JP2018105801A - Battery management device - Google Patents

Battery management device Download PDF

Info

Publication number
JP2018105801A
JP2018105801A JP2016254663A JP2016254663A JP2018105801A JP 2018105801 A JP2018105801 A JP 2018105801A JP 2016254663 A JP2016254663 A JP 2016254663A JP 2016254663 A JP2016254663 A JP 2016254663A JP 2018105801 A JP2018105801 A JP 2018105801A
Authority
JP
Japan
Prior art keywords
voltage
voltage detection
capacitor
integrated circuit
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016254663A
Other languages
Japanese (ja)
Other versions
JP6685892B2 (en
Inventor
金井 友範
Tomonori Kanai
友範 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016254663A priority Critical patent/JP6685892B2/en
Publication of JP2018105801A publication Critical patent/JP2018105801A/en
Application granted granted Critical
Publication of JP6685892B2 publication Critical patent/JP6685892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery management device with which it is possible to obtain almost the same filter characteristic for each battery cell in an asymmetric filter configuration, and which excels in anti-aliasing filter performance.SOLUTION: A battery management device comprises: an integrated circuit for detecting the terminal voltage of each of the plurality of battery cells and electrically connected to both poles of each of n battery cells via a voltage detection line; an integrated circuit having a voltage detection part that detects the terminal voltage of each of n plurality of battery cells; n+1 resistors electrically connected to a voltage detection line; n capacitors Cn interconnected to a voltage detection line between the resistors and the voltage detection part; and one capacitor between the resistor of the lowest potential connected to the integrated circuit and the voltage detection part and between the GND of the integrated circuit. Assuming that k represents the position of a capacitor on the lowest potential side of the capacitor Cn, the ratio of the value of each capacitor Cn satisfies a prescribed numerical expression.SELECTED DRAWING: Figure 1

Description

本発明は、蓄電池管理装置に関する。   The present invention relates to a storage battery management device.

ハイブリッド自動車や電気自動車などでは、所望の高電圧を確保するため、二次電池の電池セルを多数直列接続して構成される組電池が用いられている。このような組電池においては、電池セルの状態を監視する電池管理装置(Battery Management System、以下BMSと略)により電池セルの管理を行っている。BMSは、監視情報の1つとして各電池セルの電圧を取得している。一般的にBMSに印加される電池セルの電圧はノイズ成分が含まれるため、アンチエイリアシングフィルタが適用される場合がある。   In a hybrid vehicle, an electric vehicle, and the like, in order to secure a desired high voltage, an assembled battery configured by connecting a number of secondary battery cells in series is used. In such an assembled battery, the battery cell is managed by a battery management device (Battery Management System, hereinafter abbreviated as BMS) that monitors the state of the battery cell. BMS acquires the voltage of each battery cell as one piece of monitoring information. In general, since the voltage of the battery cell applied to the BMS includes a noise component, an anti-aliasing filter may be applied.

このアンチエイリアシングフィルタを電池セル毎に配置された抵抗器及びコンデンサ(RCフィルタ)で実装すると、電池セル毎に異なるフィルタ特性となる事が知られている。この課題を解決するため、各電池セルに配置されたコンデンサの値を個別の値に設定する技術が特許文献1に開示されている。   It is known that when this anti-aliasing filter is mounted with a resistor and a capacitor (RC filter) arranged for each battery cell, different filter characteristics are obtained for each battery cell. In order to solve this problem, Patent Document 1 discloses a technique for setting the value of a capacitor arranged in each battery cell to an individual value.

また、特に、電池セルにリチウムイオン電池を用いた組電池の場合、リチウムイオン電池は高エネルギー密度であるため、電池管理装置が正常に動作せずに過充電状態となるのは危険である。そのため、回路故障が発生した場合であっても過充電状態を回避するための回路故障診断が実装される。回路故障診断技術として、発明者らが考案した特許文献2が開示されている。   In particular, in the case of an assembled battery using a lithium ion battery as a battery cell, since the lithium ion battery has a high energy density, it is dangerous that the battery management device does not operate normally and becomes overcharged. Therefore, a circuit fault diagnosis for avoiding an overcharge state is implemented even when a circuit fault occurs. As a circuit failure diagnosis technique, Patent Document 2 devised by the inventors is disclosed.

特開2009−150867JP 2009-150867 A WO2016/143679WO2016 / 143679

しかし、第一の課題として、特許文献1に開示されている技術は、対象性のあるフィルタ構成に対しての技術しか開示されておらず、図1で示されるような非対象のフィルタ構成に対する技術がなかったため、非対象のフィルタ構成に対して電池セル毎に異なるフィルタ特性となる課題を解決することができなかった。   However, as a first problem, the technique disclosed in Patent Document 1 discloses only a technique for a target filter configuration, and it is for a non-target filter configuration as shown in FIG. Since there was no technology, the problem of different filter characteristics for each battery cell with respect to the non-target filter configuration could not be solved.

また、第二の課題として、特許文献1の図26記載の通り、電池セルが1個の場合に比べ、電池セルが12個の場合に、その遮断周波数が大幅に上昇するという課題がある。コンデンサ容量を大きくすれば遮断周波数を下げる事ができるが、大きな容量のコンデンサを用いる場合、大きなコンデンサ、あるいは、複数のコンデンサを用いる事によるBMSの大型化やコストが増大する課題があった。   Moreover, as 2nd subject, as FIG. 26 of patent document 1 shows, there exists a subject that the cutoff frequency raises significantly in the case of 12 battery cells compared with the case of 1 battery cell. If the capacitor capacity is increased, the cutoff frequency can be lowered. However, when a capacitor having a large capacity is used, there is a problem that the use of a large capacitor or a plurality of capacitors increases the size and cost of the BMS.

また、特許文献2で開示されている故障診断は、RCフィルタの抵抗のオープン故障時に対してRCフィルタのコンデンサへ電流源で充放電する事により電圧変動が発生する事を利用している。同じ電流で充放電した場合、特許文献1で開示されているように各端子で容量値が異なると、電圧変動のスピードが異なり、故障診断可能な時間が端子により異なるという課題があった。また、各端子の容量値が大きいと、所望の電圧を変化させるまで時間がかかるため、高速な故障診断ができなかった。故障時に故障と判定できない間、誤ったセル電圧測定結果により充放電制御が行われるため、過充電、過放電状態になる可能性がある。即ち、高速な故障診断が出来ない場合、機能安全規格ISO26262で定義されているFTTI(Fault tolerant time interval)の要件を満たす事ができなくなる。なお、FTTIの要件を満たす事ができれば、特許文献1の技術を適用する事ができる。   The failure diagnosis disclosed in Patent Document 2 utilizes the fact that voltage fluctuation occurs by charging / discharging a capacitor of the RC filter with a current source in response to an open failure of the resistance of the RC filter. When charging / discharging with the same current, as disclosed in Patent Document 1, if the capacitance value is different at each terminal, there is a problem that the speed of voltage fluctuation is different and the time during which failure diagnosis is possible differs depending on the terminal. Further, if the capacitance value of each terminal is large, it takes time until the desired voltage is changed, and thus high-speed failure diagnosis cannot be performed. While charging / discharging control is performed based on an erroneous cell voltage measurement result while a failure cannot be determined at the time of failure, there is a possibility of overcharging and overdischarging. In other words, when high-speed failure diagnosis cannot be performed, it is impossible to satisfy the requirements of FTTI (Fault tolerant time interval) defined in the functional safety standard ISO26262. In addition, if the requirements of FTTI can be satisfied, the technique of Patent Document 1 can be applied.

前記課題1を解決するため、本発明の一態様による電池管理装置は、n個の電池セルのそれぞれの両極に電圧検出線を介して電気的に接続され、前記n個の電池セルそれぞれの端子電圧を検出する電圧検出部を有する集積回路(CC-IC)と、前記電圧検出線に電気的に接続されたn+1個の抵抗と、前記抵抗と前記電圧検出部との間の電圧検出線間に接続されたn個のコンデンサCnと、前記CC-ICに接続された最低電位の検出線の前記抵抗と前記電圧検出部の間と前期CC-ICのGND間に接続された1個のコンデンサC0で構成され、前記コンデンサCnの最低電位側のコンデンサの位置をkとした場合、前記各コンデンサCnの値の比が(数1)を満たすようにした。   In order to solve the problem 1, a battery management apparatus according to an aspect of the present invention is electrically connected to both electrodes of n battery cells via voltage detection lines, and terminals of each of the n battery cells. An integrated circuit (CC-IC) having a voltage detection unit for detecting a voltage, n + 1 resistors electrically connected to the voltage detection line, and voltage detection between the resistor and the voltage detection unit N capacitors Cn connected between the lines and one resistor connected between the resistance of the lowest potential detection line connected to the CC-IC and the voltage detection unit and between the GND of the previous CC-IC When the position of the capacitor on the lowest potential side of the capacitor Cn is k, the ratio of the values of the capacitors Cn is set to satisfy (Equation 1).

Figure 2018105801
Figure 2018105801

前記課題2を解決するため、本発明の一態様による電池管理装置は、n個の電池セルのそれぞれの両極に電圧検出線を介して電気的に接続され、前記n個の電池セルそれぞれの端子電圧を検出する電圧検出部を有する集積回路と、前記電圧検出線に電気的に接続されたn+1個の抵抗と、前記抵抗と前記電圧検出部との間の電圧検出線間に接続されたn個のコンデンサCnと、前記集積回路に接続された最低電位の検出線の前記抵抗と前記電圧検出部の間と前記集積回路に接続された最高電位の検出線の前記抵抗と前記電圧検出部の間に接続された1個のコンデンサC0で構成されるようにした。   In order to solve the problem 2, a battery management device according to an aspect of the present invention is electrically connected to both electrodes of n battery cells via voltage detection lines, and terminals of each of the n battery cells. An integrated circuit having a voltage detection unit for detecting a voltage; n + 1 resistors electrically connected to the voltage detection line; and a voltage detection line between the resistor and the voltage detection unit. N capacitors Cn, the resistance of the lowest potential detection line connected to the integrated circuit and the voltage detector, and the resistance of the highest potential detection line connected to the integrated circuit and the voltage detection It is made up of one capacitor C0 connected between the sections.

また、Cnの値を固定値、C0の値をCnの値のn分の1とした。   In addition, the value of Cn is a fixed value, and the value of C0 is 1 / n of the value of Cn.

上記課題1に対しては、非対象のフィルタ構成に対して、電池セル毎にほぼ同一フィルタ特性を得る事ができ、アンチエイリアシングフィルタ性能の優れた電池管理装置を提供する事ができる。   With respect to the above problem 1, it is possible to obtain substantially the same filter characteristics for each battery cell with respect to the non-target filter configuration, and it is possible to provide a battery management device having excellent anti-aliasing filter performance.

また、上記課題2に対しては、高速な診断が可能なため、FTTI内での故障検知が可能となる。また、小さなコンデンサを用いる事ができるため、電池管理装置の小型化、低コスト化が可能となる。   Moreover, since the problem 2 can be diagnosed at high speed, it is possible to detect a failure within the FTTI. In addition, since a small capacitor can be used, the battery management device can be reduced in size and cost.

実施例1、実施例2に係わる電池管理装置Battery management apparatus according to Example 1 and Example 2 比較例、実施例1、実施例2に係わる電池管理装置のコンデンサ容量Capacitor capacity of battery management devices according to comparative example, example 1 and example 2 τ=10msec時の減衰比Attenuation ratio at τ = 10msec 比較例に係わる減衰比Damping ratio for the comparative example 実施例1に係わる減衰比Damping ratio according to Example 1 実施例2に係わる減衰比Damping ratio according to Example 2 特許文献2の図2FIG. 2 of Patent Document 2 実施例3、実施例4に係わる電池管理装置Battery management apparatus according to Example 3 and Example 4 実施例3、実施例4に係わる電池管理装置のコンデンサ容量Capacitor capacity of battery management devices according to Example 3 and Example 4 実施例3に係わる減衰比Damping ratio according to Example 3 実施例4に係わる減衰比Damping ratio according to Example 4

図1に実施例1に係わる電池管理装置1を示す。電池管理装置1は、充放電状態を制御するマイコン6、電池セル状態を監視する半導体装置2(CC-IC)、セルCe1からCe12からのノイズを除去するRCフィルタ R0からR12、C0からC12から構成される。CC-ICはセルを選択するマルチプレクサ3(MUX)とセル電圧をデジタル値に変換するAD変換器5(ADC)、MUXで選択されたセル電圧をADCの入力電圧範囲に変換するLS Amp4から少なくとも構成される。本構成により、マイコン6はセル電圧を取得し、電池セルの管理を行っている。   FIG. 1 shows a battery management apparatus 1 according to the first embodiment. The battery management device 1 includes a microcomputer 6 that controls the charge / discharge state, a semiconductor device 2 (CC-IC) that monitors the battery cell state, and RC filters that remove noise from the cells Ce1 to Ce12, R0 to R12, and C0 to C12. Composed. The CC-IC includes at least a multiplexer 3 (MUX) for selecting a cell, an AD converter 5 (ADC) for converting the cell voltage into a digital value, and an LS Amp 4 for converting the cell voltage selected by the MUX into an input voltage range of the ADC. Composed. With this configuration, the microcomputer 6 acquires the cell voltage and manages the battery cell.

MUX3とADC5の間にCC-IC2の最高電位であるHV(High Voltage)から印加できる電流源7を具備しており、マイコンからの指示により電流源をONさせ、電流源ON時のRCフィルタ部へ電流印加することによりMUXの入力部に擬似電圧を発生させ、各種回路の異常を診断している。   It has a current source 7 that can be applied from HV (High Voltage), which is the highest potential of CC-IC2, between MUX3 and ADC5. A pseudo voltage is generated at the input portion of the MUX by applying a current to the circuit to diagnose abnormalities in various circuits.

C0からC12には、図2に示す値を用いた。C1からC12には、(数1)の値の比を適用している。   The values shown in FIG. 2 were used for C0 to C12. The ratio of the value of (Equation 1) is applied to C1 to C12.

Figure 2018105801
Figure 2018105801

また、図2には比較例、実施例1及び後述する実施例2で用いたコンデンサC1からC12の容量を記載している。なお、抵抗R0からR12は、実施例、比較例共に100kΩを用いた。また、参考のため、図3に時定数τ=10msecの場合の減衰比を示す。なお、前記時定数値は、比較例に用いている抵抗100kΩ×コンデンサ容量1uF=10msecとしている。図4に比較例の場合の減衰比を示す。ここで、Ce1〜Ce12は、図1に示す12個の電池セルである。特許文献1では対象性のあるRCフィルタ構成のため、対象性のあるセルでは同じ減衰特性であるが、本比較例は非対象性のRCフィルタ構成のため、各端子のインピーダンスが全て異なるため、全てのCellの減衰特性が異なっている事がわかる。また、同じ抵抗とコンデンサを用いている図3の減衰特性に比べ、比較例ではカットオフ周波数が高くなっており、アンチエイリアシングフィルタ性能が悪化している事が分かる。図5に本実施例を適用した場合の減衰比を示す。本実施例では(数1)を適用したため、各端子のインピーダンスを調整する事ができ、各端子でほぼ同等のフィルタ性能を得る事ができ、アンチエイリアシングフィルタ性能の優れた電池管理装置を提供する事ができる。
以上、本発明について簡単にまとめる。本発明の電池管理装置1では、n個の電池セルのそれぞれの両極に電圧検出線路を介して電気的に接続され、複数の電池セルそれぞれの端子電圧を検出する集積回路(CC-IC)と、n個の電池セルそれぞれの端子電圧を検出する電圧検出部を有する集積回路と、電圧検出線に電気的に接続されたn+1個の抵抗と、抵抗と電圧検出部との間の電圧検出線間に接続されたn個のコンデンサCnと、集積回路に接続された最低電位の検出線の抵抗と電圧検出部の間と集積回路のGND間に接続された1個のコンデンサC0、とを有し、コンデンサCnの最低電位側のコンデンサの位置をkとした場合、前記各コンデンサCnの値の比が(数1)を満たす。
FIG. 2 shows the capacities of the capacitors C1 to C12 used in the comparative example, the example 1, and the example 2 described later. For the resistors R0 to R12, 100 kΩ was used in both the example and the comparative example. For reference, FIG. 3 shows the attenuation ratio when the time constant τ = 10 msec. The time constant value is 100 kΩ resistance used in the comparative example × capacitance 1 uF = 10 msec. FIG. 4 shows the attenuation ratio in the case of the comparative example. Here, Ce1 to Ce12 are the twelve battery cells shown in FIG. In Patent Document 1, because of the target RC filter configuration, the target cell has the same attenuation characteristics, but because this comparative example is a non-target RC filter configuration, the impedance of each terminal is all different, It can be seen that the attenuation characteristics of all the cells are different. Further, it can be seen that the cut-off frequency is higher in the comparative example than the attenuation characteristic of FIG. 3 using the same resistor and capacitor, and the anti-aliasing filter performance is deteriorated. FIG. 5 shows the attenuation ratio when this embodiment is applied. Since (Equation 1) is applied in the present embodiment, the impedance of each terminal can be adjusted, and almost the same filter performance can be obtained at each terminal, and a battery management device with excellent anti-aliasing filter performance is provided. I can do things.
The present invention will be briefly described above. In the battery management device 1 of the present invention, an integrated circuit (CC-IC) that is electrically connected to both electrodes of n battery cells via a voltage detection line and detects terminal voltages of a plurality of battery cells, , An integrated circuit having a voltage detection unit for detecting a terminal voltage of each of n battery cells, n + 1 resistors electrically connected to a voltage detection line, and a voltage between the resistor and the voltage detection unit N capacitors Cn connected between the detection lines, one capacitor C0 connected between the resistance of the lowest potential detection line connected to the integrated circuit and the voltage detection unit, and between the GND of the integrated circuit, When the position of the capacitor on the lowest potential side of the capacitor Cn is k, the ratio of the values of the capacitors Cn satisfies (Equation 1).

Figure 2018105801
Figure 2018105801

このような構成にすることによって、各端子のインピーダンスを調整する事ができ、各端子でほぼ同等のフィルタ性能を得る事ができ、アンチエイリアシングフィルタ性能の優れた電池管理装置を提供する事ができる。 With such a configuration, the impedance of each terminal can be adjusted, almost the same filter performance can be obtained at each terminal, and a battery management device with excellent anti-aliasing filter performance can be provided. .

続いて実施例2について説明する。本実施例では、実施例1に対し、図2に記載のコンデンサの容量にE12系列を用いた部分のみが異なる。その他は実施例1と同じため、説明を省略する。図6に減衰比を示す。E12系列を用いた場合であっても、各端子でほぼ同等のフィルタ性能を得る事ができ、アンチエイリアシングフィルタ性能の優れた電池管理装置を提供する事ができる。さらに、コンデンサ容量にE12系列を用いたため、生産量の多い部品を用いる事ができ、生産の効率化、コスト低減が可能となる。   Next, Example 2 will be described. In the present embodiment, only the portion using the E12 series for the capacitance of the capacitor shown in FIG. Since others are the same as those of the first embodiment, the description thereof is omitted. FIG. 6 shows the attenuation ratio. Even when the E12 series is used, almost the same filter performance can be obtained at each terminal, and a battery management device with excellent anti-aliasing filter performance can be provided. Furthermore, since the E12 series is used for the capacitor capacity, parts with a large production volume can be used, and production efficiency and cost reduction can be achieved.

このように、(数1)から算出されたコンデンサ値に近い生産量の多い部品を用いても本発明の効果を教授する事ができる。また、コンデンサにより調整を行ったが、フィルタ抵抗での調整や、フィルタ抵抗とフィルタコンデンサの両方で調整を行っても良い。   As described above, the effect of the present invention can be taught even by using parts with a large production amount close to the capacitor value calculated from (Equation 1). Moreover, although it adjusted with the capacitor | condenser, you may adjust with a filter resistance and both a filter resistance and a filter capacitor.

続いて第3の実施例について説明する。本実施例では、実施例1、2記載の発明では、特許文献2で開示されている診断機能を実装している。即ち、電流源により各端子に電流を印加している。この電流源のONを継続すると、フィルタ抵抗でのドロップ電圧が発生するため、電圧測定ができない。そのため、電流源のONを短期間とし、その後端子電圧がセル電圧に戻ったときにセル電圧を計測する事を繰り返している。この制御技術は、図7に示すように、特許文献2の図2で開示されている。フィルタ抵抗がオープンした場合、この制御により当該端子のみに電圧変動が発生し、故障を検知する事ができる。   Next, a third embodiment will be described. In the present embodiment, the diagnosis function disclosed in Patent Document 2 is implemented in the inventions described in the first and second embodiments. That is, a current is applied to each terminal by a current source. If the current source is kept on, a drop voltage is generated at the filter resistor, and voltage measurement cannot be performed. Therefore, the current source is turned on for a short period, and then the cell voltage is repeatedly measured when the terminal voltage returns to the cell voltage. This control technique is disclosed in FIG. 2 of Patent Document 2 as shown in FIG. When the filter resistor is opened, this control causes a voltage fluctuation only at that terminal, and a failure can be detected.

一方、フィルタ抵抗がオープン故障した場合は、当該端子の電圧が正確に取得できないため、誤った電圧により充放電制御される。このため、電池セルが過放電、過充電に至る可能性がある。このため、回路故障で正確にセル電圧取得が出来ない状態となった場合、前記のような診断技術を用い、充放電を禁止するなど、安全状態へ移行する措置が取られる。ここで、故障発生から危険事象に至るまでの時間が規定されており、機能安全規格ISO26262ではFTTI(Fault tolerant time interval)と呼んでいる。よって、故障発生時には、FTTI内に安全状態へ移行する必要がある。   On the other hand, when the filter resistor has an open failure, the voltage at the terminal cannot be obtained accurately, and charge / discharge control is performed with an incorrect voltage. For this reason, a battery cell may reach overdischarge and overcharge. For this reason, when it becomes a state which cannot acquire cell voltage correctly by a circuit failure, the measure which shifts to a safe state, such as prohibiting charging / discharging, is taken using the above diagnostic techniques. Here, the time from the occurrence of a failure to a dangerous event is defined, and is called FTTI (Fault tolerant time interval) in the functional safety standard ISO26262. Therefore, when a failure occurs, it is necessary to shift to a safe state within FTTI.

特許文献1や実施例1、2では、コンデンサ容量が各端子で異なっているため、フィルタ抵抗がオープン故障した場合、特許文献2のように同じ電流値を各端子に印加すると電圧変化のスピードが異なってしまう。フィルタオープン故障を検知する閾値は、故障して無い場合に故障と判定する誤診断を防止するため、ノイズ量を加味して設定される。そのため、故障発生から故障検知するまでの時間が各端子で異なる事になる。よって、最大の故障検知時間となる箇所でFTTI内に安全状態へ移行するよう電流値が設計される。この電流値で前記正常時の電圧変動がセル電圧に戻れば問題ないが、戻らない場合は実施例1、2の技術を用いる事が出来ない。今後の制御の高精度に伴う高速な電圧測定周期に対応するためには、特に問題となる可能性がある。   In Patent Document 1 and Examples 1 and 2, since the capacitance of each capacitor is different at each terminal, when the filter resistor has an open failure, if the same current value is applied to each terminal as in Patent Document 2, the speed of voltage change is increased. It will be different. The threshold value for detecting the filter open failure is set in consideration of the amount of noise in order to prevent misdiagnosis to be determined as a failure when there is no failure. For this reason, the time from failure occurrence to failure detection differs at each terminal. Therefore, the current value is designed so as to shift to the safe state within the FTTI at the location where the maximum failure detection time is reached. If the normal voltage fluctuation returns to the cell voltage at this current value, there is no problem, but if it does not return, the techniques of Examples 1 and 2 cannot be used. In order to cope with the high-speed voltage measurement period accompanying the high accuracy of the future control, there is a possibility that it becomes a problem in particular.

このような課題を解決するため本実施例3では、図8に示すように、C0のコンデンサをCC-ICの最下位と最上位端子の間に配置するようにした。図9にC0〜C12のコンデンサ容量を示す。なお、後述する実施例4のコンデンサ容量も併記している。なお、フィルタ抵抗は実施例3、4共に、100kΩを用いた。その他については、実施例1、2と同じため、説明を省略する。   In order to solve such a problem, in the third embodiment, as shown in FIG. 8, the capacitor C0 is arranged between the lowest and highest terminals of the CC-IC. FIG. 9 shows the capacitor capacities of C0 to C12. The capacitor capacity of Example 4 to be described later is also shown. The filter resistance used in Examples 3 and 4 was 100 kΩ. Since others are the same as those of the first and second embodiments, the description thereof is omitted.

このような構成にしたので、どの端子からもコンデンサが同じように見えるため、フィルタ抵抗のオープン故障時の端子の電圧変動量差を抑制する事が可能となる。図10に減衰比を示す。本構成により、同一コンデンサを用いている図4では1KHzの減衰比-8dbであるが、本実施例の場合-19dBとアンチエイリアシングフィルタ性能を向上させた電池管理装置を提供する事ができる。
以上、本発明について簡単にまとめる。本発明では、n個の電池セルのそれぞれの両極に電圧検出線路を介して電気的に接続され、複数の電池セルそれぞれの端子電圧を検出する集積回路(CC-IC)と、n個の電池セルそれぞれの端子電圧を検出する電圧検出部を有する集積回路と、電圧検出線に電気的に接続されたn+1個の抵抗と、抵抗と前記電圧検出部との間の電圧検出線間に接続されたn個のコンデンサCnと、集積回路に接続された最低電位の検出線の前記抵抗と前記電圧検出部の間と前記集積回路に接続された最高電位の検出線の前記抵抗と前記電圧検出部の間に接続された1個のコンデンサC0、とを有することを特徴とする。このような構成にすることによって、どの端子からもコンデンサが同じように見えるため、フィルタ抵抗のオープン故障時の端子の電圧変動量差を抑制する事が可能となる。
With such a configuration, since the capacitor looks the same from any terminal, it becomes possible to suppress the voltage fluctuation amount difference between the terminals when the filter resistor is open. FIG. 10 shows the attenuation ratio. According to this configuration, although the same capacitor is used in FIG. 4, the 1 KHz attenuation ratio is −8 db, but in the case of this embodiment, it is possible to provide a battery management device with improved antialiasing filter performance of −19 dB.
The present invention will be briefly described above. In the present invention, an integrated circuit (CC-IC) that is electrically connected to both electrodes of each of n battery cells via a voltage detection line and detects a terminal voltage of each of the plurality of battery cells, and n batteries An integrated circuit having a voltage detection unit for detecting a terminal voltage of each cell, n + 1 resistors electrically connected to the voltage detection line, and a voltage detection line between the resistor and the voltage detection unit The n capacitors Cn connected, the resistance of the lowest potential detection line connected to the integrated circuit and the voltage detection unit, and the resistance of the highest potential detection line connected to the integrated circuit and the voltage And a single capacitor C0 connected between the detectors. By adopting such a configuration, the capacitor looks the same from any terminal, so that it is possible to suppress the voltage fluctuation amount difference between the terminals when the filter resistor is open.

続いて第4の実施例について説明する。本実施例では、実施例3の減衰比(図10)が、10Hz程度で減衰比がプラスとなる現象が現れており、問題となる事がある。この特性は、C0のみに12倍の電圧が印加される事が要因であり、図9に示すように実施例4ではC0のみ他の端子の容量の12分の1の容量値とした。図11に実施例4の場合の減衰比を示す。10Hzに見られた減衰比がプラスとなる現象を抑制されたことが分かる。また、1kHzの減衰比が-13dBであり、図4の-8dBよりも小さい。よって、全体にバランスの取れたアンチエイリアシングフィルタ性能を持った電池管理装置を提供する事ができる。   Next, a fourth embodiment will be described. In the present embodiment, a phenomenon that the attenuation ratio becomes positive when the attenuation ratio of Embodiment 3 (FIG. 10) is about 10 Hz appears, which may be a problem. This characteristic is due to the fact that 12 times the voltage is applied only to C0. As shown in FIG. 9, in Example 4, only C0 has a capacitance value that is 1/12 of the capacitance of the other terminals. FIG. 11 shows the attenuation ratio in the case of the fourth embodiment. It can be seen that the phenomenon in which the attenuation ratio seen at 10 Hz is positive is suppressed. Further, the attenuation ratio at 1 kHz is −13 dB, which is smaller than −8 dB in FIG. Therefore, it is possible to provide a battery management device having anti-aliasing filter performance that is balanced overall.

なお、本実施例ではコンデンサが12個であるため、このような構成としたが、コンデンサの個数がn個の場合にはC0にn倍の電圧が印加される。そのため、そのような場合にはC0のみ他の端子に接続されるコンデンサの容量の1/nとすれば良い。   In this embodiment, since there are twelve capacitors, such a configuration is adopted. However, when the number of capacitors is n, n times the voltage is applied to C0. Therefore, in such a case, only C0 may be set to 1 / n of the capacitance of the capacitor connected to the other terminal.

以上、本発明についてまとめる。本発明では、1個のコンデンサC0の容量値がCnの容量値のn分の1である。このような構成にすれば全体にバランスの取れたアンチエイリアシングフィルタ性能を持った電池管理装置を提供する事ができる。   The present invention has been summarized above. In the present invention, the capacitance value of one capacitor C0 is 1 / n of the capacitance value of Cn. With such a configuration, it is possible to provide a battery management device having a balanced anti-aliasing filter performance as a whole.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

Claims (4)

n個の電池セルのそれぞれの両極に電圧検出線路を介して電気的に接続され、前記複数の電池セルそれぞれの端子電圧を検出する集積回路と、
前記n個の電池セルそれぞれの端子電圧を検出する電圧検出部を有する集積回路と、
前記電圧検出線に電気的に接続されたn+1個の抵抗と、
前記抵抗と前記電圧検出部との間の電圧検出線間に接続されたn個のコンデンサCnと、
前記集積回路に接続された最低電位の検出線の前記抵抗と前記電圧検出部の間と前記集積回路のGND間に接続された1個のコンデンサ、とを有し
前記コンデンサCnの最低電位側のコンデンサの位置をkとした場合、前記各コンデンサCnの値の比が(数1)を満たす
Figure 2018105801
ことを特徴とする電池管理装置。
an integrated circuit that is electrically connected to both electrodes of each of the n battery cells via a voltage detection line, and detects a terminal voltage of each of the plurality of battery cells;
An integrated circuit having a voltage detection unit for detecting a terminal voltage of each of the n battery cells;
N + 1 resistors electrically connected to the voltage detection line;
N capacitors Cn connected between voltage detection lines between the resistor and the voltage detection unit;
A capacitor connected between the resistor of the lowest potential detection line connected to the integrated circuit and the voltage detection unit and between the GND of the integrated circuit, on the lowest potential side of the capacitor Cn When the position of the capacitor is k, the ratio of the values of the capacitors Cn satisfies (Equation 1).
Figure 2018105801
A battery management device.
n個の電池セルのそれぞれの両極に電圧検出線路を介して電気的に接続され、前記複数の電池セルそれぞれの端子電圧を検出する集積回路と、
前記n個の電池セルそれぞれの端子電圧を検出する電圧検出部を有する集積回路と、
前記電圧検出線に電気的に接続されたn+1個の抵抗と、
前記抵抗と前記電圧検出部との間の電圧検出線間に接続されたn個のコンデンサCnと、
前記集積回路に接続された最低電位の検出線の前記抵抗と前記電圧検出部の間と前記集積回路に接続された最高電位の検出線の前記抵抗と前記電圧検出部の間に接続された1個のコンデンサ、とを有することを特徴とする電池管理装置。
an integrated circuit that is electrically connected to both electrodes of each of the n battery cells via a voltage detection line, and detects a terminal voltage of each of the plurality of battery cells;
An integrated circuit having a voltage detection unit for detecting a terminal voltage of each of the n battery cells;
N + 1 resistors electrically connected to the voltage detection line;
N capacitors Cn connected between voltage detection lines between the resistor and the voltage detection unit;
1 connected between the resistor of the lowest potential detection line connected to the integrated circuit and the voltage detector and between the resistor of the highest potential detection line connected to the integrated circuit and the voltage detector. A battery management device.
請求項1記載の電池管理装置であって
前記n個のコンデンサCnが全て同じ容量値であることを特徴とする電池管理装置。
2. The battery management apparatus according to claim 1, wherein all of the n capacitors Cn have the same capacitance value.
請求項3記載の電池管理装置であって
前記1個のコンデンサの容量値が前記Cnの容量値のn分の1であることを特徴とする電池管理装置。
The battery management device according to claim 3, wherein a capacitance value of the one capacitor is 1 / n of a capacitance value of the Cn.
JP2016254663A 2016-12-28 2016-12-28 Battery management device Active JP6685892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016254663A JP6685892B2 (en) 2016-12-28 2016-12-28 Battery management device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016254663A JP6685892B2 (en) 2016-12-28 2016-12-28 Battery management device

Publications (2)

Publication Number Publication Date
JP2018105801A true JP2018105801A (en) 2018-07-05
JP6685892B2 JP6685892B2 (en) 2020-04-22

Family

ID=62787008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016254663A Active JP6685892B2 (en) 2016-12-28 2016-12-28 Battery management device

Country Status (1)

Country Link
JP (1) JP6685892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112068485A (en) * 2020-09-22 2020-12-11 萧县威辰机电工程设备有限公司 Fault diagnosis system for numerical control machine tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110377A1 (en) * 2009-03-25 2010-09-30 株式会社 東芝 Secondary battery device and vehicle
JP2013053884A (en) * 2011-09-02 2013-03-21 Honda Motor Co Ltd Voltage measurement device
JP2013096770A (en) * 2011-10-31 2013-05-20 Hitachi Ltd Power storage system
JP2015201912A (en) * 2014-04-04 2015-11-12 株式会社デンソー battery monitoring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110377A1 (en) * 2009-03-25 2010-09-30 株式会社 東芝 Secondary battery device and vehicle
JP2013053884A (en) * 2011-09-02 2013-03-21 Honda Motor Co Ltd Voltage measurement device
JP2013096770A (en) * 2011-10-31 2013-05-20 Hitachi Ltd Power storage system
JP2015201912A (en) * 2014-04-04 2015-11-12 株式会社デンソー battery monitoring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112068485A (en) * 2020-09-22 2020-12-11 萧县威辰机电工程设备有限公司 Fault diagnosis system for numerical control machine tool
CN112068485B (en) * 2020-09-22 2021-10-26 萧县威辰机电工程设备有限公司 Fault diagnosis system for numerical control machine tool

Also Published As

Publication number Publication date
JP6685892B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
CN108713150B (en) Diagnostic device and power system including the same
JP5861954B2 (en) Battery insulation resistance measuring apparatus and method
JP5691950B2 (en) Voltage monitoring device
US9562949B2 (en) Battery monitoring device
JP6697869B2 (en) State determination device and state determination method
US8841915B2 (en) Battery voltage monitoring apparatus
KR102270233B1 (en) Method and apparatus for diagnosing fault of negative contactor of battery pack
JP5447260B2 (en) Battery voltage monitoring device
US10901036B2 (en) Assembled battery monitoring system
US20150077124A1 (en) Assembled battery module and disconnection detecting method
US11892518B2 (en) Method of operating battery management systems, corresponding device and vehicle
US10649040B2 (en) Leakage current determination
JP6137007B2 (en) Anomaly detection device
JP5974849B2 (en) Battery monitoring device
KR101619483B1 (en) Apparatus for diagnosing voltage measurement circuit of battery and method thereof
CN110739734A (en) Battery pack stack monitoring and balancing circuit
WO2011036867A1 (en) Disconnection detecting circuit and battery power supply device
JP6171128B2 (en) Battery control system, vehicle control system
US10444293B2 (en) Battery voltage measurement circuit
JP2016134948A (en) Power supply system
JPWO2018101005A1 (en) Battery control unit
JP6016754B2 (en) Battery voltage detector
JP6685892B2 (en) Battery management device
JP2013542556A (en) Battery system for measuring battery module voltage
JP6848756B2 (en) Battery pack

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191021

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200401

R150 Certificate of patent or registration of utility model

Ref document number: 6685892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250