JP2018111090A - Cleaning method of biomass and method of manufacturing solid fuel - Google Patents

Cleaning method of biomass and method of manufacturing solid fuel Download PDF

Info

Publication number
JP2018111090A
JP2018111090A JP2017080375A JP2017080375A JP2018111090A JP 2018111090 A JP2018111090 A JP 2018111090A JP 2017080375 A JP2017080375 A JP 2017080375A JP 2017080375 A JP2017080375 A JP 2017080375A JP 2018111090 A JP2018111090 A JP 2018111090A
Authority
JP
Japan
Prior art keywords
biomass
potassium
water
washing
acid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017080375A
Other languages
Japanese (ja)
Inventor
高弘 池田
Takahiro Ikeda
高弘 池田
暁 横田
Akira Yokota
暁 横田
公 沖田
Akira Okita
公 沖田
久直 岩間
Hisanao Iwama
久直 岩間
忍 深澤
Shinobu Fukazawa
忍 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAICHU CORP
HIROSHIMA GAS TECHNO SERVICE CO Ltd
Iesp Kk
MOON MARINE JAPAN CO Ltd
Original Assignee
DAICHU CORP
HIROSHIMA GAS TECHNO SERVICE CO Ltd
Iesp Kk
MOON MARINE JAPAN CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAICHU CORP, HIROSHIMA GAS TECHNO SERVICE CO Ltd, Iesp Kk, MOON MARINE JAPAN CO Ltd filed Critical DAICHU CORP
Publication of JP2018111090A publication Critical patent/JP2018111090A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple and inexpensive biomass cleaning method without requiring even special equipment, and a method of manufacturing a solid fuel of using the cleaning method of biomass.SOLUTION: A biomass cleaning method includes an immersion process (step S1) of removing alkaline metal included in biomass by immersing the raw biomass in an acid solution. The acid solution is 4.0 or less in pH when finishing the immersion process, and is 2.5 or less, and desirably 2.0 or less in the pH when starting the immersion process, and is more desirably 1.8 or less, and is desirably a sulfuric acid solution in the acid solution. Semi-carbide or carbide of a biomass cleaning object can be provided by a semi-carbonization/carbonization process (step S4).SELECTED DRAWING: Figure 4

Description

本発明は、バイオマスの洗浄方法及び固形燃料の製造方法に関する。   The present invention relates to a method for cleaning biomass and a method for producing solid fuel.

バイオマスの有効利用の方法として、バイオマスを炭化または半炭化し、これを石炭代替燃料とする方法が知られている。この方法の場合、燃焼に悪影響を与えるカリウムやナトリウムの存在が問題となる。このためカリウムやナトリウムを多く含むバイオマスを原料とする場合、バイオマスを炭化または半炭化するに先立ち、あるいは炭化または半炭化後にカリウムやナトリウムの除去が行われる(例えば特許文献1、特許文献2参照)。   As a method for effectively using biomass, a method is known in which biomass is carbonized or semi-carbonized and used as an alternative fuel for coal. In this method, the presence of potassium or sodium that adversely affects combustion is a problem. Therefore, when biomass containing a large amount of potassium or sodium is used as a raw material, potassium or sodium is removed prior to carbonization or semi-carbonization of the biomass or after carbonization or semi-carbonization (see, for example, Patent Document 1 and Patent Document 2). .

特許文献1には、バイオマスからカリウムやナトリウムなどのアルカリ金属を除去する好適な方法として、破砕したバイオマスを加圧処理後、乾燥、洗浄する方法が示され、アブラヤシの空果房(EFB)において、カリウムを0.24mass%まで低下させた実施例が記載されている。   Patent Document 1 discloses a method for drying and washing crushed biomass after pressure treatment as a suitable method for removing alkali metals such as potassium and sodium from biomass. In an empty palm bunch (EFB) Examples in which potassium is reduced to 0.24 mass% are described.

一方、特許文献2には、バイオマスを原料の段階で脱カリウム化しても効果的ではなく、バイオマスを高熱処理し細胞破壊することでアルカリ金属の除去が可能であるとしている。   On the other hand, Patent Document 2 states that it is not effective to depotassulate biomass at the raw material stage, and alkali metal can be removed by high-heat treatment of biomass and cell destruction.

特開2010−270320号公報JP 2010-270320 A 特許第4849650号公報Japanese Patent No. 4894650

特許文献1には実施例としてアブラヤシの空果房(EFB)において、加圧処理後、乾燥、洗浄するとカリウムが0.24mass%まで低下すること、110℃で乾燥処理し、その後洗浄するとカリウムが0.98mass%まで低下することが記載されている。特許文献1の実施例によればアブラヤシの空果房(EFB)において最も除去率を高めた場合でも、カリウムが0.24mass%含まれる。用途、使用先によってはカリウムやナトリウムなどのアルカリ金属の濃度をさらに低下させたいとの要求もあるが、特許文献1に記載の方法では十分とは言い難い。   In Patent Document 1, as an example, in an empty fruit bunch (EFB) of oil palm, potassium is reduced to 0.24 mass% when dried and washed after pressure treatment, and is dried at 110 ° C. and then washed to wash potassium. It is described that it decreases to 0.98 mass%. According to the Example of patent document 1, even when the removal rate is highest in the empty fruit bunch (EFB) of oil palm, 0.24 mass% of potassium is contained. Although there is a request to further reduce the concentration of alkali metals such as potassium and sodium depending on the application and use destination, the method described in Patent Document 1 is not sufficient.

また加圧処理又は乾燥処理を行うには、加圧設備、乾燥設備が必要となるが、アブラヤシの空果房(EFB)などのように大量のバイオマスを処理するには、大型の設備が必要となり、処理コストが高くなる。   In order to perform pressure treatment or drying treatment, pressure equipment and drying equipment are required, but large-scale equipment is required to process a large amount of biomass such as oil palm empty fruit bunch (EFB). Thus, the processing cost is increased.

特許文献2には、バイオマスを高熱処理し細胞破壊することでアルカリ金属の除去が可能とあるが、我々が実験を行ったところアルカリ金属、特にカリウムを十分に除去することができなかった。   In Patent Document 2, it is possible to remove alkali metals by high heat treatment of biomass and cell destruction, but when we conducted experiments, alkali metals, particularly potassium, could not be removed sufficiently.

本発明の目的は、特別な設備も必要とせず簡便で安価なバイオマスの洗浄方法、該バイオマスの洗浄方法を用いた固形燃料の製造方法を提供することである。   An object of the present invention is to provide a simple and inexpensive method for cleaning biomass that does not require special equipment, and a method for producing a solid fuel using the method for cleaning biomass.

本発明は、生のバイオマスを酸性溶液に浸漬し、バイオマスに含まれるアルカリ金属を除去する浸漬工程を含むことを特徴とするバイオマスの洗浄方法である。   The present invention is a biomass washing method characterized by including a dipping step of immersing raw biomass in an acidic solution and removing alkali metals contained in the biomass.

本発明のバイオマスの洗浄方法において、前記酸性溶液は、前記浸漬工程の終了時点のpHが4.0以下であり、前記浸漬工程の開始時点のpHが2.5以下、好ましくは2.0以下、より好ましくは1.8以下であることを特徴とする。   In the biomass cleaning method of the present invention, the acidic solution has a pH of 4.0 or less at the end of the dipping step, and a pH of 2.5 or less, preferably 2.0 or less at the start of the dipping step. More preferably, it is 1.8 or less.

また本発明のバイオマスの洗浄方法において、前記酸性溶液が硫酸溶液であることを特徴とする。   In the biomass cleaning method of the present invention, the acidic solution is a sulfuric acid solution.

また本発明は、前記バイオマスの洗浄方法で得られるバイオマス洗浄物を半炭化又は炭化する半炭化/炭化工程を含むことを特徴とする固形燃料の製造方法である。   In addition, the present invention is a method for producing a solid fuel, comprising a semi-carbonization / carbonization step of semi-carbonizing or carbonizing a biomass washed product obtained by the biomass cleaning method.

本発明によれば特別な設備も必要とせず簡便で安価なバイオマスの洗浄方法、該バイオマスの洗浄方法を用いた固形燃料の製造方法を提供することができる。   According to the present invention, it is possible to provide a simple and inexpensive method for cleaning biomass without requiring special equipment, and a method for producing solid fuel using the method for cleaning biomass.

本発明のバイオマスの洗浄方法の手順を示す図である。It is a figure which shows the procedure of the washing | cleaning method of the biomass of this invention. 本発明のバイオマスの洗浄方法を実施するための洗浄装置1の模式図である。It is a schematic diagram of the washing | cleaning apparatus 1 for enforcing the washing | cleaning method of biomass of this invention. 本発明のバイオマスの洗浄方法を実施するための洗浄装置2の模式図である。It is a schematic diagram of the washing | cleaning apparatus 2 for enforcing the washing | cleaning method of biomass of this invention. 本発明の固形燃料の製造方法の手順を示す図である。It is a figure which shows the procedure of the manufacturing method of the solid fuel of this invention. 本発明の実施例1〜3の硫酸溶液浸漬試験前後の試料の写真である。It is a photograph of the sample before and behind the sulfuric acid solution immersion test of Examples 1-3 of the present invention.

本発明のバイオマスの洗浄方法は、バイオマスを酸性溶液に浸漬し、バイオマスに含まれるアルカリ金属を除去する点に最大の特徴がある。以下、バイオマスの洗浄方法を、図1の本発明のバイオマスの洗浄方法の手順に従い説明する。   The biomass cleaning method of the present invention has the greatest feature in that the biomass is immersed in an acidic solution to remove alkali metals contained in the biomass. Hereinafter, the biomass cleaning method will be described in accordance with the procedure of the biomass cleaning method of the present invention shown in FIG.

本発明の洗浄対象物であるバイオマスは、特定のバイオマスに限定されることなく幅広いバイオマスに適用することができる。具体的には廃木材、間伐材、庭木、竹、樹皮、のこ屑、建設廃材等の木質系バイオマス、麦わら、サトウキビ、サトウキビカス、トウモロコシ、バナナ、米糠、草木、籾殻、稲わら、、パームヤシ、穀物、実、種子、椰子殻等の農業系・植物系バイオマスなどが挙げられる。   The biomass that is the cleaning object of the present invention is not limited to a specific biomass and can be applied to a wide range of biomass. Specifically, woody biomass such as waste wood, thinned wood, garden trees, bamboo, bark, sawdust, construction waste, straw, sugarcane, sugarcane, corn, banana, rice bran, grass, chaff, rice straw, palm palm Agricultural and plant biomass such as cereals, berries, seeds and coconut shells.

本発明のバイオマスの洗浄方法は、カリウム、ナトリウムの除去性能に優れるので、カリウム、ナトリウムを高濃度で含有するバイオマスに対して好適に使用することができる。カリウム、ナトリウムを高濃度で含有するバイオマスとしては、パームオイルの副産物であるパームヤシの空果房(EFB)、スリランカの豆科の木であるグリリシディア等が挙げられる。その他パームヤシに関しては、実の周辺の繊維物、パーム椰子の殻(PKS)、幹、剪定枝などが本発明の洗浄対象物となる。   Since the method for cleaning biomass according to the present invention is excellent in potassium and sodium removal performance, it can be suitably used for biomass containing potassium and sodium at high concentrations. Examples of biomass containing potassium and sodium at high concentrations include palm fruit empty fruit bunches (EFB), which are by-products of palm oil, and grericidia, which is a leguminous tree of Sri Lanka. In addition, regarding palm palm, fiber objects around the fruit, palm palm shell (PKS), trunk, pruned branch, and the like are objects to be cleaned of the present invention.

洗浄対象物であるバイオマスは、生のまま使用する。ここで生のままとは、バイオマスに対してカリウム、ナトリウムの除去を目的とした水洗、乾燥(自然乾燥を除く)、加熱、加圧、半炭化、炭化などの前処理が施されていないものをいう。バイオマスに対してカリウム、ナトリウムの除去を目的とした水洗を行い、水洗後のバイオマスを酸性溶液に浸漬する方法を排除するものではないが工程が多くなる。本発明のバイオマスの洗浄方法は、生のバイオマスを酸性溶液に浸漬させる1段階の洗浄操作でカリウム、ナトリウムを十分に除去できる。   The biomass that is the object to be cleaned is used as it is. Raw as used herein refers to biomass that has not been subjected to pretreatment such as water washing, drying (excluding natural drying), heating, pressurization, semi-carbonization, carbonization for the purpose of removing potassium and sodium. Say. Although it does not exclude the method of washing the biomass with water for the purpose of removing potassium and sodium and immersing the washed biomass in an acidic solution, the number of steps increases. The biomass cleaning method of the present invention can sufficiently remove potassium and sodium by a one-step cleaning operation in which raw biomass is immersed in an acidic solution.

バイオマスの炭化物又は半炭化物を本発明の洗浄対象物とすることは好ましくない。後述の実施例の欄に示すようにグリリシディア(Gliricidia)の洗浄試験において、グリリシディア(Gliricidia)を水洗等することなく半炭化させると、塩素は原木を水洗したレベルまで除去できたが、ナトリウム、カリウムは除去されず逆に濃縮された。また原木を水洗する方法と比較すると、半炭化した後に水洗する方法の方が、ナトリウム、カリウムの除去率は低かった。これは半炭化することで撥水性が発現し、細部に水が届かないことによるものと推測される。   It is not preferable to use a carbide or semi-carbide of biomass as the cleaning object of the present invention. As shown in the Examples section below, in the washing test for Gliricidia, when the Gliricidia was semi-carbonized without washing, the chlorine could be removed to the level of washing the raw wood, but sodium, potassium On the contrary, it was concentrated without being removed. Moreover, compared with the method of washing raw wood with water, the method of washing with water after semi-carbonization had a lower removal rate of sodium and potassium. This is presumed to be due to water repellent by semi-carbonizing and water not reaching the details.

洗浄対象物であるバイオマスの形態についても特に限定はない。このためバイオマスを原形のまま用いてもよい。原形のままとは採取された状態の形態、回収された状態の形態をいい、運搬、取扱い等の点から採取、回収された状態のバイオマスが分割、分離、切断されたものも含み、チップ化、微細化を目的に粉砕、破砕されたものは除かれる。後述の実施例に示すように生のバイオマスを原形のまま用いても、アルカリ金属を十分に除去することができる。   There is no particular limitation on the form of biomass that is the object to be cleaned. Therefore, the biomass may be used as it is. The original form refers to the form of the collected state and the state of the recovered state, including those obtained by dividing, separating, and cutting the biomass that has been collected and recovered from the viewpoint of transportation, handling, etc. Excluded are those crushed and crushed for the purpose of miniaturization. Even if raw biomass is used in its original form as shown in the examples described later, the alkali metal can be sufficiently removed.

比表面積を大きくする点からは、バイオマスを破砕又は粉砕することが好ましい。バイオマスの原形品又は破砕品又は粉砕品を洗浄対象物としてもよく、原形品、破砕品、粉砕品のうち2種以上の混合物を洗浄対象物としてもよい。   From the viewpoint of increasing the specific surface area, it is preferable to crush or pulverize the biomass. A biomass original product, a crushed product, or a pulverized product may be used as an object to be cleaned, and a mixture of two or more of the original product, crushed product, and pulverized product may be used as an object to be cleaned.

第1ステップとしてバイオマスの原形品等を酸性溶液に浸漬する(ステップS1)。これによりカリウム、ナトリウムなどが除去される。酸性溶液にバイオマスを浸漬すると、除去し難いカリウムも十分に除去することができる。これに対して水にバイオマスを浸漬する方法では、アルカリ金属、特にカリウムを十分に除去することができない。この違いは、酸を加えてpHを下げたことにより金属イオンが溶出し易くなったことによるものと思われる。   As a first step, a biomass original product or the like is immersed in an acidic solution (step S1). This removes potassium, sodium, and the like. When biomass is immersed in an acidic solution, potassium that is difficult to remove can be sufficiently removed. On the other hand, the method of immersing biomass in water cannot sufficiently remove alkali metals, particularly potassium. This difference seems to be due to the fact that the metal ions are easily eluted by lowering the pH by adding acid.

酸性溶液は、後述の実施例に示すようにpHが低い方がアルカリ金属除去速度が速くなる。酸性溶液は、浸漬終了時点のpHが4.0以下、浸漬開始時点のpHが2.5以下、好ましくは2.0以下、より好ましくは1.8以下である。上記pHの条件下であれば、浸漬工程中、pHが一定の値になるように制御しなくてもよい。   The acidic solution has a higher alkali metal removal rate when the pH is lower, as shown in the examples described later. The acidic solution has a pH at the end of immersion of 4.0 or less and a pH at the start of immersion of 2.5 or less, preferably 2.0 or less, more preferably 1.8 or less. If it is the conditions of the said pH, it is not necessary to control so that pH may become a constant value during an immersion process.

酸性溶液には、酸成分として硫酸(硫酸溶液)を好適に使用することができる。pHを下げることにより金属イオンが溶出し易くなることを考えれば、硫酸溶液以外にも塩酸など他の酸性溶液を使用することが可能であるが、コスト、さらにはカリウム、ナトリウムなどを除去した後のバイオマスの利用、さらには溶液の後処理の点から硫酸溶液は好ましい。   In the acidic solution, sulfuric acid (sulfuric acid solution) can be suitably used as the acid component. In view of the fact that metal ions can be easily eluted by lowering the pH, it is possible to use other acidic solutions such as hydrochloric acid in addition to the sulfuric acid solution. However, after removing costs, potassium, sodium, etc. The sulfuric acid solution is preferable from the viewpoint of the use of biomass and the post-treatment of the solution.

浸漬時間は、特に限定されるものではないが、後述の実施例に示すように1日間の浸漬でカリウムの除去率98.7%以上を得ることができた。浸漬温度も特に限定されるものではなく大気温度でよい。また撹拌操作を否定するものではないが、撹拌を行わなくてもよい。   Although the immersion time is not particularly limited, potassium removal rate of 98.7% or more could be obtained by immersion for 1 day as shown in Examples described later. The immersion temperature is not particularly limited, and may be atmospheric temperature. Moreover, although stirring operation is not denied, it is not necessary to perform stirring.

バイオマスは、酸性溶液に浸漬した後、回収し水洗し、バイオマスに付着する酸性溶液を洗い流し、またバイオマスの細胞膜内に入り込んだ酸性溶液を水で置換するのがよい(ステップS2)。水洗に使用する水は特に限定されるものではない。水洗時間、撹拌の有無などの水洗要領も特に限定されるものではない。   After the biomass is immersed in the acidic solution, it is recovered and washed with water, the acidic solution adhering to the biomass is washed away, and the acidic solution that has entered the cell membrane of the biomass is preferably replaced with water (step S2). The water used for washing is not particularly limited. The washing procedures such as washing time and presence / absence of stirring are not particularly limited.

水洗後は、必要に応じて乾燥を行えばよい(ステップS3)。もちろんその後の利用形態によっては、乾燥操作は不要である。   After washing with water, drying may be performed as necessary (step S3). Of course, depending on the form of use thereafter, the drying operation is unnecessary.

一般的なパームヤシのEFBは、カリウムを1〜3%(ドライベース)含有することが知られている。パームヤシのEFBは、この他にナトリウム、塩素を含むが、これらはカリウムに比較して含有量が少なく、またカリウムに比較して除去し易い。このようなカリウムの含有量が多いバイオマスであっても本発明の洗浄方法を使用することで、十分に除去できる。   It is known that EFB of common palm palm contains 1 to 3% (dry base) of potassium. The palm palm EFB contains sodium and chlorine in addition to these, but these have a lower content than potassium and are easier to remove than potassium. Even such biomass with a high potassium content can be sufficiently removed by using the cleaning method of the present invention.

これに対して、バイオマスを半炭化した後に水洗する方法、又は半炭化物を粉砕した後に水洗する方法、又は半炭化物を粉砕した後に水洗さらに温水洗浄する方法では、後述の実施例の欄に示すようにナトリウム、カリウムを十分に除去することができなかった。   On the other hand, in the method of washing with water after semi-carbonizing the biomass, the method of washing with water after pulverizing the semi-carbide, or the method of washing with water and then washing with warm water after pulverizing the semi-carbide, as shown in the column of Examples below However, sodium and potassium could not be removed sufficiently.

上記のように本発明のバイオマスの洗浄方法は、操作が簡単で特別な設備も必要ないため容易に実施することができる。図2は、本発明のバイオマスの洗浄方法を実施するための洗浄装置1の模式図、図3は本発明のバイオマスの洗浄方法を実施するための洗浄装置2の模式図である。   As described above, the method for cleaning biomass according to the present invention can be easily carried out because the operation is simple and no special equipment is required. FIG. 2 is a schematic diagram of a cleaning apparatus 1 for implementing the biomass cleaning method of the present invention, and FIG. 3 is a schematic diagram of a cleaning apparatus 2 for implementing the biomass cleaning method of the present invention.

洗浄装置1は、バイオマス5を収容する耐酸性のメッシュ状のコンテナ11と、メッシュ状のコンテナ11を収容可能で酸性溶液6を貯留する酸性タンク13と、洗浄用の水7を貯留する水タンク15と、水タンク15の水を撹拌する循環ポンプ17とを含む。メッシュ状のコンテナ11にフック付きのロープ21を取付けることで移動が容易になる。   The cleaning apparatus 1 includes an acid-resistant mesh-like container 11 that contains biomass 5, an acid tank 13 that can store the mesh-like container 11 and stores an acidic solution 6, and a water tank that stores cleaning water 7. 15 and a circulation pump 17 for stirring the water in the water tank 15. Movement is facilitated by attaching a rope 21 with a hook to the mesh container 11.

洗浄装置1を用いてバイオマスを洗浄するには、メッシュ状のコンテナ11にバイオマス5を入れ(図2(a))、これを酸性溶液6を貯留する酸性タンク13に所定時間浸漬させ(図2(b))、その後コンテナ11を水タンク15に移し(図2(c))、バイオマスに付着する酸性溶液6、細胞膜内に入り込んだ酸性溶液6を水7で置換する。水タンク15は、水7を撹拌する循環ポンプ17を備えるのでこれを稼働させることでバイオマス5の細胞膜内に入り込んだ酸性溶液6も効率的に水7に置換することができる。   In order to wash the biomass using the washing apparatus 1, the biomass 5 is put into a mesh-like container 11 (FIG. 2 (a)), and this is immersed in an acidic tank 13 storing the acidic solution 6 for a predetermined time (FIG. 2). (B)) After that, the container 11 is moved to the water tank 15 (FIG. 2 (c)), and the acidic solution 6 adhering to the biomass and the acidic solution 6 that has entered the cell membrane are replaced with water 7. Since the water tank 15 includes a circulation pump 17 that stirs the water 7, the acid solution 6 that has entered the cell membrane of the biomass 5 can be efficiently replaced with the water 7 by operating this pump.

洗浄装置2は、洗浄装置1と比較し、タンク等の形状が異なるが基本構成は同じである。洗浄装置2は、バイオマス5を収容する耐酸性の網袋12と、網袋12を収容可能で酸性溶液6を貯留する酸性タンク14と、洗浄用の水7を貯留する水タンク16と、水タンク16の水を撹拌する循環ポンプ18とを含む。使用方法も洗浄装置1と同じである。   The cleaning device 2 differs from the cleaning device 1 in the shape of a tank or the like, but the basic configuration is the same. The cleaning device 2 includes an acid-resistant net bag 12 that contains the biomass 5, an acid tank 14 that can store the net bag 12 and stores the acidic solution 6, a water tank 16 that stores the cleaning water 7, and water And a circulation pump 18 for stirring the water in the tank 16. The method of use is the same as that of the cleaning apparatus 1.

本洗浄方法をより単純化すれば、プールを設け、そこに硫酸溶液を張り込み、その中にバイオマスを浸漬するだけでよいので、パームヤシのEFBなどのように排出量が多いバイオマスの洗浄に好適である。   If this cleaning method is further simplified, it is only necessary to provide a pool, put a sulfuric acid solution into it, and immerse the biomass in it, which is suitable for cleaning biomass with a large amount of discharge, such as palm palm EFB. is there.

次に本発明の固形燃料の製造方法を図4に基づき説明する。ここでは図1に示すバイオマスの洗浄方法によりアルカリ金属が除去されたバイオマスを用い、これを半炭化又は炭化し、固形燃料を得る(ステップS4)。   Next, the manufacturing method of the solid fuel of this invention is demonstrated based on FIG. Here, the biomass from which the alkali metal has been removed by the biomass cleaning method shown in FIG. 1 is used, and this is semi-carbonized or carbonized to obtain a solid fuel (step S4).

半炭化は、無酸素雰囲気下又は低酸素雰囲気下で、200〜350℃程度の温度で熱分解するものであり、トレファクション、賠焼、低温炭化とも呼ばれる。これに対して炭化は、無酸素雰囲気下又は低酸素雰囲気下で、350〜600℃程度の温度で熱分解するものである。   Semi-carbonization is thermally decomposed at a temperature of about 200 to 350 ° C. in an oxygen-free atmosphere or a low-oxygen atmosphere, and is also referred to as refracting, burning, or low-temperature carbonization. In contrast, carbonization is thermally decomposed at a temperature of about 350 to 600 ° C. in an oxygen-free atmosphere or a low-oxygen atmosphere.

本発明の洗浄方法によりアルカリ金属が除去されたバイオマスの半炭化物又は炭化物は、カリウム、ナトリウム、塩素などが十分に除去されているので燃料として好適に使用することができる。また本発明の固形燃料の製造方法は、操作が簡単で特別な設備も必要としないので、固形燃料を安価に製造することができる。   Biomass semi-carbides or carbides from which alkali metals have been removed by the cleaning method of the present invention can be suitably used as fuel because potassium, sodium, chlorine, etc. are sufficiently removed. In addition, since the solid fuel production method of the present invention is easy to operate and does not require special equipment, the solid fuel can be produced at low cost.

なお本発明に係るバイオマスの洗浄方法、本発明の固形燃料の製造方法は、上記実施形態に限定されるものではなく、要旨を変更しない範囲で変更して使用することができる。   The biomass washing method according to the present invention and the solid fuel production method according to the present invention are not limited to the above-described embodiment, and can be used without departing from the spirit of the present invention.

以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本明細書を見て、自明な範囲内で種々の変更及び修正を容易に想定するであろう。従って、そのような変更及び修正は、請求の範囲から定まる発明の範囲内のものと解釈される。   As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily understand various changes and modifications within the obvious scope by looking at the present specification. Therefore, such changes and modifications are interpreted as being within the scope of the invention defined by the claims.

洗浄対象物
供試試料には生のバイオマスとして、パームヤシのEFB原形品(EFB原形固定品)、及びパームヤシのEFB原形品を破砕したEFB破砕品を使用した。EFB原形品は、回収されたパームヤシのEFBを縦切りにし1欠片あたり10g程度に切断されたものを使用した(図5の写真参照)。EFB破砕品の大きさは1〜数十mm程度である。
Object to be cleaned As raw biomass, an EFB original product of palm palm (an EFB original fixed product) and an EFB crushed product obtained by crushing an EFB original product of palm palm were used as raw biomass. The original EFB product was obtained by vertically cutting the recovered palm palm EFB and cutting it to about 10 g per piece (see the photograph in FIG. 5). The size of the EFB crushed product is about 1 to several tens of mm.

パームヤシのEFB原形品のカリウム含有量は、9000〜11000mg/kg−ドライベース、パームヤシのEFB破砕品のカリウム含有量は、11000mg/kg−ドライベースであった。カリウムの分析には、湿式分解−フレーム原子吸光法を用いた。   The potassium content of the EFB original product of palm palm was 9000 to 11000 mg / kg-dry base, and the potassium content of the EFB crushed product of palm palm was 11000 mg / kg-dry base. For analysis of potassium, wet decomposition-flame atomic absorption method was used.

実施例1:EFB原形品の硫酸溶液浸漬試験
1欠片あたり10g程度に切断されたEFB原形品を試料とし、試料100gを1000gの硫酸溶液に室温下、無撹拌状態で6日間浸漬させた。硫酸溶液濃度は、試料100g当たり0.69gとした。この量は、試料に含まれるカリウムの0.5当量に該当し、浸漬開始時のpHは2.5であった。以降、1日経過後に硫酸溶液のpHが2.5となるように硫酸を追加した。
Example 1: Sulfuric acid solution immersion test of EFB original product An EFB original product cut to about 10 g per piece was used as a sample, and 100 g of the sample was immersed in 1000 g of sulfuric acid solution at room temperature without stirring for 6 days. The sulfuric acid solution concentration was 0.69 g per 100 g of the sample. This amount corresponds to 0.5 equivalent of potassium contained in the sample, and the pH at the start of immersion was 2.5. Thereafter, sulfuric acid was added so that the pH of the sulfuric acid solution became 2.5 after one day.

6日間浸漬後、試料を回収し、10倍量の純水を加え、撹拌機で3時間、600rpmで撹拌を行った。その後、試料を回収し純水で付着水を取り除き、乾燥、粉砕を行いカリウム分析を行った。カリウム分析は、湿式分解−フレーム原子吸光法を用い、硫酸溶液のpHはJIS K 0102 12.1のガラス電極法で測定した。   After immersion for 6 days, a sample was collected, 10 times the amount of pure water was added, and the mixture was stirred with a stirrer at 600 rpm for 3 hours. Then, the sample was collected, the adhering water was removed with pure water, dried and pulverized, and the potassium analysis was performed. For potassium analysis, wet decomposition-flame atomic absorption method was used, and the pH of the sulfuric acid solution was measured by the glass electrode method of JIS K 0102 12.1.

実施例2:EFB原形品の硫酸溶液浸漬試験
実施例1と同様のEFB原形品を試料とし、試料100gを1000gの硫酸溶液に室温下、無撹拌状態で1日間浸漬させた。硫酸溶液濃度は、試料100g当たり2.07gとした。この量は、試料に含まれるカリウムの1.5当量に該当し、浸漬開始時のpHは1.8であった。硫酸の追加はしなかった。1日間の浸漬後は、実施例1と同様に処理し、分析を行った。
Example 2: Sulfuric acid solution immersion test of EFB prototype The same EFB prototype as in Example 1 was used as a sample, and 100 g of the sample was immersed in 1000 g of sulfuric acid solution at room temperature for 1 day without stirring. The sulfuric acid solution concentration was 2.07 g per 100 g sample. This amount corresponded to 1.5 equivalents of potassium contained in the sample, and the pH at the start of immersion was 1.8. No sulfuric acid was added. After the immersion for 1 day, it processed similarly to Example 1 and analyzed.

実施例3:EFB原形品の硫酸溶液浸漬試験
実施例2と同じ要領で試験を行った。但し、硫酸溶液濃度は、試料100g当たり4.14gとした。この量は、試料に含まれるカリウムの3.0当量に該当し、浸漬開始時のpHは1.3であった。
Example 3: Sulfuric acid solution immersion test of EFB original product A test was performed in the same manner as in Example 2. However, the sulfuric acid solution concentration was 4.14 g per 100 g of the sample. This amount corresponds to 3.0 equivalents of potassium contained in the sample, and the pH at the start of immersion was 1.3.

実施例4:EFB破砕品の硫酸溶液浸漬試験
パームヤシのEFB原形品を破砕し、篩で分級し1〜5mmのEFB破砕品を得た。これを試料とし、実施例1と同じ要領で試験を行った。但し、6日間の浸漬途中で硫酸を追加しなかった。6日間の浸漬後は、実施例1と同様に処理し、分析を行った。
Example 4: Sulfuric acid solution immersion test of EFB crushed product Palm EFB original product was crushed and classified with a sieve to obtain 1-5 mm EFB crushed product. Using this as a sample, the test was performed in the same manner as in Example 1. However, no sulfuric acid was added during the 6-day immersion. After 6 days of immersion, the same treatment as in Example 1 was performed for analysis.

比較例1:EFB破砕品の純水浸漬試験
実施例4の硫酸溶液浸漬試験と同じ要領で、硫酸溶液に代えて純水を用いて浸漬試験を実施した。なお本試験では、1日間の純水浸漬試験、3日間の純水浸漬試験も行った。
Comparative Example 1: Pure water immersion test of EFB crushed product In the same manner as the sulfuric acid solution immersion test of Example 4, an immersion test was performed using pure water instead of the sulfuric acid solution. In this test, a 1-day pure water immersion test and a 3-day pure water immersion test were also performed.

実施例1〜4及び比較例1の結果を表1に示した。   The results of Examples 1 to 4 and Comparative Example 1 are shown in Table 1.

表1に示すようにパームヤシのEFBは原形品であっても、硫酸溶液濃度を試料に含まれるカリウムの1.5当量以上とした場合、1日間の浸漬で残EFB中のカリウム濃度が560mg/kg−ドライベース、カリウム除去率が94.9%以上となった。また破砕品を試料とし、硫酸溶液に6日間浸漬した場合、硫酸溶液濃度が試料に含まれるカリウムの0.5当量であっても、残EFB中のカリウム濃度は100未満mg/kg−ドライベース(70mg/kg−ドライベース:参考値)であり、カリウムの除去率は、99.4%以上であった。なお、カリウムの分析に用いた湿式分解−フレーム原子吸光法の検出下限は100mg/kgである。   As shown in Table 1, even if the palm palm EFB is the original product, when the sulfuric acid solution concentration is 1.5 equivalents or more of potassium contained in the sample, the potassium concentration in the remaining EFB is 560 mg / day after immersion for 1 day. kg-dry base, potassium removal rate was 94.9% or more. When the crushed product is used as a sample and immersed in a sulfuric acid solution for 6 days, the potassium concentration in the residual EFB is less than 100 mg / kg-dry base even if the sulfuric acid solution concentration is 0.5 equivalent of potassium contained in the sample. (70 mg / kg-dry base: reference value), and the removal rate of potassium was 99.4% or more. In addition, the detection lower limit of the wet decomposition-flame atomic absorption method used for the analysis of potassium is 100 mg / kg.

試料の形態とカリウム除去率との関係では、破砕品の方が原形品に比べカリウム除去率は高かった。   Regarding the relationship between the sample form and the potassium removal rate, the pulverized product had a higher potassium removal rate than the original product.

比較例1の純水を用いた浸漬試験では、試料に粉砕品を使用したが、6日間の浸漬後においても試料中のカリウム濃度は1700mg/kg−ドライベースであり、カリウム除去率は、84.5%であった。   In the immersion test using pure water of Comparative Example 1, a pulverized product was used as a sample. Even after 6 days of immersion, the potassium concentration in the sample was 1700 mg / kg-dry base, and the potassium removal rate was 84. .5%.

カリウム除去率を硫酸溶液のpHとの関係で見ると、浸漬開始時のpHが低いほど、また浸漬終了時のpHが低いほど、カリウム除去率が高かった。このことは純水を用いた浸漬試験において、カリウム除去率が低かったこととも整合する。   Looking at the potassium removal rate in relation to the pH of the sulfuric acid solution, the lower the pH at the start of immersion and the lower the pH at the end of immersion, the higher the potassium removal rate. This is consistent with the fact that the potassium removal rate was low in the immersion test using pure water.

硫酸溶液のpHは、試料に付着するアるカリ分の影響を受ける。試料に付着するアルカリ分が多い場合、想定通りにpHが低下しないことがあるので留意すべきである。また試料に付着するアルカリ分が多い場合、硫酸溶液の浸漬に先立ち、付着するアルカリ分を除去することは、硫酸溶液の消費量を抑え得る点で好ましい。なお本試験の硫酸溶液浸漬試験において、破砕品が原形品に比較して浸漬前後のpHの変化が少ないのは、破砕品は、破砕に先立ち水洗いされており、これにより表面に付着するアルカリ分が除去されたものと推測される。   The pH of the sulfuric acid solution is affected by the potash that adheres to the sample. It should be noted that the pH may not decrease as expected when there is a large amount of alkali attached to the sample. In addition, when there is a large amount of alkali adhering to the sample, it is preferable to remove the adhering alkali before dipping the sulfuric acid solution in terms of suppressing the consumption of the sulfuric acid solution. In the sulfuric acid solution immersion test of this test, the change in pH before and after immersion was less compared with the original product because the crushed product was washed with water prior to crushing. Is estimated to have been removed.

表2は、実施例2の硫酸溶液浸漬試験後の残EFBの工業分析結果である。塩素、ナトリウムの含有量は、共に100未満mg/kg−ドライベースであり、カリウムに比較して残量が少ないことが分かる。また低位発熱量も約19000kJ/kg−ドライベースであり、硫酸溶液浸漬後においても十分な発熱量を有することが分かる。   Table 2 shows industrial analysis results of residual EFB after the sulfuric acid solution immersion test of Example 2. It can be seen that the contents of chlorine and sodium are both less than 100 mg / kg-dry base, and the remaining amount is small compared to potassium. Also, the lower heating value is about 19000 kJ / kg-dry base, and it can be seen that the heating value is sufficient even after immersion in the sulfuric acid solution.

図5は、本発明の実施例1〜3の硫酸溶液浸漬試験前後の試料の写真である。この図からも分かるように浸漬前後で外観に変化は見られなかった。試料に粉砕品を用いた実施例4においても試料を目視観察したところ、浸漬前後で外観に変化は見られなかった。なお比較例1においても、浸漬前後で試料の外観に変化は見られなかった。   FIG. 5 is photographs of samples before and after the sulfuric acid solution immersion test of Examples 1 to 3 of the present invention. As can be seen from this figure, there was no change in appearance before and after immersion. In Example 4 in which a pulverized product was used as a sample, the sample was visually observed, and no change was observed in the appearance before and after immersion. In Comparative Example 1, no change was observed in the appearance of the sample before and after immersion.

比較例2:EFB原形固体品の水洗試験
上記パームヤシのEFB原形品を試料とし、以下の要領で水洗試験を行った。試料200gに純水を2000g加え、室温下で1.5時間、撹拌装置で撹拌した。その後、ろ過し試料と水とに分離し、ろ液の電気伝導率とカリウムイオン濃度を分析した。電気伝導率の測定には電気伝導率計を、カリウムイオン濃度についてはカリウムイオン分析計、イオンクロマトグラム法を使用した。
Comparative Example 2: Water-washing test of EFB original solid product A water-washing test was performed in the following manner, using the palm palm EFB original product as a sample. 2000 g of pure water was added to 200 g of the sample, and the mixture was stirred with a stirrer at room temperature for 1.5 hours. Then, it filtered and isolate | separated into the sample and water, and analyzed the electrical conductivity and potassium ion concentration of the filtrate. An electric conductivity meter was used for measuring the electric conductivity, and a potassium ion analyzer and an ion chromatogram method were used for the potassium ion concentration.

上記加水、撹拌、ろ過操作を1回の水洗操作とし、3回の水洗操作を繰り返した。3回の水洗操作終了後、試料中のカリウムを分析した。分析は、湿式分解−フレーム原子吸光法で行った。水洗操作1回当たりの撹拌時間は、別途実施した吸収性確認試験のろ液の電気伝導率及びカリウムイオン濃度の経時変化から飽和に達するに必要な時間を求め、決定したものである。   The above hydration, stirring, and filtration operations were performed as a single water washing operation, and three water washing operations were repeated. After the three water washing operations, potassium in the sample was analyzed. Analysis was performed by wet decomposition-flame atomic absorption. The stirring time per washing operation was determined by determining the time required to reach saturation from the change over time in the electrical conductivity and potassium ion concentration of the filtrate in the absorbency confirmation test conducted separately.

水洗結果を表3に示した。表3中のカリウム除去率のうち水分析の結果は、ろ液中のカリウムイオン濃度とろ液量とから算出したものである。パームヤシのEFB原形品の水洗後の試料中のカリウム濃度は5700mg/kg−ドライベースであり、カリウムの除去率は36.7%であった。   The results of washing with water are shown in Table 3. Of the potassium removal rates in Table 3, the results of water analysis are calculated from the potassium ion concentration and the filtrate amount in the filtrate. The potassium concentration in the sample of the palm palm EFB original product after washing with water was 5700 mg / kg-dry base, and the potassium removal rate was 36.7%.

比較例3:EFB破砕品の水洗試験
パームヤシのEFB破砕品についても、パームヤシのEFB破砕品300gに純水を3000g加え、比較例2のEFB原形品と同じ要領で水洗試験を行った。水洗後の試料中のカリウム濃度は4800mg/kg−ドライベース、カリウムの除去率は56.4%であり、カリウムは十分に除去されなかった。
Comparative Example 3: Washing test of EFB crushed product For palm palm EFB crushed product, 3000 g of pure water was added to 300 g of palm palm EFB crushed product, and a water washing test was performed in the same manner as the EFB original product of Comparative Example 2. The potassium concentration in the sample after washing with water was 4800 mg / kg-dry base, the removal rate of potassium was 56.4%, and potassium was not sufficiently removed.

比較例4:グリリシディア原木粉砕物の水洗試験
スリランカの豆科の木であるグリリシディア(Gliricidia)を洗浄対象物とし、以下の要領で水洗試験を行った。グリリシディア原木を1〜5mmの程度の大きさに粗粉砕し、粉砕物を乾燥後、水洗した。水洗条件は、スタラーを使用し水洗倍率(水/粉砕乾燥品)は10倍、室温下で2時間撹拌した。カリウム、ナトリウムの分析は、湿式分析−フレーム原子吸光法、全塩素の分析は、ボンベ燃焼−イオンクロマトグラフ法により行った。
Comparative Example 4: Washing test of ground pulverized griricidia A washing test was carried out in the following manner using Gliricidia, which is a leguminous tree of Sri Lanka, as an object to be cleaned. The grillicidia log was roughly pulverized to a size of about 1 to 5 mm, and the pulverized product was dried and washed with water. The washing conditions were a stirrer, a washing ratio (water / pulverized dry product) of 10 times, and stirring at room temperature for 2 hours. The analysis of potassium and sodium was performed by wet analysis-flame atomic absorption method, and the analysis of total chlorine was performed by bomb combustion-ion chromatography.

比較例5:グリリシディア半炭化物の水洗試験
グリリシディア原木を1〜5mmの程度の大きさに粗粉砕し、粉砕物を乾燥後、乾留し半炭化物を得た。半炭化条件は、炉内に窒素ガスを500mL/min供給しながら、昇温時間1時間で290℃とした。その後、比較例4と同じ要領で水洗した。
Comparative Example 5: Water-washing test of grillicidia semi-carbide Grindidia log was coarsely pulverized to a size of about 1 to 5 mm, the pulverized product was dried and dry-distilled to obtain semi-carbide. The semi-carbonizing condition was set to 290 ° C. with a heating time of 1 hour while supplying nitrogen gas into the furnace at 500 mL / min. Thereafter, it was washed with water in the same manner as in Comparative Example 4.

比較例6:グリリシディア半炭化物の粉砕物の水洗試験
比較例5と同じ要領で半炭化物を得た後、半炭化物を粉砕し、その後、比較例4と同じ要領で水洗した。
Comparative Example 6: Water washing test of pulverized product of Grilicidia semicarbide After obtaining a semicarbide in the same manner as in Comparative Example 5, the semicarbide was pulverized, and then washed in the same manner as in Comparative Example 4.

比較例7:グリリシディア半炭化物の粉砕物の温水洗浄試験
比較例6の水洗試験後、さらに50℃の温水で洗浄した。
Comparative Example 7: Warm water washing test of pulverized product of glycyricidia semi-carbide After the water washing test of Comparative Example 6, it was further washed with hot water at 50 ° C.

比較例4〜7の結果を表4に示した。比較例4に示すようにナトリウム、塩素は、原木粉砕物を水洗するだけで低濃度とすることができた。これに対してカリウムは、水洗では十分に除去することができなかった。また半炭化するとカリウム、ナトリウムは濃縮され(比較例4、5参照)、さらに半炭化物は生のまま水洗するよりも除去率が悪かった。   The results of Comparative Examples 4 to 7 are shown in Table 4. As shown in Comparative Example 4, sodium and chlorine could be reduced in concentration simply by washing the crushed raw wood with water. In contrast, potassium could not be removed sufficiently by washing with water. Further, when semi-carbonized, potassium and sodium were concentrated (see Comparative Examples 4 and 5), and the removal rate of semi-carbide was worse than washing with water as it was.

1、2 洗浄装置
5 バイオマス
6 酸性溶液
7 水
11 コンテナ
12 網袋
13、14 酸性タンク
15、16 水タンク
17、18 循環ポンプ
21 フック付きロープ
1, 2 Cleaning device 5 Biomass 6 Acid solution 7 Water 11 Container 12 Net bag 13, 14 Acid tank 15, 16 Water tank 17, 18 Circulation pump 21 Rope with hook

Claims (4)

生のバイオマスを酸性溶液に浸漬し、バイオマスに含まれるアルカリ金属を除去する浸漬工程を含むことを特徴とするバイオマスの洗浄方法。   A method for washing biomass, comprising a dipping step of immersing raw biomass in an acidic solution and removing alkali metals contained in the biomass. 前記酸性溶液は、前記浸漬工程の終了時点のpHが4.0以下であり、前記浸漬工程の開始時点のpHが2.5以下、好ましくは2.0以下、より好ましくは1.8以下であることを特徴とする請求項1に記載のバイオマスの洗浄方法。   The acidic solution has a pH at the end of the dipping step of 4.0 or less, and a pH at the start of the dipping step of 2.5 or less, preferably 2.0 or less, more preferably 1.8 or less. The method for cleaning biomass according to claim 1, wherein: 前記酸性溶液が硫酸溶液であることを特徴とする請求項1又は2に記載のバイオマスの洗浄方法。   The method for washing biomass according to claim 1 or 2, wherein the acidic solution is a sulfuric acid solution. 請求項1から3のいずれか1項に記載のバイオマスの洗浄方法で得られるバイオマス洗浄物を半炭化又は炭化する半炭化/炭化工程を含むことを特徴とする固形燃料の製造方法。   A method for producing a solid fuel, comprising a semi-carbonization / carbonization step of semi-carbonizing or carbonizing a biomass washed product obtained by the method for cleaning biomass according to any one of claims 1 to 3.
JP2017080375A 2017-01-11 2017-04-14 Cleaning method of biomass and method of manufacturing solid fuel Pending JP2018111090A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017002222 2017-01-11
JP2017002222 2017-01-11

Publications (1)

Publication Number Publication Date
JP2018111090A true JP2018111090A (en) 2018-07-19

Family

ID=62911664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017080375A Pending JP2018111090A (en) 2017-01-11 2017-04-14 Cleaning method of biomass and method of manufacturing solid fuel

Country Status (1)

Country Link
JP (1) JP2018111090A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065204A (en) * 2017-10-02 2019-04-25 株式会社トロムソ Biomass raw material and manufacturing method therefor
WO2020217305A1 (en) * 2019-04-23 2020-10-29 岩谷産業株式会社 Method for producing biomass fuel and biomass fuel
JP7063511B1 (en) 2021-10-25 2022-05-09 サステイナブルエネルギー開発株式会社 Semi-carbonization equipment, sub-critical water treatment unit and semi-carbonized product manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065204A (en) * 2017-10-02 2019-04-25 株式会社トロムソ Biomass raw material and manufacturing method therefor
WO2020217305A1 (en) * 2019-04-23 2020-10-29 岩谷産業株式会社 Method for producing biomass fuel and biomass fuel
JP7063511B1 (en) 2021-10-25 2022-05-09 サステイナブルエネルギー開発株式会社 Semi-carbonization equipment, sub-critical water treatment unit and semi-carbonized product manufacturing method
JP2023063733A (en) * 2021-10-25 2023-05-10 サステイナブルエネルギー開発株式会社 Torrefaction device, subcritical water treatment unit, and method of producing torrefaction product

Similar Documents

Publication Publication Date Title
Kwaghger et al. Optimization of conditions for the preparation of activated carbon from mango nuts using HCl
JP2018111090A (en) Cleaning method of biomass and method of manufacturing solid fuel
US20080181999A1 (en) Water Leaching Method to Extract Oil Plant Products
CN105435748A (en) Plant cellulose adsorbent
CN104028224A (en) Wheat straw adsorption material and preparation method thereof
CN107456950A (en) A kind of preparation of brewex's grains charcoal and its application in lead waste water
JP2009039601A (en) Method for removing heavy metal element in biomass and method for decontaminating heavy metal-contaminated soil
Habeeb et al. Optimization of activated carbon synthesis using response surface methodology to enhance H2S removal from refinery wastewater
JP6190082B1 (en) Product manufacturing method
Gin et al. Utilization of cassava peel waste as a raw material for activated carbon production: approach to environmental protection in Nigeria
JP2015057378A (en) Method for extracting ceramide and/or pectin from whole apple and/or apple squeeze residue
CN105688833A (en) Biomass adsorbent and method for treating cadmium-containing wastewater by applying same
CN103159206B (en) Beer lees biomass charcoal with effect of removing pesticide pymetrozine, as well as preparation method and application thereof
JP2016093790A (en) Handling method of palm coconut seed core
CN103464112A (en) Method for preparing biological adsorbent by using wheat husks as raw materials
CN115612550A (en) Method for extracting plant stock solution by low-temperature freezing squeezing method and application
CN106495151A (en) The preparation method of cotton stalk based active carbon
CN110003999B (en) Camellia seed cleaning powder and preparation process thereof
CN107537442A (en) Charcoal preparation method and preparation system and mercury absorbent based on cotton stem
CN107949540A (en) The carbon precursor in plant material source
CN114149817A (en) Preparation method and application of rice straw biochar
CN112357920A (en) Method for preparing activated carbon by using camellia oleifera shells as raw materials through microwave chemical activation method
JP2005193114A (en) Method for extracting heavy metal in plant
CN104209096A (en) Watermelon vine adsorption material and preparation method thereof
RU2280978C1 (en) Method for recovery of hydroponics substrates

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20170517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170614