 (en) 2017-01-13 2017-01-13 An integrated product of metal and resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017003770A JP6630297B2 (en) 2017-01-13 2017-01-13 An integrated product of metal and resin

Publications (2)

Publication Number Publication Date
JP2018111277A true JP2018111277A (en) 2018-07-19
JP6630297B2 JP6630297B2 (en) 2020-01-15

Family

ID=62911721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017003770A Active JP6630297B2 (en) 2017-01-13 2017-01-13 An integrated product of metal and resin

Country Status (1)

Country Link
JP (1) JP6630297B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036141A1 (en) * 2018-08-13 2020-02-20 ポリプラスチックス株式会社 Laminated body
JP2021178495A (en) * 2020-05-15 2021-11-18 三井化学株式会社 Manufacturing method and mold for metal-resin joint
KR20210143229A (en) * 2019-04-22 2021-11-26 미쯔이가가꾸가부시끼가이샤 Electronic device housing, manufacturing method thereof, and metal-resin composite
CN113893097A (en) * 2021-11-05 2022-01-07 西安国际医学中心有限公司 Multifunctional analgesia treatment device for treating cancer pain
WO2022130746A1 (en) * 2020-12-15 2022-06-23 メック株式会社 Method for producing aluminum-resin composite
JP7553305B2 (en) 2020-09-30 2024-09-18 新東工業株式会社 Manufacturing method of composite member, and composite member

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078714A1 (en) * 2006-12-22 2008-07-03 Taisei Plas Co., Ltd. Metal/resin composite and process for producing the composite
JP2011240620A (en) * 2010-05-19 2011-12-01 Taisei Plas Co Ltd Laminated sheet and method for producing the same
WO2012070654A1 (en) * 2010-11-26 2012-05-31 大成プラス株式会社 Metal resin complex and process for production thereof
WO2016038945A1 (en) * 2014-09-11 2016-03-17 オリンパス株式会社 Insert molded article, device using said insert molded article, and method for producing insert molded article
JP2016060051A (en) * 2014-09-16 2016-04-25 合資会社アンドーコーポレーション Production method of composite of metal and frtp and the composite
WO2016092087A1 (en) * 2014-12-12 2016-06-16 Solvay Specialty Polymers Usa, Llc Poly(aryl ether) compositions for polymer-metal junctions and polymer-metal junctions and corresponding fabrication methods
JP2016150547A (en) * 2015-02-18 2016-08-22 大成プラス株式会社 Method for producing cfrtp composite body, and cfrtp composite body
JP2016529130A (en) * 2013-06-11 2016-09-23 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー Improved portable electronic device parts
WO2017209011A1 (en) * 2016-05-31 2017-12-07 三井化学株式会社 Metal/resin composite structure, metal member, and method for manufacturing metal member
JP2017218616A (en) * 2016-06-03 2017-12-14 三井化学株式会社 Method for producing surface roughened metal member and method for producing metal/resin composite structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078714A1 (en) * 2006-12-22 2008-07-03 Taisei Plas Co., Ltd. Metal/resin composite and process for producing the composite
JP2011240620A (en) * 2010-05-19 2011-12-01 Taisei Plas Co Ltd Laminated sheet and method for producing the same
WO2012070654A1 (en) * 2010-11-26 2012-05-31 大成プラス株式会社 Metal resin complex and process for production thereof
JP2016529130A (en) * 2013-06-11 2016-09-23 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー Improved portable electronic device parts
WO2016038945A1 (en) * 2014-09-11 2016-03-17 オリンパス株式会社 Insert molded article, device using said insert molded article, and method for producing insert molded article
JP2016060051A (en) * 2014-09-16 2016-04-25 合資会社アンドーコーポレーション Production method of composite of metal and frtp and the composite
WO2016092087A1 (en) * 2014-12-12 2016-06-16 Solvay Specialty Polymers Usa, Llc Poly(aryl ether) compositions for polymer-metal junctions and polymer-metal junctions and corresponding fabrication methods
JP2016150547A (en) * 2015-02-18 2016-08-22 大成プラス株式会社 Method for producing cfrtp composite body, and cfrtp composite body
WO2017209011A1 (en) * 2016-05-31 2017-12-07 三井化学株式会社 Metal/resin composite structure, metal member, and method for manufacturing metal member
JP2017218616A (en) * 2016-06-03 2017-12-14 三井化学株式会社 Method for producing surface roughened metal member and method for producing metal/resin composite structure

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026093A (en) * 2018-08-13 2020-02-20 ポリプラスチックス株式会社 Laminate
WO2020036141A1 (en) * 2018-08-13 2020-02-20 ポリプラスチックス株式会社 Laminated body
US11607868B2 (en) 2018-08-13 2023-03-21 Polyplastics Co., Ltd. Ratchet stack
KR102601050B1 (en) * 2019-04-22 2023-11-10 미쯔이가가꾸가부시끼가이샤 Electronic device housing, manufacturing method thereof and metal resin composite
KR20210143229A (en) * 2019-04-22 2021-11-26 미쯔이가가꾸가부시끼가이샤 Electronic device housing, manufacturing method thereof, and metal-resin composite
JP2021178495A (en) * 2020-05-15 2021-11-18 三井化学株式会社 Manufacturing method and mold for metal-resin joint
JP7453846B2 (en) 2020-05-15 2024-03-21 三井化学株式会社 Manufacturing method and mold for metal-resin joint
JP7553305B2 (en) 2020-09-30 2024-09-18 新東工業株式会社 Manufacturing method of composite member, and composite member
JP2022094427A (en) * 2020-12-15 2022-06-27 メック株式会社 Manufacturing method for aluminum-resin composite
JP7319634B2 (en) 2020-12-15 2023-08-02 メック株式会社 A method for producing an aluminum-resin composite.
WO2022130746A1 (en) * 2020-12-15 2022-06-23 メック株式会社 Method for producing aluminum-resin composite
CN113893097B (en) * 2021-11-05 2023-08-18 西安国际医学中心有限公司 Multifunctional pain relieving treatment device for treating cancer pain
CN113893097A (en) * 2021-11-05 2022-01-07 西安国际医学中心有限公司 Multifunctional analgesia treatment device for treating cancer pain

Also Published As

Publication number Publication date
JP6630297B2 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
JP6630297B2 (en) An integrated product of metal and resin
TWI464053B (en) Composite of stainless steel and resin and method for making same
JP4527196B2 (en) Composite and production method thereof
TWI707781B (en) Metal-resin composite molded article and production method thereof
JP4452220B2 (en) Composite and production method thereof
JP5922801B2 (en) Method of integrally molding metal and resin and metal-resin composite structure obtained by the method
KR101188027B1 (en) Composite of metal with resin and process for producing the same
JP6387301B2 (en) Aluminum resin bonded body and manufacturing method thereof
JP6074513B2 (en) Metal / resin composite structure
WO2017209011A1 (en) Metal/resin composite structure, metal member, and method for manufacturing metal member
JP4965649B2 (en) Copper alloy composite and manufacturing method thereof
JP5108904B2 (en) Composite of metal and polyamide resin composition and method for producing the same
JP5302315B2 (en) Composite of metal alloy and polyamide resin composition and method for producing the same
JPWO2008078714A1 (en) Metal-resin composite and method for producing the composite
JP7098859B2 (en) Processes for plastic overmolding on metal surfaces and plastic-metal hybrid components
JP2011174133A (en) Method for manufacturing surface-roughened stainless steel sheet, composite formed of stainless steel sheet joined with molding of thermoplastic resin composition, and method for manufacturing the same
JP7040988B2 (en) Aluminum alloy and resin complex and its manufacturing method
JP2019181711A (en) Metal-resin bonded product
JP2019181710A (en) Metal-resin bonded product
JP2016088079A (en) Method for producing metal-resin complex
US9457502B2 (en) Method of preparing aluminum-resin complex
TW201200350A (en) Composite of metal and plastic and method for making the same
JP7131986B2 (en) METAL/RESIN COMPOSITE STRUCTURE AND METHOD FOR MANUFACTURING METAL/RESIN COMPOSITE STRUCTURE
JP2019217704A (en) Composite of aluminum alloy and resin
JP5714864B2 (en) CFRP prepreg and bonded material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191206

R150 Certificate of patent or registration of utility model

Ref document number: 6630297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250