JP2018109619A - Light receiving device and light emitting/receiving device - Google Patents

Light receiving device and light emitting/receiving device Download PDF

Info

Publication number
JP2018109619A
JP2018109619A JP2017242460A JP2017242460A JP2018109619A JP 2018109619 A JP2018109619 A JP 2018109619A JP 2017242460 A JP2017242460 A JP 2017242460A JP 2017242460 A JP2017242460 A JP 2017242460A JP 2018109619 A JP2018109619 A JP 2018109619A
Authority
JP
Japan
Prior art keywords
light receiving
light emitting
light
information
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017242460A
Other languages
Japanese (ja)
Other versions
JP6439030B2 (en
Inventor
浩己 藤田
Hiromi Fujita
浩己 藤田
允喜 櫻井
Masaki Sakurai
允喜 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to US15/850,380 priority Critical patent/US10433387B2/en
Priority to US15/850,271 priority patent/US10212776B2/en
Publication of JP2018109619A publication Critical patent/JP2018109619A/en
Application granted granted Critical
Publication of JP6439030B2 publication Critical patent/JP6439030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a highly accurate light receiving device and light emitting/receiving device compensated for an influence of temperature and humidity.SOLUTION: A light receiving device 2 comprises: a light receiving element 21 for receiving at least a part of light made incident from the outside, and for outputting an output signal corresponding to an amount of received light; a mold resin part 22 for sealing at least a part of the light receiving element 21; a temperature information acquisition part 23 for acquiring temperature information TI; a humidity information calculation part 24 for calculating humidity information HI on the basis of information on at least one of electric characteristics and optical characteristics of the light receiving element 21 and the temperature information TI; and a compensation part 25 for compensating an output signal SO on the basis of the temperature information TI and the humidity information HI.SELECTED DRAWING: Figure 1

Description

本発明は受光装置及び受発光装置に関する。   The present invention relates to a light receiving device and a light receiving / emitting device.

従来から、受光装置及び発光装置を用いた光学的物理量測定の技術の応用として、検出対象物までの距離を測定する測距センサや、大気中の測定対象ガスの濃度測定を行うガス濃度測定装置が提案されてきた。   Conventionally, as an application of the optical physical quantity measurement technology using a light receiving device and a light emitting device, a distance measuring sensor for measuring the distance to a detection target and a gas concentration measuring device for measuring the concentration of a measurement target gas in the atmosphere Has been proposed.

特に、ガス濃度測定装置としては、中赤外の赤外線領域において、ガスの吸収波長がガス種により異なることを利用し、この吸収量を検出することによりそのガス濃度を測定する非分散赤外吸収型(Non−Dispersive Infrared)ガス濃度測定装置が知られている。この原理を用いたガス濃度測定装置としては、例えば、測定対象ガスが吸収特性を持つ波長に限定した赤外線を透過するフィルタ(透過部材)と赤外線センサを組み合わせ、赤外線の吸収量を測定することによってガスの濃度を測定するようにしたものが挙げられる(例えば、特許文献1)。   In particular, as a gas concentration measuring device, in the mid-infrared infrared region, utilizing the fact that the absorption wavelength of the gas varies depending on the gas type, non-dispersive infrared absorption that measures the gas concentration by detecting this absorption amount A type (Non-Dispersive Infrared) gas concentration measuring apparatus is known. As a gas concentration measurement device using this principle, for example, by combining a filter (transmission member) that transmits infrared light limited to a wavelength with which the measurement target gas has absorption characteristics and an infrared sensor, the amount of infrared absorption is measured. A gas concentration can be measured (for example, Patent Document 1).

特開平9−33431号公報JP-A-9-33431

このような光学式の計測装置を構成する場合、必要な精度を保つために、環境温度や湿度の影響を可能な限り除去することが必要であり、従来からセラミックパッケージや缶パッケージといった、パッケージ技術が用いられてきた。一方、集積回路等で広く使われる樹脂モールドの技術は、大量・安価に製造できる優れた技術でありながら、樹脂材料と受光素子、発光素子との熱膨張差に起因する熱応力、湿度による樹脂の吸湿あるいは乾燥に起因する膨潤応力による影響により、発光素子の発光量、受光素子の出力信号の変動が起こる。このために、従来のモールド技術は、高精度の光源やセンサ、ガスセンサ等は実現できないという問題を有している。   When configuring such an optical measurement device, it is necessary to remove the influence of environmental temperature and humidity as much as possible in order to maintain the required accuracy. Conventionally, package technologies such as ceramic packages and can packages have been used. Has been used. On the other hand, the resin mold technology widely used in integrated circuits, etc. is an excellent technology that can be manufactured in large quantities and at low cost, but the resin due to thermal stress and humidity caused by the difference in thermal expansion between the resin material, the light receiving element, and the light emitting element. The amount of light emitted from the light emitting element and the output signal of the light receiving element fluctuate due to the influence of swelling stress caused by moisture absorption or drying. For this reason, the conventional molding technique has a problem that a highly accurate light source, sensor, gas sensor, or the like cannot be realized.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、温度及び湿度による影響の補償された高精度の受光装置及び受発光装置を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a high-precision light-receiving device and light-receiving / emitting device in which the influence of temperature and humidity is compensated.

上記目的を達成するために、本発明の一態様による受光装置は、外部から入射する光の少なくとも一部を受光し、受光量に応じた出力信号を出力する受光素子と、前記受光素子の少なくとも一部を封止するモールド樹脂部と、温度情報を取得する温度情報取得部と、前記受光素子の電気的特性及び光学的特性の少なくとも一方に関する情報と、前記温度情報とに基づいて湿度情報を算出する湿度情報算出部と、前記温度情報及び前記湿度情報に基づいて前記出力信号を補償する補償部と、を備えることを特徴とする。   In order to achieve the above object, a light receiving device according to an aspect of the present invention includes a light receiving element that receives at least part of light incident from the outside and outputs an output signal corresponding to the amount of light received, and at least the light receiving element. Humidity information based on the temperature information, a mold resin part that seals a part, a temperature information acquisition part that acquires temperature information, information on at least one of electrical characteristics and optical characteristics of the light receiving element, and the temperature information A humidity information calculation unit for calculating, and a compensation unit for compensating the output signal based on the temperature information and the humidity information are provided.

また、上記目的を達成するために、本発明の一態様による受発光装置は、発光素子と、前記発光素子が出力する光の少なくとも一部を受光し、受光量に応じた出力信号を出力する受光素子と、前記受光素子の少なくとも一部を封止するモールド樹脂部と、温度情報を取得する温度情報取得部と、前記受光素子の電気的特性及び光学的特性の少なくとも一方に関する情報と、前記温度情報とに基づいて湿度情報を算出する湿度情報算出部と、前記温度情報及び前記湿度情報に基づいて前記発光素子を制御する制御部と、を備えることを特徴とする。   In order to achieve the above object, a light receiving and emitting device according to one embodiment of the present invention receives a light emitting element and at least a part of light output from the light emitting element, and outputs an output signal corresponding to the amount of received light. A light receiving element, a mold resin portion that seals at least a part of the light receiving element, a temperature information acquisition unit that acquires temperature information, information on at least one of electrical characteristics and optical characteristics of the light receiving element, and A humidity information calculating unit that calculates humidity information based on the temperature information; and a control unit that controls the light emitting element based on the temperature information and the humidity information.

本発明の一態様によれば、温度及び湿度による影響の補償された高精度の受光装置及び受発光装置を実現することができる。   According to one embodiment of the present invention, a highly accurate light-receiving device and light-receiving / emitting device in which influences due to temperature and humidity are compensated can be realized.

本発明の第1実施形態に係る受光装置を説明するための構成図である。It is a block diagram for demonstrating the light-receiving device which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る発光装置を説明するための構成図である。It is a block diagram for demonstrating the light-emitting device which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る受発光装置を説明するための構成図である。It is a block diagram for demonstrating the light emitting / receiving apparatus which concerns on 3rd Embodiment of this invention. 本発明の実施形態の実施例に係る受発光装置を説明する図であって、受発光装置を炭酸ガス濃度測定装置に適用した場合の炭酸ガス実濃度と炭酸ガス濃度算出値の関係を示す図である。It is a figure explaining the light receiving and emitting apparatus which concerns on the Example of embodiment of this invention, Comprising: The figure which shows the relationship between the carbon dioxide actual concentration at the time of applying a light receiving and emitting apparatus to a carbon dioxide concentration measuring apparatus, and a carbon dioxide concentration calculation value It is. 比較例における炭酸ガス実濃度と炭酸ガス濃度算出値の関係を示す図である。It is a figure which shows the relationship between the carbon dioxide actual concentration in a comparative example, and a carbon dioxide concentration calculation value.

以下、本発明を実施するための形態(以下、本実施形態という)について説明する。なお、以下の実施形態は、特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as the present embodiment) will be described. The following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.

<受光装置>
本実施形態に係る受光装置は、外部から入射する光の少なくとも一部を受光し、受光量に応じた出力信号を出力する受光素子と、受光素子の少なくとも一部を封止するモールド樹脂部と、温度情報を取得する温度情報取得部と、前記受光素子の電気的特性及び光学的特性の少なくとも一方に関する情報と、前記温度情報に基づいて湿度情報を算出する湿度情報算出部と、前記温度情報及び前記湿度情報に基づいて前記出力信号を補償する補償部と、を備える。
<Light receiving device>
The light receiving device according to the present embodiment receives at least a part of light incident from the outside and outputs an output signal corresponding to the amount of received light, and a mold resin portion that seals at least a part of the light receiving element. A temperature information acquisition unit that acquires temperature information, information on at least one of electrical characteristics and optical characteristics of the light receiving element, a humidity information calculation unit that calculates humidity information based on the temperature information, and the temperature information And a compensator for compensating the output signal based on the humidity information.

本実施形態に係る受光装置によれば、温度及び湿度による、受光素子の出力信号の変動の影響を補償することが可能となり、従来と比べてより高精度に光学的な物理量の測定を実現することができる。一例として、非分散赤外吸収型ガス濃度測定装置に本実施形態に係る受光装置を用いることで、測定対象ガスによる赤外線の吸収量を高精度に測定できるため、ガス濃度の測定精度を向上させることが可能となる。ここで外部から入射する光とは、受光素子と空間的に離れた光源から入射する光を指す。   According to the light receiving device according to the present embodiment, it becomes possible to compensate for the influence of fluctuations in the output signal of the light receiving element due to temperature and humidity, and realize measurement of optical physical quantities with higher accuracy than in the past. be able to. As an example, by using the light receiving device according to the present embodiment for a non-dispersive infrared absorption type gas concentration measuring device, the amount of infrared absorption by the measurement target gas can be measured with high accuracy, so that the gas concentration measurement accuracy is improved. It becomes possible. Here, light incident from the outside refers to light incident from a light source spatially separated from the light receiving element.

<発光装置>
本実施形態に係る発光装置は、発光素子と、前記発光素子の少なくとも一部を封止するモールド樹脂部と、温度情報取得部と、前記発光素子の電気的特性及び光学的特性の少なくとも一方に関する情報と、前記温度情報と、に基づいて湿度情報を算出する湿度情報算出部と、前記温度情報及び前記湿度情報に基づいて、前記発光素子を制御する制御部と、を備える。
<Light emitting device>
The light-emitting device according to the present embodiment relates to a light-emitting element, a mold resin portion that seals at least a part of the light-emitting element, a temperature information acquisition unit, and at least one of electrical characteristics and optical characteristics of the light-emitting element. A humidity information calculation unit that calculates humidity information based on the information and the temperature information; and a control unit that controls the light emitting element based on the temperature information and the humidity information.

本実施形態に係る発光装置によれば、温度及び湿度による、発光素子の発光量の変動の影響を補償することが可能となり、従来と比べてより高精度に光学的な物理量の測定を実現することができる。一例として、非分散赤外吸収型ガス濃度測定装置に本実施形態に係る発光装置を用いることで、測定対象ガスに対して高精度な発光量の赤外線を照射することができるため、ガス濃度の測定精度を向上させることが可能となる。   According to the light emitting device according to the present embodiment, it becomes possible to compensate for the influence of the variation in the light emission amount of the light emitting element due to the temperature and humidity, and realize the measurement of the optical physical quantity with higher accuracy than in the past. be able to. As an example, by using the light emitting device according to the present embodiment for a non-dispersive infrared absorption gas concentration measuring device, it is possible to irradiate the measurement target gas with infrared light with a high accuracy, so that the gas concentration Measurement accuracy can be improved.

<受発光装置>
本実施形態に係る受発光装置は、発光素子と、前記発光素子が出力する光の少なくとも一部を受光し、受光量に応じた出力信号を出力する受光素子と、前記発光素子の少なくとも一部を封止するモールド樹脂部と、温度情報を取得する温度情報取得部と、前記発光素子の電気的特性及び光学的特性の少なくとも一方に関する情報と、前記温度情報と、に基づいて湿度情報を算出する湿度情報算出部と、前記温度情報及び前記湿度情報に基づいて前記出力信号を補償する補償部と、を備える。
<Light emitting / receiving device>
The light emitting / receiving device according to the present embodiment includes a light emitting element, a light receiving element that receives at least part of light output from the light emitting element, and outputs an output signal corresponding to the amount of received light, and at least part of the light emitting element. Humidity information is calculated based on the mold resin portion for sealing, a temperature information acquisition portion for acquiring temperature information, information on at least one of electrical characteristics and optical characteristics of the light emitting element, and the temperature information A humidity information calculating unit that compensates the output signal based on the temperature information and the humidity information.

本実施形態に係る受発光装置によれば、温度及び湿度による、受光素子の出力信号及び発光素子の発光量の変動の影響を補償することが可能となり、従来と比べてより高精度に光学的な物理量の測定を実現することができる。一例として、非分散赤外吸収型ガス濃度測定装置に本実施形態に係る受発光装置を用いることで、測定対象ガスに対して高精度な発光量の赤外線を照射することができ、さらに、測定対象ガスによる赤外線の吸収量を高精度に測定できるため、ガス濃度の測定精度を向上させることが可能となる。また液体中の不純物による赤外吸収を利用することにより、液体中の不純物濃度を高精度に測定する測定装置を構成することも可能となる。
以下、本実施形態に係る受光装置、発光装置及び受発光装置の各構成部について、例を挙げて説明する。
According to the light emitting / receiving device according to the present embodiment, it becomes possible to compensate for the influence of fluctuations in the output signal of the light receiving element and the light emission amount of the light emitting element due to temperature and humidity, and optical accuracy is higher than in the past. Measurement of physical quantities can be realized. As an example, by using the light emitting and receiving device according to the present embodiment for a non-dispersive infrared absorption type gas concentration measuring device, it is possible to irradiate the measurement target gas with infrared light with a high accuracy, and to measure Since the amount of infrared rays absorbed by the target gas can be measured with high accuracy, the measurement accuracy of the gas concentration can be improved. In addition, by using infrared absorption by impurities in the liquid, it is possible to configure a measuring apparatus that measures the impurity concentration in the liquid with high accuracy.
Hereinafter, each component of the light receiving device, the light emitting device, and the light receiving and emitting device according to the present embodiment will be described with examples.

<受光素子>
本実施形態に係る受光装置及び受発光装置における受光素子は、使用用途に適する波長を含む光の帯域に感度を有していれば特に制限されない。特に、受光素子がガス濃度測定装置として用いられる場合には、被検出ガスによって吸収される波長を含む光の帯域に感度を有していれば特に制限されない。
<Light receiving element>
The light receiving device according to the present embodiment and the light receiving element in the light receiving and emitting device are not particularly limited as long as they have sensitivity in a light band including a wavelength suitable for the intended use. In particular, when the light receiving element is used as a gas concentration measuring device, it is not particularly limited as long as it has sensitivity in the band of light including the wavelength absorbed by the gas to be detected.

受光素子には、焦電センサ(Pyroelectric sensor)、サーモパイル(Thermopile:熱電堆)、ボロメータ(Bolometer)等の熱型センサや、フォトダイオード、フォトトランジスタなど量子型センサ等が好適である。受光素子は、測定対象ガスに併せて所望の光学特性を有する光学フィルタをさらに備えていてもよい。例えば被検出ガスが炭酸ガスの場合、受光素子には炭酸ガスによる赤外線吸収が多く生じる波長帯(代表的には4.3μm付近)の赤外線を濾波できるバンドパスフィルタを搭載する形態が好ましい。   The light receiving element is preferably a thermal sensor such as a pyroelectric sensor, a thermopile, or a bolometer, or a quantum sensor such as a photodiode or a phototransistor. The light receiving element may further include an optical filter having desired optical characteristics in combination with the measurement target gas. For example, when the gas to be detected is carbon dioxide, it is preferable that the light receiving element is equipped with a band-pass filter capable of filtering infrared light in a wavelength band (typically around 4.3 μm) where infrared absorption by carbon dioxide gas is large.

また、本発明の発明者らは、受光素子の少なくとも一部がモールド樹脂によって封止されていると、モールド樹脂部の吸湿及び乾燥の少なくとも一方による影響によって、受光素子に加わる応力が変化して、受光素子の出力が変動することを今回新たに発見した。発明者らは、この発見により、モールド樹脂部の湿度と相関のある情報(湿度情報)を測定することで、モールド樹脂部の吸湿による受光素子の出力信号の変動の影響を補償できることを明らかにした。   Further, the inventors of the present invention, when at least a part of the light receiving element is sealed with a mold resin, the stress applied to the light receiving element changes due to the influence of at least one of moisture absorption and drying of the mold resin portion. We have newly discovered that the output of the light receiving element fluctuates. The inventors clearly found that this finding can compensate for the influence of fluctuations in the output signal of the light receiving element due to moisture absorption of the mold resin part by measuring information correlated with the humidity of the mold resin part (humidity information). did.

また、後述するように、発明者らは、温度情報並びに受光素子の電気的特性及び光学的特性の少なくとも一方に関する情報に基づいて、モールド樹脂部の湿度と相関のある情報(湿度情報)を算出できることを新たに見出した。これにより受光素子の電気的特性及び光学的特性の少なくとも一方に関する情報を測定することで、モールド樹脂部の湿度と相関のある情報(湿度情報)が得られ、この取得された温度情報及び湿度情報を用いて受光素子の出力を補償することが可能となる。   As will be described later, the inventors calculate information (humidity information) correlated with the humidity of the mold resin portion based on the temperature information and information on at least one of the electrical characteristics and optical characteristics of the light receiving element. I found something new that I can do. Thus, by measuring information on at least one of the electrical characteristics and optical characteristics of the light receiving element, information (humidity information) correlated with the humidity of the mold resin part is obtained, and the obtained temperature information and humidity information are obtained. It is possible to compensate the output of the light receiving element by using.

また、本実施形態に係る受光装置及び受発光装置において、受光素子は、インジウムを含み、ヒ素及びアンチモンの少なくとも一方を含み、P型半導体層とN型半導体層を少なくとも有するダイオード構造を有していてもよく、又は抵抗体でもよい。これにより、特にCOの濃度を測定するガス濃度測定装置において、COの吸収波長帯である4.3μm付近の赤外線を高いS/N比で測定することが可能となる。また、本実施形態に係る受光装置及び受発光装置において、受光素子は、後述するように補助素子を備えてもよい。 In the light receiving device and the light receiving / emitting device according to the present embodiment, the light receiving element includes indium, includes at least one of arsenic and antimony, and has a diode structure including at least a P-type semiconductor layer and an N-type semiconductor layer. Or a resistor. Thus, particularly in the gas concentration measuring device for measuring the concentration of CO 2, it is possible to measure the infrared around 4.3μm, which is an absorption wavelength band of CO 2 at a high S / N ratio. In the light receiving device and the light receiving and emitting device according to the present embodiment, the light receiving element may include an auxiliary element as will be described later.

<発光素子>
本実施形態に係る発光装置及び受発光装置における発光素子は、使用用途に適する波長を含む光を出力すれば特に制限されない。特に、発光素子は、ガス濃度測定装置として用いられる場合には、被検出ガスによって吸収される波長を含む光を出力すれば特に制限されない。発光素子の具体的な例としては、MEMS(Micro Electro Mechanical Systems)ヒーターや発光ダイオード(Light Emitting Diode:LED)が挙げられる。このような発光素子は、被検出ガス以外の成分の光吸収によるノイズを低減する観点から、被検出ガスの吸収が大きい波長帯の光のみを出力するとよい。
<Light emitting element>
The light emitting element in the light emitting device and the light receiving and emitting device according to the present embodiment is not particularly limited as long as it outputs light including a wavelength suitable for the intended use. In particular, when the light emitting element is used as a gas concentration measuring device, it is not particularly limited as long as it outputs light including a wavelength absorbed by the gas to be detected. Specific examples of the light-emitting element include a MEMS (Micro Electro Mechanical Systems) heater and a light-emitting diode (Light Emitting Diode: LED). Such a light-emitting element may output only light in a wavelength band where absorption of the detection gas is large from the viewpoint of reducing noise due to light absorption of components other than the detection gas.

発光波長帯を発光層のバンドギャップでコントロールできるという観点から、発光素子はLED構造を有しているとよい。LED構造の光源を用いると、発光層に利用される材料のバンドギャップを被検出ガスの吸収波長に調整することにより、光学フィルタ(例えば、バンドパスフィルタ)を使用せずに、特定のガスの検出が可能となり、光学フィルタ無しのガスセンサが実現できる。光学フィルタ無しのガスセンサが実現できると、ガス濃度測定装置の構造の簡略化を図ることができる。   From the viewpoint that the emission wavelength band can be controlled by the band gap of the light emitting layer, the light emitting element preferably has an LED structure. When the light source of the LED structure is used, the band gap of the material used for the light emitting layer is adjusted to the absorption wavelength of the gas to be detected, so that an optical filter (for example, a bandpass filter) can be used without using a specific gas. Detection is possible, and a gas sensor without an optical filter can be realized. If a gas sensor without an optical filter can be realized, the structure of the gas concentration measuring device can be simplified.

また、本発明の発明者らは、発光素子の少なくとも一部がモールド樹脂に封止されていると、モールド樹脂部の吸湿及び乾燥の少なくとも一方による影響によって、発光素子に加わる応力が変化して、発光素子の発光量が変動することを今回新たに発見した。従って、モールド樹脂部の湿度と相関のある情報(湿度情報)を測定することで、モールド樹脂部の吸湿による発光素子の発光量の変動の影響を補償することが可能となる。   Further, the inventors of the present invention, when at least a part of the light emitting element is sealed with the mold resin, the stress applied to the light emitting element changes due to the influence of moisture absorption and / or drying of the mold resin portion. This time, it was newly discovered that the light emission amount of the light emitting element fluctuates. Therefore, by measuring information (humidity information) correlated with the humidity of the mold resin part, it is possible to compensate for the influence of fluctuations in the light emission amount of the light emitting element due to moisture absorption of the mold resin part.

また、後述するように、発明者らは、温度情報並びに発光素子の電気的特性及び光学的特性の少なくとも一方に関する情報に基づいて、モールド樹脂部の湿度と相関のある情報(湿度情報)を算出できることを新たに見出した。これにより発光素子の電気的特性及び光学的特性の少なくとも一方に関する情報を測定することで、モールド樹脂部の湿度と相関のある情報(湿度情報)が得られ、この取得された温度情報及び湿度情報を用いて発光素子の出力を制御することが可能となる。   As will be described later, the inventors calculate information (humidity information) correlated with the humidity of the mold resin portion based on temperature information and information on at least one of the electrical characteristics and optical characteristics of the light emitting element. I found something new that I can do. Thus, information (humidity information) correlated with the humidity of the mold resin portion is obtained by measuring information on at least one of the electrical characteristics and optical characteristics of the light emitting element, and the obtained temperature information and humidity information are obtained. The output of the light emitting element can be controlled using

また、本実施形態に係る発光装置、受発光装置において、発光素子は、インジウムを含み、ヒ素及びアンチモンの少なくとも一方を含み、P型半導体層とN型半導体層を少なくとも有するダイオード構造を有していてもよい。これにより、特にCOの濃度を測定するガス濃度測定装置において、COの吸収波長帯である4.3μm付近の赤外線の発光量を高めることが可能となる。
また、本実施形態に係る発光装置及び受発光装置において、発光素子は、後述するように補助素子を備えてもよい。
In the light emitting device and the light emitting and receiving device according to the present embodiment, the light emitting element has a diode structure including indium, including at least one of arsenic and antimony, and including at least a P-type semiconductor layer and an N-type semiconductor layer. May be. Thus, particularly in the gas concentration measuring device for measuring the concentration of CO 2, it is possible to increase the amount of light emitted infrared around 4.3μm, which is an absorption wavelength band of CO 2.
In the light emitting device and the light receiving and emitting device according to the present embodiment, the light emitting element may include an auxiliary element as will be described later.

<温度情報取得部>
本実施形態に係る受光装置における温度情報取得部は、受光装置の温度情報を取得する。この場合、温度情報は、受光素子の温度またはモールド樹脂部の温度に関する情報を含んでいてもよい。またこの場合、温度情報は、受光素子の電気的特性及び光学的特性の少なくとも一方に関する情報を含んでいてもよい。
<Temperature information acquisition unit>
The temperature information acquisition unit in the light receiving device according to the present embodiment acquires temperature information of the light receiving device. In this case, the temperature information may include information on the temperature of the light receiving element or the temperature of the mold resin portion. In this case, the temperature information may include information on at least one of the electrical characteristics and the optical characteristics of the light receiving element.

本実施形態に係る発光装置における温度情報取得部は、発光装置の温度情報を取得する。この場合、温度情報は、発光素子の温度またはモールド樹脂部の温度に関する情報を含んでいてもよい。またこの場合、温度情報は、発光素子の電気的特性及び光学的特性の少なくとも一方に関する情報を含んでいてもよい。   The temperature information acquisition unit in the light emitting device according to the present embodiment acquires temperature information of the light emitting device. In this case, the temperature information may include information on the temperature of the light emitting element or the temperature of the mold resin portion. In this case, the temperature information may include information on at least one of electrical characteristics and optical characteristics of the light emitting element.

本実施形態に係る受発光装置における温度情報取得部は、受発光装置の温度情報を取得する。この場合、温度情報は、受光素子の温度、発光素子の温度及びモールド樹脂部の温度のうちの少なくとも1つに関する情報を含んでいてもよい。またこの場合、温度情報は、受光素子及び発光素子の少なくとも一方の電気的特性及び光学的特性の少なくとも一方に関する情報を含んでいてもよい。
本実施形態に係る受光装置、発光装置及び受発光装置において、後述の、モールド樹脂部に少なくとも一部を封止された補助素子をさらに備える場合には、温度情報は、補助素子の電気的特性及び光学的特性の少なくとも一方に関する情報を含んでいてもよい。
The temperature information acquisition unit in the light emitting / receiving device according to the present embodiment acquires temperature information of the light receiving / emitting device. In this case, the temperature information may include information on at least one of the temperature of the light receiving element, the temperature of the light emitting element, and the temperature of the mold resin portion. In this case, the temperature information may include information on at least one of the electrical characteristics and the optical characteristics of at least one of the light receiving element and the light emitting element.
In the light receiving device, the light emitting device, and the light emitting / receiving device according to the present embodiment, in the case where an auxiliary element, which will be described later, is sealed at least partially in the mold resin portion, the temperature information is the electrical characteristics of the auxiliary element. And information on at least one of the optical characteristics.

特に測定環境の温度変化が速い場合や、受光素子及び発光素子と測定環境との平衡状態が保たれない場合には、受光素子や発光素子の温度に関する情報を温度情報として用いてもよい。   In particular, when the temperature change in the measurement environment is fast, or when the equilibrium state between the light receiving element and the light emitting element and the measurement environment cannot be maintained, information on the temperature of the light receiving element or the light emitting element may be used as the temperature information.

一方で、測定環境の温度変化が遅く、受光素子及び発光素子と測定環境との平衡状態が保たれる場合には、例えば受光素子や発光素子を実装する基板上に、別に設置された温度センサなどを用いることで、環境の温度を測定して、測定された温度を温度情報として使用することもできる。   On the other hand, when the temperature change in the measurement environment is slow and the light receiving element and the light emitting element and the measurement environment are kept in an equilibrium state, for example, a temperature sensor installed separately on the substrate on which the light receiving element and the light emitting element are mounted. For example, the temperature of the environment can be measured and the measured temperature can be used as temperature information.

この場合の温度情報を取得する手段としては、具体的にはサーミスタや白金(Pt)測温抵抗体、ダイオードなどの温度センサを利用することができる。   As means for acquiring temperature information in this case, specifically, a temperature sensor such as a thermistor, a platinum (Pt) resistance temperature detector, or a diode can be used.

また温度情報取得部が取得する温度情報は、温度そのものに限定されず、温度により影響を受ける物理量である、受光素子や発光素子の電気的特性及び光学的特性により温度情報を算出してもよい。ここで、電気的特性とは、電流−電圧特性や、電流−電圧特性から取得される無バイアス付近での出力抵抗(内部抵抗)、順方向電圧降下などの発光素子及び受光素子の特性を特徴付ける物理量をいう。また、光学的特性とは、発光素子における発光量、受光素子における光電流(出力信号)などの発光素子及び受光素子の特性を特徴付ける物理量のことをいう。これらの物理量は、温度以外の要因によっても影響を受けるが、後述する湿度情報算出部や補償部、制御部によって、これらの物理量から必要な情報(湿度情報)を抽出できる。このため、これらの物理量を用いて、受光素子の出力信号の補償や発光素子の制御を行うことが可能となる。
以下、受光素子や発光素子の電気的特性及び光学的特性はそれぞれ、上述の物理量を意味する。
The temperature information acquired by the temperature information acquisition unit is not limited to the temperature itself, and the temperature information may be calculated from the electrical characteristics and optical characteristics of the light receiving element and the light emitting element, which are physical quantities affected by the temperature. . Here, the electrical characteristics characterize the characteristics of the light-emitting element and the light-receiving element such as current-voltage characteristics, output resistance (internal resistance) in the vicinity of no bias obtained from the current-voltage characteristics, and forward voltage drop. A physical quantity. The optical characteristics refer to physical quantities that characterize the characteristics of the light emitting element and the light receiving element, such as the amount of light emitted from the light emitting element and the photocurrent (output signal) in the light receiving element. Although these physical quantities are affected by factors other than temperature, necessary information (humidity information) can be extracted from these physical quantities by a humidity information calculation unit, a compensation unit, and a control unit described later. For this reason, it is possible to compensate for the output signal of the light receiving element and control the light emitting element by using these physical quantities.
Hereinafter, the electrical characteristics and optical characteristics of the light receiving element and the light emitting element respectively mean the physical quantities described above.

本実施形態に係る受発光装置における温度情報取得部は、後述の補償部及び湿度情報算出部に取得した温度情報を出力する。ここで、補償部に出力する「温度情報」と、湿度情報算出部に出力する「温度情報」は、それぞれ温度情報に関連する情報(データ)であればよく、必ずしも同じ情報の形式であることには限定されない。例えば同じ温度情報を元として、異なる補正式により補正された異なる温度情報を補償部及び湿度情報算出部にそれぞれ出力する場合にも、本発明の範囲に含まれることは言うまでもない。また、発光素子の順方向電圧降下を湿度情報算出部へ出力する温度情報とし、外部や同一の実装基板上の温度センサの出力を温度情報取得部が取得し、補償部へ出力する温度情報とすることも可能である。もちろん、受発光装置の外部や、同一の実装基板上に設置された温度センサの出力を温度情報取得部が取得し、共通の「温度情報」として補償部及び湿度情報算出部に出力することもできる。   The temperature information acquisition unit in the light emitting and receiving device according to the present embodiment outputs the acquired temperature information to a compensation unit and a humidity information calculation unit described later. Here, the “temperature information” output to the compensation unit and the “temperature information” output to the humidity information calculation unit may be information (data) related to the temperature information, respectively, and have the same information format. It is not limited to. For example, when different temperature information corrected by different correction formulas based on the same temperature information is output to the compensation unit and the humidity information calculation unit, it goes without saying that they are included in the scope of the present invention. Further, the forward voltage drop of the light emitting element is set as temperature information to be output to the humidity information calculation unit, the temperature information acquisition unit acquires the output of the temperature sensor on the outside or the same mounting board, and is output to the compensation unit. It is also possible to do. Of course, the temperature information acquisition unit acquires the output of the temperature sensor installed outside the light emitting and receiving device or on the same mounting board, and outputs it to the compensation unit and the humidity information calculation unit as common “temperature information”. it can.

本実施形態に係る発光装置における温度情報取得部、及び、本実施形態に係る受光装置における温度情報取得部にも同様のことが言える。また発光装置、受発光装置における制御部に対して、温度情報取得部から出力される温度情報についても、同様である。   The same applies to the temperature information acquisition unit in the light emitting device according to the present embodiment and the temperature information acquisition unit in the light receiving device according to the present embodiment. The same applies to the temperature information output from the temperature information acquisition unit to the control unit in the light emitting device and the light receiving and emitting device.

<湿度情報算出部>
本実施形態に係る受光装置における湿度情報算出部は、温度情報と、受光素子の電気的特性及び光学的特性の少なくとも一方に関する情報とに基づいて湿度情報を算出する。これにより、受光装置は、モールド樹脂の吸湿−乾燥に伴う受光素子の特性変動を補償するための湿度情報を得ることが出来る。またこの場合、湿度情報は、受光素子の電気的特性及び光学的特性の少なくとも一方に関する情報を含んでいてもよい。
<Humidity information calculation unit>
The humidity information calculation unit in the light receiving device according to the present embodiment calculates the humidity information based on the temperature information and information on at least one of the electrical characteristics and the optical characteristics of the light receiving element. As a result, the light receiving device can obtain humidity information for compensating the characteristic variation of the light receiving element due to moisture absorption and drying of the mold resin. In this case, the humidity information may include information on at least one of the electrical characteristics and the optical characteristics of the light receiving element.

本実施形態に係る発光装置における湿度情報算出部は、温度情報と、発光素子の電気的特性及び光学的特性の少なくとも一方に関する情報とに基づいて湿度情報を算出する。これにより、発光装置は、モールド樹脂の吸湿−乾燥に伴う発光素子の特性変動を補償するための湿度情報を得ることが出来る。またこの場合、湿度情報は、発光素子の電気的特性及び光学的特性の少なくとも一方に関する情報を含んでいてもよい。   The humidity information calculation unit in the light emitting device according to the present embodiment calculates the humidity information based on the temperature information and information on at least one of the electrical characteristics and the optical characteristics of the light emitting element. Thereby, the light emitting device can obtain humidity information for compensating for the characteristic variation of the light emitting element due to moisture absorption-drying of the mold resin. In this case, the humidity information may include information on at least one of electrical characteristics and optical characteristics of the light emitting element.

本実施形態に係る受発光装置における湿度情報算出部は、温度情報と、発光素子及び受光素子のそれぞれの電気的特性及び光学的特性の少なくとも一方に関する情報とに基づいて湿度情報を算出する。これにより、受発光装置は、モールド樹脂の吸湿−乾燥に伴う受光素子、発光素子の特性変動を補償するための、湿度情報を得ることが出来る。またこの場合、湿度情報は、受光素子及び発光素子の少なくとも一方の電気的特性及び光学的特性の少なくとも一方に関する情報を含んでいてもよい。   The humidity information calculation unit in the light emitting / receiving device according to the present embodiment calculates humidity information based on the temperature information and information on at least one of the electrical characteristics and optical characteristics of the light emitting element and the light receiving element. Thereby, the light receiving / emitting device can obtain humidity information for compensating for the characteristic variation of the light receiving element and the light emitting element due to moisture absorption-drying of the mold resin. In this case, the humidity information may include information on at least one of the electrical characteristics and the optical characteristics of at least one of the light receiving element and the light emitting element.

本実施形態に係る受光装置、発光装置及び受発光装置において、モールド樹脂部に少なくとも一部を封止された補助素子(詳細は後述する)をさらに備える場合には、湿度情報は、温度情報と、補助素子の電気的特性及び光学的特性の少なくとも一方に関する情報とに基づいて算出されてもよい。この場合、湿度情報は、補助素子の電気的特性及び光学的特性の少なくとも一方に関する情報を含んでいてもよい。   In the light receiving device, the light emitting device, and the light receiving and emitting device according to the present embodiment, when the auxiliary element (details will be described later) further sealed at least partially in the mold resin portion is provided, the humidity information is the temperature information and And may be calculated based on information on at least one of the electrical characteristics and the optical characteristics of the auxiliary element. In this case, the humidity information may include information on at least one of the electrical characteristics and the optical characteristics of the auxiliary element.

補助素子としては、例えばモールド樹脂部内に設けられたダイオード、抵抗体、あるいは受光素子や発光素子と同一の材料で形成されたダイオード及び抵抗体の少なくとも一方を用いることが出来る。
また湿度情報を算出するために用いられる受光素子、発光素子、或いは補助素子の電気的特性及び光学的特性は、湿度だけではなく温度によっても影響を受ける。従って、温度情報を元に、それらの温度依存性を除去することにより、湿度情報を算出することが可能となる。
As the auxiliary element, for example, a diode or a resistor provided in the mold resin portion, or at least one of a diode and a resistor formed of the same material as the light receiving element and the light emitting element can be used.
Further, the electrical characteristics and optical characteristics of the light receiving element, the light emitting element, or the auxiliary element used for calculating the humidity information are affected not only by the humidity but also by the temperature. Therefore, it is possible to calculate the humidity information by removing those temperature dependencies based on the temperature information.

前述のように、湿度情報算出部が算出する湿度情報は、湿度そのものに限定されず、湿度によるモールド樹脂部の吸湿に起因する膨潤応力に影響を受ける物理量である電気的特性や光学的特性に関する情報又はそれらの組合せで構わない。これらの物理量は、温度による影響を受けるが、後述される補償部や制御部は、これらの物理量から温度による影響を低減させ、湿度による影響度の大きい情報(湿度情報)を抽出できる。例えば、発光素子の内部抵抗を、温度情報を用いて補正することにより、温度依存性が無く、モールド樹脂の吸湿状態による内部抵抗の変化量、つまり湿度情報を得ることができる。この湿度情報により、受光素子の出力信号の補償や、発光素子の制御を行うことで、温度及び湿度による影響の補償された受光装置、発光装置及び受発光装置を構成することが可能となる。
なお、受光素子や発光素子の電気的特性及び光学的特性を温度情報として用いる場合には、湿度情報の算出に用いる電気的特性及び光学的特性とは異なるものを用いる必要がある。例えば、発光装置の場合、温度情報として発光素子の順方向電圧降下を用いる場合には、湿度情報の算出には発光素子の順方向電圧降下以外の物理量(例えば発光素子の内部抵抗や、発光素子の補助素子として設けたフォトダイオードの光電流等)を用いる必要がある。発光装置や受発光装置の場合も同様である。
As described above, the humidity information calculated by the humidity information calculation unit is not limited to the humidity itself, but relates to electrical characteristics and optical characteristics that are physical quantities that are affected by the swelling stress caused by moisture absorption of the mold resin part due to humidity. Information or a combination thereof may be used. Although these physical quantities are affected by temperature, a compensation unit and a control unit, which will be described later, can reduce the influence of temperature from these physical quantities and extract information (humidity information) having a large degree of influence due to humidity. For example, by correcting the internal resistance of the light emitting element using temperature information, there is no temperature dependency, and the amount of change in internal resistance due to the moisture absorption state of the mold resin, that is, humidity information can be obtained. By compensating the output signal of the light receiving element and controlling the light emitting element based on the humidity information, it is possible to configure a light receiving device, a light emitting device, and a light receiving and emitting device that are compensated for the influence of temperature and humidity.
In addition, when using the electrical characteristics and optical characteristics of a light receiving element or a light emitting element as temperature information, it is necessary to use a different one from the electrical characteristics and optical characteristics used for calculating humidity information. For example, in the case of a light emitting device, when the forward voltage drop of the light emitting element is used as the temperature information, the physical quantity other than the forward voltage drop of the light emitting element (for example, the internal resistance of the light emitting element or the light emitting element) is used for calculating the humidity information. It is necessary to use a photocurrent of a photodiode provided as an auxiliary element. The same applies to light emitting devices and light emitting / receiving devices.

<モールド樹脂部>
本実施形態に係る受光装置、発光装置及び受発光装置において、モールド樹脂部は、受光素子の少なくとも一部及び発光素子の少なくとも一部を封止してもよい。あるいは、モールド樹脂部は、受光素子の少なくとも一部及び発光素子の少なくとも一部のいずれか一方を封止してもよい。モールド樹脂部の形成材料としては、例えばエポキシ樹脂、フェノール樹脂などの樹脂モールド材料を用いることができる。その際、樹脂モールド材料は、SiOやAlといったフィラーを含んでも良い。またポリイミド、ポリアミド、シリコーン樹脂といった応力緩和層(バッファ層)を受光素子及び発光素子の少なくとも一方とモールド樹脂部との間に含んでもよい。
<Mold resin part>
In the light receiving device, the light emitting device, and the light receiving and emitting device according to the present embodiment, the mold resin portion may seal at least a part of the light receiving element and at least a part of the light emitting element. Alternatively, the mold resin portion may seal at least one of the light receiving element and at least a part of the light emitting element. As a forming material of the mold resin portion, for example, a resin mold material such as an epoxy resin or a phenol resin can be used. At that time, the resin mold material may include a filler such as SiO 2 or Al 2 O 3 . Further, a stress relaxation layer (buffer layer) such as polyimide, polyamide, or silicone resin may be included between at least one of the light receiving element and the light emitting element and the mold resin portion.

本実施形態の受発光装置において、モールド樹脂部は、受光素子の少なくとも一部を封止する受光側封止領域と、発光素子の少なくとも一部を封止する発光側封止領域と、を有していてもよい。またこの場合、受光側封止領域と発光側封止領域とは空間的に接していてもよい。   In the light emitting / receiving device of the present embodiment, the mold resin portion has a light receiving side sealing region that seals at least a part of the light receiving element and a light emitting side sealing region that seals at least a part of the light emitting element. You may do it. In this case, the light receiving side sealing region and the light emitting side sealing region may be in spatial contact.

<補償部>
本実施形態に係る受光装置、受発光装置において、補償部は、温度情報及び湿度情報に基づいて、受光素子の出力信号を補償することが可能であれば特に制限されない。補償部は例えば、アナログIC、ディジタルIC及び中央処理装置(Central Processing Unit:CPU)等が好適である。
<Compensation part>
In the light receiving device and the light receiving and emitting device according to the present embodiment, the compensation unit is not particularly limited as long as it can compensate the output signal of the light receiving element based on the temperature information and the humidity information. For example, an analog IC, a digital IC, and a central processing unit (CPU) are suitable as the compensation unit.

温度情報取得部及び湿度情報算出部から取得される温度情報及び湿度情報は、温度や湿
度の値そのものには限定されず、温度や湿度の影響を受けて特性が変化する電気抵抗値や
光電流値などの物理量から演算される情報も含まれる。またこの補償部は、あらかじめ温度の影響や湿度の影響を校正したデータを保存した記憶領域を有していてもよく、また発光素子を制御するための機能を発揮してもよい。
The temperature information and humidity information acquired from the temperature information acquisition unit and the humidity information calculation unit are not limited to the temperature and humidity values themselves, but the electrical resistance value and photocurrent whose characteristics change under the influence of temperature and humidity. Information calculated from physical quantities such as values is also included. In addition, the compensation unit may have a storage area that stores data in which the influence of temperature and humidity is calibrated in advance, and may exhibit a function for controlling the light emitting element.

<制御部>
本実施形態に係る発光装置及び受発光装置において、制御部は温度情報及び湿度情報に基づいて発光素子を制御することが可能であれば特に制限されず、例えば、アナログIC、ディジタルIC及びCPU等を含む駆動回路が好適である。
<Control unit>
In the light emitting device and the light emitting / receiving device according to the present embodiment, the control unit is not particularly limited as long as it can control the light emitting element based on the temperature information and the humidity information, and for example, an analog IC, a digital IC, a CPU, and the like. A drive circuit including is preferable.

発光素子がLEDである場合において制御部は、例えば発光素子の入力電流値、通電時間及び非通電時間の少なくとも1つを制御できてもよい。   When the light emitting element is an LED, the control unit may be able to control at least one of the input current value, the energization time, and the non-energization time of the light emitting element, for example.

温度情報取得部及び湿度情報算出部から取得される温度情報及び湿度情報は、温度や湿度の値そのものには限定されず、温度や湿度の影響を受けて特性が変化する電気抵抗値や光電流値などの物理量から演算される情報も含まれる。この発光素子の制御部は、あらかじめ温度の影響や湿度の影響を校正したデータを保存した記憶領域を有していてもよく、また受光素子の出力信号を補償するための機能を発揮してもよい。   The temperature information and humidity information acquired from the temperature information acquisition unit and the humidity information calculation unit are not limited to the temperature and humidity values themselves, but the electrical resistance value and photocurrent whose characteristics change under the influence of temperature and humidity. Information calculated from physical quantities such as values is also included. The control unit of the light emitting element may have a storage area for storing data in which the influence of temperature and humidity is calibrated in advance, or may exhibit a function for compensating the output signal of the light receiving element. Good.

<補助素子>
本実施形態に係る受光装置、発光装置及び受発光装置は、モールド樹脂部に少なくとも一部を封止された補助素子をさらに備え、温度情報及び湿度情報の少なくとも一方は、補助素子の電気的特性及び光学的特性の少なくとも一方に関する情報を含んでいてもよい。補助素子としては、例えばモールド樹脂部内に設けられたダイオード、抵抗体、あるいは受光素子や発光素子と同一の材料から成る、ダイオード、抵抗体を用いることが出来る。この場合、補助素子は受光素子と同一の基板上に形成されていてもよい。またこの場合、補助素子は、基板上に複数配置されていてもよい。複数の補助素子は、並列、直列又は直並列に接続されていてもよく、ホイートストンブリッジを形成していてもよい。
<Auxiliary element>
The light-receiving device, the light-emitting device, and the light-emitting / receiving device according to this embodiment further include an auxiliary element that is at least partially sealed in the mold resin portion, and at least one of temperature information and humidity information is an electrical characteristic of the auxiliary element. And information on at least one of the optical characteristics. As the auxiliary element, for example, a diode or a resistor provided in the mold resin portion, or a diode or a resistor made of the same material as the light receiving element or the light emitting element can be used. In this case, the auxiliary element may be formed on the same substrate as the light receiving element. In this case, a plurality of auxiliary elements may be arranged on the substrate. The plurality of auxiliary elements may be connected in parallel, series, or series-parallel, and may form a Wheatstone bridge.

特に補助素子と受光素子又は発光素子とが同一の基板上に設けられると、基板を介した熱伝導によって受光素子又は発光素子と補助素子との温度を熱平衡に近づけることができる。   In particular, when the auxiliary element and the light receiving element or the light emitting element are provided on the same substrate, the temperature of the light receiving element or the light emitting element and the auxiliary element can be brought close to thermal equilibrium by heat conduction through the substrate.

本実施形態に係る受光装置、発光装置及び受発光装置においては、一般に異なる材料が近接することを避けることは困難であるため、熱膨張率差による熱応力と、湿度による封止部の吸湿に起因する膨潤応力の影響は、受光素子や発光素子が設けられた基板の位置(基板の部位)により異なる。この場合、更に補助素子を同一基板上の複数の位置に複数設け、複数の補助素子のそれぞれの電気的特性及び光学的特性の少なくとも一方を測定し、複数の補助素子間の温度や熱応力及び湿潤応力の少なくとも一方による特性変化を比較したり評価したりすることにより、温度情報及び湿度情報の少なくとも一方を取得することが可能となる。具体的には、乾燥状態における補助素子の電気的特性及び光学的特性の少なくとも一方の温度依存性を取得し、次いで湿度環境下において同様の特性を取得することにより、温度情報と湿度情報を抽出するための、補正パラメータを抽出することが可能となる。   In the light-receiving device, light-emitting device, and light-emitting / receiving device according to the present embodiment, it is generally difficult to avoid the proximity of different materials. Therefore, the thermal stress due to the difference in thermal expansion coefficient and the moisture absorption of the sealing portion due to humidity are difficult. The influence of the resulting swelling stress varies depending on the position of the substrate on which the light receiving element and the light emitting element are provided (part of the substrate). In this case, a plurality of auxiliary elements are further provided at a plurality of positions on the same substrate, and at least one of the electrical characteristics and the optical characteristics of each of the plurality of auxiliary elements is measured. It is possible to acquire at least one of temperature information and humidity information by comparing or evaluating a characteristic change due to at least one of the wet stress. Specifically, temperature information and humidity information are extracted by acquiring the temperature dependence of at least one of the electrical and optical characteristics of the auxiliary element in the dry state, and then acquiring the same characteristics in a humidity environment. Therefore, it is possible to extract a correction parameter for this purpose.

ここで同一の基板上とは、プリント配線基板(実装基板)上に受光素子、発光素子、補助素子が実装され、封止されているような場合には、同様に封止される同プリント配線基板の上を指す。あるいは受光素子、発光素子、補助素子がシリコン(Si)基板、あるいはガリウムヒ素(GaAs)基板、ガラス基板などの基板上に形成されている場合には、同様に封止される該基板の上を指す。受光素子及び発光素子がP型半導体層及びN型半導体層を含むダイオード構造を有する場合には、補助素子は、同一のダイオード構造を有してもよく、又はP型半導体層及びN型半導体層を含む抵抗体であってもよい。   Here, on the same substrate, when the light receiving element, the light emitting element, and the auxiliary element are mounted on a printed wiring board (mounting board) and sealed, the same printed wiring is sealed in the same manner. Point on the board. Alternatively, when the light receiving element, the light emitting element, and the auxiliary element are formed on a silicon (Si) substrate, a gallium arsenide (GaAs) substrate, a glass substrate, or the like, Point to. When the light receiving element and the light emitting element have a diode structure including a P-type semiconductor layer and an N-type semiconductor layer, the auxiliary element may have the same diode structure, or the P-type semiconductor layer and the N-type semiconductor layer. May be a resistor.

本実施形態の受光装置、発光装置及び受発光装置において補助素子は、インジウムを含み、ヒ素及びアンチモンの少なくとも一方を含み、P型半導体層とN型半導体層を少なくとも有するダイオード構造を有していてもよく、又は抵抗体であってもよい。   In the light receiving device, the light emitting device, and the light emitting / receiving device of the present embodiment, the auxiliary element includes indium, includes at least one of arsenic and antimony, and has a diode structure including at least a P-type semiconductor layer and an N-type semiconductor layer. Or a resistor.

次に、図面を参照して本発明の各実施形態について説明する。
[実施形態1]
図1は、本発明の第1実施形態に係る受光装置を説明するための構成図である。図1に示すように、第1実施形態の受光装置2は、基板26と、基板26上に形成された受光素子21及び補助素子27と、受光素子21、補助素子27及び基板26の少なくとも一部を封止するモールド樹脂部22と、温度情報取得部23と、湿度情報算出部24と、温度情報取得部23から得られる温度情報TI及び湿度情報算出部24から得られる湿度情報HIに基づいて受光素子21からの出力信号SOを補償する補償部25とを備えている。
Next, embodiments of the present invention will be described with reference to the drawings.
[Embodiment 1]
FIG. 1 is a configuration diagram for explaining a light receiving device according to a first embodiment of the present invention. As shown in FIG. 1, the light receiving device 2 of the first embodiment includes a substrate 26, a light receiving element 21 and an auxiliary element 27 formed on the substrate 26, and at least one of the light receiving element 21, the auxiliary element 27, and the substrate 26. Based on the temperature information TI obtained from the temperature information acquisition unit 23, the temperature information acquisition unit 23, the humidity information calculation unit 24, the temperature information acquisition unit 23, and the humidity information HI obtained from the temperature information acquisition unit 24. And a compensator 25 for compensating the output signal SO from the light receiving element 21.

[実施形態2]
図2は、本発明の第2実施形態に係る発光装置を説明するための構成図である。図2に示すように、第2実施形態に係る発光装置4は、基板46と、基板46上に形成された発光素子48及び補助素子47と、発光素子48、補助素子47及び基板46の少なくとも一部を封止するモールド樹脂部42と、温度情報取得部43と、湿度情報算出部44と、温度情報取得部43から取得される温度情報TI及び湿度情報算出部44から取得される湿度情報HIに基づいて発光素子48を制御する制御信号SCを出力する制御部49とを備えている。
[Embodiment 2]
FIG. 2 is a configuration diagram for explaining a light emitting device according to a second embodiment of the present invention. As shown in FIG. 2, the light emitting device 4 according to the second embodiment includes a substrate 46, a light emitting element 48 and an auxiliary element 47 formed on the substrate 46, and at least a light emitting element 48, an auxiliary element 47, and the substrate 46. Humidity information acquired from the temperature information TI and humidity information calculation unit 44 acquired from the mold resin unit 42 that seals a part, the temperature information acquisition unit 43, the humidity information calculation unit 44, and the temperature information acquisition unit 43. And a control unit 49 that outputs a control signal SC for controlling the light emitting element 48 based on the HI.

[実施形態3]
図3は、本発明の第3実施形態に係る受発光装置を説明するための構成図である。図3に示すように、第3実施形態に係る受発光装置5は、受光側基板561と、受光側基板561上に形成された受光素子51及び受光側補助素子571と、受光素子51、受光側補助素子571及び受光側基板561の少なくとも一部を封止する受光側封止領域521と、発光側基板562と、発光側基板562上に形成された発光素子58と、発光側補助素子572と、発光素子58、発光側補助素子572及び発光側基板562の少なくとも一部を封止する発光側封止領域522と、温度情報取得部53と、湿度情報算出部54と、温度情報取得部53から取得された温度情報TI及び湿度情報算出部54から取得された湿度情報HIに基づいて受光素子51の出力信号SOを補償する補償部55と、温度情報TI及び湿度情報HIに基づいて発光素子58を制御する制御信号SCを出力する制御部59とを備えている。なお、受発光装置5は、受光側封止領域521と発光側封止領域522とを有するモールド樹脂部52を備えている。受光側封止領域521と発光側封止領域522とは、空間的に分離されて設けられている。
[Embodiment 3]
FIG. 3 is a configuration diagram for explaining a light emitting and receiving device according to a third embodiment of the present invention. As illustrated in FIG. 3, the light receiving and emitting device 5 according to the third embodiment includes a light receiving side substrate 561, a light receiving element 51 and a light receiving side auxiliary element 571 formed on the light receiving side substrate 561, the light receiving element 51, and light receiving. A light receiving side sealing region 521 that seals at least a part of the side auxiliary element 571 and the light receiving side substrate 561, a light emitting side substrate 562, a light emitting element 58 formed on the light emitting side substrate 562, and a light emitting side auxiliary element 572. A light emitting side sealing region 522 that seals at least a part of the light emitting element 58, the light emitting side auxiliary element 572, and the light emitting side substrate 562, a temperature information acquisition unit 53, a humidity information calculation unit 54, and a temperature information acquisition unit. Compensation unit 55 for compensating the output signal SO of the light receiving element 51 based on the temperature information TI acquired from the temperature information 53 and the humidity information HI acquired from the humidity information calculation unit 54, and the temperature information TI and the humidity information HI Zui and and a control unit 59 for outputting a control signal SC for controlling the light-emitting element 58. The light emitting / receiving device 5 includes a mold resin portion 52 having a light receiving side sealing region 521 and a light emitting side sealing region 522. The light receiving side sealing region 521 and the light emitting side sealing region 522 are provided spatially separated.

ここで、本発明における温度及び湿度による影響の補償方法の一例について、第3実施形態に係る受発光装置5をガス濃度測定装置に適応した例を用いて説明する。具体的には、第3実施形態に係る受発光装置5をガスセル内に設置した形態を想定する。ここでガスセルは、検出対象であるガスが、外部環境との拡散等により流入可能であり、発光素子から放出された光を、内部の鏡面部等を利用して反射、又は集光することにより、受光素子へ導く光学経路を有する構造物である。ガスセル内を伝搬する光は、伝搬距離及びガス濃度に応じてガスに吸収され、受光素子に到達する光量が減衰する。そこで、ガスセル内を伝搬する光の光量の変化量を測定及び評価することによりガス濃度が測定される。第3実施形態に係る受発光装置5の構成を有するガス濃度測定装置は、一例として以下に示す操作によりガス濃度算出式を求めることができる。   Here, an example of a method for compensating for the influence of temperature and humidity in the present invention will be described using an example in which the light emitting and receiving device 5 according to the third embodiment is adapted to a gas concentration measuring device. Specifically, the form which installed the light emitting / receiving apparatus 5 which concerns on 3rd Embodiment in the gas cell is assumed. Here, the gas cell allows the gas to be detected to flow in due to diffusion with the external environment, etc., and reflects or condenses the light emitted from the light emitting element using the internal mirror surface or the like. A structure having an optical path leading to the light receiving element. The light propagating in the gas cell is absorbed by the gas according to the propagation distance and the gas concentration, and the amount of light reaching the light receiving element is attenuated. Therefore, the gas concentration is measured by measuring and evaluating the amount of change in the amount of light propagating in the gas cell. The gas concentration measuring device having the configuration of the light receiving and emitting device 5 according to the third embodiment can obtain a gas concentration calculation formula by the operation described below as an example.

温度情報取得部から得られる温度情報Tには、例えば受発光装置に付随する温度センサから得られる温度が用いられる。この温度情報Tを元に、例えば検出対象のガスが無く、湿度0%の乾燥状態における受光素子の出力の温度依存性を測定することにより、出力の温度依存性を補正する補正量h(T)を求めるための補正式が得られる。この補正式は、式(1)のように表すことができる。   As the temperature information T obtained from the temperature information acquisition unit, for example, a temperature obtained from a temperature sensor attached to the light receiving and emitting device is used. Based on this temperature information T, for example, a correction amount h (T for correcting the temperature dependence of the output by measuring the temperature dependence of the output of the light receiving element in a dry state where there is no gas to be detected and humidity is 0%. ) Is obtained. This correction equation can be expressed as equation (1).

Figure 2018109619
Figure 2018109619

続いて温度情報T、及び発光素子の内部抵抗r(H,T)を元に、例えば検出対象のガスが無く、湿度0%の乾燥状態における内部抵抗の温度依存性を測定することで、内部抵抗の温度依存性を補正する補正量f(H)を求めるための補正式が得られる。この補正式は式(2)のように表すことができる。   Subsequently, based on the temperature information T and the internal resistance r (H, T) of the light emitting element, for example, by measuring the temperature dependence of the internal resistance in a dry state where there is no gas to be detected and the humidity is 0%, A correction formula for obtaining a correction amount f (H) for correcting the temperature dependence of the resistance is obtained. This correction equation can be expressed as in equation (2).

Figure 2018109619
Figure 2018109619

この補正量f(H)は、温度及び湿度により変化する発光素子の内部抵抗から、温度依存性を除去した量であり、湿度により変動する湿度情報(以下、この湿度情報の符号にも「f(H)」を用いる)として用いられる。或いは式(2)に示す湿度情報f(H)を元に多項式を構成し、式(3)に示すように、改めて湿度情報f2(H)として使用しても良い。温度情報取得部から得られる温度情報TIが、図3中に示す温度情報TIに相当し、湿度情報f(H)及び湿度情報f2(H)は、図3中に示す湿度情報HIに相当する。   This correction amount f (H) is an amount obtained by removing the temperature dependency from the internal resistance of the light emitting element that changes depending on the temperature and humidity. Humidity information that varies depending on the humidity (hereinafter, the sign of the humidity information is also referred to as “f”). (H) "is used). Alternatively, a polynomial may be constructed based on the humidity information f (H) shown in Expression (2) and used again as humidity information f2 (H) as shown in Expression (3). The temperature information TI obtained from the temperature information acquisition unit corresponds to the temperature information TI shown in FIG. 3, and the humidity information f (H) and the humidity information f2 (H) correspond to the humidity information HI shown in FIG. .

Figure 2018109619
Figure 2018109619

続いて温度情報取得部から得られる温度情報TIより得られる補正量h(T)及び、湿度情報算出部から得られる湿度情報f(H)を元に受光素子の出力信号Ioutを以下のように補正することで、温度及び湿度による影響の補正された出力信号、つまりガス濃度cを算出することが出来る。 Subsequently, based on the correction amount h (T) obtained from the temperature information TI obtained from the temperature information acquisition unit and the humidity information f (H) obtained from the humidity information calculation unit, the output signal I out of the light receiving element is as follows: As a result of the correction, the output signal corrected for the influence of temperature and humidity, that is, the gas concentration c can be calculated.

Figure 2018109619
Figure 2018109619

ここで式(1)中の定数A1,B1,C1、式(2)中の定数D1,E1,F1、式(3)中の定数D2,E2,F2、式(4)中の定数J,K,Lは温度依存性、及び湿度依存性を除去するためにフィッティングによりあらかじめ取得する補正係数である。特に定数J、K、Lについては、測定対象のガス濃度を変えて出力信号を測定することにより、誤差の最小となる係数を導出する。これらの定数、補正式を用いることで、各温度、各湿度状態における受光素子の出力信号Iout及び発光素子の内部抵抗rを元に、温度依存性及び湿度依存性の補正されたガス濃度cを算出することが可能となる。 Here, constants A1, B1, C1 in formula (1), constants D1, E1, F1 in formula (2), constants D2, E2, F2 in formula (3), constants J, in formula (4), K and L are correction coefficients acquired in advance by fitting in order to remove temperature dependence and humidity dependence. In particular, for the constants J, K, and L, the coefficient that minimizes the error is derived by measuring the output signal while changing the gas concentration to be measured. By using these constants and correction equations, the temperature dependence and humidity dependence corrected gas concentration c based on the output signal I out of the light receiving element and the internal resistance r of the light emitting element at each temperature and each humidity state. Can be calculated.

以上の過程により、受光素子の出力信号を、温度情報及び湿度情報を元に補正することによって、従来のガス濃度測定装置と比較し高精度なガス濃度測定装置を実現することが可能となる。   By correcting the output signal of the light receiving element based on the temperature information and the humidity information through the above process, it is possible to realize a gas concentration measuring device with higher accuracy than the conventional gas concentration measuring device.

第3実施形態においては、温度情報取得部からの出力による受光素子の出力信号の補正は2次式により、温度情報及び発光素子の内部抵抗を元に湿度情報を算出する補償は2次式により、またまた最終的なガス濃度を演算するための、受光素子51の出力信号の補償は2次式により補償を行っているが、これは一例であり、本発明の技術的範囲は上記に限定されない。   In the third embodiment, the correction of the output signal of the light receiving element by the output from the temperature information acquisition unit is a quadratic expression, and the compensation for calculating the humidity information based on the temperature information and the internal resistance of the light emitting element is a quadratic expression. Further, the compensation of the output signal of the light receiving element 51 for calculating the final gas concentration is performed by a quadratic equation, but this is an example, and the technical scope of the present invention is not limited to the above. .

別の方法として、1次式の代わりに2次式、2次式の変わりに3次式等により、補償の次数を増やすことにより、ガス濃度の測定精度を向上させることができる。また多項式の逆数や、指数関数、対数関数を用いることもできる。一方で補償の次数が増えると、或いは補償の関数が複雑になると、校正曲線を得るのに必要な測定点(温度、湿度、ガス濃度)が増えることから、補償の次数や補償の関数は、必要な精度と製造コストの兼ね合いで適宜決定され得る。また温度情報が湿度情報を含む場合であっても、湿度情報算出部と異なる電気的特性及び光学的特性を用いることによって、補償部において湿度依存性を除去するように補正式を構成することで、温度及び湿度の影響の補正された信号を得ることが出来る。   As another method, the measurement accuracy of the gas concentration can be improved by increasing the order of compensation by using a quadratic expression instead of the primary expression, or a cubic expression instead of the quadratic expression. Also, the inverse of a polynomial, an exponential function, or a logarithmic function can be used. On the other hand, if the compensation order increases or the compensation function becomes complex, the number of measurement points (temperature, humidity, gas concentration) required to obtain a calibration curve increases, so the compensation order and compensation function are It can be appropriately determined depending on the balance between required accuracy and manufacturing cost. Even if the temperature information includes humidity information, by using electrical and optical characteristics that are different from those of the humidity information calculation unit, the compensation unit can be configured to remove the humidity dependence in the compensation unit. A corrected signal of the influence of temperature and humidity can be obtained.

[実施形態4]
本発明の第4実施形態に係る受発光装置は、上述した第3実施形態において、発光素子58が中赤外LEDである受発光装置である。
[Embodiment 4]
The light emitting / receiving device according to the fourth embodiment of the present invention is a light emitting / receiving device in which the light emitting element 58 is a mid-infrared LED in the third embodiment described above.

[実施形態5]
本発明の第5実施形態に係る受発光装置は、上述した第3実施形態又は第4実施形態において、受光素子51と受光側補助素子571が同一の薄膜構造を有する受発光装置である。ここで薄膜構造はP型半導体層、I型半導体層(アンドープ層)、N型半導体層を積層させたPINダイオード構造である。受光素子51と受光側補助素子571が同一の薄膜構造であることにより、温度変化による特性変動の補償が容易になったり製造工程が短縮したりする、といった利点がある。
[Embodiment 5]
The light emitting / receiving device according to the fifth embodiment of the present invention is a light emitting / receiving device in which the light receiving element 51 and the light receiving side auxiliary element 571 have the same thin film structure in the third embodiment or the fourth embodiment described above. Here, the thin film structure is a PIN diode structure in which a P-type semiconductor layer, an I-type semiconductor layer (undoped layer), and an N-type semiconductor layer are stacked. Since the light receiving element 51 and the light receiving side auxiliary element 571 have the same thin film structure, there is an advantage that the characteristic variation due to the temperature change is easily compensated and the manufacturing process is shortened.

[実施形態6]
本発明の第6実施形態に係る受発光装置は、上述した第4又は第5実施形態において、受光素子51を封止する受光側封止領域521と、発光素子58を封止する発光側封止領域522とが空間的に接している(受光側封止領域521及び発光側封止領域522が1つの封止材で形成されている)ことを特徴とする。つまり、第6実施形態に係る受発光装置は、空間的に接している受光側封止領域521及び発光側封止領域522を有するモールド樹脂部52を備えている点に特徴を有している。第6実施形態に係る受発光装置は、受光素子51及び発光素子58を同一工程で封止することが可能となり、製造工程を短縮できる、といった利点がある。
[Embodiment 6]
The light emitting / receiving device according to the sixth embodiment of the present invention is the light receiving side sealing region 521 for sealing the light receiving element 51 and the light emitting side sealing for sealing the light emitting element 58 in the fourth or fifth embodiment described above. The stop region 522 is in spatial contact (the light-receiving side sealing region 521 and the light-emitting side sealing region 522 are formed of one sealing material). That is, the light emitting / receiving device according to the sixth embodiment is characterized in that it includes a mold resin portion 52 having a light receiving side sealing region 521 and a light emitting side sealing region 522 that are in spatial contact. . The light emitting / receiving device according to the sixth embodiment has an advantage that the light receiving element 51 and the light emitting element 58 can be sealed in the same process, and the manufacturing process can be shortened.

[実施形態7]
本発明の第7実施形態に係る受光装置、発光装置及び受発光装置は、上述した第1から第6実施形態において、受光素子、発光素子及び補償素子をGaAs基板上に形成されたAlInSb層で形成された活性層(I層)を有するPINダイオード構造とした点に特徴を有している。ここで、活性層におけるアルミニウム(Al)の組成比は0〜20%であり、活性層の上下にキャリア(電子、及びホール)をブロックするためのバリア層を形成しても良い。更に活性層の上下にはキャリアを供給するためのP層及びN層が形成される。Al組成を2〜5%とした場合、本材料は、炭酸ガスの赤外吸収波長である4.3μmに相当する光を吸収し、或いは光を放出することが可能なため、受光素子及び発光素子として好適である。或いはAl組成を8〜10%とした場合、本材料はメタンを始めとした炭化水素ガスの赤外吸収波長である3.3μmに相当する光を吸収し、或いは光を放出することが可能なため、受光素子及び発光素子として好適である。
[実施形態8]
本発明の第8実施形態に係る受光装置、発光装置及び受発光装置は、上述した第1から第6実施形態において、受光素子、発光素子及び補償素子をGaAs基板上に形成されたAlInAsSb層で形成された活性層(I層)を有するPINダイオード構造とした点に特徴を有している。ここで、活性層におけるAl組成を0〜5%、Sb組成を0〜5%とすることで水(2.7μm)、或いはメタン(3.3μm)を検出するのに好適となり、Sb組成を10〜13%まで増加させることにより、炭酸ガス(4.3μm)を検出するのに好適となる。
[Embodiment 7]
In the light receiving device, the light emitting device, and the light receiving / emitting device according to the seventh embodiment of the present invention, the light receiving element, the light emitting element, and the compensation element are the AlInSb layers formed on the GaAs substrate in the first to sixth embodiments described above. It is characterized in that it has a PIN diode structure having an active layer (I layer) formed. Here, the composition ratio of aluminum (Al) in the active layer is 0 to 20%, and barrier layers for blocking carriers (electrons and holes) may be formed above and below the active layer. Further, a P layer and an N layer for supplying carriers are formed above and below the active layer. When the Al composition is 2 to 5%, this material can absorb or emit light corresponding to 4.3 μm that is the infrared absorption wavelength of carbon dioxide gas. It is suitable as an element. Alternatively, when the Al composition is 8 to 10%, this material can absorb light or emit light corresponding to the infrared absorption wavelength of 3.3 μm of hydrocarbon gas including methane. Therefore, it is suitable as a light receiving element and a light emitting element.
[Embodiment 8]
In the light receiving device, the light emitting device, and the light receiving / emitting device according to the eighth embodiment of the present invention, the light receiving element, the light emitting element, and the compensation element are formed of an AlInAsSb layer formed on a GaAs substrate in the first to sixth embodiments described above. It is characterized in that it has a PIN diode structure having an active layer (I layer) formed. Here, by setting the Al composition in the active layer to 0 to 5% and the Sb composition to 0 to 5%, it becomes suitable for detecting water (2.7 μm) or methane (3.3 μm). By increasing to 10 to 13%, it is suitable for detecting carbon dioxide gas (4.3 μm).

次に、本実施形態の実施例に係る受光装置、発光装置及び受発光装置を説明する。以下の実施例は、本実施形態の受発光装置を炭酸ガス濃度測定装置に適用した場合の例である。   Next, a light receiving device, a light emitting device, and a light receiving and emitting device according to examples of the present embodiment will be described. The following examples are examples in the case where the light emitting and receiving device of this embodiment is applied to a carbon dioxide concentration measuring device.

封止部に封止された発光素子(中赤外LED光源)と、この発光素子と同一の薄膜構造を有し、同一基板上に形成された温度測定に用いる補助素子としての量子型赤外線センサと、受光素子としての量子型赤外線センサとを、内部に高い反射率の球面を有するドーム型ガスセル中に配置した。受光素子としての量子型赤外線センサは、発光素子と同一の薄膜構造を有する。   A light emitting element (mid-infrared LED light source) sealed in a sealing portion, and a quantum infrared sensor as an auxiliary element having the same thin film structure as the light emitting element and used for temperature measurement formed on the same substrate And the quantum type infrared sensor as a light receiving element was arrange | positioned in the dome type | mold gas cell which has a spherical surface with a high reflectance inside. A quantum infrared sensor as a light receiving element has the same thin film structure as a light emitting element.

温度情報取得部には発光素子の補助素子を接続し、温度情報として補助素子の出力する光電流を利用する構成とし、また湿度情報算出部に対しては発光素子を接続し、湿度情報として発光素子の内部抵抗を利用する構成とした。ここで、発光素子と補助素子は同一のモールド樹脂部内に封止されており、発光素子の内部抵抗の代わりに補助素子の内部抵抗の値を湿度情報算出部へ接続する構成へも変形可能である。   An auxiliary element of a light emitting element is connected to the temperature information acquisition unit, and a photocurrent output from the auxiliary element is used as temperature information, and a light emitting element is connected to the humidity information calculation unit to emit light as humidity information. The configuration uses the internal resistance of the element. Here, the light emitting element and the auxiliary element are sealed in the same mold resin part, and it can be modified to a configuration in which the value of the internal resistance of the auxiliary element is connected to the humidity information calculation unit instead of the internal resistance of the light emitting element. is there.

次いで、第1の炭酸ガス濃度として400ppm、第2の炭酸ガス濃度として1000ppm、第3の炭酸ガス濃度として2000ppmの炭酸ガスを選択し、各実施形態に記載の低温を10℃、中温度を25℃、高温を40℃として、各実施形態に基づいてガス濃度算出式を導き、得られた式を利用して、炭酸ガス濃度400ppm、1000ppm、2000ppmにおいて、温度10、25℃、40℃での乾燥環境下(封止部の吸湿度0%に対応)におけるガス濃度算出、及び温度25℃での高湿度環境下(封止部の吸湿度100%に対応)におけるガス濃度算出を試みた。   Next, carbon dioxide of 400 ppm is selected as the first carbon dioxide concentration, 1000 ppm as the second carbon dioxide concentration, and 2000 ppm as the third carbon dioxide concentration. The low temperature described in each embodiment is 10 ° C., and the medium temperature is 25 ° C. The gas concentration calculation formula is derived based on each embodiment, assuming that the temperature is 40 ° C and the temperature is 40 ° C. Using the obtained formula, the carbon dioxide concentration is 400 ppm, 1000 ppm, 2000 ppm, and the temperature is 10, 25 ° C, 40 ° C. Attempts were made to calculate the gas concentration in a dry environment (corresponding to 0% moisture absorption of the sealing part) and to calculate the gas concentration in a high humidity environment at 25 ° C. (corresponding to 100% moisture absorption of the sealing part).

図4は、本実施例における炭酸ガスの実濃度と、炭酸ガス濃度算出値の関係を示す図である。図4において、横軸は炭酸ガス実濃度を表し、縦軸は炭酸ガス濃度算出値を表している。図4中に示す、□印は10℃かつ乾燥環境下での特性を示し、◇印は25℃かつ乾燥環境下での特性を示し、○印は25℃かつ高湿度環境下での特性を示し、△印は40℃かつ乾燥環境下での特性を示している。   FIG. 4 is a diagram showing the relationship between the actual concentration of carbon dioxide and the calculated value of carbon dioxide in this example. In FIG. 4, the horizontal axis represents the actual carbon dioxide concentration, and the vertical axis represents the calculated carbon dioxide concentration. In FIG. 4, □ indicates characteristics at 10 ° C. and in a dry environment, ◇ indicates characteristics at 25 ° C. and in a dry environment, and ○ indicates characteristics at 25 ° C. and in a high humidity environment. The Δ mark indicates the characteristics at 40 ° C. and in a dry environment.

<比較例>
本比較例における炭酸ガス濃度測定装置は、モールド樹脂部に封止された発光素子(中赤外LED光源)と、この発光素子と同一の薄膜構造を有する、受光素子としての量子型赤外線センサとを、内部に高い反射率の球面を有するドーム型ガスセル中に配置された。本実施例に係る炭酸ガス濃度測定装置との差異としては、本比較例における炭酸ガス濃度測定装置は湿度情報算出部を備えていない点である。
<Comparative example>
The carbon dioxide concentration measuring apparatus in this comparative example includes a light emitting element (mid-infrared LED light source) sealed in a mold resin part, a quantum infrared sensor as a light receiving element having the same thin film structure as the light emitting element, Was placed in a dome type gas cell having a highly reflective spherical surface inside. The difference from the carbon dioxide concentration measuring apparatus according to the present embodiment is that the carbon dioxide concentration measuring apparatus in this comparative example does not include a humidity information calculation unit.

次に、従来の一般的なガス濃度算出式である以下のランバートベールの式(5)より、温度25℃、乾燥環境下、炭酸ガス濃度400ppmと2000ppmにおける受光素子の出力と、炭酸ガス濃度の関係を以下のランバートベールの式(5)でフィッティングすることで定数A2およびB2を求めた。   Next, from the following Lambert Bale equation (5), which is a conventional general gas concentration calculation formula, the output of the light receiving element at carbon dioxide concentrations of 400 ppm and 2000 ppm at a temperature of 25 ° C. in a dry environment, and the carbon dioxide concentration Constants A2 and B2 were obtained by fitting the relationship with the following Lambert Bale equation (5).

Figure 2018109619
Figure 2018109619

式(5)中に示す、「c」は炭酸ガス濃度を表し、「Iref」は温度情報取得部の出力を表し、「Iout」は受光素子の出力を表している。また「A2」および「B2」は、炭酸ガス濃度400ppmと1000ppmにおける、本比較例における炭酸ガス濃度測定装置の受光素子の出力と、温度情報取得部の出力と炭酸ガス濃度との関係から求まる定数を表している。 In equation (5), “c” represents the carbon dioxide concentration, “I ref ” represents the output of the temperature information acquisition unit, and “I out ” represents the output of the light receiving element. “A2” and “B2” are constants obtained from the relationship between the output of the light receiving element of the carbon dioxide concentration measuring device in this comparative example, the output of the temperature information acquisition unit, and the carbon dioxide concentration at carbon dioxide concentrations of 400 ppm and 1000 ppm. Represents.

このように得られた濃度算出式を利用して、炭酸ガス濃度400ppm、1000ppm、2000ppmにおいて、温度10、25℃、40℃での乾燥環境下(封止部の吸湿度0%に対応)におけるガス濃度算出、及び温度25℃での高湿度環境下(封止部の吸湿度100%に対応)におけるガス濃度算出を試みた。   Using the concentration calculation formula thus obtained, carbon dioxide concentrations of 400 ppm, 1000 ppm, and 2000 ppm at temperatures of 10, 25 ° C., and 40 ° C. in a dry environment (corresponding to 0% moisture absorption at the sealing portion) Attempts were made to calculate the gas concentration and to calculate the gas concentration in a high humidity environment at a temperature of 25 ° C. (corresponding to 100% moisture absorption of the sealing portion).

図5は、比較例における炭酸ガス実濃度と炭酸ガス濃度算出値の関係を示す図である。図5において、横軸は炭酸ガス実濃度を表し、縦軸は炭酸ガス濃度算出値を表している。図5中に示す、□印は10℃かつ乾燥環境下での特性を示し、◇印は25℃かつ乾燥環境下での特性を示し、○印は25℃かつ高湿度環境下での特性を示し、△印は40℃かつ乾燥環境下での特性を示している。   FIG. 5 is a diagram showing the relationship between the actual concentration of carbon dioxide and the calculated value of carbon dioxide in the comparative example. In FIG. 5, the horizontal axis represents the actual concentration of carbon dioxide, and the vertical axis represents the calculated value of carbon dioxide. In FIG. 5, □ indicates characteristics at 10 ° C. and in a dry environment, ◇ indicates characteristics at 25 ° C. and in a dry environment, and ○ indicates characteristics at 25 ° C. and in a high humidity environment. The Δ mark indicates the characteristics at 40 ° C. and in a dry environment.

図4に示すように、本実施例により求めたガス濃度算出式を用いた場合、炭酸ガス濃度算出値は、実炭酸ガス濃度に対し、炭酸ガス濃度400ppmにおいて64ppm、1000ppmにおいて0ppm、2000ppmにおいて143ppmの誤差に収まった。   As shown in FIG. 4, when the gas concentration calculation formula obtained by this example is used, the calculated carbon dioxide concentration is 64 ppm at a carbon dioxide concentration of 400 ppm, 0 ppm at 1000 ppm, and 143 ppm at 2000 ppm relative to the actual carbon dioxide concentration. Fell within the error.

一方、図5に示すように、比較例により求めたガス濃度算出式を用いた場合、炭酸ガス濃度算出値は、実炭酸ガス濃度に対し、炭酸ガス濃度400ppmにおいて1469ppm、1000ppmにおいて1473ppm、2000ppmにおいて1312ppmの誤差が生じた。   On the other hand, as shown in FIG. 5, when using the gas concentration calculation formula obtained by the comparative example, the calculated carbon dioxide concentration is 1469 ppm at a carbon dioxide concentration of 400 ppm, 1473 ppm at 1000 ppm, and 2000 ppm with respect to the actual carbon dioxide concentration. An error of 1312 ppm occurred.

以上の結果より、本実施形態に係る受光装置、発光装置及び受発光装置によれば、温度、湿度による影響の補償が可能となり、一例としてガス濃度測定装置に用いた場合には、従来のガス濃度測定装置よりも高精度な濃度算出が可能であることが理解される。   From the above results, according to the light receiving device, the light emitting device, and the light receiving and emitting device according to the present embodiment, it becomes possible to compensate for the influence of temperature and humidity. For example, when used in a gas concentration measuring device, the conventional gas It is understood that the concentration can be calculated with higher accuracy than the concentration measuring device.

以上説明したように、本実施形態によれば、温度及び湿度の少なくとも一方による影響の補償された高精度の受光装置、発光装置及び受発光装置を実現することができる。   As described above, according to the present embodiment, it is possible to realize a highly accurate light receiving device, light emitting device, and light receiving / emitting device in which the influence of at least one of temperature and humidity is compensated.

本実施形態による受光装置によれば、例えば安価なパッケージ技術であるモールド樹脂により封止された受光素子を用いた際に、温度及び湿度による影響を補償できるので、高精度化を図ることができる。また、本実施形態による発光装置によれば、例えば安価なパッケージ技術であるモールド樹脂により封止された発光素子を用いた際に、温度及び湿度による影響を補償できるので、高精度化を図ることができる。さらに、本実施形態による受発光装置によれば、例えば安価なパッケージ技術であるモールド樹脂により封止された受光素子及び発光素子を用いた際に、温度及び湿度による影響を補償できるので、高精度化を図ることができる。   According to the light receiving device according to the present embodiment, for example, when a light receiving element sealed with a mold resin, which is an inexpensive package technology, is used, the influence of temperature and humidity can be compensated, so that high accuracy can be achieved. . In addition, according to the light emitting device according to the present embodiment, for example, when using a light emitting element sealed with a mold resin, which is an inexpensive package technology, the influence of temperature and humidity can be compensated, so that high accuracy can be achieved. Can do. Furthermore, according to the light emitting / receiving device according to the present embodiment, for example, when using a light receiving element and a light emitting element sealed with a mold resin, which is an inexpensive package technology, the influence of temperature and humidity can be compensated, so that high accuracy is achieved. Can be achieved.

以上、本発明の実施形態について説明したが、本発明の技術的範囲は、上述した実施形態に記載の技術的範囲には限定されない。上述した実施形態に、多様な変更又は改良を加えることも可能であり、そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although embodiment of this invention was described, the technical scope of this invention is not limited to the technical scope as described in embodiment mentioned above. It is possible to add various changes or improvements to the above-described embodiments, and it is possible to add such changes or improvements to the technical scope of the present invention. it is obvious.

2 受光装置
4 発光装置
5 受発光装置
21,51 受光素子
22,42,52 モールド樹脂部
23,43,53 温度情報取得部
24,44,54 湿度情報算出部
25,55 補償部
26,46 基板
27,47 補助素子
48,58 発光素子
49,59 制御部
521 受光側封止領域
522 発光側封止領域
561 受光側基板
562 発光側基板
571 受光側補助素子
572 発光側補助素子
2 Light-receiving device 4 Light-emitting device 5 Light-receiving / emitting device 21, 51 Light-receiving element 22, 42, 52 Mold resin part 23, 43, 53 Temperature information acquisition part 24, 44, 54 Humidity information calculation part 25, 55 Compensation part 26, 46 Substrate 27, 47 Auxiliary elements 48, 58 Light emitting elements 49, 59 Control unit 521 Light receiving side sealing area 522 Light emitting side sealing area 561 Light receiving side substrate 562 Light emitting side substrate 571 Light receiving side auxiliary element 572 Light emitting side auxiliary element

Claims (18)

外部から入射する光の少なくとも一部を受光し、受光量に応じた出力信号を出力する受光素子と、
前記受光素子の少なくとも一部を封止するモールド樹脂部と、
温度情報を取得する温度情報取得部と、
前記受光素子の電気的特性及び光学的特性の少なくとも一方に関する情報と、前記温度情報とに基づいて湿度情報を算出する湿度情報算出部と、
前記温度情報及び前記湿度情報に基づいて前記出力信号を補償する補償部と、
を備える受光装置。
A light receiving element that receives at least part of light incident from the outside and outputs an output signal corresponding to the amount of light received;
A mold resin portion for sealing at least a part of the light receiving element;
A temperature information acquisition unit for acquiring temperature information;
A humidity information calculation unit for calculating humidity information based on information on at least one of the electrical characteristics and optical characteristics of the light receiving element and the temperature information;
A compensation unit for compensating the output signal based on the temperature information and the humidity information;
A light receiving device.
前記温度情報は前記受光素子の温度または前記モールド樹脂部の温度に関する情報を含み、且つ前記湿度情報は前記モールド樹脂部の湿度に関する情報を含む
請求項1に記載の受光装置。
The light receiving device according to claim 1, wherein the temperature information includes information related to a temperature of the light receiving element or a temperature of the mold resin portion, and the humidity information includes information related to a humidity of the mold resin portion.
前記モールド樹脂部に少なくとも一部を封止された補助素子をさらに備え、
前記温度情報及び前記湿度情報の少なくとも一方は、前記補助素子の電気的特性及び光学的特性の少なくとも一方に関する情報を含む
請求項1又は2に記載の受光装置。
An auxiliary element at least partially sealed in the mold resin portion;
The light receiving device according to claim 1, wherein at least one of the temperature information and the humidity information includes information on at least one of electrical characteristics and optical characteristics of the auxiliary element.
前記補助素子は前記受光素子と同一の基板上に形成されている
請求項3に記載の受光装置。
The light receiving device according to claim 3, wherein the auxiliary element is formed on the same substrate as the light receiving element.
前記受光素子及び前記補助素子の少なくとも一方は、インジウムを含み、ヒ素及びアンチモンの少なくとも一方を含み、P型半導体層と
N型半導体層を少なくとも有するダイオード構造を有する、又は抵抗体である
請求項3又は4に記載の受光装置。
The at least one of the light receiving element and the auxiliary element includes indium, includes at least one of arsenic and antimony, has a diode structure including at least a P-type semiconductor layer and an N-type semiconductor layer, or is a resistor. Or a light receiving device according to 4;
発光素子と、
前記発光素子が出力する光の少なくとも一部を受光し、受光量に応じた出力信号を出力する受光素子と、
前記受光素子の少なくとも一部を封止するモールド樹脂部と、
温度情報を取得する温度情報取得部と、
前記受光素子の電気的特性及び光学的特性の少なくとも一方に関する情報と、前記温度情報とに基づいて湿度情報を算出する湿度情報算出部と、
前記温度情報及び前記湿度情報に基づいて前記発光素子を制御する制御部と、
を備える受発光装置。
A light emitting element;
A light receiving element that receives at least part of the light output by the light emitting element and outputs an output signal corresponding to the amount of light received;
A mold resin portion for sealing at least a part of the light receiving element;
A temperature information acquisition unit for acquiring temperature information;
A humidity information calculation unit for calculating humidity information based on information on at least one of the electrical characteristics and optical characteristics of the light receiving element and the temperature information;
A control unit for controlling the light emitting element based on the temperature information and the humidity information;
A light emitting and receiving device.
前記温度情報は、前記受光素子の温度、前記発光素子の温度及び前記モールド樹脂部の温度のうちの少なくとも1つに関する情報を含み、且つ前記湿度情報は、前記モールド樹脂部の湿度に関する情報を含む
請求項6に記載の受発光装置。
The temperature information includes information on at least one of the temperature of the light receiving element, the temperature of the light emitting element, and the temperature of the mold resin portion, and the humidity information includes information on the humidity of the mold resin portion. The light receiving and emitting device according to claim 6.
前記温度情報は、前記受光素子及び前記発光素子の少なくとも一方の電気的特性及び光学的特性の少なくとも一方に関する情報を含む
請求項6又は7に記載の受発光装置。
The light receiving and emitting device according to claim 6 or 7, wherein the temperature information includes information on at least one of electrical characteristics and optical characteristics of at least one of the light receiving element and the light emitting element.
前記モールド樹脂部は、
前記受光素子の少なくとも一部を封止する受光側封止領域と、
前記発光素子の少なくとも一部を封止する発光側封止領域と、
を有する
請求項6から8までのいずれか一項に記載の受発光装置。
The mold resin part is
A light receiving side sealing region for sealing at least a part of the light receiving element;
A light emitting side sealing region for sealing at least a part of the light emitting element;
The light emitting / receiving device according to any one of claims 6 to 8.
前記受光側封止領域と前記発光側封止領域とは空間的に接している
請求項9に記載の受発光装置。
The light receiving / emitting device according to claim 9, wherein the light receiving side sealing region and the light emitting side sealing region are in spatial contact.
前記受光側封止領域に少なくとも一部を封止された受光側補助素子をさらに備え、
前記温度情報及び前記湿度情報の少なくとも一方は、前記受光側補助素子の電気的特性及び光学的特性の少なくとも一方に関する情報を含む
請求項9又は10に記載の受発光装置。
A light receiving side auxiliary element sealed at least partially in the light receiving side sealing region;
The light emitting / receiving device according to claim 9 or 10, wherein at least one of the temperature information and the humidity information includes information on at least one of electrical characteristics and optical characteristics of the light receiving side auxiliary element.
前記受光側補助素子は、前記受光素子と同一の受光側基板上に形成されている
請求項11に記載の受発光装置。
The light receiving / emitting device according to claim 11, wherein the light receiving side auxiliary element is formed on the same light receiving side substrate as the light receiving element.
前記受光側補助素子は、インジウムを含み、ヒ素及びアンチモンの少なくとも一方を含み、P型半導体層とN型半導体層を少なくとも有するダイオード構造を有する、又は抵抗体である
請求項11又は12に記載の受発光装置。
13. The light receiving side auxiliary element includes indium, includes at least one of arsenic and antimony, has a diode structure including at least a P-type semiconductor layer and an N-type semiconductor layer, or is a resistor. Light emitting / receiving device.
前記発光側封止領域に少なくとも一部を封止された発光側補助素子をさらに備え、
前記温度情報及び前記湿度情報の少なくとも一方は、前記発光側補助素子の電気的特性及び光学的特性の少なくとも一方に関する情報を含む
請求項9から13までのいずれか一項に記載の受発光装置。
A light emitting side auxiliary element sealed at least partially in the light emitting side sealing region;
The light receiving and emitting device according to any one of claims 9 to 13, wherein at least one of the temperature information and the humidity information includes information on at least one of electrical characteristics and optical characteristics of the light emitting side auxiliary element.
前記発光側補助素子は、前記発光素子と同一の発光側基板上に配置されている
請求項14に記載の受発光装置。
The light emitting and receiving device according to claim 14, wherein the light emitting side auxiliary element is disposed on the same light emitting side substrate as the light emitting element.
前記発光側補助素子は、インジウムを含み、ヒ素及びアンチモンの少なくとも一方を含み、P型半導体層とN型半導体層を少なくとも有するダイオード構造を有する、又は抵抗体である
請求項14又は15に記載の受発光装置。
The light emitting side auxiliary element includes indium, includes at least one of arsenic and antimony, has a diode structure including at least a P-type semiconductor layer and an N-type semiconductor layer, or is a resistor. Light emitting / receiving device.
前記受光素子は、インジウムを含み、ヒ素及びアンチモンの少なくとも一方を含み、P型半導体層とN型半導体層を少なくとも有するダイオード構造を有する、又は抵抗体である
請求項6から16までのいずれか一項に記載の受発光装置。
The light receiving element includes indium, includes at least one of arsenic and antimony, has a diode structure including at least a P-type semiconductor layer and an N-type semiconductor layer, or is a resistor. The light emitting / receiving device according to item.
前記発光素子は、インジウムを含み、ヒ素及びアンチモンの少なくとも一方を含み、P型半導体層と
N型半導体層を少なくとも有するダイオード構造を有する
請求項6から17までのいずれか一項に記載の受発光装置。
The light emitting / receiving device according to any one of claims 6 to 17, wherein the light emitting element includes indium, includes at least one of arsenic and antimony, and has a diode structure including at least a P-type semiconductor layer and an N-type semiconductor layer. apparatus.
JP2017242460A 2016-12-28 2017-12-19 Light receiving device and light emitting / receiving device Active JP6439030B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/850,380 US10433387B2 (en) 2016-12-28 2017-12-21 Light emitting device and light emitting and receiving device
US15/850,271 US10212776B2 (en) 2016-12-28 2017-12-21 Light receiving device and light emitting and receiving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016255817 2016-12-28
JP2016255817 2016-12-28

Publications (2)

Publication Number Publication Date
JP2018109619A true JP2018109619A (en) 2018-07-12
JP6439030B2 JP6439030B2 (en) 2018-12-19

Family

ID=62844465

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017242460A Active JP6439030B2 (en) 2016-12-28 2017-12-19 Light receiving device and light emitting / receiving device
JP2017242461A Active JP6368420B2 (en) 2016-12-28 2017-12-19 Light emitting device and light emitting / receiving device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017242461A Active JP6368420B2 (en) 2016-12-28 2017-12-19 Light emitting device and light emitting / receiving device

Country Status (1)

Country Link
JP (2) JP6439030B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11320572B2 (en) 2019-12-05 2022-05-03 Asahi Kasei Microdevices Corporation NDIR gas sensor, optical device, and optical filter for NDIR gas sensor
US11346775B2 (en) 2018-08-29 2022-05-31 Asahi Kasei Microdevices Corporation NDIR gas sensor and optical device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6980159B1 (en) * 2021-02-08 2021-12-15 三菱電機株式会社 Display device and control device connected to the display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403291A (en) * 2003-12-09 2004-12-29 Dynament Ltd Compact optical gas sensor
US20050121614A1 (en) * 2003-12-09 2005-06-09 Dynament Limited Gas sensor
JP2006038721A (en) * 2004-07-29 2006-02-09 Denso Corp Gas concentration detector
JP2011203004A (en) * 2010-03-24 2011-10-13 Asahi Kasei Electronics Co Ltd Quantum-type infrared gas densitometer
US20120024042A1 (en) * 2010-07-31 2012-02-02 Vass Arpad A Light-Weight Analyzer For Odor Recognition
CN104062028A (en) * 2013-03-21 2014-09-24 株式会社堀场制作所 Thermometer
JP2016143718A (en) * 2015-01-30 2016-08-08 旭化成エレクトロニクス株式会社 Method of manufacturing infrared ray sensor
JP2016152259A (en) * 2015-02-16 2016-08-22 旭化成エレクトロニクス株式会社 Infrared ray emission element and manufacturing method for the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211266A (en) * 1996-01-30 1997-08-15 Hitachi Ltd Semiconductor device and optical communication module
JP2013084793A (en) * 2011-10-11 2013-05-09 Sharp Corp Electronic component, electronic apparatus, and reuse method of electronic component
US9874518B2 (en) * 2014-04-22 2018-01-23 Sharp Kabushiki Kaisha Optical sensor system, optical gas sensor system, particulate sensor system, light emitting apparatus, and image printing apparatus
KR20160033815A (en) * 2014-09-18 2016-03-29 삼성전자주식회사 Semiconductor light emitting device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403291A (en) * 2003-12-09 2004-12-29 Dynament Ltd Compact optical gas sensor
US20050121614A1 (en) * 2003-12-09 2005-06-09 Dynament Limited Gas sensor
EP1544603A2 (en) * 2003-12-09 2005-06-22 Dynament Limited Gas sensor
JP2006038721A (en) * 2004-07-29 2006-02-09 Denso Corp Gas concentration detector
JP2011203004A (en) * 2010-03-24 2011-10-13 Asahi Kasei Electronics Co Ltd Quantum-type infrared gas densitometer
US20120024042A1 (en) * 2010-07-31 2012-02-02 Vass Arpad A Light-Weight Analyzer For Odor Recognition
CN104062028A (en) * 2013-03-21 2014-09-24 株式会社堀场制作所 Thermometer
EP2781900A1 (en) * 2013-03-21 2014-09-24 Horiba, Ltd. Thermometer
US20140286376A1 (en) * 2013-03-21 2014-09-25 Horiba, Ltd. Thermometer
JP2014182106A (en) * 2013-03-21 2014-09-29 Horiba Ltd Thermometer
JP2016143718A (en) * 2015-01-30 2016-08-08 旭化成エレクトロニクス株式会社 Method of manufacturing infrared ray sensor
JP2016152259A (en) * 2015-02-16 2016-08-22 旭化成エレクトロニクス株式会社 Infrared ray emission element and manufacturing method for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11346775B2 (en) 2018-08-29 2022-05-31 Asahi Kasei Microdevices Corporation NDIR gas sensor and optical device
US11921038B2 (en) 2018-08-29 2024-03-05 Asahi Kasei Microdevices Corporation Optical device
US11320572B2 (en) 2019-12-05 2022-05-03 Asahi Kasei Microdevices Corporation NDIR gas sensor, optical device, and optical filter for NDIR gas sensor
US11740396B2 (en) 2019-12-05 2023-08-29 Asahi Kasei Microdevices Corporation Optical device

Also Published As

Publication number Publication date
JP6439030B2 (en) 2018-12-19
JP2018110222A (en) 2018-07-12
JP6368420B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6439030B2 (en) Light receiving device and light emitting / receiving device
US20070069133A1 (en) Microbolometer IR Focal Plane Array (FPA) with In-Situ Micro Vacuum Sensor and Method of Fabrication
US8748808B2 (en) Detection and correction of a loss of calibration of microbolometer thermal imaging radiometers
US8523427B2 (en) Sensor device with improved sensitivity to temperature variation in a semiconductor substrate
JP6410679B2 (en) Gas sensor
JP2008145133A (en) Radiation thermometer
US9541449B2 (en) Method for correcting for dark current variation in TEC cooled photodiodes
JP5542090B2 (en) Infrared sensor signal correction method, temperature measurement method, and temperature measurement apparatus
JP6622049B2 (en) Gas concentration measuring device
JP5564681B2 (en) Infrared sensor
KR101459668B1 (en) Method For Correcting Temperature Distribution of Semiconductor Device Measured by Infrared Thermal Imaging Camera And System Using The Same
US7435961B2 (en) Imaging sensor
JP5755780B2 (en) Infrared sensor signal correction method, temperature measurement method, and temperature measurement apparatus
US10433387B2 (en) Light emitting device and light emitting and receiving device
JP2012215432A (en) Infrared sensor and ndir gas densitometer using the same
JP5576162B2 (en) Quantum infrared gas concentration meter
US8893554B2 (en) System and method for passively compensating pressure sensors
JP4247742B2 (en) Wavelength measuring method and spectroscopic device using the same
CN113557430A (en) Sensor device and method for operating a sensor device
JP6514972B2 (en) Gas concentration measuring device
JP2016213307A (en) Reflective sensor device and manufacturing method therefor
KR100693063B1 (en) Ndir gas sensor having compensating means for aging effect
KR101578374B1 (en) Thermopile sensor module
US7591586B2 (en) Method of temperature measurement and temperature-measuring device using the same
CN116893155A (en) Gas concentration measuring system and method, and gas concentration calculating unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6439030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150