JP2018109437A - Uncontrolled magnetic levitation method and uncontrolled magnetic levitation device - Google Patents

Uncontrolled magnetic levitation method and uncontrolled magnetic levitation device Download PDF

Info

Publication number
JP2018109437A
JP2018109437A JP2017000607A JP2017000607A JP2018109437A JP 2018109437 A JP2018109437 A JP 2018109437A JP 2017000607 A JP2017000607 A JP 2017000607A JP 2017000607 A JP2017000607 A JP 2017000607A JP 2018109437 A JP2018109437 A JP 2018109437A
Authority
JP
Japan
Prior art keywords
magnetic
levitation
floating
uncontrolled
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017000607A
Other languages
Japanese (ja)
Inventor
常正 船津
Tsunemasa Funatsu
常正 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017000607A priority Critical patent/JP2018109437A/en
Publication of JP2018109437A publication Critical patent/JP2018109437A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an uncontrolled magnetic levitation method for floating a floating body having a member which is heavy in weight, and has magnetism without the necessity for active control, and an uncontrolled magnetic levitation device using the uncontrolled magnetic levitation method.SOLUTION: In an uncontrolled magnetic levitation method for floating a floating body 10, the floating body 10 is integrally constituted of a floating member 12, a resilient member 14 and a connection member 16, and has: hoisting means for arranging a hoisting member 22 having magnetism at which a magnetic force in a vertical upper direction generated at the floating member 12 is set to a value smaller than a force equivalent to the weight of the floating body 10 to a prescribed position by a magnetic mutual operation together with the floating member 12; and push-up means for selecting the resilient member 14 and a member on which an anti-magnetic action acts, and arranging a push-up member 24 in which an anti-magnetism magnetic force generated at the resilient member 14 is set to a value equivalent to an insufficient amount of the magnetic force in the vertical upper direction which becomes necessary for floating to a prescribed position.SELECTED DRAWING: Figure 1

Description

本発明は、反磁性磁気力を利用して永久磁石などの磁気を帯びた部材と配置組合せることによって無制御で磁気浮上を可能とし、非接触の軸受やモータに導入する無制御磁気浮上方法及び磁気浮上装置に関する。   The present invention provides a non-controlling magnetic levitation method that enables magnetic levitation without control by arranging and combining with a magnetized member such as a permanent magnet using diamagnetic magnetic force, and introducing it into a non-contact bearing or motor. And a magnetic levitation device.

従来、無制御で磁気浮上を可能にしているものに磁気ゴマがあるが、安定浮上するためには回転が必要であった。回転させることによって、磁気を帯びた部材を備えた浮上体が有する磁場及び浮上体の周囲に形成した磁場との間の相互作用により生じる磁気力の合力の方向は回転する間回転軸を中心に変化し水平方向のバランスを維持することができる。   Conventionally, there is a magnetic sesame that enables magnetic levitation without control, but rotation is necessary for stable levitation. By rotating, the direction of the resultant magnetic force generated by the interaction between the magnetic field of the levitated body with the magnetized member and the magnetic field formed around the levitating body is centered on the rotation axis while rotating. It can change and maintain a horizontal balance.

しかし、静止状態では、浮上体が有する磁場及び浮上体の周囲に形成した磁場との間の相互作用により生じたアンバランスな磁気力によって浮上体は、当該磁気力の働く方向に移動してしまうことになる。そのため、静止状態の磁気浮上を可能とするための研究が行われ先行技術が開示されている。   However, in a stationary state, the levitated body moves in the direction in which the magnetic force acts due to the unbalanced magnetic force generated by the interaction between the magnetic field of the levitated body and the magnetic field formed around the levitated body. It will be. For this reason, research for enabling magnetic levitation in a stationary state has been conducted and prior art has been disclosed.

特許文献1(特開平10−163023)には、挟み込み磁極体の両垂直面に磁場域限定壁を付し、当磁場域限定壁間に中間磁極体を挟み込み磁極体の内側両極面に同極が向くように、当壁面間に挿入して当壁面間にて中間磁極体を反発浮上状態に置くことを特徴とした、挟み込み磁極磁場構造による反発浮上基本機構が示されている。   In Patent Document 1 (Japanese Patent Laid-Open No. 10-163023), a magnetic field region limiting wall is attached to both vertical surfaces of the sandwiched magnetic pole body, and an intermediate magnetic pole body is sandwiched between the magnetic field region limited walls to have the same polarity on the inner pole surfaces of the magnetic pole body. The repulsive levitation basic mechanism with a sandwiching magnetic pole magnetic field structure is shown in which the intermediate magnetic pole body is placed between the abutting walls and placed between the abutting walls so that the intermediate magnetic pole body is placed in a repulsive levitation state.

異極間に働く引力の周囲に設計された浮上システムは、磁気引力と吊り下げ重量との間に完璧なバランスを必要とする。揚力及び磁気力に関して集約された完璧な情報が存在しない場合には、浮上体は、磁石に向かって吊上げられるか、下落するかいずれかである。特許文献1は磁気の反発力により生成された浮上システムであるが、磁極間に働く反発力の周囲に設計された浮上システムも同様に完璧なバランスを維持することができなければ浮上システム外にはじき出されることになる。磁気力による完璧なバランスを達成するのは、容易に思えるが、実際には非常に困難である。磁気力が距離の二乗に反比例する場、すなわちポテンシャルエネルギーが距離の逆数に比例する場では、いずれの方向からも復元力が働く条件を満足することができず、三次元の軸方向のすべてに対して安定になることはないので、安定に空中に浮上することは不可能であるというアーンショーの定理からも理解できる。   A levitation system designed around an attractive force that works between different poles requires a perfect balance between magnetic attractive force and suspended weight. In the absence of perfect information aggregated about lift and magnetic force, the levitated body is either lifted or lowered toward the magnet. Patent Document 1 is a levitation system generated by a magnetic repulsive force, but if the levitation system designed around the repulsive force acting between the magnetic poles cannot maintain a perfect balance as well, it is outside the levitation system. It will be ejected. Achieving perfect balance with magnetic forces seems easy, but in practice it is very difficult. In the field where the magnetic force is inversely proportional to the square of the distance, that is, the field where the potential energy is proportional to the reciprocal of the distance, the condition that the restoring force works from any direction cannot be satisfied, and all three-dimensional axial directions On the other hand, since it never becomes stable, it can be understood from the Arnshaw theorem that it is impossible to surface stably in the air.

別の複雑にする要素は、横方向の安定の必要性である。これらを制御にするためには、電気制御により浮上体の状態を検知し浮上体の位置と姿勢が安定するように磁場を変化させる能動的な制御によれば容易に行えることが知られている。   Another complicating factor is the need for lateral stability. In order to control these, it is known that it can be easily performed by active control that detects the state of the floating body by electric control and changes the magnetic field so that the position and posture of the floating body are stabilized. .

特許文献2(WO94/10746)、及び、特許文献3(US5396136)には、ハウジングに吊り下げたシャフト組立品から構成されるベアリングを示している。同心磁気リングで構成されているディスクの複数が、軸に沿って間隔を置いて配置されている。ディスクは、ハウジングの外殻から内側に突き出して取り付けられた反磁性材料のディスク間に挟まれて浮上する方法と浮上装置が示されている。   Patent Document 2 (WO94 / 10746) and Patent Document 3 (US5396136) show a bearing composed of a shaft assembly suspended from a housing. A plurality of disks composed of concentric magnetic rings are arranged at intervals along the axis. A method and a levitation device are shown in which the disk is sandwiched between disks of diamagnetic material mounted inwardly protruding from the outer shell of the housing.

特開平10−163023号公報Japanese Patent Laid-Open No. 10-163023 WO94/10746号公報WO94 / 10746 US5396136号公報US5396136

特許文献2及び特許文献3の浮上方法では、反発用磁石と反磁性体のみの相互作用により浮上させる機構となっており、浮上可能な磁石の重量が小さい問題があった。   In the levitation methods of Patent Document 2 and Patent Document 3, there is a problem that the mechanism is levitated by the interaction of only the repulsion magnet and the diamagnetic material, and the weight of the levitable magnet is small.

また、最近では押上反磁性部材124と磁気を帯びた浮上部材114との相互作用のみで浮上させるのではなく、図12に示すように磁気を帯びた吊上げ部材122を浮上部材114の鉛直上方の離隔した位置に配設し吊上げ部材122と浮上部材114との相互作用を同時に利用して揚力を向上させる磁気浮上装置110が開発されている。すなわち、従来の磁気浮上装置110は浮上部材114が吊上げ部材122と押上反磁性部材124の両方から相互作用を受けるよう構成されている。この場合、吊上げ部材122が形成する磁場において磁気吊上げ力が小さいすそ野の部分しか浮上に利用できず、浮上可能な浮上体の重量が特許文献2及び特許文献3と比較してもさほど大きくならない問題があった。   In addition, recently, the lifted member 122 is not lifted only by the interaction between the push-up diamagnetic member 124 and the magnetically levitated member 114, but the magnetically lifted member 122 is positioned vertically above the levitated member 114 as shown in FIG. A magnetic levitation device 110 has been developed that is disposed in a separated position and improves the lift by simultaneously utilizing the interaction between the lifting member 122 and the levitation member 114. In other words, the conventional magnetic levitation apparatus 110 is configured such that the levitation member 114 receives interaction from both the lifting member 122 and the push-up diamagnetic member 124. In this case, only the portion of the skirt where the magnetic lifting force is small in the magnetic field formed by the lifting member 122 can be used for levitation, and the weight of the levitation body that can be levitated is not so large even when compared with Patent Document 2 and Patent Document 3. was there.

本発明は、上記の問題に鑑みてなされたものであり、能動的なコントロールを必要とすることなく、水平方向の安定性を有し、重量の大きな磁気を帯びた部材を備えた浮上体を浮上させる無制御磁気浮上方法及び当該無制御磁気浮上方法を活用した無制御磁気浮上装置を提供することを目的とする。   The present invention has been made in view of the above problems, and has a floating body that has a horizontal stability and a heavy magnetic member without requiring active control. An object is to provide an uncontrolled magnetic levitation method for levitating and an uncontrolled magnetic levitation apparatus utilizing the uncontrolled magnetic levitation method.

上記課題を解決するため、本発明の無制御磁気浮上方法は、浮上体を重力に対して浮上させる無制御磁気浮上方法において、前記浮上体は、磁気を帯びた浮上部材と、磁気を帯びた部材又は反磁性体のいずれかを選択された反発部材と、前記浮上部材及び前記反発部材の中心を貫く鉛直軸に対称な連結部材と、で一体に構成され、前記浮上部材との磁気的相互作用によって、前記浮上部材に生じる鉛直上方向の磁気力が前記浮上体の重量に相当する力未満の値に設定された磁気を帯びた吊上げ部材を前記浮上部材に近接して配設する吊上げ手段と、前記反発部材と反磁気的作用が働く部材を選択し、前記反発部材に生じる反磁性磁気力が浮上のために必要となる前記鉛直上方向の磁気力の不足分に相当する値に設定された押上部材を前記反発部材下方に近接して配設する押上手段と、を有すること、を特徴とする。   In order to solve the above problems, an uncontrolled magnetic levitation method of the present invention is an uncontrolled magnetic levitation method in which a levitated body is levitated with respect to gravity, wherein the levitated body is magnetically levitated and a magnetic A repulsive member selected from either a member or a diamagnetic material, and a connecting member symmetric to a vertical axis passing through the floating member and the center of the repelling member, are formed integrally, and magnetically coupled to the floating member A lifting means for disposing a magnetically lifted member in which a vertically upward magnetic force generated in the floating member is set to a value less than a force corresponding to the weight of the floating body in proximity to the floating member. And a member that works diamagnetically with the repulsive member, and the diamagnetic magnetic force generated in the repulsive member is set to a value corresponding to a shortage of the magnetic force in the vertical direction necessary for levitation. The raised push-up member Having a push-up means for disposing in close proximity to the timber downwards, and characterized.

本発明の無制御磁気浮上方法は、前記浮上部材が、前記浮上部材の各磁極が有する磁荷と前記吊上げ部材の各磁極が有する磁荷との間の磁気的相互作用によって前記浮上部材の各磁極に働く引力及び斤力の前記鉛直軸上方向の合力が最大となる位置の近傍に配設され、かつ、前記引力及び斤力の水平方向の合力が常に前記鉛直軸方向に向かって働く位置に配設されること、を特徴とする。   In the uncontrolled magnetic levitation method according to the present invention, the levitation member is configured so that each levitation member has a magnetic interaction between a magnetic charge of each magnetic pole of the levitation member and a magnetic charge of each magnetic pole of the lifting member. Position where the attractive force acting on the magnetic pole and the repulsive force are arranged near the position where the resultant force on the vertical axis is maximum, and the horizontal resultant force of the attractive force and the repulsive force always works toward the vertical axis direction It is characterized by being arranged.

本発明の無制御磁気浮上方法は、前記吊上げ部材が、導線を螺旋状に巻回して管状に形成し電流を流して磁場を発生させる部材であること、を特徴とする。   The uncontrolled magnetic levitation method according to the present invention is characterized in that the lifting member is a member that spirally winds a conductive wire to form a tubular shape, and generates a magnetic field by flowing an electric current.

本発明の無制御磁気浮上方法は、前記浮上部材が、両磁極を鉛直方向に沿って配置されること、前記吊上げ手段が、前記浮上部材の前記鉛直軸廻りに略対称かつ略等間隔で、前記浮上部材の上面磁極と同じ磁極を前記浮上部材側に面して非接触に前記吊上げ部材を配置させたこと、を特徴とする。
本明細書において、「軸廻りに対称」とは、軸に直交する平面上において軸まで距離が等距離にあることをいう。
In the uncontrolled magnetic levitation method of the present invention, the levitation member is arranged such that both magnetic poles are arranged along the vertical direction, and the lifting means is substantially symmetrical and substantially equidistant around the vertical axis of the levitation member, The lifting member is arranged in a non-contact manner so that the same magnetic pole as the upper surface magnetic pole of the floating member faces the floating member side.
In this specification, “symmetric about the axis” means that the distance to the axis is equidistant on a plane orthogonal to the axis.

本発明の無制御磁気浮上方法は、前記押上手段が、水平補助部材、を備え、前記水平補助部材が、前記反発部材との反磁気的作用によって、前記反発部材に生じる水平方向の反磁性磁気力の合力が常に前記鉛直軸に向かう値に選定され前記反発部材側方に近接して配設されること、を特徴とする。   In the uncontrolled magnetic levitation method of the present invention, the lifting means includes a horizontal auxiliary member, and the horizontal auxiliary member generates a horizontal diamagnetic magnetism generated in the repulsive member by a diamagnetic action with the repulsive member. The resultant force is always selected to be a value directed to the vertical axis, and is arranged close to the side of the repulsion member.

本発明の無制御磁気浮上方法は、前記反発部材と磁性が異なる押え部材を前記反発部材上方に近接して配設する押え手段、を備え、前記押え部材が、前記押上部材と前記反発部材との反磁気的作用によって前記反発部材に生じる鉛直上方向の反磁性磁気力と、前記反発部材との反磁気的作用によって前記反発部材に生じる鉛直下方向の反磁性磁気力の合力が常に設定された浮上位置に向かう値に選定されること、を特徴とする。   The non-controlling magnetic levitation method of the present invention comprises a pressing means that disposes a pressing member having a magnetism different from that of the repelling member in proximity to the upper side of the repelling member, and the pressing member includes the lifting member and the repelling member. A resultant force of the vertically upward diamagnetic magnetic force generated in the repulsive member by the diamagnetic action and the vertically downward diamagnetic magnetic force generated in the repulsive member by the diamagnetic action with the repulsive member is always set. It is characterized in that it is selected to a value that goes to the flying position.

本発明の無制御磁気浮上装置は、本発明に係る無制御磁気浮上方法を備えたこと、を特徴とする。   An uncontrolled magnetic levitation apparatus according to the present invention includes the uncontrolled magnetic levitation method according to the present invention.

本発明の無制御磁気浮上装置は、磁界と電流の相互作用によって前記浮上体が前記連結部材の鉛直軸廻りに浮上回転を行う回転手段、を有し、前記回転手段が、前記連結部材に回転子を配設し、前記回転子を中心として複数の固定子を前記連結部材の鉛直軸廻りに対称に配置させたこと、を特徴とする。   The uncontrolled magnetic levitation apparatus according to the present invention includes a rotating unit that causes the levitating body to float and rotate about a vertical axis of the connecting member by an interaction between a magnetic field and an electric current, and the rotating unit rotates on the connecting member. And a plurality of stators arranged symmetrically around the vertical axis of the connecting member.

本発明の無制御磁気浮上方法によれば、吊上げ手段及び押上手段により磁気を帯びた部材同士の磁気の相互作用(以下、磁気的相互作用)及び磁気を帯びた部材と反磁性体との反磁性の相互作用のみで、磁気を帯びた浮上部材と、押上手段と反発する性質を有する反発部材とを備えた浮上体の浮上が可能であり、外部から磁気力のフィードバック制御を必要としない効果を奏する。磁気を帯びた部材は、例えば永久磁石である。   According to the uncontrolled magnetic levitation method of the present invention, the magnetic interaction between the members magnetized by the lifting means and the lifting means (hereinafter referred to as magnetic interaction) and the reaction between the magnetized member and the diamagnetic material. It is possible to float a floating body that has a magnetically levitating member and a repulsive member that repels the push-up means only by magnetic interaction, and does not require external feedback control of magnetic force Play. The magnetic member is, for example, a permanent magnet.

また、従来浮上位置を安定させることが困難であったが、前記吊上げ手段と前記押上手段との協調作用により水平方向及び鉛直方向の磁気力のバランスを維持することが容易になった。   Further, although it has been difficult to stabilize the floating position in the past, it has become easy to maintain the balance of the magnetic force in the horizontal direction and the vertical direction by the cooperative action of the lifting means and the lifting means.

本発明の無制御磁気浮上方法によれば、前記吊上げ手段が、浮上部材との磁気的相互作用によって生じる鉛直上方向の磁気力が前記浮上体の重量に相当する力未満の値に選定された吊上げ部材を、前記浮上部材の各磁極が有する磁荷と前記吊上げ部材の各磁極が有する磁荷との間に働く各々の引力又は斤力の合力が前記鉛直軸上で鉛直上方向に最大となる位置の近傍に前記浮上部材を配設するものであるため、小型軽量で大きい重量の浮上体を浮上させる装置を作成することが可能である。   According to the uncontrolled magnetic levitation method of the present invention, the lifting means is selected so that the vertical magnetic force generated by the magnetic interaction with the levitation member is less than the force corresponding to the weight of the levitation body. The resultant force of each attractive force or repulsive force acting between the magnetic charge of each magnetic pole of the levitation member and the magnetic charge of each magnetic pole of the lifting member is maximized vertically upward on the vertical axis. Since the levitation member is disposed in the vicinity of the position, it is possible to create a small, lightweight, and heavy levitation device.

本発明の無制御磁気浮上方法によれば、前記吊上げ手段に、永久磁石を選定して使用した場合では、浮上を安定させるために磁石の選定に手間が掛かるが、いわゆるソレノイドを使用することによって電流の変化のみで、磁気力を変化させることができるので浮上を安定させることが容易である効果を奏する。   According to the uncontrolled magnetic levitation method of the present invention, when a permanent magnet is selected and used as the lifting means, it takes time to select a magnet in order to stabilize the levitation, but by using a so-called solenoid, Since the magnetic force can be changed only by changing the current, there is an effect that it is easy to stabilize the levitation.

本発明の無制御磁気浮上方法によれば、前記吊上げ手段が、前記浮上部材の前記鉛直軸廻りに対称かつ等間隔で、前記浮上部材の上面磁極と同じ磁極を前記浮上部材側に面して非接触に配置させたことにより、前記浮上部材周辺に均等な磁界を生じさせ易く、前記浮上部材の水平方向の位置安定性を得ることができる。   According to the uncontrolled magnetic levitation method of the present invention, the lifting means has the same magnetic pole as the upper surface magnetic pole of the levitation member facing the levitation member side, symmetrically and equally spaced around the vertical axis of the levitation member. By arrange | positioning non-contacting, it is easy to produce a uniform magnetic field around the said floating member, and the horizontal position stability of the said floating member can be acquired.

本発明の無制御磁気浮上方法によれば、水平補助部材の配設により反発部材の水平方向の位置安定性を得ることができる。   According to the uncontrolled magnetic levitation method of the present invention, the horizontal position stability of the repulsion member can be obtained by providing the horizontal auxiliary member.

本発明の無制御磁気浮上方法によれば、押え部材が、前記反発部材の鉛直方向の搖動を防止するため、前記反発部材の鉛直方向の位置安定性を得ることができる。   According to the uncontrolled magnetic levitation method of the present invention, since the pressing member prevents the repulsive member from swinging in the vertical direction, the vertical position stability of the repelling member can be obtained.

本発明の無制御磁気浮上装置によれば、前記浮上体を浮上させた状態で回転させた場合であっても浮上位置を安定させることができるので、非接触の軸受の実現が可能である。   According to the uncontrolled magnetic levitation apparatus of the present invention, the floating position can be stabilized even when the floating body is rotated in a floating state, so that a non-contact bearing can be realized.

本発明の無制御磁気浮上装置によれば、通常のモータと同じ回転の仕組みで非接触のモータ軸受が可能となり、長寿命のモータの実現が可能となる。   According to the uncontrolled magnetic levitation apparatus of the present invention, a non-contact motor bearing can be realized by the same rotation mechanism as that of a normal motor, and a long-life motor can be realized.

また、可動部分を有する装置等に軸受やモータとして組み込むことにより、従来消耗により所定の時間経過後に行われていた交換作業等の必要がなくなり、装置の長寿命化を図ることができる。   Further, by incorporating it as a bearing or a motor in a device having a movable part, it is not necessary to perform a replacement work or the like that has been performed after a predetermined time due to conventional wear, and the life of the device can be extended.

本発明に係る無制御磁気浮上方法の原理を示した模式図である。It is the schematic diagram which showed the principle of the uncontrolled magnetic levitation method which concerns on this invention. 本発明に係る無制御磁気浮上方法の吊上げ手段の変形例を示した図である。It is the figure which showed the modification of the lifting means of the uncontrolled magnetic levitation method which concerns on this invention. 本発明に係る無制御磁気浮上方法の浮上部材12と吊上げ部材22との磁気的相互作用により生じる磁気力の大きさを浮上体10に対比して示した模式図である。4 is a schematic diagram showing the magnitude of magnetic force generated by the magnetic interaction between the levitation member 12 and the lifting member 22 in the uncontrolled magnetic levitation method according to the present invention in comparison with the levitation body 10. FIG. 本発明に係る無制御磁気浮上方法の浮上部材12と吊上げ部材22との磁気的相互作用により生じた磁気力の関係を示した図である。It is the figure which showed the relationship of the magnetic force produced by the magnetic interaction of the floating member 12 and the lifting member 22 of the uncontrolled magnetic levitation method which concerns on this invention. 本発明に係る無制御磁気浮上方法の浮上体10と吊上げ手段との相互作用により浮上体10に作用する磁気力の関係について示したグラフである。It is the graph shown about the relationship of the magnetic force which acts on the floating body 10 by the interaction of the floating body 10 and the lifting means of the uncontrolled magnetic levitation method according to the present invention. 本発明に係る無制御磁気浮上方法を実現する水平補助部材26の構成の一例を示した図である。It is the figure which showed an example of the structure of the horizontal auxiliary member 26 which implement | achieves the uncontrolled magnetic levitation method which concerns on this invention. 本発明に係る無制御磁気浮上方法を実現する構成の一例を示した図である。It is the figure which showed an example of the structure which implement | achieves the uncontrolled magnetic levitation method which concerns on this invention. 本発明に係る無制御磁気浮上方法を実現する構成の他の一例を示した模式図である。It is the schematic diagram which showed another example of the structure which implement | achieves the uncontrolled magnetic levitation method which concerns on this invention. 本発明に係る無制御磁気浮上方法を実現する吊上げ部材22の構成の一例を示した図である。It is the figure which showed an example of the structure of the lifting member 22 which implement | achieves the uncontrolled magnetic levitation method which concerns on this invention. 本発明に係る無制御磁気浮上方法を利用した無制御磁気浮上装置の一例を示した図である。It is the figure which showed an example of the non-control magnetic levitation apparatus using the non-control magnetic levitation method concerning the present invention. 本発明に係る無制御磁気浮上方法を利用した無制御磁気浮上装置の他の一例を示した図である。It is the figure which showed another example of the non-control magnetic levitation apparatus using the non-control magnetic levitation method which concerns on this invention. 従来の磁気浮上方法の原理を示した模式図である。It is the schematic diagram which showed the principle of the conventional magnetic levitation method.

本発明に係る無制御磁気浮上方法及び磁気浮上装置を実施するための形態について、図を参照しつつ説明する。   An embodiment for carrying out an uncontrolled magnetic levitation method and a magnetic levitation apparatus according to the present invention will be described with reference to the drawings.

図1は、本発明に係る無制御磁気浮上方法の原理を示した模式図である。   FIG. 1 is a schematic diagram showing the principle of an uncontrolled magnetic levitation method according to the present invention.

浮上体10は、浮上部材12と、反発部材14と、浮上部材12及び反発部材14の中心を貫く鉛直軸VAに対称な連結部材16と、で一体に構成されて、本発明に係る無制御磁気浮上方法によって重力に対して浮上する。   The levitation body 10 is integrally formed by a levitation member 12, a repulsion member 14, and a connecting member 16 that is symmetrical to the vertical axis VA that penetrates the centers of the levitation member 12 and the repulsion member 14, and is thus uncontrolled according to the present invention. Ascend against gravity by magnetic levitation method.

浮上部材12は例えば永久磁石60であり両磁極を鉛直方向に向けて配置される。図1においてはN極を鉛直上方に配置したが、これに限定されるものではなく、S極を鉛直上方に配置してもよい。   The levitation member 12 is, for example, a permanent magnet 60 and is disposed with both magnetic poles oriented in the vertical direction. In FIG. 1, the N pole is arranged vertically upward, but the present invention is not limited to this, and the S pole may be arranged vertically upward.

反発部材14は、磁気を帯びた部材又は反磁性体のいずれであってもよい。   The repulsive member 14 may be either a magnetic member or a diamagnetic material.

また、浮上部材12及び反発部材14は連結部材16廻りに対称に配設される。浮上体10の当該構成は最小構成単位であり、これに限定されるわけではない。図1では、浮上部材12を上方に反発部材14を下方となるように配置したが、浮上部材12を下方に反発部材14を上方に配置してもよい。   Further, the floating member 12 and the repelling member 14 are arranged symmetrically around the connecting member 16. The said structure of the floating body 10 is a minimum structural unit, It is not necessarily limited to this. In FIG. 1, the floating member 12 is disposed upward and the repulsive member 14 is disposed downward. However, the floating member 12 may be disposed downward and the repulsive member 14 may be disposed upward.

浮上体10を重力に対して浮上させる無制御磁気浮上方法は、浮上部材12との磁気的相互作用によって浮上部材12に生じる鉛直上方向の磁気力で浮上体10を吊上げる吊上げ手段としての吊上げ部材22と、反発部材14との反磁気的作用によって反発部材14に生じる反磁性磁気力で浮上体10を押上げる押上手段としての押上部材24と、を備えた浮上支援部材20によって実現される。   The uncontrolled magnetic levitation method for levitation of the levitation body 10 with respect to gravity is lifting as a lifting means that suspends the levitation body 10 by a magnetic force in the vertical direction generated in the levitation member 12 due to magnetic interaction with the levitation member 12. It is realized by a levitation assisting member 20 comprising a member 22 and a push-up member 24 as a push-up member for pushing up the floating body 10 by a diamagnetic magnetic force generated in the repulsive member 14 due to a diamagnetic action between the repulsive member 14. .

吊上げ部材22は、浮上部材12を貫く鉛直軸VA廻りに対称に均一の磁場を発生させるよう配置する。理論的には同じ磁気力を有する吊上げ部材22を幾何学的に鉛直軸VA廻りに対称に配置するが、現実には同一の磁気力を有する吊上げ部材22を用意することができない場合も多く鉛直軸VA廻りに対称に均一の磁場を発生させるため吊り上げ部材22の位置を微調整して磁気力を調整することが必要となる場合がある。吊上げ部材22は、浮上部材12の上面磁極と同じ磁極(図1の場合にはN極)を浮上部材12側に面して吊上げ部材22を配置させた。図1では両磁極方向が水平方向となるように配設したが、浮上体10との相互作用により浮上可能な磁気吊上げ力を得られ、鉛直軸VA廻りに対称に均一の磁場を発生させることができれば水平方向から傾斜させて角度を有していてもよい。   The lifting member 22 is disposed so as to generate a uniform magnetic field symmetrically around the vertical axis VA penetrating the floating member 12. Theoretically, the lifting members 22 having the same magnetic force are geometrically symmetrically arranged around the vertical axis VA. However, in reality, there are many cases where the lifting members 22 having the same magnetic force cannot be prepared. In order to generate a uniform magnetic field symmetrically around the axis VA, it may be necessary to finely adjust the position of the lifting member 22 to adjust the magnetic force. The lifting member 22 is arranged with the same magnetic pole (N pole in the case of FIG. 1) as the top magnetic pole of the flying member 12 facing the flying member 12 side. In FIG. 1, the magnetic poles are arranged so that both magnetic pole directions are horizontal. However, a magnetic lifting force capable of floating can be obtained by interaction with the floating body 10, and a uniform magnetic field can be generated symmetrically around the vertical axis VA. If possible, it may be inclined from the horizontal direction to have an angle.

なお、反発部材14が磁気を帯びた部材である場合には、押上部材24は反磁性体でなければならず、又、反発部材14が反磁性体である場合には、押上部材24は磁気を帯びた部材であることが必要となる。ここで、磁気を帯びた部材とは、例えば永久磁石60である。反磁性体は、熱分解グラファイトなどが挙げられるが、外部磁場のもとで反磁性が強くあらわれるビスマス62が好ましい。   When the repulsion member 14 is a magnetic member, the push-up member 24 must be a diamagnetic material. When the repulsion member 14 is a diamagnetic material, the push-up member 24 is magnetic. It is necessary to be a member with a bearing. Here, the magnetic member is, for example, the permanent magnet 60. Examples of the diamagnetic material include pyrolytic graphite, and bismuth 62 that exhibits strong diamagnetism under an external magnetic field is preferable.

図2は、本発明に係る無制御磁気浮上方法の吊上げ手段の変形例を示した図である。   FIG. 2 is a view showing a modification of the lifting means of the uncontrolled magnetic levitation method according to the present invention.

図2(a)は、鉛直軸VA廻りに輪状の永久磁石60を吊上げ部材22として配設した例である。浮上部材12の上面と同じN極を中心方向に、S極を外周方向に配向させて形成したものである。
図2(b)は、鉛直軸VA廻りに対称に円柱形状の永久磁石60を吊上げ部材22として複数個配設した例である。円柱両底面に磁極を配向させて、浮上部材12の上面と同じN極を中心方向に、S極を外周方向に向けて鉛直軸VA廻りに対称かつ等距離で放射状に配設したものである。浮上部材12及び吊上げ部材22の磁力の個体差に対応し易くより好適な実施形態である。図では吊上げ部材22を鉛直軸VA廻りの所定の円周上に八個配設したが、浮上体10との相互作用により浮上可能な磁気吊上げ力を得られ、鉛直軸VA廻りに対称に均一の磁場を発生させることができれば吊上げ部材22の数の変更を行ってもよい。本実施の形態での説明は図2(b)の形態に基づいて行う。また、より具体的に浮上部材12はφ8×20の円柱型ネオジウム磁石を採用し、反発部材14は、φ10×10の円柱型ネオジウム磁石6個を逆極性が隣り合うように鉛直軸VA廻りに軸対称に並べたものとする。
FIG. 2A shows an example in which a ring-shaped permanent magnet 60 is disposed as the lifting member 22 around the vertical axis VA. The same N pole as the upper surface of the levitation member 12 is formed in the central direction and the S pole is oriented in the outer peripheral direction.
FIG. 2B is an example in which a plurality of cylindrical permanent magnets 60 are arranged as lifting members 22 symmetrically about the vertical axis VA. Magnetic poles are oriented on both bottom surfaces of the cylinder, and the same N pole as the top surface of the levitation member 12 is oriented in the central direction, and the S pole is oriented in the radial direction symmetrically and equidistantly about the vertical axis VA. . This is a more preferred embodiment that can easily cope with individual differences in magnetic force between the floating member 12 and the lifting member 22. In the drawing, eight lifting members 22 are arranged on a predetermined circumference around the vertical axis VA. However, a magnetic lifting force capable of rising by interaction with the floating body 10 can be obtained, and symmetrical and uniform around the vertical axis VA. If the number of lifting members 22 can be changed, the number of lifting members 22 may be changed. The description in this embodiment will be made based on the embodiment shown in FIG. More specifically, the levitation member 12 employs a φ8 × 20 cylindrical neodymium magnet, and the repulsion member 14 has six φ10 × 10 cylindrical neodymium magnets around the vertical axis VA so that the opposite polarities are adjacent to each other. It shall be arranged in an axial symmetry.

また、図1では浮上体10の構成に合わせて、吊上げ部材22を上方の浮上部材12の近傍に、押上部材24を下方の反発部材14の下側に隣接した位置に配設したが、浮上部材12を下方に、反発部材14を上方に配置した場合には、吊上げ部材22を下方の浮上部材12の近傍に、押上部材24を上方の反発部材14の下側に隣接した位置に配設する。   Further, in FIG. 1, in accordance with the structure of the floating body 10, the lifting member 22 is disposed in the vicinity of the upper floating member 12, and the push-up member 24 is disposed at a position adjacent to the lower side of the lower repulsive member 14. When the member 12 is disposed downward and the repulsion member 14 is disposed upward, the lifting member 22 is disposed in the vicinity of the lower floating member 12 and the push-up member 24 is disposed at a position adjacent to the lower side of the upper repulsion member 14. To do.

反発部材14が、磁気を帯びた部材である場合には、輪状の部材を使用することも可能であるが、小型の円柱形の磁気を帯びた部材を使用して当該部材の母線に相当する部分を隣接させて平面視で数珠状に形成すると連結部材16廻りにより均一に近い磁場を得ることができるので実施が容易である。また、同一面上で隣り合う磁気を帯びた部材の極性を反転させて配置すると磁極近傍において押上部材24との相互作用による浮上のための反磁性磁気力を大きく、かつ、粗密なく安定的に得ることができ、浮上に有効に働くことはすでに知られている。   When the repulsive member 14 is a magnetic member, a ring-shaped member can be used, but it corresponds to a bus bar of the member using a small cylindrical magnetic member. When the portions are adjacent to each other and formed in a rosary shape in a plan view, a magnetic field closer to the uniform can be obtained around the connecting member 16, so that implementation is easy. Also, if the polarities of adjacent magnetic members on the same plane are reversed, the diamagnetic magnetic force for levitation due to the interaction with the push-up member 24 is increased in the vicinity of the magnetic pole, and it is stable without being dense. It is already known that it can be obtained and works effectively on the surface.

本発明に係る無制御磁気浮上方法は、浮上部材12と吊上げ部材22との磁気的相互作用によって生じる鉛直上方向の磁気力が浮上体10の重量に相当する力未満の値に設定された磁気吊上げ力と、浮上のために必要となる前記磁気力の不足分に相当する値に設定された反発部材14と押上部材24との反磁気的作用によって生じる反磁性磁気力の合力で浮上するものである。このうち、反発部材14を押上部材24で浮上させる技術は従来の浮上手段として知られている。一方、反発部材14から鉛直方向に離隔した位置に浮上部材12及び吊上げ部材22を配設し浮上力の向上と水平方向の安定性を図る手段を有したことに本発明は大きな特徴を有する。   In the uncontrolled magnetic levitation method according to the present invention, the magnetic force in the vertical upward direction generated by the magnetic interaction between the levitation member 12 and the lifting member 22 is set to a value less than the force corresponding to the weight of the levitation body 10. Floating force and resultant force of diamagnetic magnetic force generated by diamagnetic action of repulsive member 14 and push-up member 24 set to a value corresponding to the shortage of magnetic force necessary for levitation It is. Among these, the technique of levitating the repulsive member 14 by the push-up member 24 is known as a conventional levitating means. On the other hand, the present invention has a great feature in that the levitation member 12 and the lifting member 22 are disposed at a position separated from the repulsion member 14 in the vertical direction, and has means for improving levitation force and stability in the horizontal direction.

図3は、本発明に係る無制御磁気浮上方法の浮上部材12と吊上げ部材22との磁気的相互作用により生じる磁気力の大きさを浮上体10上部の部分に対比して示した模式図である。
理解を容易にするために吊上げ部材22は円柱形状の底面を貫く軸線を水平に配設し、鉛直軸VA廻りに対称に円柱形状の永久磁石60を八個配設された吊上げ部材22のうちで、浮上部材12を挟んで等間隔に、同磁極を対向させて水平同一面上に配置された一対の吊上げ部材22のみを示し説明する。
FIG. 3 is a schematic diagram showing the magnitude of the magnetic force generated by the magnetic interaction between the levitation member 12 and the lifting member 22 in the uncontrolled magnetic levitation method according to the present invention compared to the upper part of the levitation body 10. is there.
In order to facilitate understanding, the lifting member 22 has an axial line extending through the bottom surface of the columnar shape, and the lifting member 22 has eight columnar permanent magnets 60 symmetrically about the vertical axis VA. Thus, only a pair of lifting members 22 arranged on the same horizontal plane with the magnetic poles facing each other at equal intervals with the floating member 12 interposed therebetween will be described.

図3(a)において、連結部材16を貫く鉛直線をZ軸とする。また、上記一対の吊上げ部材22中心を結ぶ水平線をX軸とする。Z軸とX軸が交差する点を原点として位置座標及び磁気力の大きさは原点を基準に表される。   In FIG. 3A, a vertical line passing through the connecting member 16 is taken as a Z axis. A horizontal line connecting the centers of the pair of lifting members 22 is defined as an X axis. The position coordinates and the magnitude of the magnetic force are expressed with reference to the origin at the point where the Z axis and the X axis intersect.

図3(b)は、図3(a)の位置関係をグラフに示したものに、浮上部材12に対して鉛直軸VA方向及び水平方向に働く磁気力の大きさを各々重ね合せた。Z軸は図上が正方向で、鉛直方向の位置座標である。X軸は図左が正方向で、水平方向の位置座標と磁気力の大きさである。黒の太い線は、浮上部材12及び吊上げ部材22の水平方向の位置座標を示している。破曲線は浮上部材12と吊上げ部材22との間の磁気的相互作用により浮上部材12の中心に働く鉛直方向の磁気力の合力の各Z座標における大きさを示している。実曲線は、浮上部材12の中心に働く水平方向の磁気力の合力の各Z座標における大きさを示している。   FIG. 3B is a graph showing the positional relationship of FIG. 3A, and the magnitudes of the magnetic forces acting in the vertical axis VA direction and the horizontal direction on the floating member 12 are superimposed. The Z axis is a positive position on the figure and is a vertical position coordinate. The left side of the figure is the positive direction, and the X axis is the horizontal position coordinate and the magnitude of the magnetic force. Black thick lines indicate the horizontal position coordinates of the floating member 12 and the lifting member 22. The fracture line indicates the magnitude of each resultant Z force of the vertical magnetic force acting on the center of the floating member 12 due to the magnetic interaction between the floating member 12 and the lifting member 22. The solid curve indicates the magnitude at each Z coordinate of the resultant force of the horizontal magnetic force acting at the center of the floating member 12.

浮上部材12に対して鉛直方向に働く磁気力(Fsz)は、原点上下近傍の所定区間で上方向に働く。特に浮上部材12中心のZ座標が零となる位置においては正の最大値を示す。したがって、この範囲では、浮上部材12は浮上する方向に磁気力が働く。それ以外では鉛直方向の磁気力は下方向に、すなわち落下する方向に働く。   The magnetic force (Fsz) acting in the vertical direction on the floating member 12 works upward in a predetermined section near the origin. In particular, a positive maximum value is indicated at a position where the Z coordinate of the center of the floating member 12 is zero. Therefore, in this range, the magnetic force acts in the direction in which the levitating member 12 levitates. Otherwise, the magnetic force in the vertical direction works downward, that is, in the direction of falling.

浮上部材12に対して水平方向に働く磁気力(Fsx)は、浮上部材12がX座標の零となる位置を中心としてX軸方向に移動した際に吊上げ部材22との間の磁気的相互作用によって浮上部材12に働く。図3(b)では、浮上部材12の中心がX座標の正側に移動した場合を示している。浮上部材12に対して働く磁気力は浮上部材12中心のZ座標が負の場合はX座標の負の方向(図3(b)右方向)に力が働き、浮上部材12中心のZ座標が正の場合はX座標の正の方向(図3(b)左方向)に力が働く。一方、浮上部材12の中心がX座標の負側に移動した場合、浮上部材12に対して働く磁気力はZ座標が負の場合はX座標の正の方向(図3(b)左方向)に力が働き、Z座標が正の場合はX座標の負の方向(図3(b)右方向)に力が働く。したがって、浮上部材12の中心のZ座標が負である場合に鉛直軸(Z軸)VA方向に向かって戻ろうとする復元力が働く。一方、浮上部材12の中心のZ座標が正である場合には鉛直軸(Z軸)VA方向から離れようとする力が働き、安定浮上系からはじき出されることになる。   The magnetic force (Fsx) acting in the horizontal direction with respect to the levitating member 12 is a magnetic interaction with the lifting member 22 when the levitating member 12 moves in the X-axis direction around the position where the X coordinate becomes zero. Acts on the floating member 12. FIG. 3B shows a case where the center of the floating member 12 has moved to the positive side of the X coordinate. When the Z coordinate at the center of the floating member 12 is negative, the magnetic force acting on the floating member 12 acts in the negative direction of the X coordinate (right direction in FIG. 3B), and the Z coordinate at the center of the floating member 12 is In the positive case, the force acts in the positive direction of the X coordinate (left direction in FIG. 3B). On the other hand, when the center of the levitation member 12 moves to the negative side of the X coordinate, the magnetic force acting on the levitation member 12 is positive in the X coordinate when the Z coordinate is negative (the left direction in FIG. 3B). When the Z coordinate is positive, the force acts in the negative direction of the X coordinate (the right direction in FIG. 3B). Therefore, when the Z coordinate of the center of the floating member 12 is negative, a restoring force that tries to return toward the vertical axis (Z axis) VA direction works. On the other hand, when the Z coordinate of the center of the levitation member 12 is positive, a force to move away from the direction of the vertical axis (Z axis) VA acts and the levitation member 12 is ejected from the stable levitation system.

上記、浮上部材12と吊上げ部材22との間の磁気的相互作用によって浮上部材12に生じる磁気力の合力は以下のようにして求められる。   The resultant force of the magnetic force generated in the levitation member 12 by the magnetic interaction between the levitation member 12 and the lifting member 22 is obtained as follows.

図4は、本発明に係る無制御磁気浮上方法の浮上部材12と吊上げ部材22との間の磁気的相互作用により生じた磁気力の関係を示した図である。   FIG. 4 is a diagram showing the relationship of the magnetic force generated by the magnetic interaction between the levitation member 12 and the lifting member 22 in the uncontrolled magnetic levitation method according to the present invention.

図3(a)を拡大し、浮上部材12と吊上げ部材22との間の磁気的相互作用により生じる磁気力を図示した。
図3と同様に、理解を容易にするために吊上げ部材22は円柱形状の底面を貫く軸線を水平に配設し、鉛直軸VA廻りに対称に円柱形状の永久磁石60を八個配設された吊上げ部材22のうちで浮上部材12を挟んで等間隔に、同磁極を対向させて水平同一面上に配置された一対の吊上げ部材22のみを示し説明する。
FIG. 3A is enlarged to show the magnetic force generated by the magnetic interaction between the floating member 12 and the lifting member 22.
As in FIG. 3, for easy understanding, the lifting member 22 is provided with eight cylindrical permanent magnets 60 symmetrically about the vertical axis VA, with the axis passing through the cylindrical bottom surface disposed horizontally. Only a pair of lifting members 22 arranged on the same horizontal plane with the same magnetic poles facing each other at equal intervals across the floating member 12 will be described.

浮上部材12は、Z軸上においてN極が鉛直上方向に配向されて磁荷mを、S極が鉛直下方向に配向されて磁荷mを備えているとする。一方、図示された二個の吊上げ部材22は、N極を浮上部材12方向に配向させてS極をX座標が正負拡大する方向に配設される。図4左側に位置する吊上げ部材22は、N極に磁荷mを、S極に磁荷mを備え、図4右側に位置する吊上げ部材22は、N極に磁荷mを、S極に磁荷mを備える。各々の磁極に相互作用する磁気力は、図4に示すように同極では反発する方向(斤力)に、逆極では引き合う方向(引力)に働く。各々の磁極に働く磁気力は、クーロンの法則によって求められる。例えば、浮上部材12のN極と図4左側の吊上げ部材22のN極との間の磁気的相互作用によって働く磁気力Fm1は、磁荷mと磁荷mの相乗積に比例しその間の距離の二乗に反比例する式1によって算出される。ここで、両磁極間の距離をr13とする。また、μは透磁率である。

Figure 2018109437


浮上部材12全体に働く磁気力Fは、浮上部材12の両磁極に働く磁気力Fm1m3、Fm1m4、Fm1m5、Fm1m6、m2m3、Fm2m4、Fm2m5及びFm2m6の合力を求める式2によって算出される。
Figure 2018109437


吊上げ部材22を複数個備えた場合には、すべての吊上げ部材22及び浮上部材12の相互間に働く各々の磁気力を合計することになる。図3(b)の破曲線は、浮上部材12に働く磁気力FのZ軸方向の成分(Fsz)を表したものである。一方、実曲線は、磁気力FのX軸方向の成分(Fsx)を表したものである。 Floating member 12, the magnetic charge m 1 N pole is oriented upward in the vertical direction on the Z-axis, the S pole and a magnetic charge m 2 is oriented vertically downward. On the other hand, the two lifting members 22 shown in the figure are arranged in a direction in which the north pole is oriented in the direction of the floating member 12 and the south pole is expanded in the positive and negative directions. The lifting member 22 located on the left side of FIG. 4 has a magnetic charge m 3 on the N pole and the magnetic charge m 4 on the S pole, and the lifting member 22 located on the right side of FIG. 4 has the magnetic charge m 5 on the N pole. comprising a magnetic charge m 6 to the S pole. As shown in FIG. 4, the magnetic force that interacts with each magnetic pole acts in a repulsive direction (repulsive force) in the same pole and in a attracting direction (attractive force) in the opposite pole. The magnetic force acting on each magnetic pole is determined by Coulomb's law. For example, the magnetic force F m1 exerted by the magnetic interaction between the north pole of the floating member 12 and the north pole of the lifting member 22 on the left side of FIG. 4 is proportional to the synergistic product of the magnetic charge m 1 and the magnetic charge m 3. It is calculated by Equation 1 which is inversely proportional to the square of the distance between them. Here, the distance between the magnetic poles and r 13. Μ is the magnetic permeability.
Figure 2018109437


The magnetic force F acting on the entire levitation member 12 is a formula 2 for obtaining the resultant force of the magnetic forces F m1m3 , F m1m4 , F m1m5 , F m1m6, F m2m3 , F m2m4 , F m2m5 and F m2m6 acting on both magnetic poles of the levitation member 12. Is calculated by
Figure 2018109437


When a plurality of lifting members 22 are provided, the magnetic forces acting between all the lifting members 22 and the floating members 12 are summed up. The broken line in FIG. 3B represents a component (Fsz) in the Z-axis direction of the magnetic force F acting on the floating member 12. On the other hand, the solid curve represents the component (Fsx) of the magnetic force F in the X-axis direction.

図5は、本発明に係る無制御磁気浮上方法の浮上体10と吊上げ部材22との磁気的相互作用により浮上体10に作用する磁気力の関係について示したグラフである。図3の浮上状態の磁気力の関係を、浮上部材12底面の鉛直方向(Z軸)の浮上位置座標の近傍についてグラフ化し、反発部材14と押上部材24との磁気的相互作用によって生じる押上力(Fpz)を浮上部材12に働く磁気力FのZ軸方向の成分(Fsz)に加算した。   FIG. 5 is a graph showing the relationship of the magnetic force acting on the levitated body 10 due to the magnetic interaction between the levitated body 10 and the lifting member 22 in the uncontrolled magnetic levitation method according to the present invention. 3 is graphed in the vicinity of the floating position coordinates in the vertical direction (Z-axis) of the bottom surface of the floating member 12 and the lifting force generated by the magnetic interaction between the repulsive member 14 and the lifting member 24. (Fpz) was added to the component (Fsz) in the Z-axis direction of the magnetic force F acting on the floating member 12.

グラフの横軸は、浮上部材12底面の鉛直方向(Z軸)の浮上位置の近傍の座標である。グラフの縦軸は、鉛直方向の磁気力Fz及び水平方向の磁気力Fxを重量換算値で示した。本実施の形態において、浮上体10の総重量は103.52g(Ffz)とした。浮上体10上部に配設された浮上部材12と放射状に配置された8個の吊上げ部材22との間の磁気的相互作用によって浮上部材12に生じる磁気力で浮上体10を鉛直上方向に持ち上げる。その際浮上体10を吊上げる磁気吊上げ力(Fsz)は、浮上部材12底面のZ座標が−10mmで重量換算値102.55gが最大値となるように調整されている。   The horizontal axis of the graph is the coordinates near the floating position in the vertical direction (Z axis) of the bottom surface of the floating member 12. The vertical axis of the graph represents the vertical magnetic force Fz and the horizontal magnetic force Fx in terms of weight. In the present embodiment, the total weight of the levitated body 10 is 103.52 g (Ffz). The levitation body 10 is lifted vertically upward by the magnetic force generated in the levitation member 12 by the magnetic interaction between the levitation member 12 disposed on the levitation body 10 and the eight lifting members 22 disposed radially. . At that time, the magnetic lifting force (Fsz) for lifting the floating body 10 is adjusted so that the Z coordinate of the bottom surface of the floating member 12 is −10 mm and the weight converted value 102.55 g is the maximum value.

そこで、浮上位置z2における浮上のための磁気力の不足分を、反発部材14と押上部材24との間に生じる反磁性磁気力を用いて押上力(Fpz)として補うことで無回転での浮上を可能にしている。本実施の形態においては、押上力(Fpz)は、重量換算値3.3gが最大値となるように調整されている。   Therefore, the insufficiency of floating at the floating position z2 is compensated by using the diamagnetic magnetic force generated between the repulsive member 14 and the push-up member 24 as the push-up force (Fpz). Is possible. In the present embodiment, the push-up force (Fpz) is adjusted so that the weight converted value 3.3 g is the maximum value.

さらに、浮上体10を真上から見た場合に、浮上位置z2では浮上体10が、浮上体10の中心を貫く鉛直軸VAを中心として描かれる円の半径方向に安定である必要がある。すなわち、図3においてZ軸を中心に水平方向に安定でなければならない。前述したとおり、水平方向に働く磁気力(Fsx)は、鉛直軸(Z軸)VA方向に向かって戻ろうとする復元力が働くことが必要となるので、図3(b)の状況においては水平方向に働く磁気力(Fsx)は、負の値でなければならない。   Further, when the floating body 10 is viewed from directly above, the floating body 10 needs to be stable in the radial direction of a circle drawn around the vertical axis VA that penetrates the center of the floating body 10 at the floating position z2. That is, in FIG. 3, it must be stable in the horizontal direction around the Z axis. As described above, since the magnetic force (Fsx) acting in the horizontal direction needs to have a restoring force to return toward the vertical axis (Z-axis) VA direction, in the situation of FIG. The magnetic force (Fsx) acting in the direction must be negative.

図3(b)を用いて解説した通り、水平方向に働く磁気力(Fsx)を常に連結部材16の鉛直軸VA方向に働かせるためには、浮上状態の浮上部材12の中心のZ座標が負の場合でなければならない。したがって、浮上部材底面のZ座標に関しては−10mmより小さくしなければならないことになる。その結果、浮上部材12と吊上げ部材22との間の磁気的相互作用によって浮上部材12に生じる鉛直方向の磁気力は設定された最大値である重量換算値102.55gをさらに下回ることになる。その場合、浮上体10は想定している浮上位置z2において水平方向に安定であるが、浮上のための磁気力がさらに不足し鉛直軸VA方向に不安定となる。反発部材14と押上部材24を配置するのは、反発部材14と押上部材24との間に生じる反磁性磁気力を押上力(Fpz)として浮上位置z2における浮上のための磁気力の不足分を補うことで鉛直方向の不安定さを補償するためである。   As explained with reference to FIG. 3B, in order to always apply the magnetic force (Fsx) acting in the horizontal direction in the direction of the vertical axis VA of the connecting member 16, the Z coordinate of the center of the floating member 12 in the floating state is negative. Must be the case. Accordingly, the Z coordinate of the bottom surface of the floating member must be smaller than −10 mm. As a result, the vertical magnetic force generated in the floating member 12 due to the magnetic interaction between the floating member 12 and the lifting member 22 is further lower than the weight converted value 102.55 g which is the set maximum value. In this case, the levitated body 10 is stable in the horizontal direction at the assumed levitating position z2, but the magnetic force for levitating is further insufficient and becomes unstable in the vertical axis VA direction. The repulsion member 14 and the push-up member 24 are arranged so that a shortage of the magnetic force for ascending at the flying position z2 is determined by using a diamagnetic magnetic force generated between the repulsion member 14 and the push-up member 24 as a push-up force (Fpz). This is to compensate for the vertical instability.

本実施の形態においては、図1において反発部材14と押上部材24との間隙の寸法Zgが0.4mmのときに反発部材14と押上部材24との間に生じる反磁性磁気力の押上力(Fpz)が重量換算値2gに設定されている。間隙Zgを維持するためには浮上部材12と吊上げ部材22との間の磁気的相互作用によって浮上部材12に生じる磁気力と浮上体10の重量の差が重量換算値2gであればよい。本実施の形態に用いた浮上体10の場合には図5から浮上部材12の底面のZ座標が−11.4mmのときに浮上のための磁気力の不足分が重量換算値で2gとなる。   In this embodiment, when the dimension Zg of the gap between the repulsion member 14 and the push-up member 24 in FIG. 1 is 0.4 mm, the push-up force of the diamagnetic magnetic force generated between the repulsion member 14 and the push-up member 24 ( Fpz) is set to a weight converted value of 2 g. In order to maintain the gap Zg, the difference between the magnetic force generated in the levitation member 12 by the magnetic interaction between the levitation member 12 and the lifting member 22 and the weight of the levitation body 10 may be 2 g in terms of weight. In the case of the levitated body 10 used in this embodiment, when the Z coordinate of the bottom surface of the levitating member 12 is -11.4 mm from FIG. 5, the shortage of the magnetic force for levitating is 2 g in terms of weight. .

本実施の形態で示した浮上体10の重量においては、浮上部材12の底面がz2=−11.4mmの位置に有る場合に鉛直方向の浮上の条件である式3を満たし、かつ、水平方向についての浮上位置への復元力の条件である式4を満たし鉛直方向及び水平方向ともに安定して浮上する。式4の値−10は、浮上部材12の形状の変化に伴い、変更される値であり、固定値ではない。

Figure 2018109437


Figure 2018109437

In the weight of the levitated body 10 shown in the present embodiment, when the bottom surface of the levitating member 12 is located at a position of z2 = −11.4 mm, the vertical levitation condition is satisfied, and the horizontal direction is satisfied. Satisfies the condition 4 of the restoring force to the ascent position, and ascends stably in both the vertical and horizontal directions. The value −10 in Expression 4 is a value that is changed as the shape of the floating member 12 changes, and is not a fixed value.
Figure 2018109437


Figure 2018109437

本実施例における浮上体10の重量は一例であり、浮上体10の重量を変更させた場合には、浮上部材12と吊上げ部材22との間の磁気的相互作用によって浮上部材12に生じる磁気力及び反発部材14と押上部材24との間に生じる反磁性磁気力の押上力が上記の条件を満たすように各部材を選択する必要がある。   The weight of the floating body 10 in the present embodiment is an example, and when the weight of the floating body 10 is changed, the magnetic force generated in the floating member 12 by the magnetic interaction between the floating member 12 and the lifting member 22. And it is necessary to select each member so that the pushing-up force of the diamagnetic magnetic force generated between the repulsion member 14 and the pushing-up member 24 satisfies the above conditions.

図6は、本発明に係る無制御磁気浮上方法を実現する水平補助部材26の構成の一例を示した図である。   FIG. 6 is a view showing an example of the configuration of the horizontal auxiliary member 26 for realizing the uncontrolled magnetic levitation method according to the present invention.

浮上体10の構成は図1と同じである。浮上支援部材20の構成の変更例を示した。吊上げ部材22として放射状に配置された8個の磁気を帯びた部材を浮上部材12の近傍に配設した点は前述までの実施の形態と同様である。また、反発部材14に磁気を帯びた部材を使用し押上部材24には反磁性体を使用した。本実施例の異なる部分は、反発部材14の側方に反磁性体の水平補助部材26を配設した点である。水平補助部材26は、反発部材14中心が鉛直軸VAから離れる方向に力が働く場合に、反発部材14との反磁気的作用によって、反発部材14に生じる水平方向の反磁性磁気力の合力が常に鉛直軸VAに向かう値に選定され、反発部材14中心を鉛直軸VA上へ押し戻し浮上体10の水平方向の搖動を防止する役割を果たす。図6は一例であり、水平補助部材26と押上部材24とは別個の部材として表したが、水平補助部材26は押上部材24と一体に成形されて反発部材14の下方から側方を覆う形状であってもよい。また、反発部材14に反磁性体を使用した場合には側方の水平補助部材26には磁気を帯びた部材を使用する。その際には、水平補助部材26の両磁極方向は水平方向とし両磁極のいずれの磁極を反発部材14側に向けても構わない。水平補助部材26の配設により反発部材14の水平方向の位置安定性を得ることができる。磁気を帯びた部材は、例えば永久磁石60である。   The configuration of the floating body 10 is the same as that in FIG. The example of a change of the structure of the levitation | floating assistance member 20 was shown. The eight magnetic members arranged radially as the lifting members 22 are arranged in the vicinity of the levitation member 12 in the same manner as in the previous embodiments. Further, a magnetic member is used for the repulsion member 14 and a diamagnetic material is used for the push-up member 24. A different part of the present embodiment is that a horizontal auxiliary member 26 made of diamagnetic material is disposed on the side of the repulsive member 14. When the force acts in a direction in which the center of the repulsive member 14 is separated from the vertical axis VA, the horizontal auxiliary member 26 generates a resultant force of a horizontal diamagnetic magnetic force generated in the repelling member 14 due to a demagnetizing action with the repelling member 14. A value that is always directed toward the vertical axis VA is selected, and the center of the repulsion member 14 is pushed back onto the vertical axis VA to prevent the floating body 10 from swinging in the horizontal direction. FIG. 6 is an example, and the horizontal auxiliary member 26 and the push-up member 24 are shown as separate members. However, the horizontal auxiliary member 26 is formed integrally with the push-up member 24 so as to cover the side of the repulsive member 14 from below. It may be. In addition, when a diamagnetic material is used for the repulsive member 14, a magnetic member is used for the lateral auxiliary member 26 on the side. In that case, both the magnetic pole directions of the horizontal auxiliary member 26 may be horizontal, and either of the magnetic poles may be directed toward the repulsion member 14. By providing the horizontal auxiliary member 26, the horizontal position stability of the repulsive member 14 can be obtained. The magnetic member is, for example, the permanent magnet 60.

図7は、本発明に係る無制御磁気浮上方法を実現する構成の一例を示した図である。   FIG. 7 is a diagram showing an example of a configuration for realizing the uncontrolled magnetic levitation method according to the present invention.

浮上体10の構成は図1と同じである。浮上支援部材20の構成の変更例を示した。吊上げ部材22として放射状に配置された8個の磁気を帯びた部材を浮上部材12の近傍に配設した点は前述までの実施の形態と同様である。また、反発部材14に磁気を帯びた部材を使用し押上部材24には反磁性体を使用した。本実施例の異なる部分は、反発部材14の上方に反磁性体の押え部材46を配設した点である。押え部材46は、反発部材14との反磁気的作用によって反発部材14に生じる鉛直下方向の反磁性磁気力と、押上部材24と反発部材14との反磁気的作用によって反発部材14に生じる鉛直上方向の反磁性磁気力との合力が常に設定された浮上位置に向かう値に選定され、反発部材14が鉛直上方へ移動する場合には反磁気的作用により反発部材14を下方の元の浮上位置へ押し戻す力が働き浮上体10の鉛直方向の搖動を防止する役割を果たす。押え部材46と反発部材14及び押上部材と反発部材14との間の反磁性磁気力は連結部材16鉛直軸VA廻りの対称性により鉛直軸VA方向の力成分しか有さず反発部材14には水平方向の力は働かない。ここで、磁気を帯びた部材は、例えば永久磁石60である。   The configuration of the floating body 10 is the same as that in FIG. The example of a change of the structure of the levitation support member 20 was shown. The eight magnetic members arranged radially as the lifting members 22 are arranged in the vicinity of the levitation member 12 in the same manner as in the previous embodiments. Further, a magnetic member is used for the repulsion member 14 and a diamagnetic material is used for the push-up member 24. A different part of this embodiment is that a pressing member 46 made of a diamagnetic material is disposed above the repulsive member 14. The pressing member 46 has a vertically downward diamagnetic magnetic force generated in the repulsive member 14 by a diamagnetic action with the repelling member 14 and a vertical generated in the repulsive member 14 by a diamagnetic action between the lifting member 24 and the repelling member 14. When the resultant force with the upward diamagnetic magnetic force is always set to a value toward the set floating position, and the repulsive member 14 moves vertically upward, the repulsive member 14 is lifted downward by the diamagnetic action. The force of pushing back to the position works to prevent the floating body 10 from swinging in the vertical direction. The diamagnetic magnetic force between the pressing member 46 and the repulsive member 14 and the push-up member and the repelling member 14 has only a force component in the direction of the vertical axis VA due to the symmetry around the connecting member 16 vertical axis VA. Horizontal force does not work. Here, the magnetic member is, for example, the permanent magnet 60.

図8は、本発明に係る無制御磁気浮上方法を実現する構成の他の一例を示した模式図である。   FIG. 8 is a schematic view showing another example of a configuration for realizing the uncontrolled magnetic levitation method according to the present invention.

浮上体10の反発部材14には反磁性体を使用した。それに伴い、反発部材14の鉛直下方に配設する押上部材24は磁気を帯びた部材で構成した。磁気を帯びた部材は一個の均一な円柱形状の永久磁石60の一方の磁極を鉛直上方に配向して配設してもよいし、複数の円柱形状の永久磁石60を母線に相当する部分を隣接させて鉛直軸VA線廻りに均一な磁場を発生させるように配設してもよい。その場合、反発部材14の鉛直上方に配設する押え部材46も磁気を帯びた部材で構成する必要がある。構成の態様は押上部材24と同様である。   A diamagnetic material was used for the repulsive member 14 of the floating body 10. Accordingly, the push-up member 24 disposed vertically below the repulsion member 14 is composed of a magnetic member. The magnetized member may be disposed with one magnetic pole of a uniform cylindrical permanent magnet 60 oriented vertically upward, or a plurality of cylindrical permanent magnets 60 may be arranged corresponding to the bus. They may be arranged adjacent to each other so as to generate a uniform magnetic field around the vertical axis VA. In that case, it is necessary to form the presser member 46 disposed vertically above the repulsion member 14 with a magnetic member. The configuration is the same as that of the push-up member 24.

本実施例では、吊上げ部材22には輪状の永久磁石60を使用した。両磁極は輪の厚み方向に配向させた均一の磁場を発生させるものを使用した。図8では、鉛直方向の上面にN極を下面にS極を配向させたものを示したが、反転していてもよい。また、輪の半径方向に両磁極を配向させてもよい。その際には、N極又はS極のいずれが中心方向を向いてもよい。   In the present embodiment, a ring-shaped permanent magnet 60 is used for the lifting member 22. Both magnetic poles were used to generate a uniform magnetic field oriented in the thickness direction of the ring. In FIG. 8, the N pole is oriented on the top surface in the vertical direction and the S pole is oriented on the bottom surface, but it may be inverted. Further, both magnetic poles may be oriented in the radial direction of the ring. In that case, either the north pole or the south pole may face the central direction.

浮上部材12もN極又はS極のいずれを鉛直上面に向けてもよい。   The levitation member 12 may also have either the north pole or the south pole facing the vertical upper surface.

図3から図5を参照して説明した浮上位置は浮上部材12と吊上げ部材22との磁極の組合せによって異なる。なお、浮上位置は式1、式2、式3及び式4を変形して使用して算出することができる。   The floating position described with reference to FIGS. 3 to 5 differs depending on the combination of the magnetic poles of the floating member 12 and the lifting member 22. Note that the flying position can be calculated by modifying Equation 1, Equation 2, Equation 3, and Equation 4.

図9は、本発明に係る無制御磁気浮上方法を実現する吊上げ部材22の構成の一例を示した図である。吊上げ部材として、導線を螺旋状に巻回して管状に形成し電流を流して磁場を発生させるソレノイドを使用した。   FIG. 9 is a diagram showing an example of the configuration of the lifting member 22 that realizes the uncontrolled magnetic levitation method according to the present invention. As the lifting member, a solenoid was used in which a conducting wire was spirally wound to form a tubular shape, and a current was passed to generate a magnetic field.

本実施例では、吊上げ部材22を複数の永久磁石60と複数のソレノイド64との組み合わせで鉛直軸VAを中心とした同一円周上に配設した構成にした。永久磁石60とソレノイド64の数や配列順序は限定されないが、鉛直軸VA線廻りに対称に配置されることが好ましい。また、ソレノイド64のみでの構成でもよい。吊上げ部材22を永久磁石60のみで構成される場合には、磁気力の大きさや吊上げ部材22同士のバランスを変更するためには永久磁石60の選別により行う必要があるが、ソレノイド64を使用することによりソレノイド64に通電する電流量を変更することで容易に磁気力の大きさやバランスを変更することが可能になる。   In the present embodiment, the lifting member 22 is configured by combining a plurality of permanent magnets 60 and a plurality of solenoids 64 on the same circumference around the vertical axis VA. The number and arrangement order of the permanent magnets 60 and the solenoids 64 are not limited, but are preferably arranged symmetrically around the vertical axis VA. Moreover, the structure only with the solenoid 64 may be sufficient. When the lifting member 22 is composed of only the permanent magnet 60, it is necessary to select the permanent magnet 60 in order to change the magnitude of the magnetic force and the balance between the lifting members 22, but the solenoid 64 is used. Thus, it is possible to easily change the magnitude and balance of the magnetic force by changing the amount of current flowing through the solenoid 64.

図10は、本発明に係る無制御磁気浮上方法を利用した無制御磁気浮上装置の一例を示した図である。図10では、磁気によって無制御で浮上体10を浮上させるための無制御磁気浮上装置の具体例を示した。   FIG. 10 is a view showing an example of an uncontrolled magnetic levitation apparatus using the uncontrolled magnetic levitation method according to the present invention. FIG. 10 shows a specific example of an uncontrolled magnetic levitation device for levitating the levitated body 10 without being controlled by magnetism.

無制御磁気浮上装置a30において、浮上体10は、浮上部材12と、反発部材14と、浮上部材12及び反発部材14の中心を貫く鉛直軸VAに対称な連結部材16と、で一体に構成される。浮上部材12はφ8×20の円柱型ネオジウム磁石を採用しN極を鉛直上方向にS極を鉛直下方向に向けて連結部材16の上端に結合される。反発部材14は、連結部材16の下端近傍にφ10×10の円柱型ネオジウム磁石6個を逆極性が隣り合うように鉛直軸VA廻りに対称に並べた。連結部材16は、少しでも磁性があると反発部材14との間の磁気的相互作用により引力又は斤力が発生し浮上が不安定になるため、非磁性体でなければならない。本実施例では、チタンを採用した。   In the uncontrolled magnetic levitation apparatus a30, the levitation body 10 is integrally formed of a levitation member 12, a repulsion member 14, and a connecting member 16 that is symmetric with respect to the vertical axis VA that passes through the centers of the levitation member 12 and the repulsion member 14. The The levitation member 12 employs a φ8 × 20 cylindrical neodymium magnet and is coupled to the upper end of the connecting member 16 with the N pole vertically upward and the S pole vertically downward. In the repulsive member 14, six φ10 × 10 cylindrical neodymium magnets are arranged symmetrically around the vertical axis VA so that opposite polarities are adjacent to each other in the vicinity of the lower end of the connecting member 16. The coupling member 16 must be made of a non-magnetic material because if it is even a little magnetic, an attractive force or a repulsive force is generated due to the magnetic interaction with the repulsive member 14 and the levitation becomes unstable. In this example, titanium was employed.

無制御磁気浮上装置a30の浮上支援部分は、基台36、支柱34、浮上支援部材20及び支持部材32で構成される。基台36に複数の支柱34を固定し支柱34の上端に支持部材32が水平に固定される。浮上支援部材20は、前述のとおり、吊上げ部材22及び押上部材で構成される。吊上げ部材22は、支持部材32の所定の位置に固定されて支柱34によって基台36の鉛直上方に連結部材16の中心を貫く鉛直軸VA廻りに対称に配設される。本実施例においては、基台36、支柱34及び支持部材32は、非磁性体である必要性から基台36及び支持部材32はアクリル樹脂を、支柱34はアルミニウムを使用した。押上部材24は、反磁性体であるビスマス62のブロックを一例として採用した。   The levitation support portion of the uncontrolled magnetic levitation device a <b> 30 includes a base 36, a support 34, a levitation support member 20, and a support member 32. A plurality of columns 34 are fixed to the base 36, and the support member 32 is fixed horizontally to the upper ends of the columns 34. As described above, the levitation assisting member 20 includes the lifting member 22 and the lifting member. The lifting member 22 is fixed at a predetermined position of the support member 32 and is disposed symmetrically around the vertical axis VA passing through the center of the connecting member 16 vertically above the base 36 by the support column 34. In the present embodiment, the base 36, the support 34, and the support member 32 are made of non-magnetic material, so that the base 36 and the support member 32 are made of acrylic resin, and the support 34 is made of aluminum. As the push-up member 24, a block of bismuth 62, which is a diamagnetic material, is used as an example.

上記構成は、本発明に係る無制御磁気浮上方法の原理をそのまま利用し、浮上支援部材20を固定するための構造を加えたものであるが、これに限定されるものではない。   The above configuration uses the principle of the uncontrolled magnetic levitation method according to the present invention as it is and adds a structure for fixing the levitation assisting member 20, but is not limited to this.

図11は、本発明に係る無制御磁気浮上方法を利用した無制御磁気浮上装置の他の一例を示した図である。具体的には、本発明に係る無制御磁気浮上方法を備えた磁気浮上モータである。   FIG. 11 is a view showing another example of an uncontrolled magnetic levitation apparatus using the uncontrolled magnetic levitation method according to the present invention. Specifically, it is a magnetic levitation motor provided with the uncontrolled magnetic levitation method according to the present invention.

無制御磁気浮上装置b40は、図10に示した無制御磁気浮上装置a30を基本構成とし、これに浮上体10を回転させるための機構を備えた。基台36の支柱34には、センサ台49を介してフォトセンサ47と、固定子44としての空芯多層ソレノイド(1個当たり巻き数200、銅線径0.6)を対向させたヘルムホルツコイル2組を配設した。また、浮上体10の連結部材16には、浮上体10の回転位置をフォトセンサ47で検出するためのドグ48と、回転子42として永久磁石60を配設した。   The uncontrolled magnetic levitation device b40 has the basic configuration of the uncontrolled magnetic levitation device a30 shown in FIG. 10, and has a mechanism for rotating the levitation body 10. A Helmholtz coil in which a photosensor 47 and an air-core multilayer solenoid (200 windings per piece, copper wire diameter 0.6) as a stator 44 are opposed to a support 34 of a base 36 via a sensor base 49. Two sets were arranged. The connecting member 16 of the floating body 10 is provided with a dog 48 for detecting the rotational position of the floating body 10 by the photosensor 47 and a permanent magnet 60 as the rotor 42.

本実施例においては、浮上体10の回転の際の上下動を最小限にするために押え部材46として反磁性体であるビスマス62のブロックを採用した。   In this embodiment, a block of bismuth 62, which is a diamagnetic material, is employed as the presser member 46 in order to minimize the vertical movement when the floating body 10 is rotated.

回転動作は、フォトセンサ47で浮上体10の回転位置を検出して常に浮上体10に一方向の回転トルクが発生するようなタイミングでヘルムホルツコイルに通電することによって行われる。二組のヘルムホルツコイルを界磁コイルとして用いることで浮上体10に働く横方向の力を最小にして回転トルクのみを有効に発生させることで安定した回転が可能になった。本実施例は、本発明に係る無制御磁気浮上方法を備えたモータの一実施形態であり、使用される部材又は構成はこれに限定されるものではない。   The rotating operation is performed by detecting the rotational position of the floating body 10 with the photo sensor 47 and energizing the Helmholtz coil at such a timing that a rotational torque is always generated in the floating body 10 in one direction. By using two sets of Helmholtz coils as field coils, the lateral force acting on the levitated body 10 can be minimized and only rotational torque can be effectively generated to enable stable rotation. A present Example is one Embodiment of the motor provided with the uncontrolled magnetic levitation method based on this invention, The member or structure to be used is not limited to this.

本発明に係る無制御磁気浮上方法を用いることによって、回転の際に摺動しない軸受又はモータを実現することができる。   By using the uncontrolled magnetic levitation method according to the present invention, a bearing or motor that does not slide during rotation can be realized.

10 浮上体
12 浮上部材
14 反発部材
16 連結部材
20 浮上支援部材
22 吊上げ部材
24 押上部材
26 水平補助部材
30 無制御磁気浮上装置a
32 支持部材
34 支柱
36 基台
40 無制御磁気浮上装置b
42 回転子
44 固定子
46 押え部材
47 フォトセンサ
48 ドグ
49 センサ台
60 永久磁石
62 ビスマス
64 ソレノイド
100 従来の磁気浮上装置
114 浮上部材
124 押上反磁性部材
122 吊上げ部材

VA 鉛直軸(Z軸)
z2 浮上位置
DESCRIPTION OF SYMBOLS 10 Levitation body 12 Levitation member 14 Repulsion member 16 Connection member 20 Levitation support member 22 Lifting member 24 Lifting member 26 Horizontal auxiliary member 30 Uncontrolled magnetic levitation device a
32 Support member 34 Post 36 Base 40 Uncontrolled magnetic levitation device b
42 Rotor 44 Stator 46 Presser member 47 Photosensor 48 Dog 49 Sensor base 60 Permanent magnet 62 Bismuth 64 Solenoid 100 Conventional magnetic levitation device 114 Levitation member 124 Push-up diamagnetic member 122 Lifting member

VA Vertical axis (Z axis)
z2 Ascent position

Claims (8)

浮上体を重力に対して浮上させる無制御磁気浮上方法において、
前記浮上体は、
磁気を帯びた浮上部材と、
磁気を帯びた部材又は反磁性体のいずれかを選択された反発部材と、
前記浮上部材及び前記反発部材の中心を貫く鉛直軸に対称な連結部材と、
で一体に構成され、
前記浮上部材との磁気的相互作用によって、前記浮上部材に生じる鉛直上方向の磁気力が前記浮上体の重量に相当する力未満の値に設定された磁気を帯びた吊上げ部材を前記浮上部材に近接して配設する吊上げ手段と、
前記反発部材と反磁気的作用が働く部材を選択し、前記反発部材に生じる反磁性磁気力が浮上のために必要となる前記鉛直上方向の磁気力の不足分に相当する値に設定された押上部材を前記反発部材下方に近接して配設する押上手段と、
を有すること、
を特徴とする無制御磁気浮上方法。
In the uncontrolled magnetic levitation method that levitates the levitation body against gravity,
The levitating body is
A magnetically levitating member;
A repulsive member selected from either a magnetic member or a diamagnetic material;
A connecting member symmetrical to a vertical axis passing through the center of the floating member and the repulsive member;
In one piece,
Due to the magnetic interaction with the levitation member, a magnetic lifting member in which the vertical magnetic force generated in the levitation member is set to a value less than the force corresponding to the weight of the levitation body is applied to the levitation member. Lifting means arranged in close proximity;
The repulsive member and a member having a diamagnetic action are selected, and the diamagnetic magnetic force generated in the repulsive member is set to a value corresponding to the shortage of the magnetic force in the vertical direction necessary for levitation. A push-up means for disposing the push-up member in proximity to the lower side of the repulsion member;
Having
An uncontrolled magnetic levitation method.
前記浮上部材が、
前記浮上部材の各磁極が有する磁荷と前記吊上げ部材の各磁極が有する磁荷との間の磁気的相互作用によって前記浮上部材の各磁極に働く引力及び斤力の前記鉛直軸上方向の合力が最大となる位置の近傍に配設され、
かつ、
前記引力及び斤力の水平方向の合力が常に前記鉛直軸方向に向かって働く位置に配設されること、
を特徴とする請求項1に記載する無制御磁気浮上方法。
The floating member is
The resultant force in the vertical axis direction of the attractive force and repulsive force acting on each magnetic pole of the levitation member by the magnetic interaction between the magnetic charge of each magnetic pole of the levitation member and the magnetic charge of each magnetic pole of the lifting member Is arranged in the vicinity of the position where the
And,
Being arranged at a position where the resultant force of the attractive force and the repulsive force in the horizontal direction always works toward the vertical axis direction;
The uncontrolled magnetic levitation method according to claim 1.
前記吊上げ部材が、
導線を螺旋状に巻回して管状に形成し電流を流して磁場を発生させる部材であること、
を特徴とする請求項1又は請求項2に記載する無制御磁気浮上方法。
The lifting member is
A member that spirally winds a conductive wire to form a tubular shape and allows a current to flow to generate a magnetic field;
The uncontrolled magnetic levitation method according to claim 1 or 2, characterized by the above-mentioned.
前記浮上部材が、
両磁極を鉛直方向に沿って配置されること、
前記吊上げ手段が、
前記浮上部材の前記鉛直軸廻りに略対称かつ略等間隔で、前記浮上部材の上面磁極と同じ磁極を前記浮上部材側に面して非接触に前記吊上げ部材を配置させたこと、
を特徴とする請求項1から請求項3のいずれか一項に記載する無制御磁気浮上方法。
The floating member is
Arranging both magnetic poles along the vertical direction,
The lifting means is
The lifting member is arranged in a non-contact manner so that the same magnetic pole as the upper surface magnetic pole of the floating member faces the floating member side at substantially equal intervals and substantially equidistantly around the vertical axis of the floating member.
The uncontrolled magnetic levitation method according to any one of claims 1 to 3, wherein:
前記押上手段が、
水平補助部材、
を備え、
前記水平補助部材が、
前記反発部材との反磁気的作用によって、前記反発部材に生じる水平方向の反磁性磁気力の合力が常に前記鉛直軸に向かう値に選定され前記反発部材側方に近接して配設されること、
を特徴とする請求項1から請求項4のいずれか一項に記載する無制御磁気浮上方法。
The lifting means is
Horizontal auxiliary members,
With
The horizontal auxiliary member is
Due to the diamagnetic action with the repulsion member, the resultant force of the horizontal diamagnetic magnetic force generated in the repulsion member is always selected to be a value toward the vertical axis, and is arranged close to the side of the repulsion member. ,
The uncontrolled magnetic levitation method according to any one of claims 1 to 4, wherein:
前記反発部材と磁性が異なる押え部材を前記反発部材上方に近接して配設する押え手段、
を備え、
前記押え部材が、
前記押上部材と前記反発部材との反磁気的作用によって前記反発部材に生じる鉛直上方向の反磁性磁気力と、前記反発部材との反磁気的作用によって前記反発部材に生じる鉛直下方向の反磁性磁気力の合力が常に設定された浮上位置に向かう値に選定されること、
を特徴とする請求項1から請求項5のいずれか一項に記載する無制御磁気浮上方法。
A presser means for disposing a presser member having magnetism different from that of the repulsive member in proximity to the upper side of the repulsive member;
With
The pressing member is
A vertically upward diamagnetic magnetic force generated in the repulsive member by the diamagnetic action of the push-up member and the repelling member, and a vertically downward diamagnetic force generated in the repulsive member by the diamagnetic action of the repulsive member. That the resultant force of the magnetic force is always set to a value that goes to the set floating position;
An uncontrolled magnetic levitation method according to any one of claims 1 to 5, wherein:
請求項1から請求項6のいずれか一項に記載する無制御磁気浮上方法を備えたこと、
を特徴とする無制御磁気浮上装置。
Comprising the uncontrolled magnetic levitation method according to any one of claims 1 to 6,
An uncontrolled magnetic levitation device.
磁界と電流の相互作用によって前記浮上体が前記連結部材の鉛直軸廻りに浮上回転を行う回転手段、
を有し、
前記回転手段が、
前記連結部材に回転子を配設し、
前記回転子を中心として複数の固定子を前記連結部材の鉛直軸廻りに対称に配置させたこと、
を特徴とする請求項7に記載する無制御磁気浮上装置。
Rotating means for causing the levitating body to levitate and rotate about the vertical axis of the connecting member by the interaction between a magnetic field and an electric current;
Have
The rotating means is
A rotor is disposed on the connecting member;
A plurality of stators arranged symmetrically around a vertical axis of the connecting member, with the rotor as a center;
The uncontrolled magnetic levitation device according to claim 7.
JP2017000607A 2017-01-05 2017-01-05 Uncontrolled magnetic levitation method and uncontrolled magnetic levitation device Pending JP2018109437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017000607A JP2018109437A (en) 2017-01-05 2017-01-05 Uncontrolled magnetic levitation method and uncontrolled magnetic levitation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017000607A JP2018109437A (en) 2017-01-05 2017-01-05 Uncontrolled magnetic levitation method and uncontrolled magnetic levitation device

Publications (1)

Publication Number Publication Date
JP2018109437A true JP2018109437A (en) 2018-07-12

Family

ID=62844724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017000607A Pending JP2018109437A (en) 2017-01-05 2017-01-05 Uncontrolled magnetic levitation method and uncontrolled magnetic levitation device

Country Status (1)

Country Link
JP (1) JP2018109437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142130A (en) * 2018-09-16 2019-01-04 金华职业技术学院 A kind of adsorbent test method
EP3579287A1 (en) 2018-06-07 2019-12-11 Yokogawa Electric Corporation Temperature difference power generation apparatus and measurement system
CN114451749A (en) * 2022-02-21 2022-05-10 深圳市金士吉康复用品科技有限公司 Non-contact type magnetic limiting device and manufacturing method thereof
KR20220156163A (en) * 2021-05-18 2022-11-25 주식회사 에이치씨씨 Magnetic propulsion and levitation all-in-one driving system with drop prevention

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3579287A1 (en) 2018-06-07 2019-12-11 Yokogawa Electric Corporation Temperature difference power generation apparatus and measurement system
CN109142130A (en) * 2018-09-16 2019-01-04 金华职业技术学院 A kind of adsorbent test method
CN109142130B (en) * 2018-09-16 2024-02-13 金华职业技术学院 Adsorbent testing method
KR20220156163A (en) * 2021-05-18 2022-11-25 주식회사 에이치씨씨 Magnetic propulsion and levitation all-in-one driving system with drop prevention
KR102512158B1 (en) * 2021-05-18 2023-03-21 주식회사 에이치씨씨 Magnetic propulsion and levitation all-in-one driving system with drop prevention
CN114451749A (en) * 2022-02-21 2022-05-10 深圳市金士吉康复用品科技有限公司 Non-contact type magnetic limiting device and manufacturing method thereof
CN114451749B (en) * 2022-02-21 2024-01-16 深圳市金士吉康复用品科技有限公司 Non-contact magnetic limiting device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN101115930A (en) Method for stabilising a magnetically levitated object
US6657344B2 (en) Passive magnetic bearing for a horizontal shaft
JP2018109437A (en) Uncontrolled magnetic levitation method and uncontrolled magnetic levitation device
US11465783B2 (en) Single-gimbal magnetically suspended control moment gyroscope
US10030701B2 (en) Magnetic bearing having permanent magnet assemblies with repulsive bearing surfaces
CN103703658A (en) Air gap control system and method
JP5872744B2 (en) Rotating positioning device
KR101166854B1 (en) Magnetic bearing structure and turbo machine having the same
WO2002035108A1 (en) Magnetic suspension bearing
JP2008154451A (en) Electric motor equipped with hybrid bearing
EP3482489B1 (en) Electrostatic generator system using magnetic repulsion
CN105666503B (en) Send pallet and transportation robot in a kind of end of transportation robot
CN101737425A (en) Monostable radial magnetic bearing with low power consumption and zero gravity action
US20200136464A1 (en) Electrostatic generator electrode-centering and seismic-isolation system for flywheel-based energy storage modules
CN203362830U (en) Axial single-direction thrust permanent magnetic bearing
WO2019245226A1 (en) Thrust magnetic bearing using flux switching
CN110932466A (en) Radial magnetic flux doubly salient permanent magnet motor integrated with radial magnetic bearing
WO2014007851A1 (en) Active magnetic bearing assembly and arrangement of magnets therefor
JP4200775B2 (en) Flywheel power storage device
US20130207496A1 (en) System and method for performing magnetic levitation in an energy storage flywheel
KR20110072896A (en) Toroidally-wound self-bearing brushless dc motor
US6362549B1 (en) Magnetic bearing device
JP7412776B2 (en) magnetic support device
JP3930834B2 (en) Axial type magnetic levitation rotating equipment and centrifugal pump
US5789838A (en) Three-axis force actuator for a magnetic bearing

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170214