JP2018108311A - rice cooker - Google Patents
rice cooker Download PDFInfo
- Publication number
- JP2018108311A JP2018108311A JP2017000831A JP2017000831A JP2018108311A JP 2018108311 A JP2018108311 A JP 2018108311A JP 2017000831 A JP2017000831 A JP 2017000831A JP 2017000831 A JP2017000831 A JP 2017000831A JP 2018108311 A JP2018108311 A JP 2018108311A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic material
- rice cooker
- convection
- heating coil
- inner pot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Induction Heating Cooking Devices (AREA)
- Cookers (AREA)
Abstract
Description
本発明は、主に家庭で使用される電磁誘導加熱式の炊飯器に関するものである。 The present invention relates to an electromagnetic induction heating rice cooker mainly used at home.
近年、炊飯器の加熱方式としては電磁誘導加熱式が主流となっており、その炊飯器に用いられる内釜としては、誘導加熱コイルで誘導加熱される磁性材料を外側に用い、磁性材料の発熱を内釜内の米に均一に伝える熱伝導性の良いアルミ等の非磁性材料を内側に用いるものがある。そして、この内釜を、内釜底部に対向して設けた誘導加熱コイルで電磁誘導加熱することにより、内釜内部に強い対流を得て炊飯するのが一般的である。 In recent years, the electromagnetic induction heating method has become mainstream as a heating method for rice cookers, and as an inner pot used for the rice cooker, a magnetic material induction-heated by an induction heating coil is used on the outside, and the heat generation of the magnetic material Some of them use a non-magnetic material such as aluminum with good thermal conductivity that uniformly conveys to the rice in the inner pot. In general, the inner pot is heated by electromagnetic induction with an induction heating coil provided facing the bottom of the inner pot to obtain strong convection inside the inner pot and cook rice.
例えば、特許文献1の図1や請求項1には「被調理物を入れる鍋と、前記鍋の底側面部を加熱する第一の加熱手段と、前記鍋の底面部を加熱する第二の加熱手段と、前記第一の加熱手段と前記第二の加熱手段を制御する制御手段とを備え、前記制御手段は、前記両加熱手段を交互に切り換えて通電すると共に、その切り換え時に第一の加熱手段により起こした対流の慣性による対流がおさまって第二の加熱手段により反対方向の対流を起こすことができる所定の休止時間を設けてなる炊飯器。」が開示されている。
For example, in FIG. 1 and
すわなち、特許文献1には、内釜の底側面部を加熱する第一の加熱手段と、内釜の底面部を加熱する第二の加熱手段を設け、これら複数の加熱手段に交互に通電することで内釜内の被調理物の対流方向を変化させ、激しい対流を得る炊飯器が開示されている。
In other words,
また、特許文献2の図5や段落0043〜0045には「誘導加熱コイル10a、10b、10cが発生する磁力線は、誘導加熱コイル10a、10b、10cに近く突出した箇所に集まる傾向があり、その箇所にうず電流がより多く流れて強く発熱するようになる。」、「そのため、炊飯のときに磁性部材20が接合された箇所が早く発熱し、磁性部材20が接合された箇所と接合されていない箇所に温度差が生じ、内釜内面底部の早く熱くなった箇所から気泡が発生し、その気泡が上昇や破裂することで被炊飯物である水と米に対流が発生する。」、「また、磁性部材20が接合された箇所は、内釜6の厚さと磁性部材20の厚さを足した厚さとなり金属の容積が大きくなるので、磁性部材20が接合されていない箇所と比べて熱容量も大きくなって、温度差が持続されることにより温度差による気泡の発生状況の違いも持続され、対流がより促進される。これによって全体が均一に加熱され、炊きむらの少ない炊飯を行うことが可能となる。」が開示されている。
Further, in FIG. 5 and paragraphs 0043 to 0045 of
すなわち、特許文献2には、内釜の外面底部に別体の磁性部材を接合し、磁性部材が電磁誘導加熱コイルに接近して強く加熱され、磁性部材を接合した箇所と磁性部材を接合していない箇所との温度差により対流を促進させる炊飯器が開示されている。
That is, in
上述した特許文献1、特許文献2では、内釜内に適当な対流を形成しながら炊飯を行うことができるが、次に掲げる問題がある。
In
特許文献1に開示された炊飯器では、複数の加熱コイルを有することから炊飯器の構成部品、回路配線が複雑となり、それに関わる製造コストが高くなってしまうという問題がある。
The rice cooker disclosed in
また、特許文献2に開示された炊飯器では、内釜の発熱部位を動的に変化させることができず対流の向きを切り替えることができないため、大きな対流を得ることはできず、依然として炊きムラが生じてしまうという問題がある。
Moreover, in the rice cooker disclosed in
本発明の目的は、加熱手段として単一の加熱コイルしか持たない簡素な構成でありながら、内釜内の被調理物を複雑に対流させ釜内部の米の炊きムラを少なくする炊飯器を提供することである。 An object of the present invention is to provide a rice cooker that has a simple configuration having only a single heating coil as a heating means, and that convections the food in the inner pot in a complex manner, thereby reducing rice cooking unevenness. It is to be.
上記の課題を解決するため、本発明の炊飯器は、内釜を加熱する加熱コイルと、該加熱コイルに電力を供給するインバータと、を備え、前記内釜は、磁性材料部と非磁性材料部から構成されており、前記インバータは、低周波の電流を供給する低周波駆動モードと高周波の電流を供給する高周波駆動モードとを切り替えて前記加熱コイルに電力を供給するものとした。 In order to solve the above problems, a rice cooker of the present invention includes a heating coil that heats an inner pot, and an inverter that supplies electric power to the heating coil, and the inner pot includes a magnetic material portion and a nonmagnetic material. The inverter is configured to supply power to the heating coil by switching between a low frequency driving mode for supplying a low frequency current and a high frequency driving mode for supplying a high frequency current.
本発明によれば、加熱手段として単一の加熱コイルしか持たない簡素な構成でありながら、内釜内の被調理物を複雑に対流させ釜内部の米の炊きムラを少なくする炊飯器を提供することができる。 According to the present invention, there is provided a rice cooker that has a simple structure having only a single heating coil as a heating means, and convections the food in the inner pot in a complicated manner to reduce rice cooking unevenness in the pot. can do.
以下、本発明の実施例について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1は、本発明における実施例1の炊飯器の基本構成図である。この炊飯器100は、内釜1と、内釜1を加熱する環状の加熱コイル2と、交流電源4から入力された電力を加熱コイル2に供給するインバータ3を備える。内釜1は、内釜1の底部に対向して設けた加熱コイル2から発生した交流磁束が印加されることで渦電流が発生し、内釜自体の電気抵抗により自ら発熱するものである。
FIG. 1 is a basic configuration diagram of a rice cooker according to a first embodiment of the present invention. The
図2(a)に本実施例における内釜1の断面構造を、図2(b)に本実施例における内釜1の下面図をそれぞれ示す。本実施例において内釜1は、側面を鉄などの磁性材料11で、底部をアルミニウムや銅などの非磁性材料12で構成される。加熱コイル2から生じた主磁束21は、側面の磁性材料と底部の非磁性材料双方に鎖交するように磁路を形成する。
FIG. 2A shows a cross-sectional structure of the
ここで、内釜1に印加される電力Pは、内釜の抵抗R、内釜に流れる電流Iを用いて、式1で表される。
Here, the electric power P applied to the
式1より、内釜の抵抗が0Ω(短絡)の場合、内釜に印加される電力は0となる。一方、内釜の抵抗が∞(開放)の場合、内釜には電流が流れない為内釜に印加される電力は0となる。即ち、内釜の抵抗値は0〜∞の間で適切な値に設定する必要がある。
From
表1に、非磁性材料の代表例としてアルミニウムの、また磁性材料の代表例として鉄の透磁率、電気抵抗率、各材料に20kHzの電流が流れた時の表皮深さ、各材料に80kHzの電流が流れた時の表皮深さをそれぞれ示す。 Table 1 shows the magnetic permeability and electrical resistivity of aluminum as a typical example of a nonmagnetic material, and the magnetic permeability and electrical resistivity of a magnetic material, the skin depth when a current of 20 kHz flows in each material, and the frequency of 80 kHz in each material. Each skin depth when current flows is shown.
ここで、表皮深さdは、周波数f、透磁率μ、電気抵抗率ρを用いて、式2で表わされる。
Here, the skin depth d is expressed by
表1に示すように、アルミニウムは鉄に比べて透磁率が1/1000以下であるため、同一周波数の交流磁束を印加すると鉄に比べて表皮深さが深くなる。この結果、加熱コイルから印加された磁束により釜に流れる電流の断面積が広いため実効的な抵抗値は小さくなり、発熱も小さくなる。つまり、アルミニウムを鉄と同様に発熱させるには、鉄よりも高周波の交流磁束を印加する必要がある。 As shown in Table 1, since aluminum has a permeability of 1/1000 or less compared to iron, the skin depth becomes deeper than iron when an alternating magnetic flux having the same frequency is applied. As a result, since the cross-sectional area of the current flowing through the hook is wide due to the magnetic flux applied from the heating coil, the effective resistance value is reduced and the heat generation is also reduced. That is, in order to heat aluminum like iron, it is necessary to apply an AC magnetic flux having a frequency higher than that of iron.
IHクッキングヒータ等の製品において、アルミニウム鍋と鉄鍋の双方を単一のインバータで加熱可能なシステムが知られている。図3に、インバータに電流共振形インバータを適用してアルミニウム釜及び鉄釜を加熱した時の、釜に流れる電流の周波数と釜に印加される電力の関係を示す。ここに示すように、非磁性材料であるアルミニウム釜を加熱する場合、アルミニウムは鉄に比べて抵抗が小さいため、釜に流れる電流の周波数を高くし表皮効果により釜の実効的な抵抗値を大きくすることで釜に十分な電力を印加する必要がある。一方、磁性材料である鉄鍋を加熱する場合、鉄はアルミニウムに比べて抵抗が高いため、釜に流れる電流の周波数をアルミニウム鍋よりも低くしても鍋に十分な電力を印加することができる。一般的に電磁誘導加熱装置では、表皮効果による抵抗増加の効果を得るために、アルミニウム釜は60kHz以上の周波数(例えば80kHz)で加熱し鉄釜は60kHz以下の周波数(例えば20kHz)で加熱することが知られている。 In products such as IH cooking heaters, a system that can heat both an aluminum pan and an iron pan with a single inverter is known. FIG. 3 shows the relationship between the frequency of the current flowing in the hook and the electric power applied to the hook when the current resonance type inverter is applied to the inverter and the aluminum pot and the iron pot are heated. As shown here, when heating an aluminum pot, which is a non-magnetic material, aluminum has a lower resistance than iron, so the frequency of the current flowing through the hook is increased and the effective resistance of the pot is increased by the skin effect. It is necessary to apply sufficient power to the hook. On the other hand, when heating an iron pan that is a magnetic material, iron has a higher resistance than aluminum, so even if the frequency of the current flowing through the kettle is lower than that of the aluminum pan, sufficient power can be applied to the pan. . In general, in an electromagnetic induction heating device, in order to obtain an effect of increasing resistance due to the skin effect, an aluminum kettle is heated at a frequency of 60 kHz or higher (for example, 80 kHz) and an iron kettle is heated at a frequency of 60 kHz or lower (for example, 20 kHz). It has been known.
図4は、本実施例における加熱コイル2に流れる電流の周波数を示したものである。図4に示すように本実施例では、インバータは閾値周波数fth(例えば、60kHz)よりも低周波の電流を加熱コイルに出力する低周波駆動モードと、閾値周波数fthよりも高周波の電流を加熱コイルに出力する高周波駆動モードとを交互に繰り返す。これにより、低周波駆動モードでは、磁性材料11が加熱され、高周波駆動モードでは、非磁性材料12が加熱される。ここで、低周波駆動モードでは、非磁性材料12は表皮効果による抵抗増加の影響が小さいため、抵抗値が小さく電力が印加されない。一方、高周波駆動モードでは、磁性材料11は表皮効果による抵抗増加の影響が大きいため、抵抗値が大きく電流が流れず電力が印加されない。即ち、インバータが低周波駆動モードと高周波駆動モードとを交互に繰り返すことで、加熱部位を側面と底部とで交互に変化させ、内釜1内での対流の向きを切り替えることが可能となる。
FIG. 4 shows the frequency of the current flowing through the
ここで、図5(a)に低周波駆動モード時の被加熱物の対流方向を、図5(b)に高周波駆動モード時の被加熱物の対流方向をそれぞれ示す。図5(a)に示す様に、低周波駆動モードでは内釜1の側面の磁性材料11が加熱されるため、内釜内には側面に沿って浮上した後、中央を通って下降する対流が発生する。一方、図5(b)に示す様に、高周波駆動モードでは内釜1の底面の非磁性材料12が加熱されるため、内釜内には中央を通って浮上した後、側面に沿って下降する対流が発生する。
Here, FIG. 5A shows the convection direction of the object to be heated in the low frequency driving mode, and FIG. 5B shows the convection direction of the object to be heated in the high frequency driving mode. As shown in FIG. 5A, since the
以上説明した様に、本実施例では、単一の加熱コイル2のみを用いる構成でありながら内釜内部の被調理物の対流を交互に発生させることが可能となり、簡素な構成でありながら炊きムラを抑制した炊飯を実現することができる。なお、本実施例では、磁性材料11を内釜1の側面に配置し、非磁性材料12を内釜1の底面に配置した構成を例に説明を行ったが、これらの位置関係が逆になった場合でも、図5に示した駆動モードと対流の向きの組み合わせが逆になるだけで、同様の効果を得ることは言うまでもない。
As described above, in the present embodiment, it is possible to alternately generate convection of the food to be cooked inside the inner pot while using only a
続けて、実施例2について説明する。なお、本実施例では、内釜1の構造が実施例1と異なるが、インバータの動作モードなど、その他の点は実施例1と同様であるため、重複する説明は省略する。
Next, Example 2 will be described. In this embodiment, the structure of the
図6(a)、図6(b)は、本実施例における内釜1の断面構造を示した図である。また、図6(c)は、本実施例における内釜1の下面図である。本実施例の内釜1は、底面及び側面に非磁性材料12で構成されるベース板を備え、ベース板の外側側面に磁性材料11を配置した構成である。加熱コイル2から生じた主磁束22は、側面の磁性材料と底部の非磁性材料双方に鎖交するように磁路を形成する。図6に示す本実施例の内釜1は、プレス加工した非磁性材料12のベース板の外側に略板状の磁性材料11を形成すれば良いものであるため、実施例1の図2に示す内釜1に比べて加工性に優れている。
FIG. 6A and FIG. 6B are views showing a cross-sectional structure of the
ここで、図6(a)に、本実施例における低周波駆動モード時の被加熱物の対流方向を、図6(b)に本実施例における高周波駆動モード時の被加熱物の対流方向をそれぞれ示す。図6(a)に示す様に、低周波駆動モードでは内釜1の側面の磁性材料11が加熱されるため、内釜内には側面に沿って浮上した後、中央を通って下降する経路で対流が発生する。一方、図6(b)に示す様に、高周波駆動モードでは内釜1の底面の非磁性材料12が加熱されるため、内釜内には中央を通って浮上した後、側面に沿って下降する経路で対流が発生する。
Here, FIG. 6A shows the convection direction of the object to be heated in the low frequency driving mode in this embodiment, and FIG. 6B shows the convection direction of the object to be heated in the high frequency driving mode in this embodiment. Each is shown. As shown in FIG. 6A, since the
以上説明した様に、本実施例の内釜を用いることで、実施例1と同等の対流制御を実現できることに加え、実施例1に比べて溶射やコールドスプレー等加工性に優れた釜構成となる。なお、実施例1と同様に、本実施例においても、磁性材料11と非磁性材料12の位置関係が逆になった場合でも同様の効果を得ることは言うまでもない。
As described above, by using the inner hook of this embodiment, in addition to realizing the convection control equivalent to that of the first embodiment, the hook configuration having superior processability such as thermal spraying and cold spraying compared to the first embodiment, Become. As in the case of Example 1, it goes without saying that the same effect can be obtained in this example even when the positional relationship between the
続けて、実施例3について説明する。なお、本実施例では、内釜1の構造が実施例1、2と異なるが、インバータの動作モードなど、その他の点は実施例1と同様であるため、重複する説明は省略する。
Next, Example 3 will be described. In the present embodiment, the structure of the
図7(a)、図7(b)は、本実施例における内釜1の断面構造を示した図である。また、図7(c)は、本実施例における内釜1の上面図である。本実施例において内釜1は、底面及び側面に非磁性材料12で構成されるベース板を備え、ベース板の内側底面に複数の環状の磁性材料11を同芯配置した構成である。加熱コイル2から生じた主磁束23は、非磁性材料のベース板と内釜内の磁性材料に鎖交するように磁路を形成する。このように、複数の環状の磁性材料11を内側に構成することで、図7に示す本実施例の内釜1は図5、図6に示す釜に比べより複雑な対流を生じる。
FIGS. 7A and 7B are views showing a cross-sectional structure of the
ここで、図7(a)に、本実施例における低周波駆動モード時の被加熱物の対流方向を、図7(b)に、本実施例における高周波駆動モード時の被加熱物の対流方向をそれぞれ示す。図7(a)に示す様に、低周波駆動モードでは複数の環状の磁性材料11が加熱されるため、内釜内には磁性材料11が配置された部分を鉛直方向に上昇し、磁性材料11が配置されていない部分を通って下降する経路で対流が発生する。一方、図7(b)に示す様に、高周波駆動モードでは、非磁性材料12が加熱されるため、内釜内には磁性材料11が配置されていない部分を鉛直方向に上昇し、磁性材料11が配置されている部分を通って下降する経路で対流が発生する。
Here, FIG. 7A shows the convection direction of the object to be heated in the low frequency driving mode in this embodiment, and FIG. 7B shows the convection direction of the object to be heated in the high frequency driving mode in this embodiment. Respectively. As shown in FIG. 7 (a), in the low frequency drive mode, the plurality of annular
以上で説明した様に、本実施例では内釜の外面、内面のいずれかに磁性材料を配置することで複雑な対流が可能となり、更に磁性材料を選択的に配置することで実施例1、実施例2より複雑な対流を得る。なお、本実施例において磁性材料11と非磁性材料12の位置関係が逆になった場合でも同様の効果を得ることは言うまでもない。
As described above, in this embodiment, a complicated convection can be achieved by arranging the magnetic material on either the outer surface or the inner surface of the inner hook, and further, the magnetic material can be selectively disposed in the first embodiment. A more complex convection than in Example 2 is obtained. Needless to say, the same effect can be obtained even when the positional relationship between the
続けて、実施例4について説明する。なお、本実施例では、内釜1の構造が実施例1〜3と異なるが、インバータの動作モードなど、その他の点は実施例1と同様であるため、重複する説明は省略する。
Next, Example 4 will be described. In this embodiment, the structure of the
図8(a)、図8(b)は、本実施例における内釜1の断面構造を示した図である。また、図8(c)は、本実施例における本実施例における内釜1の下面図である。本実施例において内釜1は、底面及び側面に非磁性材料12で構成されるベース板を備え、ベース板の外側側面に磁性材料11を配置し、且つベース板の外側底面に複数の環状の磁性材料11を同芯配置した構成である。加熱コイル2から生じた主磁束24は、非磁性材料のベース板と外側側面、外側底面に配置された磁性材料双方に鎖交するように磁路を形成する。この様に、図6に示す釜の外側底面に選択的に磁性材料を配置することで、図8に示す本実施例の内釜1は図5〜図7に示す釜に比べより複雑な対流を生じる。
FIGS. 8A and 8B are views showing a cross-sectional structure of the
ここで、図8(a)に、本実施例における低周波駆動モード時の被加熱物の対流方向を、図8(b)に、本実施例における高周波駆動モード時の被加熱物の対流方向をそれぞれ示す。図8(a)に示す様に、低周波駆動モードでは側面に配置された磁性材料11と、底面に配置された複数の環状の磁性材料11が加熱されるため、内釜内には側面に沿って浮上した後、中央を通って下降する対流と、磁性材料11が配置された部分を鉛直方向に上昇し、磁性材料11が配置されていない部分を通って下降する対流との双方が合成された対流が発生する。一方、図8(b)に示す様に、高周波駆動モードでは、非磁性材料12が加熱されるため、内釜内には中央を通って浮上した後、側面に沿って下降する対流と、磁性材料11が配置されていない部分を鉛直方向に上昇し、磁性材料11が配置されている部分を通って下降する対流との双方が合成された対流が発生する。
Here, FIG. 8A shows the convection direction of the object to be heated in the low frequency driving mode in this embodiment, and FIG. 8B shows the convection direction of the object to be heated in the high frequency driving mode in this embodiment. Respectively. As shown in FIG. 8A, in the low frequency driving mode, the
以上説明した様に、本実施例では内釜の外面、内面のいずれかに磁性材料を配置することで複雑な対流が可能となり、更に磁性材料を側面、底面双方に選択的に配置することで実施例1〜実施例3より複雑な対流を得る。なお、本実施例において磁性材料11と非磁性材料12の位置関係が逆になった場合でも同様の効果を得ることは言うまでもない。
As described above, in this embodiment, a complicated convection is possible by arranging a magnetic material on either the outer surface or the inner surface of the inner hook, and further by selectively arranging the magnetic material on both the side surface and the bottom surface. More complicated convection is obtained than in the first to third embodiments. Needless to say, the same effect can be obtained even when the positional relationship between the
続けて、実施例5について説明する。本実施例では、内釜1の構造は実施例1〜4のいずれかであっても良いが、インバータ動作が実施例1の図4で示したものと異なり、低周波駆動モードと高周波駆動モードとの間に停止期間を設けたものである。
Next, Example 5 will be described. In the present embodiment, the structure of the
図9は、本実施例における加熱コイル2に流れる電流の周波数を示したものである。図9に示すように本実施例では、インバータは閾値周波数fthよりも低周波の電流を加熱コイルに出力する低周波駆動モードと、閾値周波数fthよりも高周波の電流を加熱コイルに出力する高周波駆動モードとを繰り返し、更に低周波駆動モードと高周波駆動モードとの間に、インバータは加熱コイルに電流を流さない停止期間を設ける。
FIG. 9 shows the frequency of the current flowing through the
停止期間を設けることで、低周波駆動モードで起きた対流が収まった後に高周波駆動モードで対流を起こすため、実施例1に記載した炊飯器に比べて、被調理物の対流の効率が良くなり、炊飯器全体としても消費電力を抑制することができる。 By providing the stop period, convection occurs in the high frequency drive mode after the convection that has occurred in the low frequency drive mode is settled, so the convection efficiency of the cooked material is improved compared to the rice cooker described in the first embodiment. Moreover, power consumption can be suppressed as the whole rice cooker.
続けて、実施例6について説明する。本実施例では、内釜1の構造は実施例1〜4のいずれかであっても良いが、インバータ動作が実施例1の図4または実施例5の図9で示したものと異なり、周波数を連続的に変化させるものである。
Next, Example 6 will be described. In the present embodiment, the structure of the
図10は、本実施例における加熱コイル2に流れる電流の周波数を示したものである。図10に示す様に本実施例では、インバータは閾値周波数fthよりも低周波の電流を加熱コイルに出力する低周波駆動モードと、閾値周波数fthよりも高周波の電流を加熱コイルに出力する高周波駆動モードとを繰り返し、更に周波数を連続的に時間変化させる。
FIG. 10 shows the frequency of the current flowing through the
連続的に時間変化させることで、釜内部の被調理物がよりスムーズに対流するため、実施例1に記載した炊飯器に比べて、被調理物の対流の効率が良くなり、炊飯器全体としても消費電力を抑制することができる。 By continuously changing the time, the cooked food inside the kettle convects more smoothly. Therefore, compared to the rice cooker described in Example 1, the convection efficiency of the cooked food is improved, and the cooker as a whole is cooked. Also, power consumption can be suppressed.
続けて、実施例7について説明する。本実施例では、実施例1〜6に示すいずれかの炊飯器において、炊飯開始から炊飯終了までの間を通してインバータの動作モードについて説明する。 Next, Example 7 will be described. In the present embodiment, the operation mode of the inverter will be described through the period from the start of rice cooking to the end of rice cooking in any of the rice cookers shown in Examples 1 to 6.
まず、実施例1〜実施例4に示すいずれかの釜に、米と水を入れた状態で図1に示すように載置する。炊飯を開始すると、図11に示す様に釜内部の温度を適温(例えば55℃)に上げ米に水を吸わせる浸し工程を行う。浸し工程では低周波駆動期間t11、高周波駆動期間t12、停止期間t13を順次繰り返すことにより、ムラ無く浸水することが可能である。また、被調理物の量に応じてt11、t12、t13の長さを調整しても良い。 First, as shown in FIG. 1, the rice and water are placed in any of the pots shown in the first to fourth embodiments. When rice cooking is started, as shown in FIG. 11, the temperature inside the kettle is raised to an appropriate temperature (for example, 55 ° C.), and a soaking process is performed in which the rice sucks water. In the dipping process, the low frequency driving period t 11 , the high frequency driving period t 12 , and the stop period t 13 are sequentially repeated, so that the water can be uniformly immersed. It is also possible to adjust the length of t 11, t 12, t 13 according to the amount of the food.
浸し工程完了後、庫内を沸騰させる炊き上げ工程を行う。炊き上げ工程では、釜内の温度を激しく上昇させる必要があるため、停止期間を設けず、実施例1で述べた低周波駆動モードt21と高周波駆動モードt22とを交互に繰り返す。尚、被調理物の炊きあがりを調整するためにt21、t22の長さを調整しても良いし、被調理物の対流を促進し更なる炊きムラ低減を目指す場合は実施例5に記載したインバータ駆動モードを適用しても良い。 After the soaking process is completed, a cooking process is performed to boil the interior. In the cooking process, since it is necessary to increase the temperature in the pot vigorously, the low frequency driving mode t 21 and the high frequency driving mode t 22 described in the first embodiment are alternately repeated without providing a stop period. It should be noted that the lengths of t 21 and t 22 may be adjusted in order to adjust the cooking finish of the food to be cooked, and the case where the convection of the food to be cooked and further cooking unevenness reduction is aimed at is described in Example 5. The inverter drive mode may be applied.
炊き上げ工程完了後、沸騰状態を維持し米の糊化を促進する沸騰工程を行う。沸騰工程では、釜内部に圧力をかけた状態で沸騰させるため釜内部は100℃以上(例えば105℃)となる。沸騰工程では、釜内の温度を高温に維持する必要があり、停止期間を設けず、実施例1で述べた低周波駆動モードt31と高周波駆動モードt32とを交互に繰り返す。尚、被調理物の炊きあがりを調整するためにt31、t32の長さを調整しても良いし、被調理物の対流を促進し更なる炊きムラ低減を目指す場合は実施例6に記載したインバータ駆動モードを適用しても良い。 After the cooking process is completed, a boiling process is performed in which the boiling state is maintained and gelatinization of the rice is promoted. In the boiling process, the inside of the kettle is heated to 100 ° C. or higher (eg, 105 ° C.) because the kettle is boiled with pressure applied. In the boiling process, it is necessary to maintain the temperature in the kettle at a high temperature, and no low period is provided, and the low frequency drive mode t 31 and the high frequency drive mode t 32 described in the first embodiment are alternately repeated. It should be noted that the lengths of t 31 and t 32 may be adjusted in order to adjust the cooking finish of the food to be cooked. The inverter drive mode may be applied.
沸騰工程完了後、釜内部の米の糊化を促進する蒸らし工程を行う。蒸らし工程では、沸騰工程で温度上昇した釜内部の温度を、余熱により釜内部の温度を一定状態に維持する様に、低周波駆動モードt41、高周波駆動モードt42、停止期間t43を交互に繰り返す。また、被調理物の量に応じてt41、t42、t43の長さを調整しても良い。 After the boiling process is completed, a steaming process is performed to promote gelatinization of the rice inside the kettle. In the steaming process, the low-frequency drive mode t 41 , the high-frequency drive mode t 42 , and the stop period t 43 are alternated so that the temperature inside the kettle that has risen in the boiling process is maintained at a constant level due to residual heat. Repeat. It is also possible to adjust the length of t 41, t 42, t 43 according to the amount of the food.
以上で説明した本実施例の炊飯制御によれば、各々の工程における対流方向を適切に制御することができるので、ムラの少ない炊飯を実現することができる。 According to the rice cooking control of the present embodiment described above, the convection direction in each step can be appropriately controlled, so that rice cooking with less unevenness can be realized.
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成について、他の構成の追加、削除、置換をすることが可能である。 In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, and replace other configurations with respect to the configuration of each embodiment.
100 炊飯器、
1 内釜
2 加熱コイル
3 インバータ
4 交流電源
11 磁性材料
12 非磁性材料
21、22、23、24 主磁束
100 rice cooker,
DESCRIPTION OF
Claims (7)
該加熱コイルに電力を供給するインバータと、を備え、
前記内釜は、磁性材料部と非磁性材料部から構成されており、
前記インバータは、低周波の電流を供給する低周波駆動モードと高周波の電流を供給する高周波駆動モードとを切り替えて前記加熱コイルに電力を供給することを特徴とする炊飯器。 A heating coil for heating the inner pot;
An inverter for supplying electric power to the heating coil,
The inner hook is composed of a magnetic material part and a non-magnetic material part,
The inverter is configured to supply power to the heating coil by switching between a low frequency driving mode for supplying a low frequency current and a high frequency driving mode for supplying a high frequency current.
前記低周波駆動モードでは磁性材料部が加熱され、
前記高周波駆動モードでは非磁性材料部が加熱されることを特徴とする炊飯器。 In the rice cooker according to claim 1,
In the low frequency drive mode, the magnetic material part is heated,
A non-magnetic material portion is heated in the high-frequency driving mode.
前記インバータは、
前記高周波駆動モードでは、60kHz以上の電流を供給し、
前記低周波駆動モードでは、60kHz未満の電流を供給することを特徴とする炊飯器。 In the rice cooker according to claim 1 or 2,
The inverter is
In the high frequency driving mode, a current of 60 kHz or more is supplied,
In the low frequency drive mode, a current of less than 60 kHz is supplied.
前記インバータは、高周波駆動モードと低周波駆動モードとの間に、該インバータを停止する停止期間を有することを特徴とする炊飯器。 In the rice cooker as described in any one of Claims 1-3,
The said inverter has a stop period which stops this inverter between a high frequency drive mode and a low frequency drive mode, The rice cooker characterized by the above-mentioned.
前記内釜は、
側面に磁性材料部、底部に非磁性材料部を配置した構成、または、
側面に非磁性材料部、底部に磁性材料部を配置した構成であることを特徴とする炊飯器。 In the rice cooker according to any one of claims 1 to 4,
The inner pot is
Configuration with a magnetic material part on the side and a non-magnetic material part on the bottom, or
A rice cooker having a configuration in which a nonmagnetic material portion is disposed on a side surface and a magnetic material portion is disposed on a bottom portion.
前記内釜は、
非磁性材料のベース板の外側面に磁性材料部を配置した構成、または、
磁性材料のベース板の外側面に非磁性材料部を配置した構成であることを特徴とする炊飯器。 In the rice cooker according to any one of claims 1 to 4,
The inner pot is
A configuration in which a magnetic material portion is arranged on the outer surface of a non-magnetic material base plate, or
A rice cooker having a configuration in which a nonmagnetic material portion is disposed on an outer surface of a base plate made of a magnetic material.
前記内釜は、
非磁性材料のベース板の底面に複数の環状の磁性材料部を配置した構成、または、
磁性材料のベース板の底面に複数の環状の非磁性材料部を配置した構成であることを特徴とする炊飯器。 In the rice cooker according to any one of claims 1 to 4,
The inner pot is
A configuration in which a plurality of annular magnetic material portions are arranged on the bottom surface of a non-magnetic material base plate, or
A rice cooker having a configuration in which a plurality of annular nonmagnetic material portions are arranged on the bottom surface of a base plate of a magnetic material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017000831A JP2018108311A (en) | 2017-01-06 | 2017-01-06 | rice cooker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017000831A JP2018108311A (en) | 2017-01-06 | 2017-01-06 | rice cooker |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018108311A true JP2018108311A (en) | 2018-07-12 |
Family
ID=62844224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017000831A Pending JP2018108311A (en) | 2017-01-06 | 2017-01-06 | rice cooker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018108311A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110101291A (en) * | 2019-05-14 | 2019-08-09 | 珠海双喜电器股份有限公司 | A kind of combined heated boiling culinary art integrated voltage power pot |
-
2017
- 2017-01-06 JP JP2017000831A patent/JP2018108311A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110101291A (en) * | 2019-05-14 | 2019-08-09 | 珠海双喜电器股份有限公司 | A kind of combined heated boiling culinary art integrated voltage power pot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5662344B2 (en) | Induction heating apparatus and induction heating cooker provided with the same | |
CN105474745B (en) | Induced cooking utensils and for make induced cooking utensils run method | |
JP2013062173A (en) | Induction heating cooker and program thereof | |
KR101307594B1 (en) | Electric range having induction heater | |
JP2013149470A (en) | Induction heating apparatus | |
JP5473864B2 (en) | Induction heating device | |
JP2909979B2 (en) | High frequency induction heating cooker | |
JP5944023B2 (en) | Induction heating cooker | |
JP2013137938A (en) | Induction heating cooker | |
JP2018108311A (en) | rice cooker | |
JP2013109889A (en) | Induction heating apparatus | |
JP6719665B2 (en) | Induction cooker | |
JP6101649B2 (en) | Induction heating cooker | |
JP2011171040A (en) | Induction heating device, and induction heating cooking apparatus with the same | |
JP5625296B2 (en) | Induction heating device | |
JP2011150797A (en) | Induction heating cooker | |
JP2012084539A (en) | Electromagnetic cooker | |
CN109549458B (en) | Cooking utensil and magnetic excitation source thereof | |
JP6960568B2 (en) | Induction heating cooker | |
CN105982559B (en) | Cookware and electromagnetic heating cooking utensil for electromagnetic heating utensil | |
JP2009093833A (en) | Induction heating cooker | |
JP2006066240A (en) | Induction heating method and induction heating device | |
JP2014017273A (en) | Induction heating cooker | |
JP2018033830A5 (en) | ||
JP5791441B2 (en) | Induction heating cooker |